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Abstract
We establish what semi-discrete linear Weingarten surfaces with Weierstrass-type representa-

tions in 3-dimensional Riemannian and Lorentzian spaceforms are, confirming their required
properties regarding curvatures and parallel surfaces, and then classify them. We then define
and analyze their singularities. In particular, we discuss singularities of (1) semi-discrete sur-
faces with non-zero constant Gaussian curvature, (2) parallel surfaces of semi-discrete minimal
and maximal surfaces, and (3) semi-discrete constant mean curvature 1 surfaces in de Sitter
3-space. We include comparisons with different previously known definitions of such singular-
ities.

1. Introduction

1. Introduction
Smooth (spacelike) linear Weingarten surfaces in 3-dimensional Riemannian or

Lorentzian spaceforms are those for which the Gaussian and mean curvatures K and H
satisfy an affine linear relation

αK + 2βH + γ = 0

for constants α, β and γ not all zero, and generally these surfaces will have singularities.
There are special cases of these surfaces that admit Weierstrass-type representations:

(1) minimal surfaces in 3-dimensional Euclidean space R3 and their parallel surfaces,
(2) maximal surfaces in 3-dimensional Minkowski spaceR2,1 and their parallel surfaces,
(3) surfaces in 3-dimensional hyperbolic space H3 such that α = 1 − β and γ = −1 − β,

referred to here as linear Weingarten surfaces of Bryant type, or BrLW surfaces for
short (note that flat surfaces occur when β = 0),

(4) surfaces in 3-dimensional de Sitter space S2,1 such that α = −1 − β and γ = 1 − β,
referred to here as linear Weingarten surfaces of Bianchi type, or BiLW surfaces for
short.

The case of fully discrete surfaces with Weierstrass-type representations was considered
in [19], and the semi-discrete case is considered here. The semi-discrete case incorporates
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properties of both the smooth and fully discrete cases, and is informative for understanding
differences between those two cases, and in this work we elucidate some aspects of this, par-
ticularly with regard to properties of singularities of these surfaces. Singularities of smooth
surfaces with Weierstrass representations have been carefully examined recently, see, for
example, [6], [8], [11], [15], [21].

Amongst our results, we establish the next two facts (see Section 4), which are impor-
tant for confirming that our choices for Weierstrass-type representations for semi-discrete
surfaces are correct.

Fact 1. Semi-discrete surfaces with Weierstrass representations satisfy the same affine
linear relations between the Gaussian and mean curvatures as both smooth and fully discrete
surfaces with Weierstrass representations do.

In the smooth case, as mentioned in [16], parallel surfaces of BrLW surfaces in H3, resp.
BiLW surfaces in S2,1, are also BrLW surfaces, resp. BiLW surfaces, and these surfaces
are classified into three types. Including minimal and maximal surfaces, there are then
five types, like as listed in Fact 2 below. The same is true of fully discrete surfaces with
Weierstrass-type representations, see [19].

In this paper we investigate semi-discrete linear Weingarten surfaces with Weierstrass-
type representations. As will be seen later, together with explanations of the terminologies
used, semi-discrete linear Weingarten surfaces are classified as in Fact 2 below.

Fact 2. Semi-discrete surfaces with Weierstrass-type representations can be classified
into the following five types:

(1) minimal surfaces and their parallel surfaces in R3,
(2) maximal surfaces and their parallel surfaces in R2,1,
(3) flat surfaces in H3 and S2,1,
(4) linear Weingarten surfaces of hyperbolic type in H3 and S2,1,
(5) linear Weingarten surfaces of de Sitter type in H3 and S2,1.

Parallel surfaces of each type belong again to the same type.

Singularities on semi-discrete surfaces. In the smooth case, linear Weingarten surfaces
with Weierstrass-type representations as listed in Fact 2 above might have singularitites. So
it is natural to expect that semi-discrete linear Weingarten surfaces with Weierstrass-type
representations also have some notion of “singularities” (for the fully discrete case, see [14],
[19], [22]). The main purpose in this paper is to clarify and characterize such singularities.

Let us remark on two previous works on singularities of semi-discrete surfaces:
(1) In [23], the first author described semi-discrete maximal surfaces in R2,1 and ana-

lyzed their singularities. Singularities of semi-discrete maximal surfaces were de-
fined on the set of edges and so are called singular edges, and they reflect the prop-
erty of non-spacelikeness of tangent planes of smooth maximal surfaces at singular
points (see [23] and Definition 5.5 here).

(2) Though singular edges can appear on semi-discrete spacelike surfaces with
Weierstrass-type representations in Lorentzian spaceforms, they do not appear on
such semi-discrete surfaces in Riemannian spaceforms. In [24], in order to consider
singularities of general semi-discrete surfaces in Riemannian spaceforms as well,
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Fig. 1. Two different parallel surfaces of a semi-discrete Enneper minimal
surface in R3, with singularities (which have the appearance of cuspidal
edges and swallowtails).

points along the smooth curves of the semi-discrete surfaces that could be singular
were introduced, which were called flat-parabolic-singular (FPS, for short) points.
FPS points are directly related to behaviors of the principal curvatures of semi-
discrete surfaces. Applying this, singularities of particular semi-discrete surfaces
were analyzed.

However, as already mentioned in [24], those FPS points did not identify certain possible
singularities that we would like to consider. So we need to modify the definition of FPS
points of semi-discrete surfaces (see Definition 5.1 here). This enables us to analyze possible
singularities that we could not analyze before.

