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ABSTRACT. Quantum Switch is one of most important elements
of quantum networks, see, for instance [53, 54, 55].In the present
paper mathematical modeling of the Resonance Quantum Switch
is reduced to the solution of the corresponding Scattering Prob-
lem on a network consisting of a quantum well and few quantum
wires attached to it. In a simplest practical problem the roles of
quantum wires are played by straight rectangular channels and the
role of the quantum well is played by a circular domain, with the
boundary having no flat pieces to match the rectangular channels.
We suggest a procedure of matching the rectangular channels and
a general convex domain with piecewise smooth boundary. The
matching problem is reduced to some finite-dimensional equation
with matrix-functions. Important spectral characteristics of the
above scattering problem such as positions and life-times of reso-
nances may be found numerically from the corresponding determi-
nant condition or via asymptotic analysis — for sufficiently narrow
channels.

1. INTRODUCTION

Central problems of mathematical design of quantum electronic de-
vices were formulated, based on Landauer formula [5], in terms of quan-
tum scattering on networks in the beginning of nineties, see [12, 11].
Interference of wave-functions and resonance phenomena on networks
were studied in [36]. Nevertheless practical design of quantum elec-
tronic devices, beginning from the classical Esaki diode up to modern
devices, see for instance [51], [52] was based on the resonance of energy
levels rather than on resonance properties of the corresponding wave
functions. At the same time modern experimental technique already
permits to observe resonance effects caused by details of the shape of
the resonance wave functions, see [48], [49], [50].

In actual paper we develop the mathematical idea of the resonance
manipulation of the quantum current which is based on an observation
from [13]: Scattering Matrix of a resonator with an opening depends

on values of the relevant eigenfunctions of the inner problem on the
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opening. This idea was already used to construct solvable models of
a three-terminal Quantum Switch RQS-3 (for triadic logic) - the task
formulated by Professor G. Metakides and Doctor R.Compano ( In-
dustrial Department of the European Comission) as a work-package
of EU ESPRIT Project 28890 NTCONGS, see the papers and reports
(16, 17, 18, 19, 20] published in this connection. Main idea of the
Resonance Quantum Switch presented in [17] is based on using of the
resonance eigenfunction of the Quantum Well as a main working detail
of the switch, see also the preliminary paper [16],where the solvable
model of the Switch is discussed. In [21] more realistic scattering prob-
lem is considered for the Resonance Quantum Switch based on a deep
quantum well, modeled by a circular domain with the Dirichlet bound-
ary condition on the boundary. The corresponding scattering matrix
describing the switching process is presented in [21] via the DN-map
of the corresponding modified domain which already has flat pieces on
the boundary matching the rectangular channels.

In actual paper we describe the procedure of construction of the
Green function of the modified domain based on the spectral charac-
teristics of the convex original domain, thus accomplishing the analysis
developed in [21]. Similarly the Poisson kernel, the DN-map and other
spectral characteristics of the Schrodinger operator on the modified
domain may be constructed.

Actual paper is supplied with two Appendices. In the first Appendix
the general properties of the DN-map are described. In the second
Appendix an approximate calculation of the basic characteristics of the
Resonance Quantum Switch is done following the previous joint paper
[21]. The text of the Appendix 2 contains corrections of some essential
details of the text [21] .The approximate estimation of the position of
the resonance arising from the resonance eigenvalue was done thanks to
an essential help from A. Mikhailova, who actually supplied the author
with a draft of her own paper (in preparation).

The author is grateful to Professor B. Belinskij and Mr. K. Robert
for thorough reading of the manuscript of the paper and useful sugges-
tions.

The author is grateful to the Centre for Mathematics and its Appli-
cations of the Australian National University, where essential part of
this paper was written and presented. In particular he is grateful to
Professor A. McIntosh and Dr A. Hassell for extended discussion of the
material.

The author is grateful for partial support from the Russian Academy
of Sciences (Grant RFFI 97 - 01 - 01149), the Staff Research Grant
3601130 from the University of Auckland and a Grant for Visiting
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Scientists from the Dozor Foundation, Ben Gurion University, Beer-
Sheva, Israel, June 2001.

2. BASIC SCATTERING PROBLEM AND DN-MAP.

Consider a network formed on a base of a quantum well - a convex
domain €y with a piecewise smooth boundary and a few ! straight rect-
angular semi-infinite quantum wires €, s = 1,2,...n, width J,, s =
1, 2, ... attached to 5. We assume here that the effective potential
on the wires lies below the Fermi level £y and there exists the reso-
nance energy level £y = E; on the well embedded into the continuous
spectrum of the Schrédinger operator on the whole network 2. We con-
sider a single act of an electron’s transmission from the incoming wire
to one of terminals as a scattering process in this quantum network.
Mathematically the corresponding scattering problem may be studied
in course of construction of spectral characteristics of the Schrodinger
operator on the whole 2 — d space :

2

5 Au+V(z)u= Eu
with the potential V(z) equal to zero outside the network and asymp-
totically (at infinity) equal to the constant V5 which lies below the
Fermi level Ey in the wires, [6]. The potential on the well may be spe-
cially selected to ensure a possibility of manipulation quantum current
across the quantum well, see for instance [17, 21] where the potential
on the well € is chosen as Vy(x) = Ee(z, v) + Vy < 0. This assumption
corresponds to the constant (macroscopic) electric field applied to the
device. The direction v of the field (and hence the transmission through
the device) is manipulated by the rotation of the unit vector v in the
plane parallel to the device. In actual paper we assume that the De-
Broghlie wavelength in the wires is greater than the radius of the well,
which minimizes de-coherence in the corresponding scattering process.
We assume also that the Fermi level in the wires lies deep enough so
that we may replace the original spectral problem on the whole space
by the spectral problem on the network = Qy U Q; U ... with ho-
mogeneous Dirichlet boundary condition on the border I' = 9€2. We
consider further the non-dimensional spectral problem. For the macro-
scopic electric field the basic domain may be reduced by retraction
x = R¢ Jto the unit disc,with proportional transformation of the wires

1f no special indications are given, we consider below the most interesting case
of a triadic switch with one input wire and three terminals, that is n =4
2We use here the term suggested in [42].
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Q, — Q% s=0,1, ... and the equation

— Deh+ €€, V)Y +vgh = M, € € O,
—Nep+oah =M, €, s=1,2,...,

el =0
Here we use the notations vy = 2”%—52(1/0 —Vi), A= 27252 (E—V,), e=
& 62"7;53. The re-normalized width of each wire is equal to § = %S, 5§ =
1,2,.... From now on we assume that there are four wires : the wire

Q which will play the role of the input wire and the wires 9, Q3, {24
which will play roles of terminals. The re-normalized potential V' on
the whole network is a real piece-wise continuous function and the
potential on the wires is equal to zero, vs(§) = 0. We are aimed now
to the corresponding scattering problem, for the differential operator

in the retracted composite domain €y, Qy, ...>:

—Au+V(r)u= X, z€Q,
with zero boundary conditions on the boundary I' = 0f2.
U,|F = 0.

