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Abstract
A degeneration of a singular curve on a toric surface, called a tropicalization, was constructed

by E. Shustin. He classified the degeneration of 1-cuspidal curves using polyhedral complexes
called tropical curves. In this paper, we define a tropical version of a 1-tacnodal curve, that is,
a curve having exactly one singular point whose topological type is A3, and by applying the
tropicalization method, we classify tropical curves which correspond to 1-tacnodal curves.
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1. Introduction

1. Introduction
Tropical geometry is a modern study area on a polyhedral complex, which can be obtained

as the non-linear locus of a polynomial over the max-plus algebra. Among previous studies
on tropical geometry, the most famous result is an application to the enumerative geometry
on toric surfaces by G. Mikhalkin [5]. T. Nishinou and B. Siebert [6] also showed that the
enumerative problem on toric varieties equals to the enumeration of a certain type of tropical
curves. These results are obtained by connecting tropical geometry with degeneration of
nodal curves.

In order to apply tropical geometry to general singular curves, E. Shustin [8] presented
a degeneration of a curve, called a tropicalization, and showed that the tropicalization of
a curve which has only one singular point whose topological type is A2 (he called such
a curve a 1-cuspidal curve for simplicity) is related to a certain tropical curve, called a
tropical 1-cuspidal curve. Furthermore, using the theory of patchworking, he showed that
the enumeration of 1-cuspidal curves reduced into that of the tropical 1-cuspidal curves.

In this paper, we apply the tropicalization method to 1-tacnodal curves, that is, curves
which have exactly one singular point whose topological type is A3, on a toric surface, and
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classify them using tropical curves.
To state our result, we prepare some terminology in tropical geometry. Let F be a poly-

nomial in two variables over the field of convergent Puiseux series over C, denoted by
K := C{{t}}. Then we can define a valuation val : K∗ := K \ {0} → R as follows. For a given
element b(t) ∈ K∗, take the minimal exponent q of b(t) in t, then define val(b(t)) := −q. We
set

Val : (K∗)2 → R2; (z, w) �→ (val(z), val(w)).

We call the closure

TF := Closure(Val({F = 0} ∩ (K∗)2)) ⊂ R2

of the curve defined by F in (K∗)2 the tropical amoeba defined by F.
Each tropical amoeba T has a positive integer rk(T ) called a rank, which, roughly speak-

ing, is the dimension of the space of tropical curves which are combinatorially same as T .
The formal definition of the rank will be given in Subsection 2.1. We will also give the
definition of a tropical 1-tacnodal curve in Definition 3.1 as a tropical analogy of a classical
1-tacnodal curve.

The following statement is the main result in this paper.

Theorem 4.1. Let F ∈ K[z, w] be a polynomial which defines an irreducible 1-tacnodal
curve. If the rank of the tropical amoeba TF defined by F is more than or equal to the
number of the lattice points of the Newton polytope of F minus four, then TF is a tropical
1-tacnodal curve.

In [8], Shustin proved the 1-cuspidal version of this theorem and the statement that “for
each tropical 1-cuspidal curve, we can calculate the number of classical curves degenerated
into the 1-cuspidal curve by using the patchworking method”, which means that the enumer-
ation of 1-cuspidal curves on toric surfaces can be carried out by using tropical 1-cuspidal
curves. The original aim of this paper is to enumerate 1-tacnodal curves on toric surfaces
by the same method. However, it does not work unlike the studies for nodal and 1-cuspidal
curves because the criterion of patchworking developed by Shustin [7, 8] cannot be used in
this case. We will discuss this in Remark 4.12 below. Note that, in [8], the rank of tropical
amoeba of A2-curve passing through “good” generic points, whose number is equal to the
dimension of the space of A2-curves, is more than or equal to the number of lattice points of
the Newton polytope minus three. In our case, it becomes “minus four” since the singularity
is A3 instead of A2 (See Corollary 2.5 of this paper). This setting seems to be natural though
there is no concrete observation about it.

We organize this paper as follows. In Subsection 2.1, we define some basic terminology
on tropical geometry such as the dual subdivision and the rank of a tropical curve, and
introduce a lemma on the rank of the tropical curves proved by E. Shustin. In Subsection 2.2,
we consider a necessary and sufficient condition for a complex curve to have a tacnode, and
estimate the dimension of the space of the 1-tacnodal curves on a toric surface. In Subsection
2.3, we summarize the tropicalization and its refinement. In Section 3, we define tropical 1-
tacnodal curves and discuss polytopes appearing in their dual subdivisions. We also study a
reduced curve associated with a tropical 1-tacnodal curve. In Subsections 4.1 and 4.2, before
the proof of Theorem 4.1, we prepare some definition and lemmata on relation between
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singular curves and their Newton polytopes. The proof of Theorem 4.1 is carried out from
Subsections 4.3 to 4.5.

2. Preliminaries

2. Preliminaries
A set in R2 is a (lattice) polyhedron if it is the intersection of a finite number of half-

spaces in R2 whose vertices are contained in the lattice Z2 ⊂ R2. A set is a polytope in R2

if it is a compact polyhedron, that is, the convex hull of a finite number of lattice points.
We call a facet of a polytope an edge. Similarly, we call the 0-dimensional sub-polytope
obtained as the corner of a polytope a vertex. The boundary ∂Δ is the union of all facets of
Δ. The interior IntΔ is defined by Δ \ ∂Δ.

A polytope is said to be parallel if the opposite edges have the same directional vector
(up to orientation) and the same lattice length. A polytope is called an m-gon if the number
of its edges is m.

Let Δ ⊂ R2 be a polytope. We denote the set of lattice points in Δ, IntΔ and ∂Δ as ΔZ,
IntΔZ and ∂ΔZ, respectively. That is,

ΔZ := Δ ∩ Z2, IntΔZ := IntΔ ∩ Z2, ∂ΔZ := ∂Δ ∩ Z2.

For a polytope Δ ⊂ R2, we can construct a polarized toric surface associated with Δ over
C, denoted by (X(Δ),D(Δ)), where D(Δ) is the polarization on X(Δ) associated with Δ.

2.1. Basics of tropical plane curves.
2.1. Basics of tropical plane curves. Throughout this paper, K := C{{t}} represents the

field of convergent Puiseux series over C. The field K admits a non-Archimedean valuation

val : K∗ → Q;
∞∑

k=k0

bkt
k
N �→ −k0

N
,

where bk0 � 0. For a polynomial

F(z, w) =
∑

(i, j)∈ΔZ
ci jziw j ∈ K[z, w],

the sets

Supp(F) := {(i, j) ∈ R2; ci j � 0} and NF := Conv(Supp(F)) ⊂ R2

are called the support of F and the Newton polytope of F, respectively, where Conv(A) is the
convex hull of A in R2. In this paper, we always assume that the dimension of any polytope
is 2. Then the map Val is defined by

Val : (K∗)2 → R2; (z, w) �→ (val(z), val(w)).

The set TF is defined by

TF := Closure
(
Val({p ∈ (K∗)2; F(p) = 0})) ⊂ R2,

where Closure(A) is the closure of A with usual topology on R2. The set TF is called the
tropical amoeba defined by F.

On the other hand, for F, the tropical polynomial τF is defined by

τF(x, y) := max{val(ci j) + ix + jy; (i, j) ∈ Supp(F)}
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over the max-plus algebra. The non-linear locus of a polynomial over the max-plus algebra
in two variables is called a tropical plane curve, which is a 1-dimensional polyhedral com-
plex in R2. It is known as Kapranov’s Theorem [3] that the tropical amoeba TF coincides
with the tropical plane curve of the tropical polynomial τF . Hence, TF has the structure of a
1-dimensional polyhedral complex in R2. A 1-simplex and a 0-simplex of TF are called an
edge and a vertex of TF , respectively.

An edge E of TF corresponds to the intersection of two linearity domains of τF . If one of
the linearity domain is defined by a term ai j+ ix+ jy of τF and the other is defined by a term
ai′ j′ + i′x + j′y of τF , then the weight w(E) of the edge E is defined as the greatest common
divisor of i − i′ and j − j′.

Now we introduce a subdivision of the Newton polytope NF which is dual to the tropical
amoeba TF . Let νF : NF → R be the discrete Legendre transform of τF , which is a continu-
ous concave PL-function (see, for example, [1, Chapter 1.5]). Then we obtain a subdivision
of NF consisting of the following three kinds of polytopes from νF :

• linearity domains of νF : Δ1, . . .,ΔN ,
• 1-dimensional polytopes: σi j := Δi ∩ Δ j � ∅,� {pt},
• 0-dimensional polytopes: Δi1 ∩ Δi2 ∩ Δi3 � ∅.

These polytopes give a subdivision of NF , which we denote by S F . We call a 1-dimensional
and a 0-dimensional sub-polytope of NF contained in S F an edge and a vertex, respectively.

The following claim is in [5, Proposition 3.11].

Theorem 2.1 (Duality Theorem). There exists a correspondence between a tropical curve
TF with the weight w(E) on each edge E ⊂ TF and the corresponding subdivision S F of NF

in the following sense:

(1) the components of R2 \ TF are in 1-to-1 correspondence with the vertices of the
subdivision S F,

(2) the edges of TF are in 1-to-1 correspondence with the edges of S F so that an edge
E ⊂ TF is dual to an orthogonal edge of S F having the lattice length equal to w(E)

(3) the vertices of TF are in 1-to-1 correspondence with the polytopes Δ1, . . . ,ΔN of
S F so that the valency of a vertex of TF is equal to the number of sides of the
corresponding polytope.

We call the set S F the dual subdivision of TF . By Theorem 2.1, we can study any plane
tropical curve by using the dual subdivision of the corresponding Newton polytope.

Next, we discuss the dimension of the space of tropical curves. For a given polytope Δ, let
T(Δ) denote the set of tropical curves which are defined by polynomials in two variables over
the max-plus algebra with Newton polytope Δ. Let S be the dual subdivision of T ∈ T(Δ)
and define the rank of the tropical curve T (or of S ) as

rk(T ) := rk(S ) := dim{T ′ ∈ T(Δ); S = S ′},
where S ′ is the dual subdivision of T ′. By [5, Lemma 3.14], the set {T ′ ∈ T(Δ); S = S ′}
is a polyhedron in RM for some positive integer M. Thus, the definition of the rank is well-
defined.

Let Δ1, . . . ,ΔN be the 2-dimensional polytopes of S . According to [8], we define the
expected rank of the tropical curve T (or of S ) as
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rkexp(T ) := rkexp(S ) := �V(S ) − 1 −
N∑

k=1

(�V(Δk) − 3),

where V(S ) is the set of vertices of S and V(Δk) is the set of vertices of Δk.

Definition 2.2. A lattice subdivision of a polytope is a TP-subdivision if the subdivision
consists of only triangles and parallelograms.

We remark that, this definition is same as the definition of the nodal subdivision in [8,
Subsection 3.1] except the condition on the boundary ∂Δ.

For any subdivision S , we denote the number of �-gons and the number of parallel (2m)-
gons contained in S as N� and N′2m, respectively.

The following statement is in [8, Lemma 2.2].

Lemma 2.3 (Shustin [8]). The difference

d(T ) := rk(T ) − rkexp(T )

of a tropical curve T satisfies d(T ) ≥ 0. Moreover, for the dual subdivision S of T , the
difference d(T ) satisfies

• d(T ) = 0 if S is a TP-subdivision and
• 0 ≤ 2d(T ) ≤S otherwise,

where

S :=
∑
m≥2

((2m − 3)N2m − N′2m) +
∑
m≥2

(2m − 2)N2m+1 − 1

=
∑
�≥3

(� − 3)N� −
∑
m≥2

N′2m − 1.

2.2. Some remarks on 1-tacnodal curves.
2.2. Some remarks on 1-tacnodal curves. In this paper, a curve on a projective surface

is called a 1-tacnodal curve if the curve has exactly one singular point at a smooth point of
the surface whose topological type is A3. The term “tacnode” means A3-singularity. In this
subsection we prepare some lemmata related to 1-tacnodal curves.

For a polynomial f and p ∈ C2, we use the notations fx(p) = ∂ f
∂x (p), fy(p) = ∂ f

∂y
(p) and so

on. We set Hess( f )(p) = fxx(p) fyy(p) − fxy(p)2 and

K( f )(p) := − fxy(p)3 fxxx(p)+3 fxx(p) fxy(p)2 fxxy(p)

− 3 fxx(p)2 fxy(p) fxyy(p) + fxx(p)3 fyyy(p).

Lemma 2.4. Suppose that a polynomial f ∈ C[x, y] satisfies fxx(p) � 0. Then the curve
{ f = 0} ⊂ C2 has a tacnode at p if and only if f satisfies

(1) f (p) = fx(p) = fy(p) = 0,
(2) Hess( f )(p) = 0,
(3) K( f )(p) = 0,
(4) a12(p)2 − 4 fxx(p)a04(p) � 0,

where

a12(p) := fxy(p)2 fxxx(p) − 2 fxx(p) fxy(p) fxxy(p) + fxx(p)2 fxyy(p),



456 T. Takahashi

a04(p) := fxy(p)4 fxxxx(p) − 4 fxx(p) fxy(p)3 fxxxy(p)

+ 6 fxx(p)2 fxy(p)2 fxxyy(p) − 4 fxx(p)3 fxy(p) fxyyy(p) + fxx(p)4 fyyyy(p).

