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Abstract. We obtain Strichartz estimates for the linear Schrödinger equation
associated with the twisted sub-Laplacian on Cn. As a consequence, we prove

the local wellposedness for semilinear Schrödinger equation with polynomial
nonlinearity in certain magnetic field.

1. Introduction and main results

As is well-known, the Strichartz estimates play an important role in the study
of wellposedness theory for nonlinear dispersive equations [9, 11]. In this paper we
are concerned with proving the Strichartz estimates for the twisted Laplacian on
Cn and finding applications to the associated semilinear NLS.

The twisted Laplacian L on Cn is given by

L = −1
2

n∑
i=1

(ZjZ̄j + Z̄jZj), (1)

where Zj = ( ∂
∂zj

+ 1
2 z̄j), Z̄j = ( ∂

∂z̄j
− 1

2zj), j = 1, . . . , n, are 2n vector fields on Cn.
For z = (z1, . . . , zn) ∈ Cn, writing zj = xj + iyj and its conjugate z̄j = xj − iyj .
Then we can also write L on Rn × Rn as

L =−∆x −∆y +
1
4

(|x|2 + |y|2)− i
n∑
j=1

(xj∂yj − yj∂xj ) (2)

=−
n∑
j=1

(∂xj
− 1

2
iyj)2 + (∂yj

+
1
2
ixj)2, (3)

where x, y ∈ Rn. Thus it is a Schrödinger operator with constant magnetic potential
[17], which can be viewed as a quantization of the motion of a charged particle
(without spin) in a constant magnetic field, cf. Avron, Herbst, Simon et al [1] for
physical background. The spectral theory of twisted Laplacian is well-known and
intimately related to that of the sub-Laplacian on Heisenberg groups [25].

Let X̃j = ∂xj
− 1

2 iyj , Ỹj = ∂yj
+ 1

2 ixj . Then [X̃j , Ỹk] = iδjk. Using the Weyl
representation (R2n, π)

dπ(X̃j) = −iξj , dπ(Ỹj) = ∂ξj ,

we have dπ(La) = −∆Rn +|ξ|2, thus the spectrum of L is the set σ(L) = {n+2k, k ∈
N} and each eigenspace Ek has infinite dimensions.
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Consider the Schrödinger equation associated with L

i∂tu(t, z)− Lu(t, z) = F (t, z) (4)

u(0, z) = f(z).

Motivated by the treatment in the Euclidean setting [9, 11], we will derive the
Strichartz estimates from the dispersive estimates and energy conservation. Similar
considerations have been given in [2, 8, 16, 10] for variants of the sub-Laplacian
on Heisenberg groups. Nandakumaran and Ratnakumar [16] obtained Strichartz
estimates for the Hermite operator. Later Ratnakumar extended the result to the
case of the special Hermite operator [19].

In Rn, the Strichartz for the Cauchy problem (4) (i.e., L = −∆ in (4)) reads
[22]:

(
∫ ∞
−∞

∫
Rn

|u(t, x)|
2(n+2)

n dxdt)
n

2(n+2) ≤ C(‖f‖L2(Rn) + ‖F‖
L

2(n+2)
n+4 (R1+n)

). (5)

This was generalized by Ginibre and Velo [9] for LqtLpx norm for (q, p) being an
admissible pair when q > 2, and by Keel and Tao [11] when q = 2.

We say (q, p) is an admissible pair on Cn if 2
q + 2n

p = n. Our first result is the
following theorem.

Theorem 1.1. Let (q, p) and (q̃, p̃) be admissible pair and 2 < q, q̃ ≤ ∞, 2 ≤ p, p̃ <
2n
n−1 . Let T > 0, f ∈ L2(Cn) and F (t, z) ∈ Leq([−T, T ], Lp̃(Cn)). Then the solution
u(t, z) of (4) satisfies

‖u‖Lq([−T,T ],Lp) ≤ Cq,T (‖f‖L2 + ‖F‖Lq̃′ ([−T,T ],Lp̃′ )). (6)