The semi-discrete case has some uniquely interesting singular behaviors, since it com-
bines elements from both the smooth and fully discrete cases. In the final section, we es-
tablish a definition of singularities on semi-discrete surfaces which takes into account that
singularities can occur with respect to either the smooth parameter or the discrete param-
eter for the surface. Because, like in the fully discrete case, this definition incorporates
sign changes in the principal curvatures, we need to also include the possibilities of flat and
parabolic points. Examples of such singularities can be seen in Figure 1.

We thus find ourselves in a situation where we have two independent notions of potential
singularities of semi-discrete surfaces, one defined on edges and the other defined at points
in the smooth curves of the surfaces. It is natural to look for relations between these two
notions, and this is the purpose of Theorems 5.3 and 5.5 here. Specifically, we prove that
singular points on semi-discrete maximal surfaces in R2,1 and semi-discrete CMC 1 surfaces
in S2,1 as defined in this paper imply existence of neighboring singular edges (see Theorems
5.3 and 5.5). Finally we give criteria for singular edges of semi-discrete CMC 1 surfaces
in S2,1 and prove the analogous result as in Theorem 1.2 in [23] for this case as well (see
Theorem 5.4). With these two theorems we see strong correspondence between the two
notions of potential singularities, giving us further confidence in the usefulness of these two
notions.

Along the way, we give criteria for determining singularities on parallel surfaces of semi-
discrete minimal and maximal surfaces (see Theorem 5.1), as well as on semi-discrete sur-
faces of Bryant and Bianchi types (see Theorem 5.2).
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2. Semi-discrete Legendre immersions in 3-dimensional spaceforms

2. Semi-discrete Legendre immersions in 3-dimensional spaceforms
Let M3 be a 3-dimensional Riemannian or Lorentzian spaceform that is a quadric in a

4-dimensional Riemannian or Lorentzian vector space V4. A semi-discrete map is a map

x(k, t) : D→ M3 ,

where D is a subdomain of Z × R. We define derivatives and differences of x by

x = x(k, t), x1 = x(k + 1, t), ∂x =
dx
dt
, Δx = x1 − x.

We will assume x is a conjugate net, that is, ∂x, ∂x1 and Δx lie in a 2-plane in V4, called the
tangent plane of the surface at the edge [x, x1] with endpoints x and x1.

Definition 2.1. This map x(k, t), together with a unit normal map n(k, t), is called a semi-
discrete Legendre immersion

D � (k, t)→ (x, n) ∈ T1M3

if it satisfies the following conditions:

(1) ∂n, ∂n1 and Δn all lie in the tangent plane of the surface at the edge [x, x1],
(2) Δx, n1 and n all lie in one 2-dimensional plane in V4,
(3) n is perpendicular to ∂x.

Like for the fully discrete case, the curvature line condition in the discrete direction is
partially built into condition (2) above, but we would additionally require that Δn is parallel
to Δx. The curvature line condition in the smooth direction is simply that ∂x and ∂n are
parallel, as in the next definition. Existence of a curvature-line parametrization in the case
of smooth surfaces rules out most types of umbilic points, and so in the following definition
we are implicitly ruling out any semi-discrete surface with some notion of umbilic point.

Definition 2.2. If Δn||Δx and ∂x||∂n and the tangent cross ratio

cr(x, x1) := ∂x · (Δx)−1 · ∂x1 · (Δx)−1

satisfies that

cr(x, x1) ∈ R and cr(x, x1) < 0 ,

we say that x is curvature-line parametrized.

To define the tangent cross ratio cr(x, x1) above requires that we multiply and invert points
in M3, which can be done as follows: we set

R
3 := {(z1, z2, z3, 0) | z j ∈ R} ⊆ V = R4 := {(z1, z2, z3, z4) | z j ∈ R}

with standard Euclidean metric

(z1, z2, z3, z4) ◦ (w1, w2, w3, w4) = z1w1 + z2w2 + z3w3 + z4w4

on V , and set H3 = H3
+ ∪ H3−, with

H
3
+ := {(z1, z2, z3, z0) | z j ∈ R, z2

1 + z2
2 + z2

3 − z2
0 = −1, z0 > 0} ,
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H
3
− := {(z1, z2, z3, z0) | z j ∈ R, z2

1 + z2
2 + z2

3 − z2
0 = −1, z0 < 0},

and

S
2,1 = {(z1, z2, z3, z0) | z j ∈ R, z2

1 + z2
2 + z2

3 − z2
0 = 1},

all lying in

V = R3,1 = {(z1, z2, z3, z0) | z j ∈ R}
with the Minkowski metric

(z1, z2, z3, z0) ◦ (w1, w2, w3, w0) = z1w1 + z2w2 + z3w3 − z0w0 .

The relevant 4-dimensional spaces are only R4 and R3,1, and we can identify points in those
two spaces with 2 by 2 matrices as follows:

R
4 � (z1, z2, z3, z4) �→

(
z1 + iz2 z3 + iz4

−z3 + iz4 z1 − iz2

)
, R

3,1 � (z1, z2, z3, z0) �→
(

z0 + z3 z1 − iz2

z1 + iz2 z0 − z3

)
.

