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Abstract
The aim of the present work is the introduction of a viscosity type solution, called strong-
viscosity solution emphasizing also a similarity with the existing notion of strong solution
in the literature. It has the following peculiarities: it is a purely analytic object; it can be
easily adapted to more general equations than classical partial differential equations. First, we
introduce the notion of strong-viscosity solution for semilinear parabolic partial differential
equations, defining it, in a few words, as the pointwise limit of classical solutions to perturbed
semilinear parabolic partial differential equations; we compare it with the standard definition of
viscosity solution. Afterwards, we extend the concept of strong-viscosity solution to the case of
semilinear parabolic path-dependent partial differential equations, providing an existence and
uniqueness result.

1. Introduction

1. Introduction
As it is well-known, viscosity solutions represent a cornerstone in the theory of Partial

Differential Equations (PDEs) and their range of application is enormous, see the user’s
guide [10]. Here, we just emphasize the important role they played in the study of semilinear
parabolic partial differential equations. We also emphasize the role of Backward Stochastic
Differential Equations (BSDEs), which constitute a probabilistic counterpart of viscosity
solutions of semilinear parabolic partial differential equation, see the seminal paper [34].

The aim of the present work is the definition of a variant of viscosity type solution, called
strong-viscosity solution to distinguish it from the classical one. Compared to this latter,
for several aspects it seems easier to handle and it can be easily adapted to a large class of
equations.

In recent years, there has been a renewed interest in the study of generalized partial dif-
ferential equations, motivated by the study of Markovian stochastic control problems with
state variable living in an infinite dimensional space (see [13]) or path-dependent problems,
for example, stochastic control problems with delay, see [21]. The theory of backward sto-
chastic differential equations is flexible enough to be extended to deal with both problems,
see, e.g., [24], [25], [36]. From an analytic point of view, regarding infinite dimensional
Markovian problems, there exists in general a corresponding partial differential equation in
infinite dimension, and also the notion of viscosity solution has been extended to deal with
this case, see [12], [43], and [21]. However, uniqueness for viscosity solutions revealed
to be arduous to extend to the infinite dimensional setting and requires, in general, strong
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assumptions on the coefficients of the partial differential equation.
Concerning path-dependent problems, it is still not clear what should be the correspond-

ing analytic characterization in terms of partial differential equations, whose probabilistic
counterpart is represented by the backward stochastic differential equation. A possible so-
lution to this problem is represented by the class of equations introduced in Chapter 9 of
[14] within the framework of Banach space valued calculus, for which we refer also to [22].
Alternatively, [15] introduced the concept of Path-dependent Partial Differential Equation
(PPDE), which could do the job. Even if it is still not completely definite in the literature
what a path-dependent partial differential equation is (indeed, it mainly depends on the def-
inition of functional derivatives adopted), the issue of providing a suitable definition of vis-
cosity solution for path-dependent partial differential equations has already attracted a great
interest, see for example [16, 18, 19, 38, 44], motivated by the fact that regular solutions
to path-dependent PDEs in general exist only under strong assumptions, see Remark 3.8.
We drive the attention in particular to the definition of viscosity solution to path-dependent
PDEs provided by [16, 18, 19, 6, 38], where the classical minimum/maximum property, ap-
pearing in the standard definition of viscosity solution, is replaced with an optimal stopping
problem under nonlinear expectation [17]. Notice that probability plays an essential role
in this latter definition, which can, more properly, be interpreted as a probabilistic version
of the standard definition of viscosity solution, rather than a purely analytic object; indeed,
quite interestingly, the proof of the comparison principle turns out to be nearly a “transla-
tion” into probabilistic terms of the classical proof of the comparison principle, see [38]. We
also emphasize that a similar notion of solution, called stochastic weak solution, has been
introduced in the recent paper [32] in the context of variational inequalities for the Snell
envelope associated to a non-Markovian continuous process X. Those authors also revisit
functional Itô calculus, making use of stopping times. This approach seems very promising.