As in the classical cases [7, 5], the Strichartz inequality can be applied to show
the local wellposedness for initial data with low regularity. In Section 4 we consider
the Cauchy problem

i∂tu− Lu = F (u) (7)

u(0, z) = f(z) ∈W s,2
L ,

where F is a polynomial of order m, F (0) = 0, W s,p
L = L−s(Lp(Cn)), the so-called

twisted Sobolev spaces. We obtain

Theorem 1.2 (LWP). Let s > n
2 −

1
max(m−1,2) . For every bounded subset B of

W s,2
L , there exists T > 0 such that for every initial data f ∈ B there exists a unique

solution of (7)
u ∈ C([−T, T ],W s,2

L ) ∩ Lq([−T, T ],W s,p
L ),

where (q, p) is an admissible pair with q > max(m− 1, 2) and p > n/s. Moreover,
the flow f 7→ u is Lipschitz from B to C([−T, T ],W s,2

L ).

Magnetic NLS have been considered in Cazenave and Esteban [6], Yajima [26],
Bouard [3], Nakamura [15], Michel [13] using Fourier integral operator methods.
Also the Strichartz estimates were proved via PDE technique [12]. However, our
method is based on special Hermite expansions and our result treats different non-
linearity using modified Sobolev spaces.

The NLS generated by the twisted Laplacian may suggest the extension of our
result to the NLS problem for the full sub-Laplacian on Heisenberg groups [2, 8],
including the endpoint case [11, 23].

The remaining part of the paper is organized as follows. Section 2 is a brief
summary of some basics regarding the special Hermite expansions. In Section 3
we prove the Strichartz estimates. Section 4 is devoted to the proof of the local
wellposedness result.
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2. Preliminary spectral theory for the twisted Laplacian

Let Hk(x) = (−1)kex
2 dk

dxk (e−x
2
), k ∈ Z+ = {0, 1, 2, . . . }. The Hermite functions

are given by hk(x) = (2kk!
√
π)−1/2e−

1
2x

2
Hk. For λ = (λ1, . . . , λn) ∈ Zn+, define

Φλ(x) =
∏n
j=1 hλj

(xj). Let α, β ∈ Zn+ and z = x + iy ∈ Cn, we define the special
Hermite functions on Cn as

Φαβ(z) = (2π)−
n
2

∫
Rn

eix·ξΦα(ξ +
y

2
)Φβ(ξ − y

2
)dξ. (8)

It is easy to show that
L(Φαβ) = (2|β|+ n)Φαβ ,

where |α| = α1 + · · ·+αn. Then {Φαβ}α,β∈Zn
+

form a complete orthonormal system
in L2(Cn), see [25].

The special Hermite functions can be expressed in terms of Laguerre functions.
Let Lαk (x), k ∈ Z+ be the Laguerre polynomials of order α > −1 defined using the
generating function

Σ∞k=0t
kLαk (x) = (1− t)−α−1 exp(

xt

t− 1
). (9)

Write Lk(x) = L0
k(x). According to the Mehler’s formula [25, Section 1.3, p.19], we

have

Φαα(z) = (2π)−
n
2

n∏
j=1

Lαj (
1
2
|zj |2)e−

1
4 |zj |2 . (10)

The twisted convolution f × g on Cn is given by

f × g(z) =
∫

Cn

f(z − ω)g(ω)e
i
2=zω̄dω.

For f ∈ L2(Cn) we can write the expansion in the following form

f(z) = (2π)−
n
2 Σνf × Φνν(z) = (2π)−nΣ∞k=0f × ϕk(z), (11)

where ϕk(z) = (2π)
n
2
∑
|ν|=k Φνν(z) coincide with the Laguerre functions ϕk(z) =

Ln−1
k ( 1

2 |z|
2)e−

1
4 |z|

2
. Note that (2π)−nf ×ϕk is simply the projection of f onto the

eigenspace corresponding to the eigenvalue 2k + n.
Indeed, from the relations [25, Proposition 1.3.2]

Φµν × Φαβ =

{
(2π)

n
2 Φµβ α = ν

0 α 6= ν

we obtain
(2π)

n
2 Σα(f,Φαν)Φαν = f × Φνν ,

from which and f(z) = Σαβ(f,Φαβ)Φαβ(z), (11) follows.