Proof. For simplicity, we assume that p is the origin (0, 0) of C2. First, if the origin is a
singular point then we can represent f as

f = Ax2 + Bxy +Cy2 + (higher terms),

where (A, B,C) = ( fxx(0, 0)/2, fxy(0, 0), fyy(0, 0)/2). If Hess( f )(0, 0) � 0, then the origin
is an A1-singularity of { f = 0}. Therefore Hess( f )(0, 0) = 0 for the origin to be an A3-
singularity. Then we can rewrite f as

f =
1

4A
(2Ax + By)2 + (higher terms).

The tangent line of { f = 0} at the origin is defined by

fxx(0, 0)x + fxy(0, 0)y = 0.

Now we define new coordinates (u, v) as(
u
v

)
=

(
fxx(0, 0) fxy(0, 0)

0 1

) (
x
y

)

and set

f̂ (u, v) := f (x(u, v), y(u, v)).

Note that the condition f (0, 0) = fx(0, 0) = fy(0, 0) = Hess( f )(0, 0) = 0 is equivalent to
f̂ (0, 0) = f̂u(0, 0) = f̂v(0, 0) = Hess( f̂ )(0, 0) = 0.

By direct computation, we obtain the equalities:

f̂uu(0, 0) =
1

fxx(0, 0)
,

f̂uv(0, 0) = 0,

f̂vv(0, 0) =
1

fxx(0, 0)
Hess( f )(0, 0),

f̂uvv(0, 0) =
1

fxx(0, 0)3 a12(0, 0),

f̂vvv(0, 0) =
1

fxx(0, 0)3 K( f )(0, 0),

f̂vvvv(0, 0) =
1

fxx(0, 0)4 a04(0, 0).

(*)

From the properties of the Newton diagram of a plane curve singularity [4], the condition
that the singularity at the origin is A3 can be rewritten as

f̂uv(0, 0) = f̂vv(0, 0) = f̂vvv(0, 0) = 0, f̂uu(0, 0) � 0

and

f̂uvv(0, 0)2 − 4 f̂uu(0, 0) f̂vvvv(0, 0) � 0

on the new coordinate system. By (*), these conditions coincide with the conditions in the
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assertion. �

For μ = 1, 3, let U(Δ, Aμ) denote a locally closed subvariety in the complete linear system
|D(Δ)| of D(Δ) which parametrizes the set of curves having exactly one singular point, whose
topological type is Aμ. Let V(Δ, Aμ) be the closure of U(Δ, Aμ) in |D(Δ)|.

Corollary 2.5. If V(Δ, A3) is non-empty then dim V(Δ, A3) ≥ �ΔZ − 4.

Proof. For μ = 1, 3, we set

Σ(Δ, Aμ) := {(C, p); p is a singular point of C} ⊂ U(Δ, Aμ) × X(Δ) ⊂ |D(Δ)| × X(Δ).

For a curve C ∈ V(Δ, Aμ), we choose a local coordinate system (x, y) of X(Δ) around the
singular point p = (x0, y0) ∈ C. Let f be a defining polynomial of C. By Lemma 2.4,
Σ(Δ, A3) is locally defined by

(**) f (x0, y0) = fx(x0, y0) = fy(x0, y0) = Hess( f )(x0, y0) = K( f )(x0, y0) = 0.

Note that, by [2, Theorem (1.49)], the dimension of the Severi variety V(Δ, A1) satisfies

dim V(Δ, A1) = dimΣ(Δ, A1) = �ΔZ − 1 − 1

and Σ(Δ, A1) is defined by the first three equations of (**). Therefore, we obtain

dim V(Δ, A3) ≥ dimΣ(Δ, A3) ≥ �ΔZ − 1 − 3 = �ΔZ − 4.

�

2.3. Tropicalization of curves.
2.3. Tropicalization of curves. We briefly introduce the tropicalization of a curve and

its refinement (see [8, Section 3] for more details).
Let F ∈ K[z, w] be a reduced polynomial which defines a curve C ⊂ X(NF). Set Δ = NF

and let TF be the tropical amoeba defined by F introduced in Section 2.1 and S F be the dual
subdivision of TF . We consider the 3-dimensional unbounded polyhedron

Δ̌F := Conv{(i, j, t) ∈ R2 × R; t ≥ νF(i, j)} ⊂ R3.

We remark that a compact facet Δ̌i of Δ̌F corresponds to a 2-dimensional polytope Δi in S F

by the projection Δ̌F ⊂ R2 × R→ R2.
We then obtain a toric flat morphism X(Δ̌F) = X → C from the toric 3-fold associated

with Δ̌F to the complex line, which is called a toric degeneration. A generic fiber Xt is
isomorphic to X(Δ), and its central fiber X0 is isomorphic to

⋃
i=1,...,N X(Δi) (see [6, Section

3] for more details). Let D ⊂ C be a small disk centered at the origin. We regard the
indeterminate t of K as the variable in D∗ := D \ {0}. Then we can get an analytic function
F(t; z, w) in three variables. From this analytic function, we obtain an equisingular family
on the toric surface X(Δ)

{C(t) := Closure({F(t; z, w) = 0})}t∈D∗ .
The limit C(0) of this family is constructed as follows: For each i = 1, . . . ,N, a complex
polynomial fi ∈ C[z, w] whose Newton polytope is Δi ∈ S F is induced from the face function
of F on Δ̌i by the transformation induced by the projection from Δ̌i to Δi. The union of these
curves is the limit C(0), which is a curve on the central fiber X0 of the toric degeneration.
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The limit C(0) is called a tropicalization of C.
For each singular point z of C, there exists a continuous family of singular points {zt} for

t ∈ D∗, where zt ∈ C(t), and this family defines a section s : D∗ → X(Δ̌F). If the limit
s(0) = limt→0 s(t) does not belong to the intersection lines

⋃
i� j X(Δi ∩ Δ j) and bears just

one singular point of C(t), the point s(0) is called a regular singular point. Otherwise it
is called an irregular singular point. Note that if s(0) is a regular singular point then it is
topologically equivalent to the original singularity.

If the singular point s(0) is irregular, additional information can be obtained by the refine-
ment of the tropicalization, see Figure 1. In the rest of this section, we explain this method
briefly. See [8, Subsection 3.5] for the details of the refinement.

Hereafter, we assume that F defines a 1-tacnodal curve in X(Δ). Let Δ1 ∈ S F and Δ2 ∈ S F

be polytopes which have a common edge σ of length m ≥ 2 and we observe the case where
an irregular singularity degenerates into the subvariety X(σ) of X0. For each i = 1, 2, let fi
be a polynomial whose Newton polytope is Δi such that the union of curves C1 ∩ C2 ⊂ C(0)

defined by f1 = f2 = 0 intersects X(σ) at z ∈ X0. In this paper, by later discussion, we can
assume that, for each i = 1, 2, the polynomial fi has an isolated singularity at z ∈ X(σ) and
their Newton boundary intersects the x- and y-axes at (mi, 0) and (0,m), respectively, where
the y-axis corresponds to X(σ).

Find an automorphism Mσ ∈ Aff(Z2) such that Mσ(Δ) is contained in the right half-plane
ofR2 and Mσ(σ) =: σ′ is a horizontal segment, see Figure 1. The automorphism Mσ induces
a transformation (x, y) �→ (x′, y′), by which we obtain a new polynomial F′(x′, y′) from F.
We can assume that F′ ∈ K[x′, y′] by multiplying a monomial. We remark that the point z
corresponds to a root ξ � 0 of the truncation polynomial F′σ′(x′, y′) of F′ on σ′. Here the
truncation polynomial Fσ of a polynomial F on a facet σ of NF is the sum of the terms of F
corresponding to the lattice points on σ.

Then we choose an element τ ∈ K such that the coefficient of x̃m−1 in F̃(x̃, ỹ) = F′(x̃+ ξ+
τ, ỹ) is zero. Moreover, the dual subdivision of the tropical amoeba defined by F̃ contains
a subdivision of the triangle Δz := Conv{(m, 0), (0,m1), (0,−m2)}. In this paper, we call
the polytope Δz the exceptional polytope for the irregular singularity z ∈ X0. We remark
that, the exceptional polytope is the union of the complements of the Newton diagrams of
the polynomials f1 and f2 at z ∈ X(σ) in the first quadrant of R2. Making the exceptional
polytope Δz by the translation is an operation similar to a blowing-up of the 3-fold X. We
can restore the topological type of the irregular singularity z in X(Δz) by this operation.

Fig.1. A refinement of a tropicalization
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Definition 2.6. For each i = 1, 2, let fi be a polynomial which defines Ci such that f σ1 =
f σ2 , and φi denote the composition of fi and the translation which maps z to the origin of C2.
Set

σ̂i := Δz ∩ Nφi ⊂ Δz,

where Nφi is the Newton polytope of φi. We assume that σ̂i is an edge of Δz. We call a
polynomial φ whose Newton polytope is Δz and that satisfies

(a) the coefficient of xm−1 is zero, and
(b) the truncation polynomial φσ̂i is equal to φi for each edge σ̂i of Δz.

a deformation pattern compatible with given data ( f1, f2, z).

We remark that, by the same reason as in [8, Subsection 3.5], except case (E), if the curve
defined by F has only one singular point which is an irregular singularity and there does
not exist a deformation pattern compatible with the irregular singularity which defines a 1-
tacnodal curve, then F does not define a 1-tacnodal curve. We will discuss what happen in
case (E) in Subsection 3.4.

3. Tropical 1-tacnodal curves

3. Tropical 1-tacnodal curves3.1. Definition of tropical 1-tacnodal curves.
3.1. Definition of tropical 1-tacnodal curves. In this subsection, we define a tropical

1-tacnodal curve. We can think of it as a tropical version of a 1-tacnodal curve, which is the
main theorem (Theorem 4.1) in this paper.

Set

ΔI := Conv{(0, 7), (1, 0), (2, 0)}, ΔII := Conv{(0, 7), (2, 0), (3, 0)},
ΔIII := Conv{(0, 0), (2, 0), (1, 3)}, ΔIV := Conv{(0, 0), (2, 0), (1, 2)}
ΔV := Conv{(0, 0), (4, 0), (0, 1)}, ΔVI := Conv{(1, 0), (2, 0), (0, 3), (1, 3)},
ΔVII := Conv{(0, 0), (1, 0), (2, 1), (0, 1), (1, 2)},
ΔVIII := Conv{(0, 0), (1, 0), (0, 1), (3, 3)}, ΔIX := Conv{(0, 0), (1, 0), (0, 1), (4, 2)},
ΔE := Conv{(0, 0), (2, 0), (0, 1), (1, 2)},

see Figure 2.
We say that a polytope P ⊂ R2 is Aff(Z2)-equivalent to (or simply, equivalent to) P′ if

there exists an affine isomorphism A ∈ Aff(Z2) such that A(P) = P′, and denote it as P 
 P′.

Definition 3.1. A tropical curve T is said to be tropical 1-tacnodal if the dual subdivision
S of T contains one of the following polytopes or unions of polytopes:

(I) a triangle equivalent to ΔI,
(II) a triangle equivalent to ΔII,

(III) the union of a triangle equivalent to ΔIII and a triangle with edges of lattice length
1, 1 and 2 and without interior lattice point glued in such a way that they share the
edge of lattice length 2,

(IV) the union of two triangles equivalent to ΔIV which share the edge of lattice length 2,
(V) the union of two triangles equivalent to ΔV which share the edge of lattice length 4,

(VI) a parallelogram equivalent to ΔVI,
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(VII) a pentagon equivalent to ΔVII,
(VIII) a quadrangle equivalent to ΔVIII,

(IX) a quadrangle equivalent to ΔIX,
(E) the union of a quadrangle equivalent to ΔE and a triangle with edges of lattice length

1, 1 and 2 and without interior lattice point which share the edge of lattice length 2,
and the rest of S consists of triangles of area 1/2.

Fig.2. Polytopes in Definition 3.1. The notation � means a lattice point on
the boundary which is not a vertex and the notation 
 means an interior
lattice point.

3.2. Polytopes corresponding to tropical 1-tacnodal curves.
3.2. Polytopes corresponding to tropical 1-tacnodal curves. In this subsection, we

mention some remark on polytopes appearing in Definition 3.1.
We denote an m-gon which has edges of lattice lengths �1, . . . , �m and I interior lattice

points by

Δm(I; �1, . . . , �m).

Similarly, we denote a parallel 2m-gon which has m pairs of antipodal parallel edges of
lattice length �1, . . . , �m by

Δ
par
2m(I; �1, . . . , �m).

When we consider polytopes of the same type (I; �1, . . . , �m) simultaneously, we denote one
as Δm(I; �1, . . . , �m) and the others as Δ′m(I; �1, . . . , �m), Δ′′m(I; �1, . . . , �m) and so on. Note that
in these notations, the order of lengths is not relevant to the cyclic order of edges.

