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Abstract. The Killing operator on a Riemannian manifold is a linear dif-
ferential operator on vector fields whose kernel provides the infinitesimal Rie-
mannian symmetries. The Killing operator is best understood in terms of
its prolongation, which entails some simple tensor identities. These simple
identities can be viewed as arising from the vanishing of certain Lie algebra
cohomologies. The point is that this case provides a model for other more
complicated operators similarly concerned with symmetry.

1. Disclaimer

The results in this article are not widely known but are implicitly already
contained in [BCEG, CD, CSS], for example. The object of this short exposition
is to introduce the method, by means of familiar examples, to a wider audience.

Acknowledgements. The author is supported by the Australian Research
Council.

2. Notation

The notation in this article follows the standard index conventions of differential
geometry. Precisely, we shall follow Penrose’s abstract index notation [PR] in
which tensors are systematically adorned with indices to specify their type. For
example, vector fields are denoted with an upper index Xa whilst 2-forms have 2
lower indices ωab. The natural contraction between them is denoted by repeating
an index Xaωab in accordance with the Einstein summation convention. Round
brackets are used to denote symmetrisation over the indices they enclose whilst
square brackets are used to denote skewing, e.g.

ψ[abc]d = 1
6 [ψabcd + ψbcad + ψcabd − ψbacd − ψacbd − ψcbad].

3. The Levi-Civita connection

Suppose gab is a Riemannian metric. The Levi-Civita connection ∇a associated
with gab is characterised by the following well-known properties

• ∇a is torsion-free,
• ∇agbc = 0.

Its existence and uniqueness boils down to a tensor identity as follows. Choose Da,
any torsion-free connection. Any other must be of the form

∇aφb = Daφb − Γab
cφc
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for some tensor Γab
c = Γ(ab)

c and then ∇agbc = 0 if and only if

0 = Dagbc − Γab
dgdc − Γac

dgbd = Dagbc − Γabc − Γacb,

where we are using the metric gab to ‘lower indices’ in the usual fashion. These are
two conditions on Γabc, namely

Γ[ab]c = 0 and Γa(bc) =
1
2Dagbc

that always have a unique solution. To see this, note that the general solution of
the second equation has the form

Γabc =
1
2Dagbc −Kabc, where Kabc = Ka[bc].

Having done this, the first equation reads

K[ab]c =
1
2D[agb]c,

which always has a unique solution owing to the tensor isomorphism

Λ1 ⊗ Λ2 $−→ Λ2 ⊗ Λ1

Kabc = Ka[bc] &−→ K[ab]c ,
(3.1)

where Λp denotes the bundle of p-forms. This isomorphism is typical of the tensor
identities to be explained in this article by means of Lie algebra cohomology.

4. The Killing operator

A vector field Xa on a Riemannian manifold with metric gab is said to be a
Killing field if and only if LXgab = 0, where LX is the Lie derivative along Xa. The
geometric interpretation of Lie derivative means that the flow of Xa is an isometry.
Thus, a Killing field is an infinitesimal symmetry in the context of Riemannian
geometry.

It is useful to regard the Killing equation LXgab = 0 as a linear partial differen-
tial equation on the vector field Xa as follows. For any torsion-free connection ∇a,

LXφb = Xa∇aφb + φa∇bX
a

so, if we use the Levi-Civita connection for gab, then

LXgbc = Xa∇agbc + gac∇bXa + gba∇cXa

= ∇bXc +∇cXb.

Hence, the Killing fields Xa make up the kernel of the Killing operator :–

Tangent bundle $−→ Λ1 −→
⊙2Λ1

Xa &−→ Xa &−→ ∇(aXb) .

5. Prolongation of the Killing operator

For any torsion-free connection ∇a, the equation ∇(aXb) = 0 may be under-
stood as follows. Certainly, we may rewrite it as

∇aXb = Kab, where Kab is skew. (5.1)

In this case ∇[aKbc] = 0, a condition which we may rewrite as

∇aKbc = ∇cKba −∇bKca
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and substitute from (5.1) to conclude, as a differential consequence, that

∇aKbc = ∇c∇bXa −∇b∇cXa = Rbc
d
aXd,

where Rab
c
d is the curvature of ∇a characterised by

[∇a∇b −∇b∇a]X
c = Rab

c
dX

d.