3. Linear estimates for Schrödinger equation

Consider the IVP (4) with F = 0:

i∂tu(t, z)− Lu(t, z) = 0, u(0) = f ∈ L2(Cn). (12)

The solution is given by

u(t, z) = e−itLf(z) = (2π)−nΣ∞k=0e
−it(2k+n)f × ϕk(z). (13)

In fact, for each t ∈ R,

‖e−itLf(z)‖2L2 = (2π)−2nΣ∞k=0‖f × ϕk(z)‖2L2 = ‖f‖2L2 . (14)
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Since Lϕk = (2k + n)ϕk, we have that u(t, z) satisfies (12) in weak L2. Moreover,
since |e−it(2k+n) − 1| ≤ 2, we have

‖u(t, z)− f(z)‖L2 → 0 as t→ 0,

by a dominated convergence argument.
Let Kt(z) = (2π)−nΣ∞k=0e

−it(2k+n)ϕk(z). Write the special Hermite expansions
of u(t, z) in the form

u(t, z) = f ×Kt(z).
Then {e−itL, t ∈ R} satisfy the semigroup property on L2. Moreover, since u(t +
2π, z) = u(t, z), the solution u(t, z) is 2π-periodic in t.

In order to give the estimates of the semigroup {e−itL, t ∈ R}, we replace the
parameter it with γ = r+ it, r > 0. Then the kernel of the semigroup e−γL is given
by

Kγ(z) = (2π)−nΣ∞k=0e
−(2k+n)γϕk(z).

Using formula (9) we find

Kγ(z) = (4π)−n(sinh(r + it))−ne−
1
4 (coth(r+it))|z|2 . (15)

By the discussion above we easily see that for f ∈ L2, ur(t, z) := e−γLf(z) =
f ×Kγ(z) is the solution of IVP (12) with u(0) = e−rLf .

Now we give the Lp′ − Lp estimate for the semigroup {e−iγL, γ ∈ C}.

Lemma 3.1. Let r ≥ 0, t 6= 0, 2 ≤ p ≤ ∞ and p′ = p/(p− 1). Then

‖e−(r+it)Lf(z)‖Lp ≤ e−nr|2π sin t|−2n( 1
p′−

1
2 )‖f‖Lp′ .

Remark. We can also use the fact that e−itL has kernel

(4π)−n(i sin t)−ne−
1
4i (cot t))|z|2

to show the L1 → L∞ dispersive estimate, then the Strichartz follows as a corollary
of [11].

Proof. First we prove the case r > 0. Since {Φµ,ν} is a complete orthonormal
system in L2, for γ = r + it, r > 0,

‖ur(t, z)‖L2 = ‖
∑

µ,ν∈Zn
+

e−γ(2|ν|+n)(f,Φµ,ν)Φµ,ν‖L2

≤e−rn(
∑

µ,ν∈Zn
+

|(f,Φµ,ν)|2)1/2 = e−rn‖f‖L2 . (16)

Note that

< coth(r + it) =
1− e−4r

1 + e−4r − 2e−2r cos(2t)
≥ 1− e−2r

1 + e−2r
> 0

and

| sinh(r + it)| = | sinh r cos t+ i cosh r sin t| ≥ | cosh r sin t| ≥ 1
2
er| sin t|.

We obtain

‖ur(z, t)‖L∞ = ‖(f ×Kα)(z)‖L∞
≤(2πer| sin t|)−n‖f‖L1 . (17)

Interpolating two inequalities (16) and (17) gives

‖ur(t, z)‖Lp ≤ (e−rn)2/p(2πer sin t)−2n( 1
2−

1
p )

≤e−nr|2π sin t|−2n( 1
p′−

1
2 )‖f‖Lp′ . (18)
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The case r = 0 is a consequence of (18) by applying Fatou’s lemma and a density
argument. �

Now we prove Strichartz estimates for u(t, z) = e−itLf(z). Let 2 ≤ p ≤ 2n
n−1 .

Recall that (q, p) is called admissible on Cn if 2
q + 2n

p = n.

Lemma 3.2. Let 2 < q ≤ ∞, 2 ≤ p < 2n
n−1 and 2

q + 2n
p = n. Let u(t, z) be the

solution to (12). Then for each T > 0, there exists a constant Cq,T ≤ Cq max(1, T )
such that
(a)

‖eitLf(z)‖Lq([−T,T ],Lp) ≤ Cq,T ‖f‖L2 (19)

(b)

‖
∫ T

−T
eitLF (t, z)dt‖L2 ≤ Cq,T ‖F‖Lq′ ([−T,T ],Lp′ ). (20)

Proof. We only need to show that inequality (b) holds for all F in Lq
′
([−T, T ], Lp

′
)

since (a) will then follow by duality. We follow the standard line of proof, the TT ∗

argument for eit∆ as in [11], see also [16]. Consider the bilinear form

T (F,G) =
∫ T

−T

∫ T

−T

∫
Cn

eitLF (t, z)eisLG(s, z)dzdsdt.