Lemma 3.2. The following holds up to Aff(Z2)-equivalence:
(1) A triangle Δ3(3; 1, 1, 1) is either ΔI or ΔII.
(2) A triangle Δ3(2; 2, 1, 1) is ΔIII.
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(3) A triangle Δ3(1; 2, 1, 1) is ΔIV.
(4) A triangle Δ3(0; 4, 1, 1) is ΔV.
(5) A parallelogram Δpar

4 (2; 1, 1) is ΔVI.
(6) A pentagon Δ5(1; 1, 1, 1, 1, 1) is ΔVII.
(7) A non-parallel quadrangle Δ4(2; 1, 1, 1, 1) is equivalent to one of the following poly-
topes:

ΔVIII, ΔIX, Conv{(1, 0), (0, 1), (2, 1), (1, 3)}.
Proof. (1) We can take A ∈ Aff(Z2) which maps Δ3(3; 1, 1, 1) to

Δ̂n := Conv{(0, q), (n, 0), (n + 1, 0)}
for some q, n. By Pick’s formula, we obtain q = 7. We remark that, Δ̂n and Δ̂n+7 are
equivalent by

(***)
(
1 1
0 1

)
.

Moreover we do not have to discuss the cases n = 0 and n = 6 since they have an edge of
lattice length more than 1.

We get the isomorphisms

Δ̂1 
 Δ̂5, Δ̂2 
 Δ̂4

by the reflection, and Δ̂1 
 Δ̂3 by (
3 1
−7 −2

)
.

Because of the configuration of interior lattice points, we can show that Δ̂1 = ΔI and Δ̂2 = ΔII

are not isomorphic.
(2) For any Δ3(2; 2, 1, 1), there exists A ∈ Aff(Z2) such that Δ3(2; 2, 1, 1) maps to

Conv{(p, 0), (p + 2, 0), (0, q)}
for some p, q ∈ N. Then we have q = 3 by Pick’s formula, and we may assume p = 0, 1, 2
by the isomorphism (***). But the cases p = 0, 1 do not satisfy the conditions of lattice
length. Hence we get p = 2. This triangle is equivalent to ΔIII.

The claims (3), (4), (5) and (6) can be proved by the same method.
(7) We can split P := Δ4(2; 1, 1, 1, 1) into two triangles which satisfies one of the following:
• Δ3(1; 2, 1, 1) and Δ3(0; 2, 1, 1) such that their intersection is a segment of length 2,
• Δ3(2; 1, 1, 1) and Δ3(0; 1, 1, 1) such that their intersection is a segment of length 1,
• Δ3(0; 3, 1, 1) and Δ′3(0; 3, 1, 1) such that their intersection is a segment of length 3,
• Δ3(1; 1, 1, 1) and Δ′3(1; 1, 1, 1) such that their intersection is a segment of length 1.

In the first case, Δ3(1; 2, 1, 1) is uniquely determined as Conv{(0, 0), (2, 0), (1, 2)}, so P
has two descriptions

P̂1 := Conv{(0, 0), (2, 0), (1, 2), (0,−1)}, P̂2 := Conv{(0, 0), (2, 0), (1, 2), (1,−1)}.
In the second case, by [8, Lemma 4.1], any triangle Δ3(2; 1, 1, 1) is isomorphic to
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Q := Conv{(0, 0), (3, 2), (2, 3)}.
We denote the other triangle, which is Δ3(0; 1, 1, 1), by R. We can easily check that Q is
equivalent to

Q1 := Conv{(1, 0), (2, 0), (0, 5)}, Q2 := Conv{(2, 0), (3, 0), (0, 5)}.
If the intersection of Q with R is Conv{(0, 0), (3, 2)} ⊂ Q or Conv{(0, 0), (2, 3)} ⊂ Q, then
we can assume that the intersection is the bottom edge of Q1. Similarly, if the intersection
is Conv{(2, 3), (3, 2)} ⊂ Q, then we can assume that R shares the bottom edge of Q2. Thus,
the polytope P is equivalent to either

P̂3 := Conv{(1, 0), (2, 0), (0, 5), (2,−1)} or P̂4 := Conv{(2, 0), (3, 0), (0, 5), (3,−1)}.
In the third and fourth cases, we obtain the following polytopes in the same way as above:

P̂5 := Conv{(0, 0), (0, 1), (1,−1), (3, 0)}, P̂6 := Conv{(0, 0), (0, 1), (2,−1), (3, 0)}.
Between the polytopes P̂1, . . . , P̂6, we have the following isomorphisms:

P̂1 
 P̂3 by
(−1 0

3 −1

)
, P̂5 
 P̂4 by

(−1 −1
2 1

)
, P̂6 
 P̂2 by

(
0 −1
1 1

)
.

Notice that, the polytope P̂2 is the translation of Conv{(1, 0), (0, 1), (2, 1), (1, 3)}. Also, the
polytopes P̂3 and P̂4 are equivalent to ΔIX and ΔVIII by(

1 1
−1 0

)
: Z2 → Z2,

respectively.
Furthermore, by the configuration of interior lattice points and vertices, we obtain ΔVIII �

ΔIX, ΔIX � Conv{(1, 0), (0, 1), (2, 1), (1, 3)}, and Conv{(1, 0), (0, 1), (2, 1), (1, 3)} � ΔVIII.
�

Lemma 3.3. A quadrangle Δ4(1; 2, 1, 1, 1) is ΔE.

Proof. We can split P = Δ4(1; 2, 1, 1, 1) into two polytopes Q, R along a line passing
through the mid point of the edge of length two. Then there are three cases:

(3-1) Q = Δ3(0; 1, 1, 1), R = Δ4(1; 1, 1, 1, 1) and these polytopes share an edge of length
1,

(3-2) Q = Δ3(0; 2, 1, 1), R = Δ4(0; 2, 1, 1, 1) and these polytopes share the edge of length
2,

(3-3) Q = Δ3(1; 1, 1, 1), R = Δ4(0; 1, 1, 1, 1) and these polytopes share an edge of length
1.

(3-1) If R is a parallelogram, then we can assume that R is

Conv{(1, 0), (2, 0), (0, 2), (1, 2)}
by [8, Lemma 4.1] and the common edge of R with Q is its bottom edge. Hence, we get

Q = Conv{(1, 0), (2, 0), (2,−1)},
by Pick’s formula, but their union does not satisfy the condition of P.
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If R is not a parallelogram, then we can assume that R is

Conv{(0, 0), (1, 0), (0, 1), (2, 2)}
by [8, Lemma 4.1] and the common edge with Q is either

Conv{(0, 0), (1, 0)} or Conv{(1, 0), (2, 2)}.
In the former case, Q is uniquely determined as

Conv{(0, 0), (1, 0), (0,−1)}
and the union Q ∪ R = Conv{(0,−1), (1, 0), (0, 1), (2, 2)} is isomorphic to P. In the latter
case, we can assume that R is

Conv{(1, 0), (2, 0), (0, 2), (0, 3)}
and the common edge is the bottom edge. Then Q must be

Conv{(1, 0), (2, 0), (2, 1)},
but the union Q ∪ R does not satisfy the condition of P.
(3-2) We can assume that R is

Conv{(0, 0), (2, 0), (0, 1), (1, 1)}
by [8, Lemma 4.1] and the common edge is the bottom edge. Then Q must be either

Conv{(0, 0), (2, 0), (0,−1)} or Conv{(0, 0), (2, 0), (3,−1)}.
In both cases, the union Q ∪ R are isomorphic to ΔE.
(3-3) We can assume that R is

Conv{(0, 0), (1, 0), (0, 1), (1, 1)},
by direct computation but any union with Q does not satisfy the condition of ΔE. �

3.3. Existence of 1-tacnodal curves for ΔI, . . .ΔIX.
3.3. Existence of 1-tacnodal curves for ΔI, . . .ΔIX. For a polytope P, we set

 (P) := { f ∈ C[x, y]; Nf = P}.
We denote the plane curve defined by f ∈  (P) in X(P) as Vf . We remark that Vf is a
member of |D(P)|. We consider the following two conditions:

(S1) Vf ⊂ X(P) is a 1-tacnodal curve whose singular point is contained in the maximal
torus of X(P),

(S2) Vf intersects the toric boundary X(∂P) transversally.
In the rest of this section, except cases (III), (IV), and (V), we only consider polytopes

whose edges are only of length one. Hence the condition (S2) is automatically satisfied
except the three cases.

Lemma 3.4. For each k = I, II and given coefficients ci j on the vertices (i, j) ∈ V(P),
there is a polynomial f ∈  (Δk) which has the fixed coefficients on the vertices and satisfies
the conditions (S1), (S2). Furthermore, there is no polynomial f ∈  (Δk) that defines a
curve with more complicated singularity than A3, i.e., the curve does not have an isolated
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singularity whose Milnor number is more than 3.

Proof. (I) We first show that we can assume that the coefficients on the vertices of ΔI are
1. We transform the polynomial

f = c10x + c20x2 + Axy + Bxy2 +Cxy3 + c07y
7 ∈  (ΔI)

by substituting x = X−1, y = Y and multiplying X2. Then we get a new polynomial

f̃ := c20 + c10X + AXY + BXY2 +CXY3 + c07X2Y7.

By multiplying suitable constants to the variables and the whole polynomial, we can assume
that c20 = c10 = c07 = 1. Transforming f̃ by x = X−1, y = Y again, we get

x + x2 + A′xy + B′xy2 +C′xy3 + y7.

We re-denote this polynomial by f .
For a polynomial

f = x + x2 + Axy + Bxy2 +Cxy3 + y7 ∈  (ΔI),

we apply Lemma 2.4 and eliminate the variables by the system f = fx = fy = Hess( f ) =
K( f ) = 0. First, by f = 0, we can get A as

A = − x + x2 + Bxy2 +Cxy3 + y7

xy
.

Therefore the system is reduced as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) x2 − y7 = 0,

(2) − x − x2 + Bxy2 + 2Cxy3 + 6y7 = 0,

(3) substituting A for Hess( f ) = 0,

(4) substituting A for K( f ) = 0.

Secondly, by equation (2), we can get B as

B =
x + x2 − 2Cxy3 − 6y7

xy2 .

Then the system is reduced as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1’) x2 − y7 = 0,

(3’) 4x3 + 4x4 + 4Cx3y3 + 60x2y7 − 49y14 = 0,

(4’) 2Cx3 + 7xy4 + 77x2y4 + 7Cxy7 − 42y11 = 0.

Thirdly, by equation (3’), we can get C as

C =
−4x3 − 4x4 − 60x2y7 + 49y14

4x3y3 .

Then the system is reduced as⎧⎪⎪⎨⎪⎪⎩
x2 − y7 = 0,

8x5 + 8x6 − 160x4y7 + 490x2y14 − 343y21 = 0.



Tropicalization of 1-Tacnodal Curves on Toric Surfaces 465

Hence we obtain x = 8/5 and the equation

(****) y7 − (8/5)2 = 0.

Next, we check that the above f satisfies the condition (S1). Let y0, y1, . . . , y6 be the
solutions of equation (****) and, for each i = 0, . . . , 6, let f (i) denote the polynomial f
with the solution y = yi. By the above calculation, the curve Vf (i) defined by f (i) has a
tacnode at (8/5, yi) ∈ (C∗)2. Notice that the coefficients A, B and C of f (i) are determined by
x = 8/5 and y = yi. Let (s, t) be a singular point of f (i) on Vf (i) . Solving f (i)

x = 0, we obtain
s = si(t, yi). Set

f1(t, yi) := f (i)(si(t, yi), t), f2(t, yi) := f (i)
yi

(si(t, yi), t).

Eliminating yi from f1, f2 by y7
i − (8/5)2 = 0, we obtain two equations with variable t. We

can check that their greatest common divisor is t7 − (5/8)2. Thus, the singularities of f (i) are
only tacnodes.

The coefficient A of f (i) depends only on the solution yi of (****) and we can check
directly that the coefficients A for y = yi and y = y j are different if i � j. That is, the
defining polynomials f (i) and f ( j) are different for i � j. Therefore each f (i) satisfies the
condition (S1).

(II) For the polynomial

f = x2 + x3 + Ax2y + Bx2y2 +Cxy4 + y7 ∈  (ΔII),

we apply Lemma 2.4 and eliminate the variables by the system f = fx = fy = Hess( f ) =
K( f ) = 0. First, by f = 0, we can get A as

A = − x2 + x3 + Bx2y2 +Cxy4 + y7

x2y
.

Therefore the system is reduced as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) x3 −Cxy4 − 2y7 = 0,

(2) − x2 − x3 + Bx2y2 + 3Cxy4 + 6y7 = 0,

(3) substituting A for Hess( f ) = 0,

(4) substituting A for K( f ) = 0.

Secondly, by equation (2), we can get B as

B =
x2 + x3 − 3Cxy4 − 6y7

x2y2 .

Then the system is reduced as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1’) x3 −Cxy4 − 2y7 = 0,

(3’) 8x5 + 8x6 − 4Cx3y4 + 20Cx4y4 − 4x2y7 + 116x3y7 − 28C2x2y8 − 184Cxy11

− 256y14 = 0,

(4’) substituting B for (4) = 0.

Thirdly, by equation (1’), we can get C as
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C =
x3 − 2y7

xy4 .