Therefore,

∇(aXb) = 0 ⇐⇒ ∇aXb = Kab

∇aKbc = Rbc
d
aXd

In other words, Killing fields are in 1–1 correspondence with covariant constant
sections of the vector bundle T ≡ Λ1 ⊕ Λ2 equipped with the connection

T '
[

Xb

Kbc

]
∇a(−→

[
∇aXb −Kab

∇aKbc −Rbc
d
aXd

]
∈ Λ1 ⊗ T. (5.2)

At this point, we may use the standard theory of vector bundles with connection
to investigate Killing fields. In particular, it is immediately clear that the Killing
fields on a connected manifold form a vector space whose dimension is bounded by
the rank of T, namely n(n+ 1)/2.

6. The Killing operator in flat space

Be that as it may, suppose ask only about the Killing operator on flat space. It
is easily verified in this case that the connection (5.2) is flat (and, in fact, the same
is true on any constant curvature space). Therefore, we may couple the de Rham
sequence with (5.2) to obtain a locally exact complex

T ∇−→ Λ1 ⊗ T ∇−→ Λ2 ⊗ T ∇−→ Λ3 ⊗ T ∇−→ · · ·
and, at this point, the isomorphism (3.1) re-emerges! Specifically, in the absence of
the curvature term (5.2) may be written as

[
Xb

Kbc

]
∇a(−→

[
∇aXb

∇aKbc

]
− ∂

[
Xb

Kbc

]
, where ∂

[
Xb

Kbc

]
=

[
Kab

0

]
.

The homomorphism ∂ : T → Λ1⊗T induces ∂ : Λp⊗T → Λp+1⊗T by ∂(ω⊗X) =
ω ∧ ∂X and we obtain a complex

0 → T ∂−→ Λ1 ⊗ T ∂−→ Λ2 ⊗ T ∂−→ Λ3 ⊗ T ∂−→ · · ·
‖ ‖ ‖ ‖
Λ1 Λ1 ⊗ Λ1 Λ2 ⊗ Λ1 Λ3 ⊗ Λ1 · · ·
⊕

!
!!" ⊕

!
!!"NB ⊕

!
!!" ⊕

!
!!"

Λ2 Λ1 ⊗ Λ2 Λ2 ⊗ Λ2 Λ3 ⊗ Λ2 · · ·

(6.1)

in which ∂ : Λ1 ⊗ T → Λ2 ⊗ T is carried by the isomorphism (3.1). More generally,
we can ask about the cohomology of the complex (Λ• ⊗ T, ∂) and conclude, by
inspection, that

H0(Λ• ⊗ T, ∂) = {Xa}
H1(Λ• ⊗ T, ∂) = {Xab = X(ab)}
H2(Λ• ⊗ T, ∂) = {Kabcd = K[ab][cd] s.t. K[abc]d = 0}
H3(Λ• ⊗ T, ∂) = {Kabcde = K[abc][de] s.t. K[abcd]e = 0}
H4(Λ• ⊗ T, ∂) = {Kabcdef = K[abcd][ef ] s.t. K[abcde]f = 0}

...
...

...
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recognising that each of these bundles is an irreducible tensor bundle, which we
may write as Young diagrams [FH]

H0 = H1 = H2 = H3 = H4 = · · · (6.2)

Readers may notice that H2(Λ• ⊗ T, ∂) is the natural location for the Riemann
curvature tensor and that H3(Λ• ⊗ T, ∂) is the natural location for the Bianchi
identity. These observations are more fully explained in [E]. Here, suffice it to
observe that a simple diagram chase on (6.1) reveals a locally exact complex

∇−−→ ∇(2)

−−−→ ∇−−→ ∇−−→ ∇−−→ · · · (6.3)

and, in particular, an identification of the range of the Killing operator in flat space
as follows.

Theorem Suppose U is an open subset of Rn with H1(U,R) = 0. Then a sym-
metric tensor ωab on U is of the form ∇(aXb) for some Xa on U if and only if

∇a∇cωbd −∇b∇cωad −∇a∇dωbc +∇b∇dωac = 0.