The transmission through the switch and, generally, the correspond-
ing scattering matrix may be calculated in terms of the Dirichlet-to-
Neumann map of the corresponding Quantum Well. The Dirichlet-to-
Neumann map (DN-map) A or Lyapunoff map, see [1, 2, 31, 7, 10] and
the appendix below, for the boundary problem in a compact domain
) C R, with the piecewise Cs-smooth boundary I and no inner angles

— Au+V(x)u = Au,
U|F = ur
is defined as a (linear) transformation of boundary values of the solution
into the boundary values of the normal component of the corresponding
current 7, ulr (in the direction of the outer normal n).
For generalized solutions of the above boundary problem from the
Sobolev class W2(Qg) with the smooth boundary Iy the corresponding

DN-map A is a linear operator acting from the Sobolev class Wi'?(Tg)
onto W, / *(Ty), see [35] and for the generalized solutions from W ()

it is a linear operator from the Sobolev class Wy/*(T'g) onto Wy /(Ty).
Generally due to the M. Riesz interpolation theorem for solutions from

W, tP(€Q) it is a linear operator from W21/2+’G(F0) onto WJ2(Ty).

3From this moment we rename the retracted variable ¢ — z and denote Q¢ by
Q again.
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The DN-map exists at any regular point A of the corresponding oper-
ator Lo in Ly(€) with zero boundary condition on the boundary and

may be considered as an operator from Wf“m onto Wfﬁl/z, 0<3<
1. In particular the bi-linear form (Aur,, vr,) on each pair of elements
Ury, Ur, € Wzﬁ 1/ ’isa meromorphic function of the spectral parame-
ter A on any compact domain of the complex plane with possible poles

at the eigenvalues of the Dirichlet problem for the operator Lg

Lu=—Au+V(z)u=u, x € Q,

U‘[‘O =0.

Our analysis is based on an explicit formula connecting the scattering
matrix of the operator L in the composite domain 2 = QqUQ, U, . ..
with the Dirichlet-to-Neumann map of the basic domain. On the first
stage, in this section, we consider the modified basic domain Qo

Qo = o\ {U, Q)

which has flat pieces on the boundary matching the bottom sections o;
of the wires €2;, © = 1,2,3,4. We aim first on the formula connecting
the Scattering Matrix on the composite domain with the DN map A of
the modified domain.

The spectrum of the above Schrodinger operator L in the space
of all square integrable function on the composite domain Ly(€2), see
for instance [39], consists of a countable set of absolutely-continuous
branches [(%)2, oo, I = 1,2,..., each of them multiplicity N = 4,
and possibly a finite number of eigenvalues A, of a finite multiplic-
ity below the first threshold g—;. There may be also some embedded
eigenvalues. The eigenvalues below the first threshold are not in-
volved into the process of quantum conductivity, but the embedded
eigenvalues, see for instance [37] and [38], may be transformed to res-
onances by small perturbations. We shall consider this transformation
in the next section in connection with the resonance eigenvalue on
the basic domain. The total multiplicity of the absolutely-continuous
spectrum is (countably) infinite. The eigenfunctions of the absolutely-
continuous spectrum are so-called scattered waves, see [33]. These
are solutions ¥ of the homogeneous equation LV = AW, which fulfill
some (asymptotic) conditions.Generally, the scattered wave incident
with the plane wave incoming from the channel €; has the components
Uy, s = 1,2,3,4, in channels €),. They are represented on the first
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spectral band (%)% < A < (%) as

| 2 TY i /N (EV2 a | 2 T —g
\Ijtt(x,y) = W Sln ﬁe A (|5\)2 + Stlt WSIH ﬁe \/)\ (\6|)2 +

2 ) l7ry
+Zstt |5 |5| T Mayeq,,

>1

2 o g
Vi(w,y) = S;t ’5‘ sin %e A=(77)? =

(1)

. Az
34 BeVE myen st

>1

The coefficients S, s # t, z,y € Q,,x,y € Q4, s # ¢ in front of the
oscillating exponentials are elements of the Scattering Matriz on the
first spectral band below the second threshold (27)%, and s, are just
the amplitudes of exponentially decreasing modes. If A\ sits on the
upper spectral band, then higher oscillating modes are present. If not
specified, we assume below that the incident wave is incoming from the
first wire, t = 1, and use the notations ¥, instead of ¥,; for components
of the scattered wave in the wires.

To construct the scattered wave on the first spectral band one must
find the solution W of the Schrodinger equation on the modified ba-
sic domain o which satisfies the matching conditions on the bottom
chords 0, of the wave-guides (), with scattered waves ¥, on the wires:

0
s — 07 _(\IIO - \I[S)

(2) Wy — W, n

5, = 0.

Based on results of the next section we will suggest a convenient integral
equation which is equivalent to this boundary problem. Now we assume
that all DN-maps on the modified domain () and the channels Qg, s=
1,2, 3,4 are already constructed. Then we derive an important formula
for the 4 x 4 Scattering matrix on the first spectral band (below the
second threshold A = | 6|2) and similar formulae for higher spectral

bands, connecting it with the DN - map Ag of the Schrodinger operator
L in Ly(Q) on the modified basic domain €.
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Note that the restriction onto d, of the DN- map Ao is connected to
the restriction 735 ~, of the Poisson map P in Qo onto d,:

R 9 9 .
Ao(z, )| = —Py(z,y)| = ————G\\(z,y)]

A0
vess el Ong, weds,yel Onz0on, weds, yel

see Appendix 1, and hence is uniquely defined for all values of the
spectral parameter outside of the discrete spectrum of the operator Lo.