It is sufficient to show that for all F , G in Lq
′
([−T, T ], Lp

′
)

|T (F,G)| ≤ Cq,T ‖F‖Lq′ ([−T,T ],Lp′ )‖G‖Lq′ ([−T,T ],Lp′ ). (21)

For 0 < T < π, applying Lemma 3.1 with 1 ≤ p′ ≤ 2, we obtain∫
Cn

eitLF (t, z)eisLG(s, z)dz =
∫

Cn

ei(t−s)LF (t, z)G(s, z)dz

≤‖F (t, ·)‖Lp′‖G(s, ·)‖Lp′ | sin(t− s)|−2n( 1
p′−

1
2 )
.

Since 2
q + 2n

p = n, applying the generalized Young inequality [20] gives

|T (F,G)| ≤ Cq‖F‖Lq′ ([−T,T ],Lp′ )‖G‖Lq′ ([−T,T ],Lp′ )‖| sin s|
−2n( 1

p′−
1
2 )‖Lr,∞

[−2T,2T ]

≤Cq‖F‖Lq′ ([−T,T ],Lp′ )‖G‖Lq′ ([−T,T ],Lp′ ), 0 < T < π,

where we observe that the Young inequality requires that 1 < q <∞,

| sin s|−2n( 1
p′−

1
2 ) ∈ Lr,∞loc ,

1/r = 1 + 1/q − 1/q′ = 2/q = n(1− 2
p ) and q > 2.

For T ≥ π, the estimate Cq,T ≤ CqT is a simple consequence of the periodic
property of u(t, z). This completes the proof of Lemma 3.2. �

Remark. Alternatively we can also prove Lemma 3.1 for e−(r−it)LF (t, z) first,
and then use Fatou lemma plus a density argument to prove Lemma 3.2, cf. [19].
However it is more straightforward to prove the result as we proceed here for both
lemmas.

Let u(t, z) solve Equation (4). By Duhamel principle, u is represented by

u(t, z) = e−itLf(z)− i
∫ t

0

e−i(t−s)LF (s, z)ds. (22)

Proof of Theorem 1.1 In view of (22) and Lemma 3.2 we only need to show

‖
∫ t

0

e−i(t−s)LF (s, z)ds‖Lq([−T,T ],Lp) ≤ Cq,T ‖F‖Lq̃′ ([−T,T ],Lp̃′ ). (23)
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Define

T (F,G) =
∫ T

−T

∫ t

0

∫
Cn

eisLF (s, z)eitLG(t, z)dzdsdt.

By duality it is sufficient to prove the following bilinear estimate: For any two
admissible pairs (q, p), (q̃, p̃), q 6= 2, q̃ 6= 2,

|T (F,G)| ≤ C‖F‖Lq′ ([−T,T ],Lp′ )‖G‖Lq̃′ ([−T,T ],Lp̃′ ), (24)

where C = Cq,T ≤ CqT is the same constant as in Lemma 3.2; in what follows we
are going to impose the same conditions as here on the pairs (q, p), (q̃, p̃).

Let χ(0,t)(s) denote the characteristic function of (0, t). By Lemma 3.2 we have
for q > 2,

‖
∫ t

0

ei(s−t)LF (s, z)ds‖L2

=‖e−itL
∫ T

−T
eisL(χ(0,t)(s)F (s, z))ds‖L2

≤C‖F‖Lq′ ([−T,T ],Lp′ ).

Thus by Fubini Theorem and Hölder inequality, we have

|T (F,G)| ≤ sup
t∈[−T,T ]

‖
∫ t

0

ei(s−t)LF (s, z)ds‖L2‖G‖L1([−T,T ],L2)

≤C‖F‖Lq′ ([−T,T ],Lp′ )‖G‖L1([−T,T ],L2).