We then can regard multiplication and inversion of points in M3 as multiplication and inver-
sion of matrices. For example, in the case of R3,1,

(z1, z2, z3, z0) ◦ (w1, w2, w3, w0) =

1
2

tr

⎛⎜⎜⎜⎜⎜⎝
(

z0 + z3 z1 − iz2

z1 + iz2 z0 − z3

) (
0 1
−1 0

) (
w0 + w3 w1 − iw2

w1 + iw2 w0 − w3

)t (
0 1
−1 0

)⎞⎟⎟⎟⎟⎟⎠ .
Note that the tangent cross ratio being real, which means it is a real scalar multiple of the

2 by 2 identity matrix and then we can regard that scalar multiple as the tangent cross ratio
itself, implies the circularity condition, that is, there is a circle through x and x1 which is
tangent to ∂x at x and ∂x1 at x1.

We can then define semi-discrete isothermic surface as follows:

Definition 2.3. A semi-discrete x in M3 is semi-discrete isothermic if the equation

cr(x(k, t), x(k + 1, t)) =
τ(t)
σ(k)

< 0

holds, where τ = τ(t) ∈ R depends only on t and σ = σ(k) ∈ R depends only on k.

3. Curvatures of curvature-line parametrized semi-discrete surfaces

3. Curvatures of curvature-line parametrized semi-discrete surfaces
First we define the principal curvatures:

Definition 3.1. For a semi-discrete Legendre map (x, n), the scalar functions κk(t),
κk,k+1(t) given by

∂n = −κk(t)∂x , Δn = −κk,k+1(t)Δx ,

are called the principal curvatures of x. Here we abbreviate

κ = κk(t), κ1 = κk+1(t), κ01 = κk,k+1(t) (also κ−10 = κk−1,k(t)).

The following Definition 3.2 in the case of M3 = R3 was given in [13], then in M3 = R2,1

in [23]. The definition of H for semi-discrete surfaces in general 3-dimensional spaceforms
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M3 was given in [3], and here we also give the definition of K for general M3. For this
definition we use the mixed area formulation found in [3].

For two semi-discrete conjugate surfaces x, y : D → V4 satisfying parallelity conditions
∂x ‖ ∂y and Δx ‖ Δy, we define the mixed area element

A(x, y) :=
1
4

((∂x + ∂x1) ∧ Δy + (∂y + ∂y1) ∧ Δx) ,

where the operator ∧ is defined by

(a ∧ b)c := (a ◦ c)b − (b ◦ c)a.

Definition 3.2. Let (x, n) : Z×R→ T1M3 be a semi-discrete curvature-line parametrized
surface. Then the Gaussian curvature K and mean curvature H of x are defined, as functions
on the set of edges [x, x1], by

A(n, n) = K · A(x, x) , A(x, n) = −H · A(x, x) .

Similarly , the Gaussian and mean curvatures of n can be defined, regarding x as the normal
vector of n.

Similarly to the arguments in [1] and [24], we have the following proposition:

Proposition 3.1. Let x be a semi-discrete curvature-line parametrized surface with Gauss
map n so that (x, n) is a Legendre immersion. Let κ, κ1, κ01, K, H be the resulting principal,
Gaussian and mean curvatures. Then

K =
κ01(2κκ1 − κκ01 − κ1κ01)

κ1 + κ − 2κ01
, H =

κκ1 − κ201

κ1 + κ − 2κ01
.

Example 3.1. Like as seen in [18], where semi-discrete catenoids in R3 with smooth
profile curves were shown to have the same profile curves as smooth catenoids, one can now
check here that, more generally, semi-discrete linear Weingarten surfaces in spaceforms with
smooth profile curves have the same profile curves as their smooth counterparts.

4. Semi-discrete surfaces with Weierstrass representations

4. Semi-discrete surfaces with Weierstrass representations4.1. The cases of R3 and R2,1.
4.1. The cases of R3 and R2,1. Let g be a semi-discrete holomorphic function, that is, a

semi-discrete isothermic map into the plane, with tangent cross ratio factorizing functions τ,
σ. We assume the semi-discrete analog of a smooth holomorphic function having a nonzero
derivative, that is, ∂g and Δg are never zero, and we now state the Weierstrass-type represen-
tations for semi-discrete isothermic minimal and maximal surfaces, i.e. those with H = 0 in
R

3 and R2,1:

Proposition 4.1 ([18], [23]). Any semi-discrete minimal (resp. maximal) surface in R3

(resp. R2,1) can be piecewise represented using a semi-discrete holomorphic function g by
solving

(1) ∂x = Re

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
τ

2∂g

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − εg2

i(1 + εg2)
2εg

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Δx = Re

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
σ

2Δg

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − εgg1

i(1 + εgg1)
ε(g + g1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

with ε = 1 (resp. ε = −1), and the normal field is
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n =
1

1 + ε |g|2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2εRe(g)
2εIm(g)
1 − ε |g|2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Direct computation shows the following lemma.

Lemma 4.1. For any semi-discrete minimal (resp. maximal) surface, the κ and κ01 in
Definition 3.1 satisfy

(2) κ =
−4|∂g|2
τ(1 + ε|g|2)2 , κ01 =

−4|Δg|2
σ(1 + ε |g|2)(1 + ε |g1|2)

.

One can also confirm this corollary:

Corollary 4.1. For any choice of θ ∈ R, the parallel surface

xθ := x + θ · n
satisfies the circularity condition, with Gaussian and mean curvatures

Kx
θ =

K0

1 − 2θ · H0 + θ2 · K0
, Hx

θ =
H0 − θK0

1 − 2θ · H0 + θ2 · K0

satisfying

Hx
θ

Kx
θ

= −θ .