In fact the scattering matrix is a sub-matriz of an infinite parent S-
matriz S which is defined by the matrix elements Sy, ss introduced

above®. Consider the normalized eigenfunctions e}, = \/g sin “le of the

transversal part of Laplacian on the cross-sections of the wave-guides
Qs . Then the matrix S on the first spectral band (§)* < A <4(5)?is a
matrix of an operator in the channel space H = @ Zi‘zl Ls(05) defined
as

(3) Z Sheer + )0 shel) ] == S'(\) +s'(V).

s,t=1 s,t=1 [=2

The part S'()\) of the parent S-matrix S(A) in the open first chan-
nel (below the second threshold ) is exactly the Scattering Matrix on
the first spectral band : for any incident linear combination of in-

coming modes from the first spectral band ), Yeele v AT

\I/me_i\/k_(%)2 * the corresponding scattered wave is constructed in
form

\Ij = ‘I;ine_i A~ (% + Sl( ) inei v A_(T}rlp v + Sl()\>\1j
where the last term is exponentially decreasing at infinity if A is below

the second threshold: s'(\) = >, Ve st,el >< el. Both op-
erators S1()\), s*(\) act in Ly(d) = @ stl:l Ls(ds) as matrices with ele-
ments Sy, sg which are uniquely defined from the condition of match-
ing of components of the scattered wave ¥ in the wires (), with the
solution of the Schrédinger equation on the basic domain Qo.

To describe the matching conditions in convenient form for general

case when several channels are open (f)* < A < (m + 1)%({5)° 5,

4Convenience of this infinite analytic matrix-function of the spectral parameter
was explained to the author by Professor D.P. Kouzov,[58].

SWe shall deliberately use the term channel both for the domains Qg, s =
1,2,3,4, and for the invariant subspaces of the Laplacian on them. Still we hope
that any confusion is avoided, since the term is used for subspaces with adjectives
“open” or “closed”.
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we consider the decomposition of the space Ly(d) = H of the square-
integrable functions on the cross-sections into an orthogonal sum of the
channel-spaces H = H, @& H_ which correspond to the cross-sections
of open (I <m) and closed (I > m + 1) channels :

4

l=m
1 —
=\/e. > H . :=H,
=1 s=1

i Ia—(lxy2
There are two types of oscillating exponential modes e* Z\//\ (p” el

in the open channels and only one type of a bounded exponential

mode e V= “el in the closed channels. These modes fulfill in-
side the wires the Helmholtz equation with the spectral parameter A
and the Dirichlet boundary conditions on the walls y = 0,. We

introduce the diagonal operators Ks = @Y 0 iy /A — Z;T; el ) (el and
K = Zizl KCs. The operator IC for complex values of the spectral pa-

rameter, §y/\ — \5|2 > 0, plays the role of the Dirichlet-to-Neumann

map on the infinite domain U._,€;. It acts on the channel space H
and fulfills the condition K > 0 on the spectral sheet of the spectral
parameter \ with a cut along the spectrum. The limit values of it on
the real axis of the spectral parameter exist in each channel and may
be decomposed into an orthogonal sum of two parts K = K, & K_,
Ks = Kis ® K_ 5 which correspond to the open and closed channels

respectively :
:@ZZU/\_W 6ls><els7 IC+:Z’C+,sa
=1 s=1

@; o s K= 3 K

Both operators K. have bounded inverse in H, if A does not coin-
cide with thresholds. The operator X-'()\') is small for given \ % <

N << (ngl if m >> 1 and acts as an operator from W& /2(¢)
into W 1/ ?(6). Tt is self-adjoint and negatlve on real axis of the spec-

tral parameter A\ below the threshold = rg"gl) . The operator K. is

anti-hermitian (the operator ik, is self-adjoint).
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One may consider a similar decomposition for the DN-map A of the
modified domain QO, restricted onto the cross-sections of the channels
A=Ay, ® Ay = A ®A_. The restrictions of the eigenfunctions
eé on the bottom cross-sections d, of the channels {2, may be continued
by zero values from 6 = U?_,d, onto the complement 8@0\(5. The re-
sulting functions lie in W}’ 1/ ?(8€), with any 8 < 1. We denote the
continued functions by €' as well. They belong to the domain of the
properly defined in H operators A, K. This fact permits to consider re-
striction of the DN-map A onto the channel space H as densely-defined
unbounded operator in H. In particular for real values of the spectral
variable A\ one may consider the corresponding symmetric operator en-
closed by the orthogonal projections ¢ Py acting from LQ(GQO) onto
H:

It is defined in H on the linear variety of all elements from W 1/ %(6)

and takes values in W5 12 (0) on the bottom section. We may consider
the representation of it by a Hermitian matrix in the above orthogonal
decomposition H =H, @ H_, Py =P, & P_:

PyA|ly = PLAP,. + P,AP_ + P. AP, + P.AP_:=
Ay +A +A L +A _=

/:\++ /:\+—
A, A )

The following statement is actually slightly modified version of a similar
statement announced in [21].

Theorem 2.1. The Scattering Matrix S is a contracting matrix-function

on the spectral sheet of the variable A and it may be represented via
components of the DN-map PyAPy of the modified domain as

. . . -1 -1

S=— {A++ A, [A__ - /c_] Ay — IC+} X

(4) ) o o

{A++ A, [A,, - /c_] A+ /c+} .

~ ~ ~ -1 .
Here the operator Ay —A [A,, — IC,] A_, :="D()) is an operator-
function with a positive imaginary part in the lower half-plane S\ < 0
and negative imaginary part in the upper half-plane S\ > 0. It is a

6The orthogonal projections act in Lo (8@0) as multiplications by the indicators
55 of (53 - 390
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finite-dimensional hermitian matriz - function in H, on the interval
(52 ,(m+1)2 52) of the real axis of the spectral parameter X\, outside
of the spectrum of L. The operator-functions Ky are analytic with

positive imaginary parts in the upper half-plane SA > 0,and negative
imaginary part in the lower half-plane, IC z's anti-hermitian and K_ is

real negative on the interval (52 ,(m+1)%% 52 of the real axis \ below
the m + 1 threshold and the whole matriz S is unitary in H, on the
spectrum of the operator L below the m + 1 threshold.