7. Higher Killing operators

So far, we have not seen any Lie algebra cohomology, although it is lurking in
the background. The identifications (6.2) can be obtained by elementary means. As
soon as we consider more complicated operators, however, then the corresponding
identifications are not so obvious. A Killing tensor of valence # is a symmetric
tensor field Xbc···de with # indices annihilated by the higher Killing operator

Xbc···de %→ ∇(aXbc···de).

Killing tensors induce conserved quantities along geodesics and arise naturally in
the theory of separation of variables. The higher Killing operators may be prolonged
along the lines explained in §5. The details are more complicated and this is where
Lie algebra cohomology comes to the fore. Without going into details, the prolonged
bundle

T = Λ1 ⊕ Λ2 = ⊕

that we saw in §5 should be replaced by

T! = T!
0 ⊕ · · ·⊕ T!

! = . . .
! boxes! "⊕ . . . ⊕ . . . ⊕ · · ·⊕ . . .

. . . ,

realised as




Xbc···de = X(bc···de)
Kpbc···de = Kp(bc···de) s.t. K(pbc···de) = 0
K ′

pqbc···de = K ′
(pq)(bc···de) s.t. K

′
p(qbc···de) = 0

K ′′
pqrbc···de = K ′′

(pqr)(bc···de) s.t. K
′′
pq(rbc···de) = 0

...
K ′′···′

pq···rsbc···de = K ′′···′
(pq···rs)(bc···de) s.t. K

′′···′
pq···r(sbc···de) = 0
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with ∂ : T! → Λ1 ⊗ T! defined by

∂





Xbc···de
Kpbc···de
K ′

pqbc···de
K ′′

pqrbc···de
...

K ′′···′
pq···rsbc···de





=





Kabc···de
K ′

apbc···de
K ′′

apqbc···de
...

K ′′···′
ap···qrbc···de

0





.

The identifications generalising (6.2) are as follows.

H0(Λ• ⊗ T!, ∂) = . . .
! boxes! " H1(Λ• ⊗ T!, ∂) = . . .

!+1 boxes! " (7.1)

and

H2(Λ• ⊗ T!, ∂) = . . .
. . .

!+1 boxes! "
Hp(Λ• ⊗ T!, ∂) = . . .

. . .

..

. p

#

$for p ≥ 2.

(7.2)

The locally exact complex generalising (6.3) is

. . . ∇−−→ . . . ∇(!+1)

−−−−−→ . . .
. . . ∇−−→ . . .

. . . ∇−−→ · · · (7.3)

where the first operator is the higher Killing operator. It is a special case of the
Bernstein-Gelfand-Gelfand resolution [CD, CSS].

8. Tensor identities

Be that as it may, the identifications of Hp(Λ• ⊗ T!, ∂) claimed in the previ-
ous section are not so easy and entail some tricky tensor identities. The natural
generalisation of (3.1), for example, follows by writing out the complex

0 → T! ∂−→ Λ1 ⊗ T! ∂−→ Λ2 ⊗ T! ∂−→ Λ3 ⊗ T! ∂−→ Λ4 ⊗ T! ∂−→ · · ·

as in (6.1) and pinning down the locations of the cohomologies

0 T!
0 Λ1 ⊗ T!

0 Λ2 ⊗ T!
0 Λ3 ⊗ T!

0

⊕ ↗ ⊕ ↗ ⊕ ↗ ⊕ ↗ ⊕ ↗
0 T!

1 Λ1 ⊗ T!
1 Λ2 ⊗ T!

1 Λ3 ⊗ T!
1

⊕ ↗ ⊕ ↗ ⊕ ↗ ⊕ ↗ ⊕ ↗
...

...
...

...
...

⊕ ↗ ⊕ ↗ ⊕ ↗ ⊕ ↗ ⊕ ↗
0 T!

!−2 Λ1 ⊗ T!
!−2 Λ2 ⊗ T!

!−2 Λ3 ⊗ T!
!−2

⊕ ↗ ⊕ ↗ ⊕ ↗ ⊕ ↗ ⊕ ↗
0 T!

!−1 Λ1 ⊗ T!
!−1 Λ2 ⊗ T!

!−1 Λ3 ⊗ T!
!−1

⊕ ↗ ⊕ ↗ ⊕ ↗ ⊕ ↗ ⊕ ↗
0 T!

! Λ1 ⊗ T!
! Λ2 ⊗ T!