Also, the principal curvatures for xθ satisfy

κθ =
κ

1 − θ · κ , κ01.θ =
κ01

1 − θ · κ01
.

4.2. The cases of H3 and S2,1.
4.2. The cases of H3 and S2,1. Taking the same g as in Subsection 4.1, we make the

genericity assumption

 := 1 + sgg � 0

for some chosen constant s ∈ R. Take λ ∈ R to be any non-zero constant so that 1− λσ � 0.
Solving, for E ∈ GL2C,

(3) E−1ΔE =
⎛⎜⎜⎜⎜⎝ 0 Δg
λσ
Δg

0

⎞⎟⎟⎟⎟⎠ , E−1∂E =
⎛⎜⎜⎜⎜⎝ 0 ∂g
λτ
∂g

0

⎞⎟⎟⎟⎟⎠ ,
and defining

L =

⎛⎜⎜⎜⎜⎜⎝ 0
√


−1√


−sg√


⎞⎟⎟⎟⎟⎟⎠ ,(4)

and the surface x and its normal n by

x =
sgn( )
det E

EL(EL)t , n =
sgn( )
det E

EL
(
1 0
0 −1

)
(EL)t ,(5)

we will see that these are discrete BrLW surfaces and BiLW surfaces in H3 and S2,1, respec-
tively. First, analogous to the discrete case, we have the following proposition.
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Proposition 4.2. Semi-discrete BrLW surfaces in H3 and BiLW surfaces in S2,1 with
Weierstrass-type representations as in Equations (3), (4), (5) are circular nets.

Proof. Let x be a BrLW surface in H3 described by a semi-discrete holomorphic function
g. Observing that det E does not depend on the smooth parameter t, we have

∂x = c1E
(

0 ∂g(1 + s|g|2)
∂ḡ(1 + s|g|2) −s(ḡ∂g + g∂ḡ)

)
E

t
,

∂x1 = c2E
⎛⎜⎜⎜⎜⎝ 1 Δg
λσ
Δg

1

⎞⎟⎟⎟⎟⎠
(

0 ∂g1(1 + s|g1|2)
∂ḡ1(1 + s|g1|2) −s(ḡ1∂g1 + g1∂ḡ1)

) ⎛⎜⎜⎜⎜⎜⎝ 1 λσ

Δg

Δg 1

⎞⎟⎟⎟⎟⎟⎠ E
t
,

Δx = c3E
(|Δg|2(1 + s|g|2) Δg(1 + s|g|2)
Δg(1 + s|g|2) λσ(1 + s|g1|2) − s(|g1|2 − |g|2)

)
E

t
,

where

c1 :=
(1 − s)|∂g|2 + λτ(1 + s|g|2)2

|∂g|2(1 + s|g|2)2 det E
, c2 :=

(1 − s)|∂g1|2 + λτ(1 + s|g1|2)2

|∂g1|2(1 + s|g1|2)2(1 − λσ) det E
,

c3 :=
(1 − s)|Δg|2 + λσ(1 + s|g|2)(1 + s|g1|2)
|Δg|2(1 + s|g|2)(1 + s|g1|2)(1 − λσ) det E

.

By an isometry of R3,1, without loss of generality, we can assume that E =
(
1 0
0 1

)
at one

point. Using the tangent cross ratio condition cr(g, g1) =
τ

σ
, by a calculation, we have

∂x · (Δx)−1 · ∂x1 · (Δx)−1 = cr(x, x1)
(
1 0
0 1

)

with

cr(x, x1) =
σ(1 − λσ)
τ

· {(1 − s)|∂g|2 + λτ(1 + s|g|2)2}{(1 − s)|∂g1|2 + λτ(1 + s|g1|2)2}
{(1 − s)|Δg|2 + λσ(1 + s|g|2)(1 + s|g1|2)}2 .

Thus x is a circular net. Note that x is not generically semi-discrete isothermic.
A proof that n is a semi-discrete circular net will be given just after Lemma 4.2. �

Direct computations confirm this lemma:

Lemma 4.2. For any allowed choice of s, we have the following:

• ∂x ‖ ∂n, Δx ‖ Δn in R3,1, and the principal curvatures in Definition 3.1 satisfy

(6) κ =
|∂g|2(−1 − s) + (1 + s|g|2)2λτ

|∂g|2(1 − s) + (1 + s|g|2)2λτ
, κ01 =

|Δg|2(−1 − s) + (1 + s|g|2)(1 + s|g1|2)λσ
|Δg|2(1 − s) + (1 + s|g|2)(1 + s|g1|2)λσ

.

• 1 + s|g|2 > 0, resp. 1 + s|g|2 < 0, if and only if x lies in H3
+, resp. H3−.

• Δx, ∂x, ∂x1 lie in a plane (that is generically spacelike) in R3,1, and thus x satisfies
the circularity condition.

Now we show the semi-discrete circularity of semi-discrete BiLW surfaces in S2,1. Let n
be a semi-discrete BiLW surface described by a semi-discrete holomorphic function g. By
Lemma 4.2, we have
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∂n · (Δn)−1 · ∂n1 · (Δn)−1 =
κκ1

κ201

∂x · (Δx)−1 · ∂x1 · (Δx)−1

=
σ(1 − λσ)
τ

· {(−1 − s)|∂g|2 + λτ(1 + s|g|2)2}{(1 − s)|∂g1|2 + λτ(1 + s|g1|2)2}
{(−1 − s)|Δg|2 + λσ(1 + s|g|2)(1 + s|g1|2)}2

(
1 0
0 1

)
.