Proof Consider the background scattering problem for the Schrédinger
operator on the channels €, with zero boundary conditions on the
boundary 0€;, t = 1,2,3,4 . Components of the corresponding scat-
tered waves on the open channel H; may be presented as

—i A”l;x \/)\"l;z
WY = ?lei[e\/ P —e I <m 41,

and the whole background scattered wave is
\Ilo(m) _ [e—IC:v _ eicz] ﬁo’

where ¢0 iy Vel defines the amplitude of the incident wave in each
channel Q;, t = 1,2,3,4. The above functions ¥° may play a role of
eigenfunctions of the absolutely-continuous spectrum of the Laplacian
in ® Zz‘zl Ls(25). The components on the wires of the perturbed eigen-
functions ¥ incident by the same amplitude may be presented as linear
combinations of the non-perturbed wave U9 and outgoing’ exponen-
tial solution combined of both oscillating I < m + 1 and exponentially
decreasing components, in all channels :

x212
_ — (3 A I xT ’ /7
U= [e ™ — My + g cle \/ o1 T O -

LU <m+15t,t

. 7212
2 : l ’¢)‘7 12 T ot ol .
€€ Sy Wy =

I>m~+1;t,t"

(5) [e—ICa: o eKw} 77/;0 + GIC;BT’;E().

"Following [46] we call the solution of the homogeneous equation outgoing if it
may be analytically continued as a bounded function onto the spectral plane .
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The operator 7 in H — so-called T-matrix ® - introduced above by (5)
is connected to the parent scattering matrix S by the formula:

S=S+s=—-1+T

and to S-matrix by the formula & = —I, + 7, where the index +
indicates to the corresponding space H,. The matching condition of
the scattered wave on the bottom cross-sections d; of the wires €, ¢t =
1,2,3,4 with the solution ¥y of the Schrodinger equation inside the
modified domain g gives the following equation :

~ - 0
AT|5¢O = a_‘IIU =
ns

which may be transformed into operator equation by cancelling the
arbitrary incident vector ¥y € H,.. One can rewrite this equation in
form :

(7) T——p—nrbn

After framing the result by the projections P, onto the open channels

we obtain )
T, =—P, = P.K
+ +A IC+ +

or )
s=-[A-x| [A+k].

Using the negativity of the imaginary part of the denominator in the
upper half-plane S\ > 0 one may conclude that the parent S-matrix
exists and is a contraction in the upper half-plane. Similarly one may
check that it is an analytic contracting function in the lower half-plane
of the spectral plane A. Now the Scattering Matrix may be obtained as
S = P.SP,. Hence is a contraction in the upper half-plane too. One
may derive from [47] that it has contracting boundary values almost
everywhere on the real axis of the spectral parameter. We obtain an
explicit expression for the Scattering matrix using the above orthogonal
decomposition of H and the techniques for operator matrices, devel-
oped in [40], [41]. Really,we may construct an explicit expression for
the parent scattering matrix via solving the equation

A-k|se=—|A+K]e

8In fact the defined object should be called parent T-matriz. The conventional
T-matrix may be obtained from it via restriction onto the open channels
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which may be presented for e € H, as a system of two equations
for (Se)y = Se, (Se)_ = se in the above orthogonal decomposition
H=H & H_:

(8) (A= K)Se+ (A —K)se = —(A + K)Se — (A + K)se.

An explicit expression for the Scattering Matrix in the complex plane
may be obtained as a restriction of the parent S-matrix S onto the sum
of open channels H,. The equation (8) may be reduced to the pair of
equations via multiplication of it from the left side by Py respectively:

<A++ — IC+) Se + /A\+_se = — <A++ + IC_> e,

Ai_Se+A__se—K_se=—A_,e.

The amplitudes of the exponential modes may be eliminated with use
of the second equation :

se = (A__ - IC_)l [—A_+] (e + Se).

Inserting them into the first equation we obtain the announced expres-
sion (4) for the Scattering Matrix.

According to the above remark the the Scattering Matrix has con-
tracting boundary values on the real on the spectrum of the operator
L below the m + 1 threshold. The imaginary part of the denomina-
tor of the Scattering Matrix on the upper shore of the spectrum of L
below the m + 1-th threshold is negative due to presence of the anti-
hermitian term I, , K, > 0.The limit values of the matrix-function
D = A++ — A+_ [/A\__ — IC_] 71/A\_+ give a self-adjoint matrix-function
in the channel space H,, and hence the S-matrix
D+ K.
is unitary in H* on the interval of real axis below the m+1-th threshold.
O

The straight formula for the Scattering Matrix announced in the
above theorem may be used not only for complex, but also for real
values of the spectral parameter X if the operator A__(\) — K_(\) is

invertible at those values, that is, if and only if neither of its eigenvalues
coincides with zero. Vice versa, if it has a zero eigenvalue at the real

spectral point \g with the eigenvector ¢, € Wfﬂ/z(é) € H_, then the
operator L has an embedded eigenvalue Ay with the eigenvector

v { e~ "’“"@EO, on the channels €, s =1,2,3,4
O p—

S=-—

~

150@/70 inside the domain €.
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Note that the investigation of properties of the scattering matrix on
a network combined of a quantum well and several channels may be
accomplished in course of the straightforward construction of the Green
function and scattered waves based on [22; 23|, see for instance [25,
26, 27, 28]. In particular, in [26] an importance of a special finite
matrix was noticed, which defines the scattering on the corresponding
resonator. This matrix is an analog of the re-normalized reduced DN-
map D(A\) = A, —A [/AL,—IC,} _lfLJr constructed above. Different
approach to similar problem was developed in [24] and in [29].In the
next section we follow the ideas of [30, 32, 15], taking a special care
of the case when the channels are not thin comparing with the typical
wavelength of the scattering process we explore.

The above analysis shows that the spectral characteristics of the
modified domain are important, being directly connected with the
Scattering Matrix. In the next section we will reduce calculation of
the resolvent of the operator L on the modified domain to an integral
equation with a finite-dimensional matrix-function. Similar integral
equation may be derived for the scattered waves.