! Λ3 ⊗ T!
!

simply by the number of boxes involved to deduce that

0 → Λ1 ⊗ . ..
. ..

!! "
∂−→ Λ2 ⊗ . ..

. .. ∂−→ Λ3 ⊗ . ..
. .. ∂−→

· · · ∂−→ Λ! ⊗ . .. ∂−→ Λ!+1 ⊗ . .. → 0
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is exact. Already the injectivity of the first homomorphism gives useful information
regarding the higher Killing operator. Specifically it says that

←!→ ←!→

Kapq···rsbc···de = Ka(pq···rs)(bc···de)

Kapq···r(sbc···de) = 0

K[ap]q···rsbc···de = 0

}

⇒ Kbpq···rsbc···de = 0.

In the flat case, if Xbc···de is a Killing tensor of valence !, it follows immediately
from the Killing equation ∇(aXbc···de) = 0, that

Kapq···rsbd···de ≡ ∇a∇p∇q · · ·∇r∇s︸ ︷︷ ︸
!+1

Xbc···de

satisfies exactly these symmetries and hence vanishes. In other words, the Killing
tensors of valence ! on Rn are polynomial of degree at most !. More generally,
prolongation in the curved case implies that the Killing tensors of valence ! near
any point are determined by their !-jet at that point.

9. Lie algebra cohomology

It remains to explain where (7.1) and (7.2) come from and the answer is a special
case of Kostant’s generalised Bott-Borel-Weil Theorem [K], which we now explain.
The special case we need involves only the cohomology of an Abelian Lie algebra
but for Kostant’s results to apply it is important that this Abelian Lie algebra be
contained inside a semisimple Lie algebra in a particular way. Specifically, let

g = sl(n+ 1,R) = {(n+ 1)× (n+ 1) matrices X s.t. trace(X) = 0}

and write g = g−1 ⊕ g0 ⊕ g1, comprising matrices of the form



0 0 · · · 0
∗
... 0
∗







∗ 0 · · · 0
0
... ∗
0







0 ∗ · · · ∗
0
... 0
0




,

respectively. Suppose V is an irreducible tensor representation of g. It restricts to
a representation of the Abelian subalgebra g−1. Kostant’s theorem computes the
Lie algebra cohomology Hp(g−1,V). Explicitly, this means that the cohomology of
the complex of g0-modules

0 → V ∂−→ (g−1)
∗ ⊗ V ∂−→ Λ2(g−1)

∗ ⊗ V ∂−→ Λ3(g−1)
∗ ⊗ V ∂−→ · · ·

is computed as a g0-module, where ∂ : V → (g−1)∗ ⊗ V is defined by the action of
g−1 on V. To state the result, we need a notation for the irreducible representations
of sl(n+ 1,R) and for this we follow [BE] writing, for example,

• • • • · · · • •
0 0 0 0 0 1 and • • • • · · · • •

1 0 0 0 0 0

for the defining representation Rn+1 and its dual (Rn+1)∗, respectively. In partic-
ular, Kostant’s theorem yields

H0(g−1, • • • • · · · • •
0 ! 0 0 0 0) =× • • • · · · • •

0 ! 0 0 0 0
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where, again, we are following the [BE] to denote g0 and its irreducible represen-
tations. More generally,

H1(g−1, • • • • · · · • •
0 ! 0 0 0 0) = × • • • · · · • •

−2 !+1 0 0 0 0

H2(g−1, • • • • · · · • •
0 ! 0 0 0 0) = × • • • · · · • •

−! − 3 0 !+1 0 0 0

H3(g−1, • • • • · · · • •
0 ! 0 0 0 0) = × • • • · · · • •

−! − 4 0 ! 1 0 0

...
...

...

Hn−1(g−1, • • • • · · · • •
0 ! 0 0 0 0) = × • • • · · · • •

−! − n 0 ! 0 0 1

Hn(g−1, • • • • · · · • •
0 ! 0 0 0 0) = × • • • · · · • •

−! − n − 1 0 ! 0 0 0

where the right hand side follows the affine action of the Weyl group as explained
in [BE]. For our purposes, the crossed node can be dropped, viewing the results as
irreducible tensor representations of sl(n,R). As tensor identities for sl(n,R), they
are exactly what we need induce (7.1) and (7.2) on a manifold.
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