Thus n is also semi-discrete circular, proving the last part of Proposition 4.2.
Furthermore, combining Proposition 4.2 and Lemma 4.2, we can show the following

curvature properties of semi-discrete BrLW and BiLW surfaces, which also imply Fact 1 in
the introduction:

Proposition 4.3. A semi-discrete BrLW surface x in H3 and a semi-discrete BiLW surface
n in S2,1 described by a semi-discrete holomorphic function g via Equations (3), (4), (5)
satisfy the following curvature conditions:

(7) 2s(Hx − 1) + (1 − s)(Kx − 1) = 0, 2s(Hn − 1) − (1 + s)(Kn − 1) = 0,

where Hx and Kx are the mean and Gaussian curvatures of x and Hn and Kn are the mean
and Gaussian curvatures of n.

Proof. The curvature condition for x can be obtained by a direct but tedious calculation,
which we omit here. We now see the curvature condition for n from the curvature condition
for x: The surfaces satisfy Kx =

1
Kn , Hx =

Hn

Kn . Substituting Kx,Hx into the curvature
condition for x, we have the curvature condition for n, proving the proposition. �

Like in the smooth and fully discrete cases, we define types of semi-discrete BrLW and
BiLW surfaces as follows:

Definition 4.1. The surfaces x and n are said to be of hyperbolic type if s > 0, and of de
Sitter type if s < 0.

Let x be a semi-discrete BrLW surface in H3 and let n be a semi-discrete BiLW surface
in S2,1 described by a single choice of g and s. Then we define the parallel surface xθ of x at
distance θ (θ ∈ R) as

xθ := cosh θ · x + sinh θ · n ∈ H3.

One can confirm the following proposition, which proves Fact 2 in the introduction:

Proposition 4.4. For any choices of s and θ ∈ R, the parallel surface xθ of a semi-discrete
circular surface x in H3 with unit normal vector field

nθ := sinh θ · x + cosh θ · n ∈ S2,1

satisfies the circularity condition, and

Kx
θ =

Kx
0 cosh2 θ − Hx

0 sinh(2θ) + sinh2 θ

cosh2 θ − Hx
0 sinh(2θ) + Kx

0 sinh2 θ
, Hx

θ =
−(Kx

0 + 1) sinh(2θ) + 2Hx
0 cosh(2θ)

2{cosh2 θ − Hx
0 sinh(2θ) + Kx

0 sinh2 θ} .

In particular, if x is a semi-discrete BrLW surface in H3, xθ is also of Bryant type satisfying

(8) 2sθ(Hx
θ − 1) + (1 − sθ)(Kx

θ − 1) = 0 ,

where sθ = e−2θs, and xθ can be also obtained from the Weierstrass-type representation.
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Moreover, the normal nθ also satisfies the circularity condition, and is of Bianchi type
satisfying

(9) 2sθ(Hx
θ − 1) − (1 + sθ)(Kx

θ − 1) = 0,

and nθ can be also obtained from the Weierstrass-type representation.

Proof. Combining Lemma 4.2 and the definition of the tangent cross ratio, we can easily
show the circularity conditions for xθ and nθ. Next we determine the mean and Gaussian
curvatures of a parallel surface of a semi-discrete circular surface in H3. Let Kx

0 ,H
x
0 (resp.

Kx
θ ,H

x
θ ) be the Gaussian and mean curvatures of x (resp. xθ). By a calculation, we have

A(xθ, xθ) = cosh2 θ · A(x, x) + sinh(2θ) · A(x, n) + sinh2 θ · A(n, n)

= {cosh2 θ − Hx
0 sinh(2θ) + Kx

0 sinh2 θ} · A(x, x).

Similarly, we have

A(nθ, nθ) = {sinh2 θ − Hx
0 sinh(2θ) + Kx

0 cosh2 θ} · A(x, x),

A(xθ, nθ) =
1
2
{(Kx

0 + 1) sinh(2θ) − 2Hx
0 cosh(2θ)} · A(x, x).

Thus we have Kx
θ ,H

x
θ of the forms as in Proposition 4.4.

Here we assume that (x, n) is a pair of a semi-discrete BrLW surface in H3 and a semi-
discrete BiLW surface in S2,1 described by a single choice of g and s. Note that x is a parallel
surface of xθ with distance −θ, that is, x = (xθ)−θ. Then we have

Kx
0 =

Kx
θ cosh2 θ + Hx

θ sinh(2θ) + sinh2 θ

cosh2 θ + Hx
θ sinh(2θ) + Kx

θ sinh2 θ
, Hx

0 =
(Kx
θ + 1) sinh(2θ) + 2Hx

θ cosh(2θ)

2{cosh2 θ + Hx
θ sinh(2θ) + Kx

θ sinh2 θ} .

Substituting these into Equation (7), we have the relation (8). By a similar argument as in
the proof of Proposition 4.3, we have Equation (9).