3. MATCHING DOMAINS

For standard domains like a unit disc or rectangle the Dirichlet-to-
Neumann map may be practically obtained via separation of variables
or by the perturbation techniques, for equations with non-zero poten-
tial. In the previous section we derived an expression for the scattering
matrix on a simplest network based on DN-map for a modified do-
main o with flat pieces on the boundary obtained by removing from
the domain )y some segments w, bordered by the arcs v, C 0€)y and
the corresponding chords ds which may serve as the bottom sections
of the attached rectangular channels €2,. In actual section we fill the
gap between the spectral analysis on the basic domain and on the
corresponding modified domain, suggesting the procedure of obtaining
spectral characteristics of the modified domain with only one segment
removed,

QO = Qo\w.
For other segments the procedure may be iterated. The procedure
will result in obtaining a finite-dimensional equation which contains
some finite-dimensional matrix function of the spectral parameter \.
We begin with derivation of the corresponding equation containing a
contracting operator.

Let us denote common ends of the chord § and the arc v, following
in anti-clockwise order on the boundary of the basic domain €2y, by
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symbols a, b. Consider the reflection Qg of the domain Qo with respect
to the direct line passing through the points a,b. Denote by €2y the
joining of Q() U Q. Assuming that the original domain €2 is convex °
we may construct a disc D D Qo bordered by the circle 9D containing
only two common points a, b with 9. We may choose the disc such
that the smallest open segment of it bordered by the arc 0D Nw and
the chord ¢ is contained strictly inside w. The boundary of the disc
may be decomposed as D = I's UT?, T's € w, I'’ belongs to the
complement of Qo. We assume that a similar construction is done
also for the domain €2 obtained from €2y via reflection in (a,b). This
way we obtain the reflected arc v C 9€, D', the segment «’ and
other similar details labeled with primes. We consider also a circle
YUY, X C Qy X C Q, constructed on (a,b) as a diameter and
the corresponding disc B. We assume, that the chord is not too large,
so that we have B € 2, otherwise we have to construct several non-
intersecting open discs whose diameters cover |[a, b].

The following simple observation was used in [32, 15] when con-
structing integral equations for Green functions of composite domains
combined of two simple parts joined by a small opening [32] or a thin
channel [15] :

OBS 1 Consider a classical solution u to the Dirichlet problem for the
Laplace equation in D with the boundary data

ulp; =1, ulps = 0.

Then 0 < u(z) < 9?‘5, where Os is the angle at the point x subtended by
the chord §.

This statement may be verified with use of maximum principle and the
corresponding fact in the half-plane, which is obviously true since the
harmonic measure of the boundary interval § at the point x in a half-
plane coincides with the above ratio 9?5. This estimate may be used to
prove that the integral operator in the equation (10) is contracting in
the space M, of bounded measurable functions on the arc v or in the
corresponding space of continuous functions on the arc, for negative A
or for small 4, similarly to [32, 15].

90mne may see from the Fig.1 that this construction is possible for some non-
convex domains too.
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\\ Dc

We aim now on derivation of an integral equation for the Green func-
tion of a composite domain when the contact opening is not small. In
such a case the equation the corresponding operator is not a contrac-
tion but may be represented as a sum of a contraction plus a finite-
dimensional rational function of the spectral parameter. The follow-
ing auxiliary statement permits to derive the integral equation in the
space of continuous functions for the values of the resolvent kernel of
the Schrodinger operator on the arc 7.

Lemma 3.1. Consider the resolvent Ry of the Schrdodinger operator
L with zero boundary condition on the basic domain 2y and the cor-
responding Poisson kernel Py. Then the product RyP_p;, M > 0 is a
compact operator from the space Ly(7), k > 0 into the space W, " (F)
on any compact sub-domain G € 4 and into the space of continuous
functions C'r on the sub-domain, and the following estimation of the
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remainder of the spectral series

Ry\P_yh = Z X
=1

SO_Z )\(P—th @l)

holds :

= Pl
|Z /\l — >\<P*Mh7 Qpl>|c(p) <
I=N

¥
E P_yh <
| Z )\l_>\< mn, SOl),WQHﬁ(F) =

o 1/2
1 C
) [Z |)\l|1+a—6] HM1/4—a/2|h’L2(»Y)? 0<pf<a<l/2
I=N

for the values of the spectral parameter X\ from any compact domain
on the spectral plane A which does not contain any eigenvalues of the
Dirichlet problem for the operator.

Proof: If 0 < a < 1/2 then the operator [— A +1]*/2 does not
require any boundary conditions and

C
2
’P*Mh|wg(n) S M1/27a ‘h‘Lz(v)'

The announced estimate for the spectral series follows from the em-
bedding theorem

@il ey < Coler] = Col(= A +1)1/245/2)| — Co\/2H8/2,

witha, La(Q4)

for the normalized eigenfunctions. This implies both compactness and
the estimation of the C-norm of the remainder of the spectral series for
a > (3 > 0. Really, due to the above estimate of the C-norm of the
eigenfunctions we may estimate the remaining of the spectral series as

sl C ATy
~ |>\l B )\’)\1—1/2+a/2—ﬂ/2 =

The last sum may be estimated with use of the Parseval inequality
for the orthogonal and normalized system of eigenfunctions of the
Schrodinger operator and the spectral asymptotic for the correspond-
ing eigenvalues. On any compact sub-domain of the complement of
spectrum of the operator L we have:

1/2
1 Co
Z /\ll—l—a—ﬁ] M1/4—a/2 |h|L2(’Y)

N

> <
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Note that the statement of the above lemma may be derived from the
estimates of the Poisson map obtained in [14].