The paper is organized as follows. First, in Section 2, we develop the theory of strong-
viscosity solutions in the finite dimensional Markovian case, applying it to semilinear par-
abolic partial differential equations. A strong-viscosity supersolution (resp. subsolution) is
defined, in a few words, as the pointwise limit of classical supersolutions (resp. subsolu-
tions) to perturbed semilinear parabolic PDEs. A generalized strong-viscosity solution is
both a strong-viscosity supersolution and a strong-viscosity subsolution. This definition is
more in the spirit of the standard definition of viscosity solution. We also introduce another
definition, simply called strong-viscosity solution, which is defined as the pointwise limit
of classical solutions to perturbed semilinear parabolic PDEs. We notice that the defini-
tion of strong-viscosity solution is similar in spirit to the vanishing viscosity method, which
represents one of the primitive ideas leading to the conception of the modern definition of
viscosity solution and justifies the term viscosity in the name, which is also justified by the
fact that a strong-viscosity solution is not assumed to be differentiable. Our definition is
likewise inspired by the notion of strong solution (which explains the presence of the term
strong in the name), as defined for example in [2], [26], and [27], even though strong so-
lutions are in general required to be more regular than viscosity type solutions. Finally,
we observe that the notion of strong-viscosity solution has also some similarities with the
concept of good solution, which turned out to be equivalent to the definition of Lp-viscosity
solution for certain fully nonlinear partial differential equations, see, e.g., [3], [11], [30], and
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[31].
We prove in Section 2, Theorem 2.10, that every strong-viscosity supersolution (resp.

subsolution) can be represented in terms of a supersolution (resp. subsolution) to a backward
stochastic differential equation. This in turn implies that a comparison principle (Corollary
2.11) for strong-viscosity sub and supersolutions holds and follows from the comparison
theorem for backward stochastic differential equations. In particular, the proof of the com-
parison principle is probabilistic and easier to extend to different contexts than the corre-
sponding analytical proof for classical viscosity solutions, which is based on real analysis’
tools as Ishii’s lemma and the doubling of variables technique. We conclude Section 2 pro-
viding two existence results (Theorem 2.13 and Theorem 2.16) for strong-viscosity solutions
under quite general assumptions.

In Section 3 we extend the notion of strong-viscosity solution to the case of semilinear
parabolic path-dependent partial differential equations, leaving to future research other pos-
sible extensions, e.g., the case of partial differential equations in infinite dimension. For
PPDEs, as already said, a viscosity type solution, meant as a purely analytic object, is still
missing, so we try to fill the gap. As previously noticed, the concept of path-dependent
partial differential equation is still not definite in the literature and, in the present paper, we
adopt the setting developed in the companion paper [9]. However, we notice that, if we
had worked with the definition of functional derivatives and path-dependent partial differen-
tial equation used, e.g., in [15, 5], the same results would hold in that context without any
change, but for notational ones, see [9] for some insights on the link between these different
settings. Let us explain the reasons why we adopt the definitions of [9]. First, in [9] the
time and space variables (t, η) ∈ [0, T ] × C([−T, 0]) play two distinct roles; moreover the
space variable η (i.e., the path) always represents the past trajectory of the process. This is
in complete accordance with the literature on stochastic control problems with delay (see,
e.g., [4] and [21]), which is, for us, one of the main applications of path-dependent partial
differential equations. On the contrary, in [5] the time and space variables are strictly related
to each other; moreover, the path represents the entire trajectory (past, present, and future)
of the process, so that the notion of non-anticipative functional is required, see Definition
2.1 in [5].

We prove in Section 3, Theorem 3.10, a uniqueness result for strong-viscosity solutions
to path-dependent PDEs proceeding as in the finite dimensional Markovian case, i.e., by
means of probabilistic methods based on the theory of backward stochastic differential equa-
tions. We also prove an existence result (Theorem 3.12) for strong-viscosity solutions in
a more restrictive framework, which is based on the idea that a candidate solution to the
path-dependent PDE is deduced from the corresponding backward stochastic differential
equation. The existence proof consists in building a sequence of strict solutions (we prefer
to use the term strict in place of classical, because even the notion of smooth solution can
not be considered classical for path-dependent partial differential equations; indeed, all the
theory is very recent) to perturbed path-dependent PDEs converging to our strong-viscosity
solution. This regularization procedure is performed having in mind the following simple
property: when the coefficients of the path-dependent partial differential equation are smooth
enough the solution is smooth as well, i.e., the solution is strict. In the path-dependent case,
smooth coefficients means cylindrical coefficients, i.e., smooth maps of integrals of regular
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functions with respect to the path, as in the statement of Theorem 3.6.
Finally, we defer some technical results to the Appendix. More precisely, we prove some