Finally, we show that any parallel surfaces of semi-discrete BrLW and BiLW surfaces
with Weierstrass-type representations can be also described by Weierstrass-type representa-
tions. First we consider parallel surfaces of semi-discrete BrLW surfaces in H3. Let x be a
semi-discrete BrLW surface in H3 and xθ be a parallel surface of x with distance θ. Here we
assume that  > 0 (even when  < 0, the conclusion is the same). Then

xθ =
1

det E
EL

(
eθ 0
0 e−θ

)
(EL)

t
=

1
det E

E

⎛⎜⎜⎜⎜⎜⎝e
−θ(1 + sgḡ) −se−θg
−se−θḡ eθ(1+s2e−2θgḡ)

1+sgḡ

⎞⎟⎟⎟⎟⎟⎠ E
t

=
1

det E

(
E

(
e−θ/2 0

0 eθ/2

)) ⎛⎜⎜⎜⎜⎜⎝1 + sgḡ −se−θg
−se−θḡ 1+s2e−2θgḡ

1+sgḡ

⎞⎟⎟⎟⎟⎟⎠
(
E

(
e−θ/2 0

0 eθ/2

))t

=
1

det Ẽ
ẼL̃(ẼL̃)

t
,

where Ẽ := E
(
e−θ/2 0

0 eθ/2

)
and L̃ :=

⎛⎜⎜⎜⎜⎜⎝1 + s̃g̃g̃ −s̃g̃

−s̃g̃ −s̃g̃
1+s̃g̃g̃

⎞⎟⎟⎟⎟⎟⎠ (g̃ = eθg, s̃ = se−2θ). By the defini-

tion of E, Ẽ is a solution of

∂Ẽ = Ẽ
⎛⎜⎜⎜⎜⎝ 0 ∂g̃
λτ
∂g̃

0

⎞⎟⎟⎟⎟⎠ , ΔẼ = Ẽ
⎛⎜⎜⎜⎜⎝ 0 Δg̃
λσ
Δg̃

0

⎞⎟⎟⎟⎟⎠ .
Thus xθ can be obtained via the Weierstrass-type representation by replacing g in Equations
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(3), (4), (5) with g̃ and choosing s̃. Similarly, we consider semi-discrete BiLW surfaces in
S

2,1. Let n be a semi-discrete BiLW surface in S2,1 and let nθ be a parallel surface of n at
distance θ. Then nθ can be obtained via the Weierstrass-type representation by replacing g
in Equations (3), (4), (5) with g̃ and choosing s̃, proving the proposition. �

We have thus arrived at Facts 1 and 2 in the introduction. The smooth and fully discrete
cases can be found in [10], [16], [19].

5. Singularities of semi-discrete surfaces with Weierstrass representations

5. Singularities of semi-discrete surfaces with Weierstrass representations
Influenced by definitions of singularities in the smooth and fully discrete cases, we make

the following definition, refining the definition in [24] (recall that flat points on smooth
surfaces are those for which both principal curvatures are zero, and parabolic points are
those for which exactly one principal curvature is zero):

Fig.2. Left: A typical example of the first part of item (1) in Definition 5.1.
Right: A typical example of the first part of item (2).

Definition 5.1. We say that a point (k0, t0), also its image x(k0, t0), is a flat (F) or par-
abolic (P) or singular (S) point of the semi-discrete surface x(k, t), with respect to either
the discrete direction represented by changing k (see the left-hand side of Figure 2) or the
smooth direction represented by changing t (see the right-hand side of Figure 2), as follows:

(1) x(k0, t0) is an FPS point with respect to the discrete direction if

κk0−1,k0 (t0) · κk0,k0+1(t0) < 0, or at least one of κk0−1,k0 (t0), κk0,k0+1(t0) is infinite.

(2) x(k0, t0) is an FPS point with respect to the smooth direction if

κk0−1(t0) · κk0 (t0) < 0 or κk0 (t0) · κk0+1(t0) < 0 or

at least one of κk0−1(t0), κk0 (t0), κk0+1(t0) is infinite.

In the latter cases of either (1) or (2) above, where infinite values occur, we can say that
x(k0, t0) is a singular (S) point.

Like in [19], we are interested in cases where we can differentiate between FP and S
vertices. This is the purpose of the next two definitions, which are independent of whether
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the surface has a Weierstrass representation.

Definition 5.2. We say that a semi-discrete circular surface x is embedded at a given
edge [x, x1] if ∂x and ∂x1 lie to the same side of the line through Δx within the tangent
plane. Embeddedness of the Gauss map n is similarly defined.

Generically, in the (non-umbilic) smooth case, rank 1 singularities of a surface correspond
to flat or parabolic points of the surface’s unit normal field, and vice versa. When x or n is not
locally embedded, we certainly have a singular point, and this motivates the next definition.

Definition 5.3. Let x be a semi-discrete circular surface with bounded principal curva-
tures and spacelike tangent planes on its edges. Suppose that x(k0, t0) is an FPS point with
respect to just the smooth direction, and that precisely one of �−10 := κk0−1(t0) · κk0 (t0) and
�10 := κk0 (t0) · κk0+1(t0) is negative and the other is positive. Then we call x(k0, t0) an FP
point (i.e. non-singular), resp. a singular (S) point, if the Gauss map is not embedded, resp.
is embedded, on the edge corresponding to the �∗0 that is negative at t = t0 (∗ = −1 or 1).

Remark. Suppose κk0−1(t0)·κk0 (t0) is negative. Then n is embedded on the edge [xk0−1, xk0 ]
at t = t0 if and only if cr(nk0−1, nk0 ) < 0, since the tangent plane is spacelike. By definition,
cr(xk0−1, xk0 ) = κ

2
k0−1,1κ

−1
k0−1κ

−1
k0

cr(nk0−1, nk0 ), so n is embedded if and only if cr(xk0−1, xk0 ) > 0.