On the other hand, (21) suggests that

|T (F,G)| ≤ C‖F‖Lq′ ([−T,T ],Lp′ )‖G‖Lq′ ([−T,T ],Lp′ ). (25)

Applying bilinear Riesz-Thorin interpolation, we obtain (24) for (q̃, p̃) with 1 ≤
q̃′ ≤ q′, 2 ≥ p̃′ ≥ p′. By symmetry (noting the symmetric form of the bilinear form
T (F,G)), write

T (F,G) =
∫ T

−T

∫
Cn

(∫ T

−T
χ(0,t)(s)ei(s−t)LG(t, z)ds

)
F (s, z)dzds.

Repeating the same proof above we obtain for q′ ≤ q̃′, p′ ≥ p̃′,

|T (F,G)| ≤ C‖G‖Lq̃′ ([−T,T ],Lp̃′ )‖F‖Lq′ ([−T,T ],Lp′ ).

Thus we have proved that (24) holds for any admissible pairs (q, p), (q̃, p̃), q 6= 2,
q̃ 6= 2. This completes the proof. 2

From (22), (14) and Theorem 1.1 we also have

Corollary 3.3. Let T > 0. Then the solution u(t, z) of (4) satisfies

‖u‖C([−T,T ],L2) + ‖u‖Lq([−T,T ],Lp)

≤Cq,T (‖f‖L2 + ‖F‖Lq̃′ ([−T,T ],Lp̃′ )),

where (q, p), (q̃, p̃) are admissible pairs with 2 < q, q̃ ≤ ∞, 2 ≤ p, p̃ < 2n
n−1 .

4. Semilinear Schrödinger equation

In this section we consider the local wellposedness for the following Cauchy
problem

iut − Lu = F (u), u(0, z) = f(z) ∈W s,2
L , (26)

where F is a polynomial of order m, F (0) = 0, W s,p
L = L−s(Lp(Cn)) = {f = L−sg :

g ∈ Lp(Cn)}, the analogue of the usual Sobolev space, with ‖f‖W s,p
L

= ‖g‖Lp(Cn).
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As in the classical case, we can solve (26) by using the priori Strichartz estimates
coupled with the Sobolev embedding theorem (Proposition 4.1).

The twisted Sobolev spaces were introduced in [18] and later used in [24] in the
study of the spherical means for special Hermite expansions.

Proposition 4.1. Let s > n/p and 1 < p <∞. Then W s,p
L ↪→ L∞(Cn).

Proof. We only need to show that for n > s > n/p it holds that

‖L−sf‖L∞(Cn) ≤ C‖f‖Lp(Cn)

for all f ∈ L2 ∩W s,p
L . Let e−tL be the heat kernel of L, then for s > 0

L−sf(z) =
1

Γ(s)

∫ ∞
0

ts−1e−tLdtf(z).

Since

e−tLf(z) = (2π)−n
∞∑
k=0

e−t(2k+n)f × ϕk(z) = f × pt(z),

where

pt(z) = (2π)−n
∞∑
k=0

e−t(2k+n)ϕk(z) = (4π sinh t)−ne−
1
4 (coth t)|z|2 ,

it follows that the twisted convolution kernel of L−s has the expression

K−s(z) = cs,n

∫ ∞
0

ts−1(sinh t)−ne−
1
4 (coth t)|z|2dt.

Note that if 0 < t ≤ 1, sinh t = O(t), cosh t = O(1). Then it is easy to see that for
0 < s < n,

|K−s(z)| ≤ c

{
|z|2s−2n if |z| ≤ 1,
e−c|z|

2
if |z| > 1.

We have for each q > 1∫
|K−s(z)|qdz ≤ c

(∫
|z|≤1

|z|q(2s−2n)dz +
∫
|z|>1

e−cq|z|
2
dz

)
<∞

provided s > n − n/q. Hence if n > s > n/p, we obtain for all z ∈ Cn and
f ∈ L2 ∩W s,p

L ,

|L−sf(z)| ≤ ‖K−s‖Lq‖f‖Lp ,

where 1/p+ 1/q = 1. This proves the proposition. �

Remark. The result agrees with the classical result since L is second order and
Cn has real dimension 2n.

To show the LWP for (26) we will also need a “product rule” for fractional
derivatives, namely, Proposition 4.7, whose proof depends on a few lemmas as we
will see below.