Then the system is reduced as⎧⎪⎪⎨⎪⎪⎩
x3 + y7 + xy7 = 0,

4x9 + 14x6y7 + 5x7y7 + 16x3y14 + 11x4y14 + 6y21 + 7xy21 = 0.

By direct computation, we can see that the solution of the above system is

(*****) (x, y) = (y7
0, y0),

where y0 is a solution of y14 + y7 + 1 = 0.
Next, we check that the above f satisfies the condition (S1). Notice that the curve Vf

defined by f has a tacnode at (y7
0, y0) ∈ (C∗)2, where y0 is a solution of (*****). Let (s, t) ∈

(C∗)2 be a singular point of Vf . Then, we can easily check that the system f (s, t) = fx(s, t) =
fy(s, t) = y14

0 + y
7
0 + 1 = 0 implies t = y0. After substituting t = y0 for f (s, t), fx(s, t), fy(s, t),

we obtain s − y7
0 as their greatest common divisor. That is, the singularities of Vf are only

tacnodes. Moreover, we can easily check that for two different solutions y0 and y′0 of y14 +

y7+1 = 0, the triples (A, B,C) of the coefficients of the polynomial f , which are determined
by y0 and y′0, are different. Therefore, for each solution of y14 + y7 + 1 = 0, the polynomial
f satisfies the condition (S1). �

Lemma 3.5. For each k = VI,VII,VIII, IX, and given coefficients ci j on the vertices
(i, j) ∈ V(P), there is a polynomial f ∈  (Δk) which has the fixed coefficients on the vertices
and satisfies (S1) and (S2) if and only if

c03c20 = 64c10c13, if k = VI,

c21c2
00 = −4c01c2

10, and c12c2
00 = −4c10c2

01, if k = VII,

86c33c5
00 = 55c3

10c3
01, if k = VIII,

256c42c5
00 = (41 + 38

√−1)c4
10c2

01, or 256c42c5
00 = (41 − 38

√−1)c4
10c2

01, if k = IX.

Furthermore, there is no polynomial f ∈  (Δk) that defines a curve with more compli-
cated singularity than A3.

Proof. (VI) We transform the polynomial

f := c10x + c20x2 + Axy + Bxy2 + c03y
3 + c13xy3 ∈  (ΔVI)

by substituting x = X−1, y = Y and multiplying X2. Then we get the new polynomial

f̃ := c10X + c20 + A′XY + B′XY2 + c03X2Y3 + c13XY3.

By multiplying suitable constants to the variables and the whole polynomial, we can rewrite
f̃ as

1 + X + A′′XY + B′′XY2 + XY3 +CX2Y3,

where

C =
c03c20

c10c13
.
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For the polynomial

1 + x + Axy + Bxy2 + xy3 +Cx2y3

we apply Lemma 2.4 and eliminate the variables by the system f = fx = fy = Hess( f ) =
K( f ) = 0. First, by f = 0, we can get A as

A = −1 + x + Bxy2 + xy3 +Cx2y3

xy
.

Therefore the system is reduced as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) − 1 +Cx2y3 = 0,

(2) − 1 − x + Bxy2 + 2xy3 + 2Cx2y3 = 0,

(3) substituting A for Hess( f ) = 0,

(4) substituting A for K( f ) = 0.

Secondly, by equation (1), we can get C as

C =
1

x2y3 .

Then the system is reduced as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2’) 1 − x + Bxy2 + 2xy3 = 0,

(3’) − 4 + 8x − x2 − 4Bxy2 + 2Bx2y2 − 4xy3 + 4x2y3 − B2x2y4 − 4Bx2y5 − 4x2y6 = 0,

(4’) 48 − 144x + 36x2 + 48Bxy2 + 48xy3 − 48Bx2y2 − 72x2y3 + 12B2x2y4 + 24Bx2y5

= 0.

Thirdly, by equation (2’), we can get B as

B = −1 − x + 2xy3

xy2 .

Then the system is reduced as ⎧⎪⎪⎨⎪⎪⎩
4x + 4xy3 − 1 = 0,

6x + 2xy3 − 1 = 0.

The solution of the above system is

(******) (x, y) = (1/8, y0),

where y0 is a solution of y3 = 1. Then we obtain

A = −9/y0, B = −9/y2
0, C = 1/x2y0

3 = 64.

Next, we check that the above f satisfies the condition (S1). Notice that the curve Vf

defined by f has a tacnode at (1/8, y0) ∈ (C∗)2, where y0 is a solution of (******). Let
(s, t) ∈ (C∗)2 be a singular point of Vf . Then, we obtain t3 − 1 = 0 and s = 1/8 from the
system f (s, t) = fx(s, t) = fy(s, t) = 0 and the equation y3

0 − 1 = 0. That is, the singularities
of Vf are only tacnodes. Moreover, we can easily check that for two different solutions y0

and y′0 of y3 − 1 = 0, the triples (A, B,C) of the coefficients of the polynomial f , which



468 T. Takahashi

are determined by y0 and y′0, are different. Therefore, for each solution of y3 − 1 = 0, the
polynomial f satisfies the condition (S1).

(VII) We can rewrite the polynomial

f = c00 + c10x + c01y + Axy + c21x2y + c12xy2 ∈  (ΔVII)

as

f = 1 + x + y + Axy + Bx2y +Cxy2

by the same manner as above, where

B =
c21c2

00

c01c2
10

, C =
c12c2

00

c10c2
01

.

For the polynomial

f = 1 + x + y + Axy + Bx2y +Cxy2,

we apply Lemma 2.4 and eliminate the variables by the system f = fx = fy = Hess( f ) =
K( f ) = 0. First, by f = 0, we can get A as

A = −1 + x + y + Bx2y +Cxy2

xy
.

Therefore the system is reduced as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) − 1 − y + Bx2y = 0,

(2) − 1 − x +Cxy2 = 0,

(3) substituting A for Hess( f ) = 0,

(4) substituting A for K( f ) = 0.

Secondly, by equations (1) and (2), we can get B and C as

B =
1 + y
x2y

, C =
1 + x
xy2 ,

respectively. Then the system is reduced as⎧⎪⎪⎨⎪⎪⎩
(3’) 3 + 4x + 4y + 4xy = 0,

(4’) (1 + y)2(1 + 2x) = 0.

The solution of the above system is

(x, y) = (−1/2,−1/2),

and we obtain

A = B = C = −4.

Next, we check that the above f satisfies the condition (S1). Notice that the curve Vf

defined by f has a tacnode at (−1/2,−1/2) ∈ (C∗)2. Let (s, t) ∈ (C∗)2 be a singular point
of Vf . Then, we can solve f (s, t) = fx(s, t) = fy(s, t) = 0, and the solution is (s, t) =
(−1/2,−1/2). That is, the singularity of f is only one point and is a tacnode. Therefore the
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f satisfies the condition (S1).

(VIII) We can rewrite the polynomial

f = c00 + c10x + c01y + Axy + Bx2y2 + c33x3y3 ∈  (ΔVIII)

as

f = 1 + x + y + Axy + Bx2y2 +Cx3y3

by the same manner as above, where

C =
c33c5

00

c3
10c3

01

.

For the polynomial

f = 1 + x + y + Axy + Bx2y2 +Cx3y3,

we apply Lemma 2.4 and eliminate the variables by the system f = fx = fy = Hess( f ) =
K( f ) = 0. First, by f = 0, we can get A as

A = −1 + x + y + Bx2y2 +Cx3y3

xy
.

Therefore the system is reduced as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) − 1 − y + Bx2y2 + 2Cx3y3 = 0,

(2) − 1 − x + Bx2y2 + 2Cx3y3 = 0,

(3) substituting A for Hess( f ) = 0,

(4) substituting A for K( f ) = 0.

Secondly, by equation (1), we can get B as

B =
1 + y − 2Cx3y3

x2y2 .

Then the system is reduced as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(2’) x − y = 0,

(3’) 4 − x + 4y + 4Cx3y3 = 0,

(4’) substituting B for (4) = 0.

Thirdly, by equation (3’), we can get C as

C =
−4 + x − 4y

4x3y3 .

Then the system is reduced as ⎧⎪⎪⎨⎪⎪⎩
x − y = 0,

−8 + 3x − 8y = 0.

The solution of the above system is
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(x, y) = (−8/5,−8/5),

and we also obtain

A = 75/64, B = −54/212, C = 55/86.

Next, we check that the above f satisfies the condition (S1). Notice that the curve Vf

defined by f has a tacnode at (−8/5,−8/5) ∈ (C∗)2. Let (s, t) ∈ (C∗)2 be a singular point
of Vf . Then, we can solve f (s, t) = fx(s, t) = fy(s, t) = 0, and the solution is (s, t) =
(−8/5,−8/5). That is, the singularity of f is only one point and is a tacnode. Therefore the
f satisfies the condition (S1).

(IX) We can rewrite the polynomial

f = c00 + c10x + c01y + Axy + Bx2y + c42x4y2 ∈  (ΔIX)

as

f = 1 + x + y + Axy + Bx2y +Cx4y2

by the same manner as above, where

C =
c42c5

00

c4
10c2

01

.

For the polynomial

f = 1 + x + y + Axy + Bx2y +Cx4y2,

we apply Lemma 2.4 and eliminate the variables by the system f = fx = fy = Hess( f ) =
K( f ) = 0. First, by f = 0, we can get A as

A = −1 + x + y + Bx2y +Cx4y2

xy
.

Therefore the system is reduced as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) − 1 − y + Bx2y + 3Cx4y2 = 0,

(2) − 1 − x +Cx4y2 = 0,

(3) substituting A for Hess( f ) = 0,

(4) substituting A for K( f ) = 0.

Secondly, by equations (1), we can get B as

B =
1 + y − 3Cx4y2

x2y
.

Then the system is reduced as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(2’) − 1 − x +Cx4y2 = 0,

(3’) 1 − 4Cx2y2 − 8Cx3y2 − 4Cx2y3 + 4C2x6y4 = 0,

(4’) substituting B for (4) = 0.

Thirdly, by equations (2’), we can get C as
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C =
1 + x
x4y2 .

Then the system is reduced as⎧⎪⎪⎨⎪⎪⎩
4x + 4y + 3x2 + 4xy = 0,

(4 + 3x)(16x + 8y + 24x2 + 22xy + 4y2 + 9x3 + 12x2y + 5xy2) = 0.

The solutions of the above system are

(x0, y0) =
(
−6

5
+

2
5

√−1,
2
5
− 4

5

√−1
)
,

(x1, y1) =
(
−6

5
− 2

5

√−1,
2
5
+

4
5

√−1
)

and (x2, y2) =
(
−4

3
, 0

)
,

and we obtain

C = − 41
256
+

19
128

√−1 if x = x0, C =
41

256
+

19
128

√−1 if x = x1.

Here, we can ignore the case x = x2 since f (−4/3, 0) � 0
Next, we check that the above f satisfies the condition (S1). Notice that the curve Vf

defined by f has a tacnode at (x0, y0) ∈ (C∗)2. Let (s, t) ∈ (C∗)2 be a singular point of Vf .
Then, we can solve f (s, t) = fx(s, t) = fy(s, t) = 0, and the solution is (s, t) = (x0, y0).
That is, the singularity of f is only one point and is a tacnode. Therefore the f satisfies the
condition (S1). Also, we can check the condition (S1) for (x1, y1) by the same manner. �

Lemma 3.6. For each k = III, IV,V and given coefficients ci j on the vertices (i, j) ∈ V(P),
there is a polynomial f ∈  (Δk) which has the fixed coefficients on the vertices such that f
defines a curve which has

(III) an A2-singularity on the toric divisor corresponding to the edge of length 2,
(IV) an A1-singularity on the toric divisor corresponding to the edge of length 2,
(V) an intersection with the toric divisor corresponding to the edge of length 4 whose

multiplicity is 4.

Proof. (III) We set

f := 1 + Ax + x2 + Bxy +Cxy2 + xy3 ∈  (ΔIII).

Let σ ⊂ ΔIII be the edge of length 2. The intersection point of X(σ) and the curve defined
by f is an A2-singularity and this implies A = ±2.

We assume A = 2 and the singularity is at (−1, 0). For f = (1+ x)2 + Bxy+Cxy2 + y3, the
solution of f (−1, 0) = fx(−1, 0) = fy(−1, 0) = Hess( f )(−1, 0) = 0 is B = C = 0. Therefore
we obtain the polynomial f := 1 + 2x + x2 + xy3 ∈  (ΔIII).

(IV) We set

f := 1 + Ax + x2 + Bxy + xy2 ∈  (ΔIV).

Let σ ⊂ ΔIV be the edge of length 2. The intersection point of X(σ) and the curve defined
by f is an A1-singularity and this implies A = ±2.

We assume A = 2 and the singularity is at (−1, 0). For f = (1 + x)2 + Bxy + xy2,
the solution of f (−1, 0) = fx(−1, 0) = fy(−1, 0) = 0 is B = 0. Therefore we obtain the
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polynomial f := 1 + 2x + x2 + xy2 ∈  (ΔIV).

(V) We can prove that the polynomial

f := (1 ± x)4 + y ∈  (ΔV)

satisfies the condition. �

Set

Δ̂III := Conv{(0,−1), (2, 0), (0, 3)},
Δ̂IV := Conv{(0,−2), (2, 0), (0, 2)},
Δ̂V := Conv{(0,−1), (4, 0), (0, 1)}.