basic estimates for path-dependent stochastic differential equations in Lemma A.2. Then,
we state a standard (but, to our knowledge, not at disposal in the literature) estimate for
supersolutions to non-Markovian backward stochastic differential equations, see Proposition
B.1. Afterwards, we prove the limit Theorem C.1 for supersolutions to backward stochastic
differential equations. We conclude the Appendix with a technical result, Lemma D.1, of
real analysis.

2. Strong-viscosity solutions in the Markovian case

2. Strong-viscosity solutions in the Markovian case
In the present section we introduce the notion of strong-viscosity solution in the non-

path-dependent case, for the semilinear parabolic PDE

(2.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂tu(t, x) + 〈b(t, x),Dxu(t, x)〉 + 1

2 tr(σσᵀ(t, x)D2
xu(t, x))

+ f (t, x, u(t, x), σᵀ(t, x)Dxu(t, x)) = 0, ∀ (t, x) ∈ [0, T [×Rd,

u(T, x) = h(x), ∀ x ∈ Rd,

where b : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → Rd×d, f : [0, T ] × Rd × R × Rd → R, and
h : Rd → R satisfy the following assumptions.

(A0) b, σ, f , h are Borel measurable functions satisfying, for some positive constants C
and m,

|b(t, x) − b(t, x′)| + |σ(t, x) − σ(t, x′)| ≤ C|x − x′|,
| f (t, x, y, z) − f (t, x, y′, z′)| ≤ C

(|y − y′| + |z − z′|),
|b(t, 0)| + |σ(t, 0)| ≤ C,

| f (t, x, 0, 0)| + |h(x)| ≤ C
(
1 + |x|m),

for all t ∈ [0, T ], x, x′ ∈ Rd, y, y′ ∈ R, and z, z′ ∈ Rd.

2.1. Notations.
2.1. Notations. We denote by Rd×d the linear space of real matrices of order d. In the all

paper, | · | denotes the absolute value of a real number or the usual Euclidean norm in Rd or
the Frobenius norm in Rd×d.

We fix a complete probability space (Ω, , P) on which a d-dimensional Brownian motion
W = (Wt)t≥0 is defined. Let F = (t)t≥0 denote the completion of the natural filtration
generated by W. We introduce the following spaces of stochastic processes.

• Sp(t, T ), p ≥ 1, t ≤ T , the set of real càdlàg adapted processes Y = (Ys)t≤s≤T such
that

‖Y‖p
Sp(t,T )

:= E
[

sup
t≤s≤T

|Ys|p
]
< ∞.

• Hp(t, T )d, p ≥ 1, t ≤ T , the set of Rd-valued predictable processes Z = (Zs)t≤s≤T

such that

‖Z‖p
Hp(t,T )d

:= E
[( ∫ T

t
|Zs|2ds

) p
2
]
< ∞.
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We simply write Hp(t, T ) when d = 1.
• A+,2(t, T ), t ≤ T , the set of real nondecreasing predictable processes K = (Ks)t≤s≤T ∈
S2(t, T ) with Kt = 0, so that

‖K‖2
S2(t,T )
= E
[
K2

T
]
.

• Lp(t, T ;Rd′), p ≥ 1, t ≤ T , the set of Rd′-valued adapted processes ϕ = (ϕs)t≤s≤T

such that

‖ϕ‖p
Lp(t,T ;Rd′ )

:= E
[ ∫ T

t
|ϕs|pds

]
< ∞.

We also consider, for every (t, x) ∈ [0, T ] × Rd, the stochastic differential equation

(2.2)

⎧⎪⎪⎨⎪⎪⎩
dXs = b(s, Xs)dt + σ(s, Xs)dWs, s ∈ [t, T ],

Xt = x.

It is well-known (see, e.g., Theorem 14.23 in [29]) that, under Assumption (A0), there
exists a unique (up to indistinguishability) F-adapted continuous process Xt,x = (Xt,x

s )s∈[t,T ]

strong solution to equation (2.2).