Let us first establish the Littlewood-Paley inequality for Lp. Fix ψ0 and ψ ∈ C∞0
such that ψ0, ψ ≥ 0, suppψ0 ⊂ [0, 1], suppψ ⊂ [1/4, 1] and

∑∞
j=0 ψ

2
j (x) = 1 for all

x ≥ 0, where ψj(x) = ψ(2−jx), j ≥ 1.

Lemma 4.2. Let 1 < p < ∞. Then there exists a positive constant Cp such that
for all f ∈ Lp(Cn),

C−1
p ‖f‖Lp ≤ ‖

( ∞∑
j=0

|ψj(L)f |2
)1/2‖Lp ≤ Cp‖f‖Lp . (27)
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The proof of Lemma 4.2 follows from the classical argument. Using multiplier
theorem and Littlewood-Paley square function we know that the random function
m(ξ) := ±ψ(2−jξ), where ± are i.i.d. symmetric Bernoulli, are Mikhlin type mul-
tipliers uniformly in the choice of the signs ±. Then (27) follows via Theorem 4.3
by applying Lemma 4.5, cf. [21, Chapter IV].

Consider the multiplier transform of the form

Tmf(z) = (2π)−n/2
∑
ν∈Zn

+

m(ν)f × Φνν(z).

For k = 1, . . . , n, define ∆km(ν) = m(ν + ek)−m(ν), where ek = (0, . . . , 1, . . . , 0)
with 1 in the k-th coordinate and 0’s elsewhere. If β = (β1, . . . , βn) ∈ Zn+, we define

∆βm(ν) = ∆β1
1 · · ·∆βn

n m(ν).

We have the following multiplier theorem [25, 27].

Theorem 4.3. Let m be a function defined on Zn+ which satisfies

|∆βm(ν)| ≤ Cn(1 + |ν|)−|β| (28)

for all β with |β| ≤ n+ 1. Then Tm is bounded on Lp(Cn) for 1 < p <∞.

Let χj(x) = χ(2−jx), where χ is a smooth cut-off function in C∞0 with support
in [1/2, 2]. Denote by Mj the twisted convolution kernel of Tχj . The following
weighted estimate holds according to [27, Lemma 2.1].

Lemma 4.4. There exists a constant Cn such that for all j ≥ 0,∫
Cn

(1 + 2j |z|2)n+1|Mj(z)|2dz ≤ Cn2nj .

A simple consequence of Lemma 4.4 is that for all j and all f ∈ Lp ∩ L2,
1 ≤ p ≤ ∞ it holds that

‖χj(L)f‖Lp ≤ C‖f‖Lp . (29)
Recall the Rademacher functions from [21]. Let rm(t) = r0(2mt), where r0(t) =

1, if t ∈ [0, 1/2]; −1 if t ∈ (1/2, 1]. The sequence of Rademacher functions are
orthonormal (and mutually independent) over [0,1].

Lemma 4.5. Let F (t) =
∑∞

0 amrm(t) and
∑
|am|2 < ∞. Then F (t) ∈ Lp([0, 1])

for each p <∞. Moreover, there exist positive cp and Cp such that

cp‖F‖p ≤ ‖F‖2 = (
∞∑
0

|am|2)1/2 ≤ Cp‖F‖p.

The lemma above is contained in [21, Chapter IV, §5.2]. There are also included
evident extensions to multi-dimensions.
Proof of Lemma 4.2. For p = 2, using

∑
j ψ

2
j (x) = 1 we have

‖(
∞∑
j=0

|ψj(L)f(z)|2)1/2‖2L2 =
∞∑
j=0

(ψj(L)f, ψj(L)f)

=
∞∑
j=0

∑
µ,ν∈Zn

+

ψ2
j (2|ν|+ n)(f,Ψµν)2 = ‖f‖2L2 .

So by a standard duality argument, it suffices to prove the second inequality of
(27). Let mt(x) =

∑∞
j=0 rj(t)ψj(x). We write

Ttf(z) = mt(L)f(z) = (2π)−n
∞∑
k=0

mt(2k + n)(f × ϕk)(z).
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By the second inequality in Lemma 4.5, we have

( ∞∑
j=0

|ψj(L)f(z)|2
)p/2 ≤ Cpp ∫ 1

0

|
∑
j

ψj(L)f(z)rj(t)|pdt

=Cpp

∫ 1

0

|Ttf(z)|pdt.