Fig.3. Polytopes Δ̂III, Δ̂IV and Δ̂V. The notation � means a lattice point on
the boundary which is not a vertex and the notation 
 means an interior
lattice point.

For the polytopes ΔIII and Δ3(0; 2, 1, 1) appearing in Definition 3.1 (III), the polynomial
on ΔIII obtained in Lemma 3.6 induces the polynomial on Δ3(0; 2, 1, 1) as

1 + Ax + x2 + y,

where A = ±2. Therefore the exceptional polytope in this case is Δ̂III.
For the polytopes ΔIV and Δ3(1; 2, 1, 1) appearing in Definition 3.1 (IV), the polynomial

on ΔIV obtained in Lemma 3.6 induces the polynomial on Δ3(1; 2, 1, 1) as

1 + Ax + x2 + Bxy + xy2,

where A = ±2. If B = 0, the exceptional polytope compatible with the data is Δ̂IV. Note
that, if B � 0, the exceptional polytope compatible with the data is

Conv{(2, 0), (0, 2), (0,−1)},
and it has no deformation pattern which defines an 1-tacnodal curve, see the discussion in
Lemma 4.9.

For the polytopes ΔV and Δ3(0; 4, 1, 1) appearing in Definition 3.1 (V), the polynomial
on ΔV obtained in Lemma 3.6 induces the same polynomial on Δ3(0; 4, 1, 1). Therefore, the
exceptional polytope compatible with the data is Δ̂V.
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Lemma 3.7. For each k = III, IV,V, there is a deformation pattern φ ∈  (Δ̂k) compatible
with given data in Lemma 3.6 which has the fixed coefficients on the vertices such that the
curve defined by φ in X(Δ̂k) is a 1-tacnodal curve.

Proof. (III) For the polynomial

φ := 1 + Ay + x2y + By2 +Cxy2 + Dy3 + y4 ∈  (Δ̂III)

we apply Lemma 2.4 and eliminate the variables by the system φ = φx = φy = Hess(φ) =
K(φ) = 0. Notice that y is nonzero. First, by φx = 0, we can get C as

C = −2x
y
.

Therefore the system is reduced as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) 1 + Ay − x2y + By2 + Dy3 + y4 = 0,

(2) A − 3x2 + 2By + 3Dy2 + 4y3 = 0,

(3) 4By − 12x2 + 12Dy2 + 24y3 = 0,

(4) − x2 + Dy2 + 4y3 = 0.

Secondly, by equation (4), we obtain

x2 = y2(D + 4y).

Then the system is reduced as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1’) 1 + Ay − 3y4 + By2 = 0,

(2’) A − 8y3 + 2By = 0,

(3’) − B + 6y2 = 0.

Thirdly, by equation (3’), we can get B as

B = 6y2.

Then the system is reduced as ⎧⎪⎪⎨⎪⎪⎩
(1”) 1 + Ay + 3y4 = 0,

(2”) A + 4y3 = 0.

Hence we obtain A = −4y3 and then the equation

y4 − 1 = 0.

The solution is

(A, B,C,D, x, y) = (−4y3
0, 6y

2
0,−2x0/y0,D, x0, y0),

where y0 is a solution of y4 − 1 = 0 and x0 is a solution of x2 = y2
0(D + 4y0).

Next, we check that the above φ has only one singularity and it is a tacnode. Notice that
the curve Vφ defined by φ has a tacnode at (x0, y0) ∈ C2. Let (s, t) ∈ C2 be a singular point
of Vφ. Then we solve φ(s, t) = φx(s, t) = φy(s, t) = 0 and we check that the solution is only
(s, t) = (x0, y0). That is, the singularity of φ is only one point and is a tacnode.
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(IV) We consider the following polynomial

φ := 1 + Ay + By2 +Cy3 + y4 + c11xy + c13xy3 + x2y2 ∈  (Δ̂IV).

Note that c11, c13 are both zero because of the form of the polynomials derived by Lemma
3.6 (IV).

For the polynomial

φ := 1 + Ay + By2 +Cy3 + y4 + x2y2 ∈  (Δ̂IV),

we eliminate the variables by the system φ = φx = φy = Hess(φ) = K(φ) = 0 by Lemma 2.4.
Notice that y is nonzero. First, by φx = 0, we obtain x = 0. Therefore the system is reduced
as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) 1 + Ay + By2 +Cy3 + y4 = 0,

(2) A + 2By + 3Cy2 + 4y3 = 0,

(3) B + 3Cy + 6y2 = 0,

(4) C + 4y = 0.

Secondly, by equation (4), we obtain

C = −4y.

Then the system is reduced as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1’) 1 + Ay + By2 − 3y4 = 0,

(2’) A + 2By − 8y3 = 0,

(3’) B − 6y2 = 0.

Thirdly, by equation (3’), we can get B as

B = 6y2.

Then the system is reduced as ⎧⎪⎪⎨⎪⎪⎩
(1”) 1 + Ay + 3y4 = 0,

(2”) A + 4y3 = 0.

Hence we obtain A = −4y3 and then the equation

y4 − 1 = 0.

The solution is

(A, B,C, x, y) = (−4y3
0, 6y

2
0,−4y0, 0, y0),

where y0 is a solution of y4 − 1 = 0.
Next, we check that the above φ has only one singularity and it is a tacnode. Notice that

the curve Vφ defined by φ has a tacnode at (0, y0) ∈ C2. Let (s, t) ∈ C2 be a singular point
of Vφ. Then, we solve φ(s, t) = φx(s, t) = φy(s, t) = 0 and check that the solution is only
(s, t) = (0, y0). That is, the singularity of φ is only one point and is a tacnode.

(V) In this case, in order to achieve φxx � 0, we exchange the variables x and y in φ.



Tropicalization of 1-Tacnodal Curves on Toric Surfaces 475

For the polynomial

φ := 1 + Ax + Bxy +Cxy2 + xy4 + x2 ∈  (Δ̂V),

we eliminate the variables by the system φ = φx = φy = Hess(φ) = K(φ) = 0 by Lemma 2.4.
Notice that x is nonzero. First, by φ = 0, we obtain

A = −1 + x2 + Bxy +Cxy2 + xy4

x
.

Therefore the system is reduced as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) (x − 1)(x + 1) = 0,

(2) B + 2Cy + 4y3 = 0,

(3) substituting A for Hess(φ) = 0,

(4) substituting A for K(φ) = 0.

Secondly, by equation (2), we obtain

B = −2y(C + 2y).

Then the system is reduced as ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1’) (x − 1)(x + 1) = 0,

(3’) 4x(C + 6y2) = 0,

(4’) 192xy = 0.

Thirdly, by equation (3’), we can get C as

C = −6y2.

The solution is

(A, B,C, x, y) = (∓2, 0, 0,±1, 0).

Next, we check that the above φ has only one singularity and it is a tacnode. Suppose
that the tacnode is at (1, 0). Let (s, t) ∈ C2 be a singular point of Vφ. Then we solve
φ(s, t) = φx(s, t) = φy(s, t) = 0 and check that the solution is only (s, t) = (1, 0). That is, the
singularity of φ is only one point and is a tacnode. We can check the condition for the case
where the tacnode is at (−1, 0) by the same manner. �

Remark 3.8. Among the calculation in this section, there are finitely many polynomials
which define 1-tacnodal curves except case (III) in Lemma 3.7. In case (III) in Lemma 3.7,
we can get the conclusion without eliminating the variable D. This means that there exists a
one-parameter family of deformation patterns which define 1-tacnodal curves.

3.4. Remarks on the polytope ΔE.
3.4. Remarks on the polytope ΔE. By the above discussion, for each tropical 1-tacnodal

curve, except case (E), there is a “degenerate model of 1-tacnodal curve” whose tropical
amoeba is the tropical 1-tacnodal curve. In this subsection, we discuss what happens in case
(E).
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Lemma 3.9. There is NOT a polynomial f ∈  (ΔE) which defines a 1-tacnodal curve on
X(ΔE).

Proof. We assume that a polynomial

f := c00 + Ax + c20x2 + c01y + Bxy + c12xy2

defines a 1-tacnodal curve. Then, since fxx is non-zero, we can apply Lemma 2.4 and obtain
y = −B/2c12 from K( f ) = 0. Substituting it for fy = c01 + Bx + 2c12xy = 0, we get c01 = 0,
but this is a contradiction. �

On the other hand, there is a polynomial f ∈  (ΔE) which has a Newton degenerate sin-
gularity on X(σ) ⊂ X(ΔE), where σ ⊂ ΔE is the edge of length 2. Actually, we can calculate
as follows: Set P := Δ4(1; 2, 1, 1, 1),Q := Δ3(0; 2, 1, 1). We consider the polynomial

f := c00 + Ax + c01y + c20x2 + Bxy + c12xy2 ∈  (P).

By multiplying suitable constants to the variables and the whole polynomial, we can rewrite
f as

1 + Ax + y + x2 + Bxy +Cxy2 ∈  (P).

If the curve Vf ⊂ X(P) defined by f intersects X(σ) at two points, we can easily check that
these points are smooth points of Vf and the intersection Vf ∩X(σ) is transversal. Therefore
Vf ∩ X(σ) is exactly one point. Then, f can be rewritten as follows:

f = (ε + x)2 + y + Bxy +Cxy2 ∈  (P),

where ε = ±1. Set (X, Y) := (x + ε, y). Then f is rewritten as follows:

f̃ (X, Y) := X2 + BXY + (1 ∓ B)Y +CXY2 ∓CY2.

Thus the most complicated isolated singular point defined by this polynomial at the origin
(under the condition that the form of the polynomial does not change) is given as

X2 ± XY +
1
4

Y2 + (higher terms).

More precisely, since the polynomial f is irreducible, the number of interior lattice points of
ΔE is two and the curve defined by f has no singularity more complicated than A3, the curve
has only a cusp as the singularity.

Applying mechanically refinement arguments in this case, we find that the edge
Δ4(1; 2, 1, 1, 1) ∩ Δ3(0; 2, 1, 1) does not correspond a 1-tacnodal curve as follows: By above
discussion, the exceptional polytope in this case is Δ̂2. We only consider the case of ε = 1.
The other case can be proved by the same argument. According to the explanation of a
deformation pattern in Definition 2.6, we set

φ := 1 + A′y + x2y + B′y2 + xy2 +
1
4
y3 ∈  (Δ̂2).

By direct computation, we get φxx � 0. Using Lemma 2.4, we obtain 8B′x = 0. Both cases
x = 0 and B′ = 0 contradict φ = 0.

In [8], it is assumed that each polynomial fi has only semi-quasi-homogeneous singularity
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since the paper only deals with the case of nodal or 1-cuspidal curves. This assumption may
not be reasonable in the case of 1-tacnodal curves. Actually, when we list the possible
polytopes for 1-tacnodal curves we cannot ignore case (E). This is the reason why this case
is included in the definition of tropical 1-tacnodal curves. Note that, in fact, by the above
discussion, there is no degenerate model of 1-tacnodal curve corresponding to case (E).

4. Main Result

4. Main Result
The main theorem of this paper is the following:

Theorem 4.1. Let F ∈ K[z, w] be a polynomial which defines an irreducible 1-tacnodal
curve. If the rank of the tropical amoeba TF defined by F is more than or equal to the
number of the lattice points of the Newton polytope of F minus four, then TF is a tropical
1-tacnodal curve.

Let F be a polynomial in the assertion, TF be the tropical amoeba defined by F, whose
rank satisfies

�ΔZ − 1 ≥ rk(TF) ≥ �ΔZ − 4,

and S be the dual subdivision of TF . We remark that, from the discussion in [8, Section 4],
if �ΔZ−1 ≥ rk(TF) ≥ �ΔZ−3, then TF is smooth, nodal or 1-cuspidal. Thus, by Remark 4.6,
we can assume that the rank of TF is �ΔZ − 4.

From the discussion in [8, Subsection 3.3] and the equality g(C(t)) = �IntΔZ − 2, we can
see that

�∂ΔZ − �(V(S ) ∩ ∂Δ) = 0 or 1.

We decompose the proof into four cases
(A) S is a TP-subdivision and satisfies �∂ΔZ − �(V(S ) ∩ ∂Δ) = 0,
(B) S is a TP-subdivision and satisfies �∂ΔZ − �(V(S ) ∩ ∂Δ) = 1,
(C) S is NOT a TP-subdivision and satisfies �∂ΔZ − �(V(S ) ∩ ∂Δ) = 0,
(D) S is NOT a TP-subdivision and satisfies �∂ΔZ − �(V(S ) ∩ ∂Δ) = 1.

For each case, we remove polytopes which cannot correspond to a 1-tacnodal curve and
show that the remaining polytopes are exactly tropical 1-tacnodal curves in Definition 3.1.

To explain the removing process more precisely, we prepare some terminologies.

Definition 4.2. A 2-dimensional polytope P is 1-tacnodal if there is a polynomial f ∈
 (P) which defines a 1-tacnodal curve Vf ∈ |D(P)| satisfying the conditions (S1) and (S2)
in Subsection 3.3.