Now we may derive the integral equation for the Green- function on
the composite domain QU Y following ideas used in [21]. Assume that
the the Green function G(\, z,y) and the corresponding Poisson maps
Py, P; for Q and € are known. If the pole y sits in upper domain (2,
then the Green-function G in the joined domain 2 = Q U €Y may be
presented via the values u, of it on ~:

G\ z,y) =G\ z, y)+ PN u, (z), v €9,
G, 2, y) = P(NG(A 2, y)ly(z) =
P'N) (G, z, y) + PN )uy(2)) |zey, © € Q.
Then using the Poisson map PP in the disc bordered by the semi-circles

¥, ¥’ we may obtain the integral equation for u., restricting G(\, z,y)
onto :

uv(x) - P)\D {G()‘7 z, y)'acGE + G()\,ZE, y)|x€2’} |’Y =

(10)

PG 2, y)+P(Nus(@)]loex + [P'(A) (G, 2, y)+P(Nus)]loes Hs-

Theorem 3.1. The integral operator Ky on C(v) in the equation (10)
Ky :v — PA{[P(A)v]ls + [P'(\) (P))]ls } ],

is represented as a sum of a finite-dimensional operator function ky ()
and a contracting operator-function k.(\) which admits an uniform
estimation [Kc(A)|, ) < [1/24 €] on any compact sub-domain B of the
intersection of complements of spectra of the Schrodinger operators in
0,0, D,

k =ky + k.
in the space of C'(7) of continuous functions on ~y.

Proof is based on the above observation and the lemma (3.1). Re-
ally,due to the Hilbert identity the Poisson map may be presented as

Py=P_yr+ (A+ M)R\P_yy.

The first summand in the right side generates an operator with the
norm < 1/2 acting from C(7) into C'(¥). The second summand, ac-
cording to the above lemma (3.1), is a compact operator-function from
C(v) into C(X). Moreover, the corresponding spectral series admits the
uniform estimate of the remainder. Using the spectral decomposition
of the resolvent we may represent it as a finite sum over eigenvalues
localized in B and an infinite complementary sum, which is convergent
uniformly, according to (3.1), and may be uniformly estimated inside
B. The finite sum admits a uniform estimate on the intersection of B
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with the regularity field of the Schrodinger operator. Hence denoting
by B’ the complement of B we obtain

wz(w)g—ﬁ(y)

(N +M)(N—A)

P,\(x,y) :P7M<x7y) _<)‘+M>Z

901(@%%@)
(A+2) ) v M) =)

NEB

Similar decomposition may be used for all other Poisson maps consti-
tuting the integral operator k,, but instead of the contracting property
the maximum principle should be used. Now we may join all addenda
containing the finite-dimensional operators in a special sum, and form
the contracting term of the P); and "small” terms appearing from the
remaining of the spectral sums. This accomplishes the proof of the
theorem. [

It follows from the above theorem that calculation of the Green func-
tion G in the composite domain QU may be reduced to an equation
of a form

[—I +ky +kJv=F.

One may choose € and a family of small discs D; centered at the eigen-
values of the operator L in 2 and in D such that on the complementary
domain B, = B\ U, D, the operator-function [I — k]! exists and is
uniformly bounded.Then the above equation may be rewritten as

v — [I — kg]_lkN’U = —[] - KM - ke]_lf

thus becoming a finite-dimensional one. In particular the eigenvalues
of the operator in a composite domain 2 U €’ may be found from the
corresponding determinant condition.

Now the Green-function G(\, z,y) of the modified domain Q\w may
be obtained from the Green-function G(\,z,y) of the composite do-
main Q U Q' via reflection y — 3/ € " with respect to the chord (a, b)

~

G()\,IE,?/) = G()\,x,y) - G()\,ﬁ,y/)-

The Green function of the modified domain with several segments re-
moved may be obtained by iteration of above procedure. Now the
DN-map of the modified domain may be obtained via general formula ,
see Appendix 1 , and the Scattering Matrix is obtained as described in
the previous section, see also [21], where the resonances are discussed.
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4. APPENDIX 1. DIRICHLET-TO-NEUMANN MAP: BASIC FACTS

We describe here general features of the DN-map, see also [31, 10, 56],
for Schrodinger Operator defined in the space Ly(€2) by the differential
expression

Lv=—Av+q(x)

on W2- smooth functions vanishing on the piecewise smooth boundary
[' = 092 of the compact domain €2 with no inner angles. Together with
the operator L := L, we may consider the operator Ly defined by the
same differential expression L with homogeneous Neumann conditions
on the boundary

v, w,*o)

n o "= 0,
Both L := L, and L, are self-adjoint operators in Ly(£2). Correspond-
ing resolvent kernels Gy p(z, y, A) and the Poisson kernel

. aCTYD(:L'a Y, >‘)
ony,

for regular values of the spectral parameter \ are locally WZ-smooth if
x # y and square integrable in €2 with boundary values

Grp(w, y,\) € W3*(09), 2 € 09, y € Q

73)\(1" y) = ) € aF?

and

Pz, y, \) € Wy 2(09), y € 090,z € Q.
The behaviour of Gy(z, y, A) when both z, y are near to the boundary
[' = 012 is described by the following asymptotic which may be derived
from the integral equations of potential theory:

GN(x>$F7 )‘) =

(1) “log 1+ Qu +o(1),

|z — xp|
where the term Q) contains a spectral information, see [9, 8]. The
spectra oy p of operators Ly p are discrete and real. Solutions of
classical boundary problems for operators Ly p may be represented
for regular A by the “re-normalized” simple layer potentials - for the
Neumann problem

Lu = M, u € W}(RQ),

ou
5ﬂm=pEW?%@,
(12) u(x) = [ Gi(z, y)p(y)dl,

o0
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and by the re-normalized double-layer potentials - for Dirichet problem:

Lu = \u, u € W3 (),
ulogn = @ € W00,

(13) u(z) = /a Pole. v, Na(y)r.

Generally the DN-map is represented for regular points A of the oper-
ator Lp as

(AA)@) (ar) =

0 .
(14) sl | Pole.y Natar.

The inverse map of WQI/ () onto Wy / (') may be presented at the

regular points of the operators Ly as

(@ W)™ ) (ar) =

(15) + / GOt (5 4y \) i (y) T
I

The high-energy asymptotic behaviour of the symbol of the DN-map
was studied in [7]. It is essentially defined by the local properties of
the boundary. In case of non-regular (Lipshitz-class) boundaries, see
for instance [57, 59] analogs of DN-maps are not still known, despite
the straight connection between the DN-map and the spectral function
of the corresponding Operator with Dirichlet boundary conditions sim-
ilar to thoroughly studied connection between the Weyl-function and
spectral function for ordinary differential equations and systems.