Therefore, since mt(ν) := mt(2|ν|+n) satisfies (28), we obtain the desired estimate
for 1 < p <∞ ∫

Cn

( ∞∑
j=0

|ψj(L)f(z)|2
)p/2

dz ≤ Cpp
∫

Cn

|f(z)|pdz.

2

Remarks. From the proof one can easily see that the result remain valid if we
only require

∑
j ψ

2
j (x) ≈ 1.

An alternative proof of Lemma 4.2 would be to show the estimates L1 → weak-
L1(`q) and L1(`q)→ weak-L1, similar to the proof of vector-valued spectral multi-
plier theorem [17].

As a corollary to Lemma 4.2, the following norm characterization of W s,p
L holds.

Corollary 4.6. Let 1 < p < ∞ and s ≥ 0. Then for all f ∈ Lp(Cn), there exists
a constant Cp such that

C−1
p ‖f‖W s,p

L
≤ ‖(

∞∑
j=0

22js|ψj(L)f |2)1/2‖Lp ≤ Cp‖f‖W s,p
L
.

Let Φj(x) =
∑j−1
ν=0 χν(x), j ≥ 1. Using the decomposition

fg =
∑
ij

(χi(L)f)(χj(L)g)

=
∑
i

Φi(L)g(χi(L)f) +
∑
j

(χj(L)g)Φj+1(L)f,

and applying Corollary 4.6 and (29) we thus obtain the “product rule for fractional
derivatives”.

Proposition 4.7. Let 1 < p <∞ and s ≥ 0. Then for all f, g ∈ L∞ ∩W s,p
L ,

‖fg‖W s,p
L
≤ C(‖f‖L∞‖g‖W s,p

L
+ ‖f‖W s,p

L
‖g‖L∞).

We are now ready to prove the local existence and uniqueness of (26).
Proof of Theorem 1.2. By Duhamel principle we consider the mapping

Φ(u)(t) = eitLf − i
∫ t

0

ei(t−τ)LF (u(τ))dτ (30)

on the space XT = C([−T, T ],W s,2
L ) ∩ Lq([−T, T ],W s,p

L ), which is endowed with
the norm

‖u‖XT
= max
|t|≤T

‖u(t)‖W s,2
L

+ ‖u‖Lq([−T,T ],W s.p
L ).

Let B = {u ∈ XT : ‖u‖XT
≤ γ}, where γ is a constant to be chosen later. Define

the metric ρ(u, v) := ‖u− v‖XT
. Then (B, ρ) is a (convex) close set. We will show

that Φ is a contraction mapping in (B, ρ). According to Lemma 3.2 and Proposition
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4.7, we have

‖Φ(u)‖XT
≤ C

(
‖f‖W s,2

L
+
∫ T

−T
‖F (u(τ))‖W s,2

L
dτ
)

≤C
(
‖f‖W s,2

L
+
∫ T

−T
(1 + ‖u(τ)‖m−1

L∞ )‖u(τ)‖W s,2
L
dτ
)
,

where in the first step we have used the property that Ls and eitL commute. Now
we can take q > max(m− 1, 2) and take p to be the corresponding Strichartz index
satisfying 1/p = 1/2 − 1/(nq). These are the numbers chosen in the definition of
the space XT . Finally, we conclude the argument as follows: Proposition 4.1 tells
that

‖u(τ)‖L∞ ≤ C‖u(τ)‖W s,p
L
,

where s > n/p = n/2− 1/q > n/2− 1/max(m− 1, 2). Let r = 1− m−1
q . Applying

Hölder inequality in τ we obtain

‖Φ(u)‖XT
≤ C‖f‖W s.2

L
+ C(T‖u‖XT

+ T r‖u‖mXT
).

Similarly we have

‖Φ(u)− Φ(v)‖XT
≤ CT r(1 + ‖u‖XT

+ ‖v‖XT
)m−1‖u− v‖XT

.

Choose γ = 2C‖f‖W s,2
L

and 0 < T < 1 so that

T <

(
1

C0(1 + ‖f‖W s,2
L

)m−1

)1/r

,

where C0 is a constant. Then it follows that Φ maps B into B and is a contraction
mapping on B. This proves the theorem. 2
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