2.2. First definition of strong-viscosity solution.
2.2. First definition of strong-viscosity solution. We begin recalling the standard defi-

nition of classical solution.

Definition 2.1. A function u : [0, T ] × Rd → R is called classical solution to equation
(2.1) if u ∈ C1,2([0, T [×Rd) ∩C([0, T ] × Rd) and solves (2.1).

We state a uniqueness result for classical solutions.

Proposition 2.2. Suppose that Assumption (A0) holds. Let u : [0, T ] × Rd → R be a
classical solution to equation (2.1), satisfying the polynomial growth condition

(2.3) |u(t, x)| ≤ C′
(
1 + |x|m′), ∀ (t, x) ∈ [0, T ] × Rd,

for some positive constants C′ and m′. Then, the following Feynman-Kac formula holds:

(2.4) u(t, x) = Yt,x
t , ∀ (t, x) ∈ [0, T ] × Rd,

where (Yt,x
s , Zt,x

s )s∈[t,T ] = (u(s, Xt,x
s ), σᵀ(s, Xt,x

s )Dxu(s, Xt,x
s )1[t,T [(s))s∈[t,T ] ∈ S2(t, T )×H2(t, T )d

is the unique solution to the backward stochastic differential equation: P-a.s.,

(2.5) Yt,x
s = h(Xt,x

T ) +
∫ T

s
f (r, Xt,x

r , Yt,x
r , Zt,x

r ) dr −
∫ T

s
Zt,x

r dWr, t ≤ s ≤ T.

In particular, there exists at most one classical solution to equation (2.1) satisfying a poly-
nomial growth condition as in (2.3).

Proof. The proof is standard, even if we have not found an exact reference for it in the
literature. We just give the main ideas. Fix (t, x) ∈ [0, T [×Rd and set, for all t ≤ s ≤ T ,

Yt,x
s = u(s, Xt,x

s ), Zt,x
s = Dxu(s, Xt,x

s ) 1[t,T [(s).

Notice that identity (2.4) holds taking s = t in the first equality. Now, applying Itô’s formula
to u(s, Xt,x

s ) between t and any T0 ∈ [t, T [, and using the fact that u solves equation (2.1), we
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see that (2.5) holds with T0 in place of T and u(T0, X
t,x
T0

) in place of h(Xt,x
T ). To conclude, it is

enough to pass to the limit as T0 ↗ T . This can be done using estimate (B.3) in Proposition
B.1 with K ≡ 0. Finally, we notice that the present result is a slight generalization of
Theorem 3.1 in [34], since u ∈ C1,2([0, T [×Rd) ∩C([0, T ] × Rd) instead of u ∈ C1,2([0, T ] ×
Rd). �

We can now present our first definition of strong-viscosity solution to equation (2.1).

Definition 2.3. A function u : [0, T ] × Rd → R is called a strong-viscosity solution to
equation (2.1) if there exists a sequence (un, hn, fn, bn, σn)n of Borel measurable functions
un : [0, T ] × Rd → R, hn : Rd → R, fn : [0, T ] × Rd × R × Rd → R, bn : [0, T ] × Rd → Rd,
and σn : [0, T ] × Rd → Rd×d, such that the following holds.

(i) For some positive constants C and m,

| bn(t, x) − bn(t, x′) | + |σn(t, x) − σn(t, x′) | ≤ C|x − x′|,
| fn(t, x, y, z) − fn(t, x, y′, z′) | ≤ C

(|y − y′| + |z − z′|),
| bn(t, 0) | + |σn(t, 0) | ≤ C,

| un(t, x) | + | hn(x) | + | fn(t, x, 0, 0) | ≤ C
(
1 + |x|m),

for all t ∈ [0, T ], x, x′ ∈ Rd, y, y′ ∈ R, and z, z′ ∈ Rd. Moreover, the functions un(t, ·),
hn(·), fn(t, ·, ·, ·), n ∈ N, are equicontinuous on compact sets, uniformly with respect
to t ∈ [0, T ].