In scattering problems we need to evaluate DN - map on real axis
of the spectral parameter A. One can see from the straightforward
integration by parts with WZ-solutions of the boundary problem that
the DN-map is an analytic function of the spectral parameter A\ with
a positive imaginary part for exterior boundary problem and with a
negative imaginary part for interior one :

0
%< Afutur,UF >\F = %< a—Z\F, ur >|r =

% 8G0“t (l‘p, yr, )\)
I 8n(xr>8n(yr)
ou

S< A;UF,UFNF = %< %’F: ur >’F =

u(z)u(y, ) dz.dy. >0,
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— aGin(xF7yF7)\)
I an(xr)an(yr)

for upr € Wy 2 3A # 0. It follows from [47], that there exist weak
non-tangential boundary values of the operator-function on real axis
from upper and lower half-planes, which we denote by Ay (A £ i0).
Similarly the weak limits of A;,(\) exist and are bounded operators

u(zp)u(y, )de . dy,. <0,

from W2/*(T") onto W,"*(T) on the complement of the spectrum o, of
the inner Dirichlet problem in 2. The following simple statement,
see [56], shows, that the singularities of the DN-map A;,(\) as an
unbounded operator in Ly(I") and the poles at the eigenvalues of the
inner Dirichlet problems may be separated :

Theorem 4.1. Let us consider the Schrodinger operator L = — A\
+q(x) in Lo(Q2) with real measurable essentially bounded potential g and
homogeneous Dirichlet boundary condition at the Cs-smooth boundary
[ of Q. Then the DN-map AS of L has the following representation
on the complement of the corresponding spectrum X, in complex plane

A\, M > 0:
(16) Nin(A) = A (=M) = (A + M)P*F ), Py —
A+ M)*PH ,RAP_ur,

where Ry is the resolvent of L, and Py is the Poisson kernel of it. The
operators

ANin(—M), (PJ\JZPM) (o, yr)

are bounded respectively from W23/2(F) onto W,*(T') and in W;’/Q(F),
and the operator

(P RAPu) (zr,yr) =

aff (zr) aff (yr)
2 OuE MR, =

As€XL
is compact in Wg’/z(l“).
Similar statement is true for DN-map in exterior domain,

Aout()\) = Aout(_M) + ()\ + M)Pj_MP—M+

(17) (A + M)*P*y RyP_u,

with only difference that first terms of the decomposition contain the
DN-map and Poisson kernel for the exterior domain and the last term
is represented via the integral over the absolutely continuous spectrum
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0% =10, 00) of L, and the integrand combined of the normal derivatives
of the corresponding scattered waves i (z, |k|,v), k = |k|v, |v] = 1

1 / % (ar, |k, )aws(yr|k| V) 4
2m) Jpese (K2 + M2(K[2 = N)

PryRAP-_m = k.

There exists an important connection between DN-map and the cel-
ebrated Krein formula [4, 3] from the Operator Extension theory, see
for instance [56]. Using Krein’s approach one may connect the resol-
vent and scattering matrix of the operator L with the resolvent and
the scattering matrix of the orthogonal sum of operators L7 & L34t
defined in Ly(€y,) @ La(Q0u:) with homogeneous Neumann boundary
conditions at the boundary I'. In this case the deficiency indices of
operators restricted to the domain of all elements from domains Ly, ou
with non-jumping normal derivatives, are infinite and deficiency ele-
ments of the restricted operators L;, o+ have non jumping boundary

values from VV23 / 2(F) and satisfy the adjoint homogeneous equation
Liu, = — Au,+ qu, = Mu,,.

They may be represented in form of a re-normalized simple-layers
formed of re-normalized unit-charge potentials G °“(x, sp, ) :

(18) u;"/l\wt(x) = /G’f\n’wt(a;, s)p(s)dl, S\ # 0.
’ r

with densities p € Wl/ 2(F). They have the normal boundary values

zn out
ot )

ﬁ;";“t e WD), —B2— ¢ W,/3(T'), which may be evaluated via
integration by parts:

) = [ G, sy syar, =
T

( i\"’ out pi”’OUt) (), z €T,

8 ~in,out

(19) 5—;;(3;) = 4pimout(y), x €T,

From the last formula (19) we see, that the boundary values of non-
jumping deficiency elements u : [u]lr = 0 of the operators I are
connected by the integral analog of Krein’s Q-function:

~in,out

Uu
20 Am out — 4+ in, OUt ;A ’
(20) QT —o
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where the integral operators Q™ "« transform W, (T into WE(T).
We see, that these operators, if exist for given A, are inverse of the
corresponding Dirichlet-to-Neumann maps Ay, o.. Taking into account
the continuity of the piece-wise defined solution @ and non-jumping
condition for its normal derivatives

'&m(zl“) — aOUt(l’r),
p" (xr) = 87; (zr) =
8aout

32 (zr) = —p”*(ar)

one obtain the

Theorem 4.2. The resolvent kernel Gy(x,y) of the operator L for z,y
n Qoue may be represented by the Krein formula

Gz, y,\) = G (z,y, \)—

(21) G (a, %\) [QIF + Q3] G (x, y ),

where the star stands for variables on I'. The corresponding formula
for the scattered waves 1, in outer domain has the form

%(5’3: )‘) = Q/Jsut(x? >‘)_

(22) G, #A) [QY + Q3] g (%, ),
where all operator-functions are calculated as limits from the upper half-

plane. The expression for the scattering amplitude of the operator L is
given by the formula:

a(w, v, \) = a”(w, v, \)+

(23) Y (e, A) [QV + Q3] 0 (x, ).
where all operator-functions are calculated as limits from the upper half-
plane.

The previous formula (23) is actually a generalization of the formula
(4) from the second section of our paper. It may be applied also in
a case when infinite number of incoming-outgoing channels are open.
Actually this is exactly the case of real devices which are implemented
now as patterns on the surface of semiconductors, see [51]: the roles of
wires are played by conic domains. Dirichlet-to Neumann maps for 2-d
cones, arg = € (a,3), |r| > R may be easily obtained by separation
of variables, and the techniques developed in the previous section may
be used to match the cones with the well. But the resulting Scattering
Matrix is this case not finite-dimensional.
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5. APPENDIX 2. ESTIMATION OF THE LIFE-TIME
OF RESONANCES

The expression for the Scattering Matrix obtained in Theorem 2.1
may be used to calculate important characteristics of the device such
that a life-time of the resonance or an electron’s current through the
device. It may be done numerically based on techniques developed
n [21] and the above Theorem 3.1. In this appendix we suggest an
approximate estimation of the position (and the life time) of the res-
onance arising from the resonance eigenvalue A\ in the basic domain.
The estimation will be done in non-dimensional coordinates.