Let σ := P1 ∩ P2 be an edge which is the intersection of 2-dimensional polytopes P1 and
P2. The edge σ is 1-tacnodal if there is a pair of polynomials ( f1, f2) ∈  (P1) ×  (P2) such
that

• their truncation polynomials f σ1 , f σ2 on σ are same,
• each of the curves C1 and C2 defined by f1 and f2 has a smooth point or an isolated

singular point at z in X(σ),
• there exists a deformation pattern φ ∈  (Δz) compatible with the above data which

defines a 1-tacnodal curve in X(Δz).
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It can be seen from the discussion in Subsection 3.3 that the polytopes and the pairs of
polytopes appearing in Definition 3.1 are 1-tacnodal. To prove the theorem, for each of cases
(A), (B), (C) and (D), we carry out the following arguments.

(1) Remove configurations of edges and interior lattice points of polytopes which do
not exist.

(2) Classify polytopes that are not 1-tacnodal.
(3) From the list in (2), remove polytopes which do not have 1-tacnodal edges.

In Subsection 4.1, we prepare lemmata for the non-existence of polytopes in (1), and
then prove the theorem for case (A), (B), (C) and (D) in Subsection 4.2, 4.3, 4.4 and 4.5,
respectively.

4.1. Auxiliary definitions and lemmata.
4.1. Auxiliary definitions and lemmata.

Lemma 4.3 (On interior lattice points). (1) The number of interior lattice points of non-
parallel quadrangle whose edges are length 1 is larger than 0.
(2) For an integer m ≥ 5, the number of interior lattice points of an m-gon is larger than 0.

Proof. (1) If a non-parallel Δ4(0; 1, 1, 1, 1) exists, it can be decomposed into two triangles
of area 1/2. Thus, we can map this polytope to

Conv{(0, 0), (1, 0), (0, 1), (p, q)}
by some isomorphism. Then, from Pick’s formula, we obtain

p + q
2
= 1.

Hence p = q = 1. This is a parallelogram.
(2) It is obvious from the facts that the minimum pentagon is ΔVII and any m-gon can be
decomposed into polytopes including a pentagon. �

Lemma 4.4 (Non-existence of some polytopes). (1) Following polytopes do NOT exist:

Δ3(1; 2, 2, 1), Δ3(1; 3, 1, 1), Δ3(0; 2, 2, 1), Δ3(0; 3, 2, 1), Δ5(0; 2, 1, 1, 1, 1).

(2) There is NO non-parallel quadrangle Δ4(0; 2, 2, 1, 1).

Proof. (1) The first triangle is equivalent to

Conv{(p, 0), (p + 2, 0), (0, q)}.
By Pick’s formula, we obtain q = 5/2. But this contradicts q ∈ Z. We can easily check the
non-existence of the second, third and fourth triangles. If there exists a pentagon
Δ5(0; 2, 1, 1, 1, 1), we can split it into two quadrangles Δ4(0; 1, 1, 1, 1) and Δ′4(0; 1, 1, 1, 1).
But these quadrangles are parallelograms by the fact that already proved in Lemma 4.3 (1).
Thus the union can not be a pentagon.

(2) If it exists, then the edges of length 2 are either adjacent or in opposite sides. The
former case can not occur since a triangle Δ3(0; 2, 2, 1) does not exist. In the latter case,
we can split it into two triangles Δ3(0; 2, 1, 1) and Δ′3(0; 2, 1, 1). We can assume that one of
the triangles is isomorphic to Conv{(0, 0), (1, 0), (0, 2)} and the common edge is the bottom
edge. Then, by Pick’s formula and the convexity, the last vertex of Δ4(0; 2, 2, 1, 1) must be
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(1,−2), but this does not satisfy the required conditions. �

Lemma 4.5. For the polytope

P := Conv{(0, 0), (2, 0), (0, 1), (2, 1)},
the polynomial

f := c00 + Ax + c20x2 + c01y + Bxy + c21x2y ∈  (P)

satisfies f = fx = fy = Hess( f ) = 0 for some A, B and at some point if and only if

c21c00 = c20c01.

Moreover, if the above condition holds, i.e., V f ⊂ X(ΔX) has a singularity more complicated
than A2, then f has the form

(y + 1)(x ± 1)2

up to multiplication of a non-zero constant. In particular, the set of singularities of V f is
non-isolated.

Proof. By direct computation. �

Remark 4.6 (Facts). The following facts can be found in [8, Lemma 4.1], or can be
proved by easily computation.
(1) Let I ≥ 0, s, t, u ≥ 1 be integers such that

0 ≤ I + (s − 1) + (t − 1) + (u − 1) ≤ 2.

For each (I; s, t, u), a triangle Δ3(I; s, t, u) is uniquely determined up to Aff(Z2)-equivalence
as follows:

Δ3(2; 1, 1, 1) 
 Conv{(0, 0), (3, 2), (2, 3)},
Δ3(1; 2, 1, 1) 
 Conv{(0, 0), (2, 0), (1, 2)},
Δ3(1; 1, 1, 1) 
 Conv{(0, 0), (1, 2), (2, 1)},
Δ3(0; 3, 1, 1) 
 Conv{(0, 0), (3, 0), (0, 1)},
Δ3(0; 2, 1, 1) 
 Conv{(0, 0), (2, 0), (0, 1)},
Δ3(0; 1, 1, 1) 
 Conv{(0, 0), (1, 0), (0, 1)}.

(2) For integers I ∈ {0, 1}, s, t ≥ 1 such that

0 ≤ I + 2(s − 1) + 2(t − 1) ≤ 2,

a parallelogram Δpar
4 (I; s, t) is uniquely determined up to Aff(Z2)-equivalence as follows:

Δ
par
4 (1; 1, 1) 
 Conv{(0, 0), (1, 0), (1, 2), (2, 2)},
Δ

par
4 (0; 2, 1) 
 Conv{(0, 0), (2, 0), (0, 1), (2, 1)},
Δ

par
4 (0; 1, 1) 
 Conv{(0, 0), (1, 0), (0, 1), (1, 1)}.

(3) The polytopes in this remark are not 1-tacnodal (By [8, Lemma 4.2] and Lemma 4.5, or
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direct computation).

Lemma 4.7 (Describing some polytopes). (1) Let I ≥ 0, s, t, u ≥ 1 be integers such that

I + (s − 1) + (t − 1) + (u − 1) = 3.

For each (I; s, t, u), a triangle Δ3(I; s, t, u) has the following isomorphisms:

Δ3(3; 1, 1, 1) 
 ΔI or ΔII,

Δ3(2; 2, 1, 1) 
 ΔIII,

Δ3(0; 4, 1, 1) 
 ΔV,

Δ3(0; 2, 2, 2) 
 Conv{(0, 0), (2, 0), (0, 2)}.
(2) A quadrangle Δ4(0; 2, 1, 1, 1) is uniquely determined as Conv{(0, 0), (2, 0), (0, 1), (1, 1)}
up to Aff(Z2)-equivalence.

Proof. (1) These claims, except the last case, are the same as Lemma 3.2. We prove the
last one. Without loss of generality, the polytope can be assumed to be

Conv{(p, 0), (p + 2, 0), (0, q)}.
From Pick’s formula, we obtain q = 2 and p = 2k for some k ∈ Z. Thus, by the isomorphism(

1 k
0 1

)
: Z2 → Z2,

it is mapped to the polytope Conv{(0, 0), (2, 0), (0, 2)}.
(2) We can split P = Δ4(0; 2, 1, 1, 1) into two polytopes Q, R which are either
• Q = Δ3(0; 2, 1, 1), R = Δ3(0; 1, 1, 1) and these polytopes share an edge of length 1, or
• Q = Δ3(0; 1, 1, 1), R = Δ4(0; 1, 1, 1, 1) and these polytopes share an edge of length 1.

In the former case, we can assume that Q is

Conv{(0, 0), (1, 0), (0, 2)}
and the common edge is its bottom edge. Then the last vertex of P must be (1,−1). In the
latter case, we can assume that R is

Conv{(0, 0), (1, 0), (0, 1), (1, 1)}
and the common edge is its bottom edge. Then the last vertex of P must be either (0,−1), or
(1,−1). All of them are equivalent to

Conv{(0, 0), (2, 0), (0, 1), (1, 1)}.
�

Lemma 4.8 (Non-1-tacnodal polytopes). The following polytopes are not 1-tacnodal
polytopes:
(1) Δ3(0; 2, 2, 2),
(2) Δ3(0; 4, 1, 1),
(3) Δ3(2; 2, 1, 1),
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(4) Δ4(0; 2, 1, 1, 1),
(5) Conv{(1, 0), (0, 1), (2, 1), (1, 3)}.

Proof. (1) This is by the fact that the Milnor number of an isolated singularity of a
projective conic does not exceed 1.

(2) Notice that this polytope is isomorphic to Conv{(0, 0), (0, 1), (4, 0)}. Then a polynomial
f with this Newton polytope has no singularity since fy is a non-zero constant.

(3) We assume that a polynomial

f := 1 + Ax + x2 + Bxy +Cxy2 + xy3 ∈  (Δ3(2; 2, 1, 1))

satisfies the condition (S1). Since the polynomial f satisfies fxx � 0, the system f = fx =

fy = Hess( f ) = K( f ) = 0 must have a solution. But, we obtain K( f ) = 48x. This is a
contradiction.

(4) Notice that this polytope is isomorphic to Conv{(0, 0), (2, 0), (0, 1), (1, 1)}. We set a
polynomial f as

f := c00 + Ax + c20x2 + c01y + c11xy ∈  (Conv{(0, 0), (2, 0), (0, 1), (1, 1)}).
The Hessian of f is −c2

11 � 0.

(5) We assume that a polynomial

f := c10x + c01y + Axy + c21x2y + Bxy2 + c13xy3

defines a 1-tacnodal curve. Then, since fxx is non-zero, we can apply Lemma 2.4 and obtain

4c01x(c13y
3 + c10) = −4c01c13xy3 = 0.

This equation and f (x, y) = 0 imply (x, y) = (0, 0), but we have fx(0, 0) = c10 � 0. This is a
contradiction. �

Set

Δ̂1 = Conv{(2, 0), (0, 1), (0,−1)},
Δ̂2 = Conv{(2, 0), (0, 2), (0,−1)},
Δ̂3 = Conv{(3, 0), (0, 1), (0,−1)},

see Figure 4.

Lemma 4.9 (Non-1-tacnodal edges). The following edges σ are not 1-tacnodal edges:
(1) the edge Δ3(0; 2, 1, 1) ∩ Δ3(0; 2, 1, 1) of length 2,
(2) the edge Δ3(1; 2, 1, 1) ∩ Δ3(0; 2, 1, 1) of length 2 and the edge Δ3(1; 2, 1, 1) ∩
Δ4(0; 2, 1, 1, 1) of length 2,
(3) the edge Δ3(0; 3, 1, 1) ∩ Δ3(0; 3, 1, 1) of length 3,
(4) the edge Δ4(0; 2, 1, 1, 1) ∩ Δ3(0; 2, 1, 1) of length 2,
(5) the edge Δ4(0; 2, 1, 1, 1) ∩ Δ4(0; 2, 1, 1, 1) of length 2,
(6) the edge Δpar

4 (0; 2, 1)∩Δ3(0; 2, 1, 1) of length 2 and the edge Δpar
4 (0; 2, 1)∩Δ4(0; 2, 1, 1, 1)

of length 2,
(7) the edge Δ3(0; 2, 2, 2) ∩ Δ3(0; 2, 1, 1) of length 2.
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Fig.4. Polytopes Δ̂1, Δ̂2 and Δ̂3. The notation � means a lattice point on the
boundary which is not a vertex and the notation 
 means an interior lattice
point.

Proof. The assertion for cases (1), (3), (4) and (5) are already proved in [8, Lemma 3.9,
3.10 and 4.4]. Here we only prove (2), (6) and (7).
(2) Set P := Δ3(1; 2, 1, 1),Q := Δ3(0; 2, 1, 1). It is easy to check that a curve in |D(P)|
cannot have an isolated singularity more complicated than A1. Also, we can easily check
that if a curve Vf intersects X(σ) at two points then the points are smooth points of Vf and
those intersections are transversal. Therefore we can set

f := (x + ε)2 + Axy + xy2 ∈  (P),

where ε = ±1 and suppose that f defines a curve which has an A1-singularity on X(σ) ⊂
X(P). With a simple calculation, we obtain A = 0. The polynomial corresponding to the
polytope Q becomes

f ′ := (x + ε)2 + y ∈  (Q).

Then the exceptional polytope in this case is Δ̂2. According to the explanation of a defor-
mation pattern in Definition 2.6, we set

φ := 1 + A′y + εx2y + B′y2 + y3 ∈  (Δ̂2).

In the case ε = 1, we get φxx � 0 by y � 0. Using Lemma 2.4, we obtain 48y3 = 0, but this
is a contradiction. We also have a contradiction in the case ε = −1.

(6) Set P := Δpar
4 (0; 2, 1),Q := Δ3(0; 2, 1, 1). For P, we set

f := (ε + x)2 + (1 + Ax + x2)y ∈  (P),

where ε = ±1. Then a polynomial corresponding to Q must be

f ′ := (ε + x)2 + y ∈  (Q).