It was pointed out in [19] that parallel surfaces of minimal and maximal surfaces never
have flat or parabolic points, and this was used in that work to justify the analog of the
definition below for the fully discrete surface case. Similarly, the definition just below is
also justified in the semi-discrete case. In fact, we can see from the formulas for κθ and κ01,θ

in Corollary 4.1 that these principal curvatures are never zero.

Definition 5.4. On any parallel surface of a semi-discrete minimal or maximal surface,
all FPS points are called simply singular (S) points.

Lemma 4.2 now provides proofs of the following two theorems.

Theorem 5.1. For a parallel surface xθ of a semi-discrete minimal or maximal surface
at oriented distance θ (in the maximal case ε = −1 we assume |g−1|, |g|, |g1| are all not 1),
the condition for κ−10 · κ01 to be nonpositive – that is, xθ(k0, t0) is FPS (and in fact singular,
by Definition 5.1) with respect to the discrete direction – is

θ ∈ [min(a−1, a1),max(a−1, a1)] ,

where

a∗ =
−σ(1 + ε |g|2)(1 + ε |g∗|2)

4|Δg0∗|2 , ∗ ∈ {−1, 1} ,

and the condition for κ·κ1 to be nonpositive – that is, xθ(k0, t0) is FPS (and in fact singular, by
Definition 5.1) with respect to the smooth direction (with regard to the edge [xθ(k0, t0), xθ(k0+

1, t0)]) – is

θ ∈ [min(b, b1),max(b, b1)] ,

where
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b =
−τ(1 + ε |g|2)2

4|∂g|2 , b1 =
−τ(1 + ε |g1|2)2

4|∂g1|2 .

One can analogously give a condition for xθ(k0, t0) to be singular in the smooth direction
with regard to the edge [xθ(k0 − 1, t0), xθ(k0, t0)].

For notational simplicity, set

α−1(s) := 1 + s|g−1|2, α(s) := 1 + s|g|2, α1(s) := 1 + s|g1|2.
We then have the next theorem.

Theorem 5.2. Let x be a semi-discrete BrLW surface with Gauss map n a semi-discrete
BiLW surface. The condition for κx

−10 · κx
01 (equivalently, κn−10 · κn01) to be nonpositive – that

is, we have an FPS point with respect to the discrete direction – is⎧⎪⎪⎨⎪⎪⎩
{|Δg−1|2(1 + s) − λσ−1α−1(s)α(s)} · {|Δg|2(1 + s) − λσα(s)α1(s)} > 0,

{|Δg−1|2(1 − s) + λσ−1α−1(s)α(s)} · {|Δg|2(1 − s) + λσα(s)α1(s)} < 0,

or ⎧⎪⎪⎨⎪⎪⎩
{|Δg−1|2(1 + s) − λσ−1α−1(s)α(s)} · {|Δg|2(1 + s) − λσα(s)α1(s)} < 0,

{|Δg−1|2(1 − s) + λσ−1α−1(s)α(s)} · {|Δg|2(1 − s) + λσα(s)α1(s)} > 0,

and the condition for κx · κx
1 (equivalently, κn · κn1) to be nonpositive – that is, we have an FPS

point with respect to the smooth direction – is⎧⎪⎪⎨⎪⎪⎩
{|∂g|(1 + s) − λτα(s)2} · {|∂g1|(1 + s) − λτα1(s)2} > 0,

{|∂g|(1 − s) + λτα(s)2} · {|∂g1|(1 − s) + λτα1(s)2} < 0,

or ⎧⎪⎪⎨⎪⎪⎩
{|∂g|(1 + s) − λτα(s)2} · {|∂g1|(1 + s) − λτα1(s)2} < 0,

{|∂g|(1 − s) + λτα(s)2} · {|∂g1|(1 − s) + λτα1(s)2} > 0,

In [23], the second author established a notion of singular edges for semi-discrete surfaces
in Lorentzian spaceforms:

Definition 5.5. An edge [x, x1] of a semi-discrete surface is said to be singular if the
tangent plane at this edge is not spacelike.

With this definition in hand, the second author proved this in [23]: Let g be a semi-discrete
holomorphic function and let x be a semi-discrete maximal surface determined from g by
Equation (1). Then an edge [x, x1] is singular if and only if the tangent circle C at g, g1

intersects the unit circle S1 = {z ∈ C | |z| = 1}.
We now prove the following relationship between singular points and singular edges:

Theorem 5.3. At any singular point x(k, t) of a semi-discrete maximal surface with re-
spect to the discrete direction such that κk−1,k and κk,k+1 are both finite, at least one of the
two adjacent edges is singular.

At any singular point with respect to the smooth direction, the only possibility is that κ is
infinite there and the corresponding image of g lies in S1 there.
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Proof. Proof of the first paragraph:

0 > κ−10 · κ01 =
16|Δg−10|2|Δg01|2

σ−10σ01(1 − |g−1|2)(1 − |g|2)2(1 − |g1|2)
,

and thus 0 > (1 − |g−1|2)(1 − |g1|2), which implies exactly one of g−1 and g1 lies inside S1.
Proof of the second paragraph: By Equation (2), κ cannot change sign, and the result

follows. �

We have the analogous definition for singular edges of semi-discrete CMC 1 surfaces in
S

2,1, as was given for semi-discrete maximal surfaces in R2,1 in [23]:

Definition 5.6. Let n be a semi-discrete CMC 1 surface in S2,1. Then [n, n1] for some
(k, t) ∈ Z×R is a singular edge if the plane (n, n1) spanned by {∂n,Δn, ∂Δn} is not spacelike.