The resonance may be found as a vector - zero of the numerator of
the scattering matrix, that is a pair of a point A in the upper half-plane
and a corresponding normalized resonance vector ey, € H, such that

(24) {A++(A) R WA = K TR () + K+} ex = 0.

We assume that the resonance eigenvalue \q is situated on the first
spectral band of the system of wave-guides 2y, o, ..., g—j < A < 4:;—;.
The parts K., K_ of the DN-map K of the system of wave-guides are
operator-functions with a positive imaginary part in the upper half-

plane
/ / 1272
K+—’L )\—5P+, K,_ZZ )\—FPZ

>2

-1

Here P, and 2122 P! are, respectively, projections on the open and
closed channels.One can see that the operator-function K _ is real and
monotone on the ﬁrst spectral band, Introducing the notations ¢y =
P, g::;’ 1= P_ 8 we may rewrite expressions for components of the
previous equatlon (24) as follows'”

/A\++(>\) = fjfo;\) + Qo(N),

with some finite-dimensional analytic matrix-function Qg : Hy — Hy
of the spectral parameter and possible poles at the other eigenvalues
of Lo,

Aoy =-212 4 0,0,

with some infinite-dimensional analytic matrix-function ¢y : H_. — H_
of the spectral parameter and possible poles at the other eigenvalues

OWe denote by U the resonance eigenfunction of the operator Lo in the modified
domain
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of f/o, and

AN = _i?ﬁtp;\ + Qo1 (N),

A= -212 gu0),
Ao — A
with two bounded analytic operator-functions (o1, Q10 respectively
from H_ to Hy and from H, to H_, with possible poles at the other

eigenvalues of Lo. Using the introduced notations one may rewrite the
above equation (24) as

(25)
0=FKie— —*"(ﬁj‘f‘)f +Qo(Ne —
2 Qu| [ 218 qun - w |2 Qe

We may find an approximate solution of the above equation assum-
ing that the component K, of the DN-map of the channels domi-
nates each of the components of the DN-map of the modified basic do-
main in a neighborhood of the resonance eigenvalue \ : ||[K-'Q:|| <<
1, |[|KZ'Quol| << 1, ||QoiK=Y|| << 1. This assumption corresponds
to the relatively narrow channels and central position of the Fermi-level
inside the first spectral band : ||Q10|| < v/3%. Then neglecting above
terms compared with K we may simplify the equation (25). Really
the inverse of the mid-term may be found as a solution of the equation

1) {p1 _
(26) _>\0—>\ +Q1()\)—K:| U—fl, f1 e H_.

Introducing the notation (u,¢;) = (3, we obtain the solution of the
above equation (26) in form:

w=—(I-K1Q:(N) " {ﬁfz‘f; + K2,

which gives the value of the constant 3
Moo= N (I =K2'Q) " K=" f1,¢1)
Moo= N+ { (I-KQ) " K'p,01 )

and, after neglecting K ~'Q; compared with the unit operator, an ap-
proximate expression for the solution of the equation (26) :

K" (K~ o1, f1)
(Mo —A) = (K=" f1, 1)

ﬁ:_

u~ —K:Ifl +
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_m/\)ési(;_e) — Q10¢, and cancel the

terms K~'Q)y9, compared with unity. This gives:

R S
(/\0 — /\) + <K:1301, §01>
It remains to insert the result as an argument of the left factor in the
triple product of the above equation (25)

2]

Now we may substitute here f; =

Ao — A

and neglect the term Qg K~' compared with unity. We obtain finally
the approximate expression for the whole triple product in form

e o) (0, €)
()\0—)\)+<K:1<,017901> 7
Inserting the approximate expression for the triple term into the equa-
tion (25) and neglecting )y compared with K, we obtain a simplified
expression for it

(27)
1 (K~'o1,¢1) } N
— 1-— ,e) +i1\ /A — —e=0.

From the last equation (27) we obtain immediately an approximate
expression for the resonance vector e = (g, which is in agreement with
our previous guess, see [18, 21]. Note, that the approximate calculation
of the resonance vector (zero-vector of the Scattering Matrix) presented
in [21] is not accurate enough, and hence it could not give the resonance
vector anticipated in our previous papers with proper precision. The
resonance vector obtained now corresponds exactly to the expectations
formulated in [18].

On the other hand we may obtain from above calculation a scalar
equation for the resonance itself - the zero of the Scattering matrix :

i‘900|2

NEr

An approximate value for the resonance arising from the resonance
eigenvalue \g of the quantum well €2y embedded into the first spectral
band is equal to

A= X+ (K21 (N1, 1) +

>\res = )\0 + <K:1()\0)(1017 901> + 5

No— %
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The inverse life time is found as an imaginary part of it.

One may also use the above approximate expression (27) for the
numerator of the Scattering Matrix to obtain the approximate values of
transmission coefficients from the input- wire to the terminals. Really,
the approximate expression for the Scattering matrix may be presented
as

21 )\0 - g—;
(28) S(\) = —I — Py,
lo? 4/ A — w2
o= A (K " o1 ,01) 0 62

where P, is an orthogonal projection onto the subspace spanned by
the resonance vector ¢y. It follows from (28) that the transmission
amplitude from the input wire 2; to the output wire €2, is equal to

S Qi\/)\o——}rz <g7i276%><g7i276;>
1s = — 1 ETRINEE
lol? C oy m? _ 0e
No—A (K- To1,01) T\ Ao~ & 2t |<8”5t7 2l

hence is proportional to the average values of the normal derivative of
the resonance eigenfunction on the Quantum Well, as it was anticipated
in our paper [18].

The approximate calculation presented in this section may be easily
transformed into accurate estimations for the resonance parameters -
just via using the Neumann series for the operator (1 — K:lQl) in
the mid-term of the triple product. It will be done in the subsequent
publication by A.Mikhailova.
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