Then the exceptional polytope in this case is Δ̂1.
If ε = 1, φ is given as

φ := 1 + x2y + y2 + A′y ∈  (Δ̂1),

and we can easily check that the solution of the system φ = φx = φy = Hess(φ) = 0 does not
exist. The case ε = −1 can be proved by the same argument.
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(7) Set P := Δ3(0; 2, 2, 2),Q := Δ3(0; 2, 1, 1). Without loss of generality, we can assume
that P and Q are

P = Conv{(0, 0), (2, 0), (0, 2)}, Q = Conv{(0, 0), (2, 0), (0,−1)}.
For P, we set

f := 1 + 2εx + x2 + By + y2 +Cxy ∈  (P),

where ε = ±1. Applying the new coordinates (X, Y) := (x + ε, y) for f , we obtain

f = X2 + (B −Cε)Y +CXY + Y2.

Notice that, if Hess( f ) = C2 − 4 = 0, f defines a line of multiplicity 2, that is, f has non-
isolated singularity. Therefore we may assume C2 − 4 � 0. If B − Cε � 0, the exceptional
polytope in this case is Δ̂1. If B−Cε = 0, then (ε, 0) ∈ C2 is an A1-singularity, i.e., f has the
form f = X2+CXY +Y2. Hence, the exceptional polytope in this case is Δ̂2. The conclusion
is derived by the same calculation as in (7) for the former case and in (2) for the latter case,
respectively. �

Remark 4.10 (On an edge of length 1). Let Δ1,Δ2 be polytopes such that their intersec-
tion σ := Δ1 ∩ Δ2 is an edge of length 1. The edge σ is NOT an 1-tacnodal edge. Actually,
we can prove it as follows: For integers m1,m2 > 0 and the triangle

Δ̂ := Conv{(1, 0), (0,m1), (0,−m2)},
a polynomial φ ∈  (Δ̂) can be given as

φ = 1 + ψ(y) + xym2 ,

where ψ ∈ C[y] is a polynomial in y which satisfies ψ(0) = 0. If the polynomial φ defines a
singular curve, then φ = φx = φy = 0 at the singular point. By φx = y

m2 = 0, the singular
point satisfies y = 0. However it satisfies φ(x, 0) � 0 and this is a contradiction. Therefore,
any deformation pattern cannot define a 1-tacnodal curve.

To prevent complication of the proof of the main theorem, we give the following auxiliary
definition.

Definition 4.11. The notation T−1 means the set of polytopes equivalent to Δ3(1; 1, 1, 1)
and pairs of polytopes equivalent to the pair of Δ3(0; 2, 1, 1) and Δ′3(0; 2, 1, 1) such that their
intersection Δ3(0; 2, 1, 1) ∩ Δ′3(0; 2, 1, 1) is a segment of length 2.

The notation T−2 means the set of polytopes equivalent to Δ3(2; 1, 1, 1) and pairs of poly-
topes equivalent to either

• the pair of Δ3(1; 2, 1, 1) and Δ3(0; 2, 1, 1) such that their intersection Δ3(1; 2, 1, 1) ∩
Δ3(0; 2, 1, 1) is a segment of length 2,
• the pair of Δ3(0; 3, 1, 1) and Δ′3(0; 3, 1, 1) such that their intersection Δ3(0; 3, 1, 1) ∩
Δ′3(0; 3, 1, 1) is a segment of length 3.

The triple Δ3(0; 2, 2, 1), Δ3(0; 2, 1, 1) and Δ′3(0; 2, 1, 1) such that the intersections
Δ3(0; 2, 2, 1) ∩ Δ3(0; 2, 1, 1) and Δ3(0; 2, 2, 1) ∩ Δ′3(0; 2, 1, 1) are segments of length 2 does
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not exist by Lemma 4.4.
Note that, by Remark 4.6 and Lemma 4.9, these polytopes and their sharing edges are not

1-tacnodal.

4.2. Case (A).
4.2. Case (A). Let S be the dual subdivision of TF . We assume that S is a TP-subdivision

and satisfies �∂ΔZ − �(V(S ) ∩ ∂Δ) = 0. Then d(S ) = 0 by Lemma 2.3. Thus

rk(TF) = rkexp(TF) = �ΔZ − 4.

By the definition of rkexp(TF), we get

�ΔZ − 4 = �V(S ) − 1 −
N∑

k=1

(�V(Δk) − 3)

= �V(S ) − 1 − N′4.

Since �V(S ) ≤ �ΔZ, we obtain 0 ≤ N′4 ≤ 3.
(A-0) If S satisfies N′4 = 0, then it satisfies �V(S ) = �ΔZ − 3 and consists of triangles.

Then, the subdivision S must contain exactly one of the following polytopes:
(i) Δ3(3; 1, 1, 1),

(ii) Δ3(2; 1, 1, 1) with one of T−1,
(iii) Δ3(2; 2, 1, 1) and Δ3(0; 2, 1, 1) such that their intersection is a segment whose

length is 2,
(iv) Δ3(1; 2, 1, 1) and Δ3(1; 2, 1, 1) such that their intersection is a segment whose

length is 2,
(v) Δ3(1; 2, 1, 1) and Δ3(0; 2, 1, 1) such that their intersection is a segment whose

length is 2 with one of T−1,
(vi) Δ3(1; 2, 2, 1), Δ3(0; 2, 1, 1) and Δ′3(0; 2, 1, 1) such that their intersections
Δ3(1; 2, 2, 1)∩Δ3(0; 2, 1, 1) and Δ3(1; 2, 2, 1)∩Δ′3(0; 2, 1, 1) are segments whose
lengths are 2,

(vii) Δ3(0; 2, 2, 1), Δ3(0; 2, 1, 1) and Δ3(1; 2, 1, 1) such that their intersections
Δ3(0; 2, 2, 1)∩Δ3(0; 2, 1, 1) and Δ3(0; 2, 2, 1)∩Δ3(1; 2, 1, 1) are segments whose
lengths are 2,

(viii) Δ3(0; 2, 2, 2), Δ3(0; 2, 1, 1), Δ′3(0; 2, 1, 1) and Δ′′3 (0; 2, 1, 1) such that their inter-
sections Δ3(0; 2, 2, 2) ∩ Δ3(0; 2, 1, 1), Δ3(0; 2, 2, 2) ∩ Δ′3(0; 2, 1, 1) and
Δ3(0; 2, 2, 2) ∩ Δ′′3 (0; 2, 1, 1) are segments whose lengths are 2,

(ix) Δ3(1; 3, 1, 1) and Δ3(0; 3, 1, 1) such that their intersection Δ3(1; 3, 1, 1) ∩
Δ3(0; 3, 1, 1) is a segment whose length is 3,

(x) Δ3(0; 3, 1, 1) and Δ′3(0; 3, 1, 1) such that their intersection Δ3(0; 3, 1, 1) ∩
Δ3(0; 3, 1, 1) is a segment whose length is 3, with one of T−1,

(xi) Δ3(0; 3, 2, 1), Δ3(0; 3, 1, 1) and Δ3(0; 2, 1, 1) such that their intersections
Δ3(0; 3, 2, 1)∩Δ3(0; 3, 1, 1) and Δ3(0; 3, 2, 1)∩Δ3(0; 2, 1, 1) are segments whose
lengths are 3 and 2, respectively,

(xii) Δ3(0; 4, 1, 1) and Δ′3(0; 4, 1, 1) such that their intersection Δ3(0; 4, 1, 1) ∩
Δ′3(0; 4, 1, 1) is a segment whose length is 4,

(xiii) three of T−1,
(xiv) one of T−2 and one of T−1.
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(A-1) If S satisfies N′4 = 1, then it satisfies �V(S ) = �ΔZ − 2 and contains only one
parallelogram in the following list and the rest of S consists of triangles:

(i) Δpar
4 (2; 1, 1),

(ii) Δpar
4 (0; 2, 1), Δ3(0; 2, 1, 1) and Δ′3(0; 2, 1, 1) such that their intersections
Δ

par
4 (0; 2, 1) ∩ Δ3(0; 2, 1, 1) and Δpar

4 (0; 2, 1) ∩ Δ′3(0; 2, 1, 1) are segments whose
lengths are 2,

(iii) Δpar
4 (1; 1, 1) with one of T−1,

(iv) Δpar
4 (0; 1, 1) with two of T−1,

(v) Δpar
4 (0; 1, 1) with one of T−2.

(A-2) If S satisfies N′4 = 2, then it satisfies �V(S ) = �ΔZ − 1 and contains exactly two
parallelograms in the following list and the rest of S consists of triangles:

(i) Δpar
4 (1; 1, 1), Δpar

4 (0; 1, 1)
(ii) two Δpar

4 (0; 1, 1) with one of T−1.
(A-3) If S satisfies N′4 = 3, then �V(S ) = �ΔZ holds and S contains exactly three parallel-

ograms. Thus S has three Δpar
4 (0; 1, 1) and the rest of S consists of triangles whose

area is 1/2.
In the above list, by Remark 4.6 and Lemma 4.4, cases (vi), (vii), (ix), (xi) in (A-0)

does NOT occur. Furthermore, the following cases do NOT have a regular singularity by
Lemma 4.8:

• (ii), (v), (viii), (x), (xiii), (xiv) in (A-0),
• (ii), (iii), (iv), (v) in (A-1),
• (i), (ii) in (A-2),
• (A-3).

Among them, the refinement of the following cases do NOT have an irregular singularity by
Lemma 4.9 and Remark 4.10:

• (ii), (v), (viii), (x), (xiii), (xiv) in (A-0),
• (ii), (iii), (iv), (v) in (A-1),
• (i), (ii) in (A-2),
• (A-3).

The remaining cases are (i), (iii), (iv) and (xii) in (A-0) and (i) in (A-1), and they correspond
to the polytopes “ΔI or ΔII”, ΔIII,ΔIV,ΔV and ΔVI, respectively, by Lemma 3.2. Moreover,
by Lemma 3.4, 3.5, 3.6 and 3.7, these polytopes are 1-tacnodal.

4.3. Case (B).
4.3. Case (B). We assume that S is a TP-subdivision and satisfies �∂ΔZ − �(V(S )∩∂Δ) =

1. By the latter condition, S must have exactly one polytope P ∈ S such that P ∩ ∂Δ is a
segment of length 2. By Lemma 2.3, we get

rk(TF) = rkexp(TF) = �ΔZ − 4.

By the definition of rkexp(TF), we obtain

�ΔZ − 4 = �V(S ) − 1 −
N∑

k=1

(�V(Δk) − 3)

= �V(S ) − 1 − N′4.

Since �V(S ) ≤ �ΔZ − 1, we have 0 ≤ N′4 ≤ 2.
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(B-0) If S satisfies N′4 = 0, then S satisfies �V(S ) = �ΔZ − 3 and consists of triangles. Let
P ∈ S be a polytope which intersects ∂Δ as a segment of length 2. Then S satisfies
one of the following:

(i) P = Δ3(0; 2, 1, 1) and S contains two of T−1 or one of T−2,
(ii) P = Δ3(1; 2, 1, 1) and S contains one of T−1,

(iii) P = Δ3(2; 2, 1, 1),
(iv) P = Δ3(0; 2, 2, 2),
(v) P = Δ3(0; 2, 2, 1), and S contains one of T−1,

(vi) P = Δ3(1; 2, 2, 1),
(vii) P = Δ3(0; 2, 3, 1).

(B-1) If S satisfies N′4 = 1, then S satisfies �V(S ) = �ΔZ − 2. Let P ∈ S be a polytope
which intersects ∂Δ as a segment of length 2. Then S satisfies one of the following:

(i) P = Δpar
4 (0; 2, 1) and Δ3(0; 2, 1, 1) such that their intersection P ∩ Δ3(0; 2, 1, 1)

is a segment of length 2,
(ii) P = Δ3(0; 2, 1, 1) and S contains Δpar

4 (1; 1, 1),
(iii) P = Δ3(1; 2, 1, 1) and S contains Δpar

4 (0; 1, 1),
(iv) P = Δ3(0; 2, 2, 1) and S contains Δpar

4 (0; 1, 1),
(v) P = Δ3(0; 2, 1, 1) and S contains Δpar

4 (0; 1, 1), and one of T−1.
(B-2) If S satisfies N′4 = 2, then S satisfies �V(S ) = �ΔZ and contains exactly two paral-

lelograms. Thus P = Δ3(0; 2, 1, 1) and S contains two Δpar
4 (0; 1, 1).

In the above list, by Lemma 4.4, the following cases do NOT occur:
• (v), (vi), (vii) in (B-0),
• (iv) in (B-1).

Furthermore, the following cases do NOT have a regular singularity by Remark 4.6 and
Lemma 4.8:

• (i), (ii), (iv) in (B-0),
• (i), (ii), (iii), (v) in (B-1),
• (B-2).

Among them, (iv) in (B-0) does NOT have an irregular singularity by Lemma 4.9 and the
other polytopes except (iii) in (B-0) also do NOT have it since they have only one edge
of length more than 1, which should be on the boundary ∂Δ, and this edge cannot be a 1-
tacnodal edge. The remaining case is (iii) in (B-0) and this corresponds to the polytope ΔIII

by Lemma 3.2. Moreover, by Lemma 4.8 (3), this polytope is NOT 1-tacnodal.