Now, similar to Theorem 1.2 in [23], we have the following proposition, which is prepara-
tory for proving Theorem 5.5 below.

Theorem 5.4. Let n be a semi-discrete CMC 1 surface in S2,1. Then [n, n1] for some
(k, t) ∈ Z × R is a singular edge for all λ sufficiently close to zero if and only if the circle
tangent to ∂g and ∂g1 at g and g1, respectively, intersects S1 transversely.

Proof. By Lemma 4.2, ∂(x + n) ‖ ∂n and Δ(x + n) ‖ Δn, implying that each tangent plane
of x+n at the edge [x+n, x1 +n1] is parallel to the one for x. Thus checking the causality of
a tangent plane of x at [x, x1] is equivalent to checking causality of a tangent plane of x + n
at the edge [x + n, x1 + n1].

Defining F := E
(
1 −g
0 1

)
, we have the following forms:

x + n =
F

det F

(
2

1 − |g|2
(|g|2 g

g 1

))
F

t
,

x1 + n1 =
F

det F

(
2

(1 − λσ)(1 − |g1|2)

(|g1|2 g1

g1 1

))
F

t
,

where F and g satisfy

∂F = F
(
g −g2

1 −g
)
λτ

∂g
, ΔF = F

(
g −gg1

1 −g1

)
λσ

Δg
,
|∂g||∂g1|
|Δg|2 = − τ

σ
.

Then

∂(x + n) =
2

(1 − |g|2)2 det F
FX1F̄t , Δ(x + n) =

2
(1 − λσ)(1 − |g|2)(1 − |g1|2) det F

FX2F̄t ,

where

X1 :=
(
∂g · ḡ + g · ∂ḡ ∂g + g2 · ∂ḡ
∂ḡ + ḡ2∂g ∂g · ḡ + g · ∂ḡ

)
,

X2 :=
( |g1|2 − |g|2 Δg + gg1Δḡ

Δḡ + ḡg1Δg |g1|2 − |g|2
)
+ λσ(1 − |g1|2)

(|g|2 g

ḡ 1

)
.

Because ∂(x + n), Δ(x + n) and ∂(x1 + n1) are coplanar, our task is to find a condition,
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call it condition (C), for the span of X1 and X2 to be non-spacelike for all λ close to zero,
i.e. 〈X1, X1〉〈X2, X2〉 − 〈X1, X2〉2 < 0 (for all λ close to 0), and show that this condition
(C) is equivalent to the circle tangent to ∂g and ∂g1 at g and g1, respectively, intersecting
S

1 transversely. When |g| = 1, respectively |g1| = 1, we know that ∂(x + n), respectively
∂(x1 + n1), itself is lightlike for all λ ∈ R \ {0}, so the tangent plane will certainly not be
spacelike. Thus, it remains only to find the condition (C) when |g| and |g1| are both not 1,
and in this case it is

4|Δg|2|∂g|2(1 − |g|2)(1 − |g1|2) < {(1 − ḡg1)Δg · ∂g + (1 − gg1)Δg · ∂g}2 .
A direct computation verifies that this condition (C) is precisely the condition that the circle
tangent to ∂g and ∂g1 at g and g1, respectively, intersects S1 transversely. �

We now prove the theorem we have been aiming towards:

Theorem 5.5. Consider a point (k, t) in the domain of a semi-discrete CMC 1 surface in
S

2,1. Suppose this point is a singular point with respect to the discrete direction such that
κk−1,k and κk,k+1 are both finite, for all λ sufficiently close to 0. Then at least one of the two
adjacent edges is also singular for all λ sufficiently close to 0.

Proof. From the Weierstrass-type representation, we can write the surface as n in S2,1

given by some semi-discrete holomorphic function g with s = −1, with corresponding HMC
1 surface x in H3 using the same g and same value of s. The assumptions regarding (k, t)
being a singular point for all λ close to 0 imply that none of |g|, |g1| and |g−1| are 1, and also
that g1 and g−1 lie on opposite sides of S1.

By Theorem 5.4, the edge [n(k, t), n(k + 1, t)] is singular for all λ close to zero if and
only if the circle tangent to ∂g and ∂g1 at g and g1, respectively, intersects S1 transversely.
From the above properties of g, g1 and g−1, it is clear that at least one of the two edges
[n(k, t), n(k + 1, t)] and [n(k − 1, t), n(k, t)] is then singular for all λ close to zero. �

Fig.3. Left-hand side: a semi-discrete CMC 1 Enneper cousin in H3
+, right-

hand side: a semi-discrete HMC 1 surface in H3
+ ∪ H3−. The hyperbolic 3-

spacesH3
+ andH3− are visualized here by stereographically projecting within

4-dimensional Minkowski space to a horizontal 3-dimensional spacelike
vector subspace.
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Fig.4. Left-hand side: a semi-discrete CMC 1 Enneper cousin in S2,1, right-
hand side: a semi-discrete HMC 1 surface in S2,1. The de Sitter 3-space S2,1

is visualized here using the hollow ball model (see [7]).
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