4.4. Case (C).
4.4. Case (C). We assume that S is NOT a TP-subdivision. Then

d(S ) = �ΔZ − 4 − {
�V(S ) − 1 −

N∑
k=1

(�V(Δk) − 3)
}

= �ΔZ − �V(S ) − 3 +
N∑

k=1

(�V(Δk) − 3)

≥ −3 +
N∑

k=1

(�V(Δk) − 3)
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=
∑
m≥3

(m − 3)Nm − 3.

By 0 ≤ d(S ) ≤S /2 due to Lemma 2.3, we get∑
m≥3

(m − 3)Nm ≤ −
∑
m≥2

N′2m + 5 and
∑
m≥2

N′2m ≤ 2.

We decompose the proof into the following three cases:
(C-0)

∑
m≥2 N′2m = 0 and

∑
m≥3(m − 3)Nm ≤ 5,

(C-1)
∑

m≥2 N′2m = 1 and
∑

m≥3(m − 3)Nm ≤ 4,
(C-2)

∑
m≥2 N′2m = 2 and

∑
m≥3(m − 3)Nm ≤ 3.

(C-0) In this case, since N4 + 2N5 + 3N6 + 4N7 + 5N8 ≤ 5 and
∑

m≥2 N′2m = 0, possible
patterns are the following:

(i) (N8,N′8) = (1, 0),
(ii) (N7,N4,N′4) = (1, 0, 0) or (1, 1, 0),

(iii) N′4 = N′6 = 0 and (N6,N5,N4) = (1, 0, 0), (1, 1, 0), (1, 0, 1) or (1, 0, 2),
(iv) (N5,N4,N′4) = (2, 0, 0) or (2, 1, 0),
(v) (N5,N4,N′4) = (1,N4, 0) for N4 = 0, 1, 2, 3,

(vi) (N4,N′4) = (N4, 0) for N4 = 1, 2, 3, 4, 5.
In case (i), since S = 4, we get 0 ≤ d(S ) ≤ 2. On the other hand, any octagon

has two or more inner lattice points (Lemma 4.3), so

d(S ) = �ΔZ − 4 − {�V(S ) − 1 − 5}
= �ΔZ − �V(S ) + 2

≥ 4.

This is a contradiction. Therefore case (i) does not occur. We can prove that the
above cases except the cases (v) with N4 = 0 and (vi) with N4 = 1, 2 do NOT occur
by the same argument.

Next, we observe the remaining cases.
Case (v) with N4 = 0. S has exactly one pentagon and the rest of S consists of
triangles. Then rkexp(S ) = �V(S ) − 3 holds. Therefore, the set (Δ ∩ Z2) \ V(S ) is
exactly one lattice point. By Lemma 4.3 (2), the pentagon is Δ5(1; 1, 1, 1, 1, 1). This
polytope is equivalent to ΔVII by Lemma 3.2 (6). Moreover, by Lemma 3.5, the
pentagon is a 1-tacnodal polytope.

Case (vi) with N4 = 1. S has exactly one non-parallel quadrangle and the rest of S
consists of triangles. Since rkexp(S ) = �V(S ) − 2, the set (Δ ∩ Z2) \ V(S ) consists
of two lattice points. Therefore, a possible non-parallel quadrangle Δ4(I; s, t, u, v) is
one of the following list:
(a) Δ4(0; 1, 1, 1, 1),
(b) Δ4(0; 2, 1, 1, 1),
(c) Δ4(0; 2, 2, 1, 1),
(d) Δ4(1; 1, 1, 1, 1),
(e) Δ4(1; 2, 1, 1, 1),
(f) Δ4(2; 1, 1, 1, 1).



488 T. Takahashi

Cases (a) and (c) do NOT occur by Lemma 4.3 and Lemma 4.4, respectively. The
polytopes in (b) and (e) are NOT 1-tacnodal polytopes by (4) of Lemma 4.8 and
Lemma 3.9, respectively. Also the polytope in (d) is NOT a 1-tacnodal polytope by
[8, Lemma 4.2 (i)]. Notice that, by Remark 4.10, the polytope in (d) does NOT have
a 1-tacnodal edge.

By Lemma 3.2, the polytope (f) is equivalent to one of

ΔVIII, ΔIX and Conv{(1, 0), (0, 1), (2, 1), (1, 3)}.
The polytopes ΔVIII, ΔIX are 1-tacnodal polytopes by Lemma 3.5. On the other
hand, the polytope Conv{(1, 0), (0, 1), (2, 1), (1, 3)} is NOT a 1-tacnodal polytope by
Lemma 4.8 (5) and does NOT have a 1-tacnodal edge by Remark 4.10.

If S contains the polytope in (b), since rkexp(S ) = �ΔZ − 3, the adjacent polytope
which shares the edge of length 2 of Δ4(1; 2, 1, 1, 1) must be either Δ3(0; 2, 1, 1) or
Δ3(1; 2, 1, 1). Each of their intersection with Δ4(1; 2, 1, 1, 1) is NOT a 1-tacnodal
edge by (2) and (4) of Lemma 4.9. Therefore, any edge contained in S is NOT a
1-tacnodal edge.

If S contains the polytope (e), since rkexp(S ) = �ΔZ − 4 = rk(S ), the adjacent
polytope which shares the edge of length 2 of Δ4(1; 2, 1, 1, 1) must be Δ3(0; 2, 1, 1).
This is a dual subdivision of a tropical 1-tacnodal curve of type (E).

Case (vi) with N4 = 2. S has exactly two non-parallel quadrangles and the rest of S
consists of triangles. Since rkexp(S ) = �V(S ) − 3, the set (Δ ∩ Z2) \ V(S ) consists of
exactly one lattice point. Therefore S contains Δ4(0; 2, 1, 1, 1) and Δ′4(0; 2, 1, 1, 1)
such that their intersection is a segment whose length is 2. This is because a non-
parallel quadrangle must satisfy either “the number of interior lattice points is non-
zero” or “the polytope has an edge of length ≥ 2”, by Lemma 4.3. These polytopes
are NOT 1-tacnodal polytopes by Lemma 4.8. Also their intersection is NOT a
1-tacnodal edge by Lemma 4.9 (5).

(C-1) In this case, since N4 + 2N5 + 3N6 + 4N7 ≤ 4 and
∑

m≥2 N′2m = 1, the following
patterns can occur:

(i) (N6,N′6,N4,N′4) = (1, 1, 0, 0) or (1, 1, 1, 0),
(ii) (N6,N′6,N4,N′4) = (1, 0, 1, 1)

(iii) (N5,N4,N′4) = (1, 2, 1),
(iv) (N5,N4,N′4) = (1, 1, 1),
(v) (N4,N′4) = (N4, 1) for N4 = 2, 3, 4.

However, we can check that the cases, except case (v) with N4 = 2, are impossible
by the same argument as in case (i) in (C-0).

We observe case (v) with N4 = 2. S contains a non-parallel quadrangle P and a
parallelogram Q, and the rest of S consists of triangles. Notice that, by Lemma 4.3,
P must satisfy either “the number of interior lattice points is non-zero” or “the poly-
tope has an edge of length ≥ 2”. Since rkexp(S ) = �V(S )− 3, the set (Δ∩ Z2) \ V(S )
consists of exactly one lattice point. Therefore P and Q must be either
• P = Δ4(1; 1, 1, 1, 1) and Q = Δpar

4 (0; 1, 1), or
• P = Δ4(0; 2, 1, 1, 1) and Q = Δpar

4 (0; 1, 1) such that the edge of length 2 of P
intersects the triangle Δ3(0; 2, 1, 1).
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In both cases, the polytopes are not 1-tacnodal by Lemma 4.8, Lemma 4.9 and
Remark 4.10.

(C-2) In this case, since N4 + 2N5 + 3N6 ≤ 3 and
∑

m≥2 N′2m = 2, any possible subdivision
satisfies N4 = 3 and N′4 = 2. Since S = 0, we get d(S ) = 0. On the other hand,
since �V(S ) ≤ �ΔZ − 1 by Lemma 4.3,

d(S ) = �ΔZ − �V(S ) ≥ 1.

This is a contradiction.

4.5. Case (D).
4.5. Case (D). We assume that S is NOT a TP-subdivision and satisfies �∂ΔZ − �(V(S )∩

∂Δ) = 1. By the former condition, we can apply the same argument of (C) to case (D) and
obtain the list of possible subdivisions as follows:

(1) (v) with N4 = 0 in (C-0),
(2) (vi) with N4 = 1 in (C-0),
(3) (vi) with N4 = 2 in (C-0),
(4) (v) with N4 = 2 in (C-1).

Case (1). S has exactly one pentagon and the rest of S consists of triangles. Then rkexp(S ) =
�V(S ) − 3 holds. By the boundary condition, the set (Δ ∩ Z2) \ V(S ) is empty. If S contains
a triangle P whose intersection with ∂Δ is an edge of length 2, then, by Lemma 4.3, S
does NOT have a pentagon. Therefore, the possible pentagon is Δ5(0; 2, 1, 1, 1, 1), whose
intersection with ∂Δ is an edge of length 2. However, the pentagon does NOT exist by
Lemma 4.4.

Case (2). S has exactly one non-parallel quadrangle and the rest of S consists of triangles.
By rkexp(S ) = �V(S ) − 2 and the boundary condition, the set (Δ ∩ Z2) \ V(S ) consists of
one lattice point. Therefore, possible non-parallel quadrangle Δ4(I; s, t, u, v) is one of the
following list:

(a) Δ4(0; 1, 1, 1, 1),
(b) Δ4(0; 2, 1, 1, 1),
(c) Δ4(1; 1, 1, 1, 1).

Case (a) does NOT occur by Lemma 4.3. The polytope in (b) is NOT a 1-tacnodal poly-
tope by Lemma 4.8 (4). Also the polytope in (c) is NOT a 1-tacnodal polytope by [8, Lemma
4.2 (i)]. Notice that, by Remark 4.10, the polytope in (c) does NOT have a 1-tacnodal edge.

If S contains the polytope in (b), since rkexp(S ) = �ΔZ − 4, the intersection of the quad-
rangle Δ4(0; 2, 1, 1, 1) and ∂Δ is an edge of length 2. Thus the edge is NOT a 1-tacnodal
edge.

Case (3) and (4). S has exactly two non-parallel quadrangles and the rest of S consists of
triangles. By rkexp(S ) = �V(S ) − 3 and the boundary condition, the set (Δ ∩ Z2) \ V(S )
is empty. Therefore, such subdivision S does NOT exist by the fact that a non-parallel
quadrangle must satisfy either “the number of interior lattice points is non-zero” or “the
polytope has an edge of length ≥ 2” in Lemma 4.3. Case (4) can be proved by the same
argument. �
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Remark 4.12. As mentioned in the introduction, this research aims to construct the trop-
ical version of enumerative geometry of the 1-tacnodal curves. Therefore, we would like
to lift the 1-tacnodal curve from a given degenerate 1-tacnodal curve by patchworking. It
is known that there is no obstruction if the singular point is A1, and this is still true even if
it is A2, which can be checked by a numerical criterion of the vanishing of the obstruction
constructed by Shustin (See [7, Theorem 4.1], or [8, Lemma 5.4] for a tropical version).
But, unfortunately, this criterion does not work if it is A3 because of the following reason:

We recall a sufficient condition to apply patchworking [8, Lemma 5.5 (ii)], called
transversality. Let S be the dual subdivision of a tropical curve T , Δ1, . . . ,ΔN be the 2-
dimensional polytopes of S and (C1, . . . ,CN) be a collection of complex curves such that
the Newton polytope of the defining polynomial fi of Ci is Δi ∈ S and, if σi j := Δi ∩Δ j � ∅,
f σi j

i = f σi j

j .
For an irreducible curve Ck for some k ∈ {1, . . .N}, there is a union Δ−k of edges of Δk

such that Ck satisfies the following inequality:∑′
b(Ck, ξ) +

∑′′
b̃(Ck,Q) +

∑′′′(
(Ck · X(σ)) − ε) < ∑

σ⊂∂Δ
(Ck · X(σ)),

where
• if C has a tacnode, then b(C, ξ) = 1 for both branches, if C is locally given by
{xpr + yqr = 0} for coprime integers p, q, then b̃(C, ξ) = p + q − 1 for each branch,
• ∑′ ranges over all local branches ξ of Ck, centered at the points z ∈ Sing(Ck)∩(C∗)2,
• ∑′′ ranges over all local branches Q of Ck, centered at the points z ∈ Sing(Ck) ∩

X(∂Δk), and
• ∑′′′ ranges over all non-singular points z of Ck on X(∂Δk) with ε = 0 if σ ⊂ Δ−k and
ε = 1 otherwise,

then Ck is transversal.
Let V ⊂ X(ΔIII) be a curve which is constructed in Lemma 3.6. We can easily check∑′

b(V, ξ) = 0,
∑′′

b̃(V,Q) = 4,
∑′′′(

(V · X(σ)) − ε) ≥ 0 and
∑
σ⊂∂Δ

(V · X(σ)) = 4.

Therefore V does not satisfy the above inequality.
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