(ii) un is a classical solution to

(2.6)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂tun(t, x) + 〈bn(t, x),Dxun(t, x)〉 + 1

2 tr(σnσ
ᵀ
n(t, x)D2

xun(t, x))

+ fn(t, x, un(t, x), σᵀn(t, x)Dxun(t, x)) = 0, ∀ (t, x) ∈ [0, T [×Rd,

un(T, x) = hn(x), ∀ x ∈ Rd.

(iii) (un, hn, fn, bn, σn) converges pointwise to (u, h, f , b, σ) as n→ ∞.

Remark 2.4. (i) Notice that, for all t ∈ [0, T ], asking equicontinuity on compact sets
of (un(t, ·))n together with its pointwise convergence to u(t, ·) is equivalent to requiring the
uniform convergence on compact sets of (un(t, ·))n to u(t, ·). The same remark applies to
(hn(·))n and ( fn(t, ·, ·, ·))n.
(ii) In Definition 2.3 we do not assume (A0) for the functions b, σ, f , h. However, we can
easily see that they satisfy automatically (A0) as a consequence of point (i) of Definition
2.3. See also Section 2.3.
(iii) We observe that a strong-viscosity solution to equation (2.1) in the sense of Definition
2.3 is a standard viscosity solution; for a definition we refer, e.g., to [10]. Indeed, since
a strong-viscosity solution u to (2.1) is the limit of classical solutions (so, in particular,
viscosity solutions) to perturbed equations, then from stability results for viscosity solutions
(see, e.g., Lemma 6.1 and Remark 6.3 in [10]), it follows that u is a viscosity solution to
equation (2.1). On the other hand, if a strong-viscosity solution exists and a uniqueness result
for viscosity solutions is in force, then a viscosity solution is a strong-viscosity solution, see
also Remark 2.14. �
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Theorem 2.5. Let Assumption (A0) hold and let u : [0, T ]×Rd → R be a strong-viscosity
solution to equation (2.1). Then, the following Feynman-Kac formula holds

u(t, x) = Yt,x
t , ∀ (t, x) ∈ [0, T ] × Rd,

where (Yt,x
s , Zt,x

s )s∈[t,T ] ∈ S2(t, T ) × H2(t, T )d, with Yt,x
s = u(s, Xt,x

s ), is the unique solution to
the backward stochastic differential equation: P-a.s.,

(2.7) Yt,x
s = h(Xt,x

T ) +
∫ T

s
f (r, Xt,x

r , Yt,x
r , Zt,x

r ) dr −
∫ T

s
Zt,x

r dWr,

for all t ≤ s ≤ T. In particular, there exists at most one strong-viscosity solution to equation
(2.1).

The uniqueness Theorem 2.5 will be proved in Section 2.4, see Remark 2.12.

2.3. Remarks in the case of discontinuous coefficients.
2.3. Remarks in the case of discontinuous coefficients. In the present section we will

need the following additional assumption:

(A0)’ For every (t, x) ∈ [0, T [×Rd, Xt,x
T has an absolutely continuous law with respect to

the Lebesgue measure.

As noticed in Remark 2.4-(ii), in Definition 2.3 we easily see that the coefficients b, σ, f , h
satisfy automatically (A0). It also follows from point (i) of Definition 2.3 that f (t, ·) and h(·)
are continuous, uniformly with respect to t ∈ [0, T ]. However, we can modify Definition 2.3
as follows in order to take into account the case where f and h are discontinuous.

Let Assumptions (A0)-(A0)’ hold. A function u : [0, T ]×Rd → R is called a strong-viscosity
solution to equation (2.1) if there exists a sequence (un, bn, σn)n of Borel measurable func-
tions un : [0, T [×Rd → R, bn : [0, T [×Rd → Rd, and σn : [0, T [×Rd → Rd×d, such that the
following holds.

(i) For some positive constants C and m

| bn(t, x) − bn(t, x′) | + |σn(t, x) − σn(t, x′) | ≤ C|x − x′|,
| bn(t, 0) | + |σn(t, 0) | ≤ C,

| un(t, x) | ≤ C
(
1 + |x|m),

for all t ∈ [0, T [, x, x′ ∈ Rd. Moreover, the function un(t, ·) is equicontinuous on
compact sets, uniformly with respect to t in any compact set of [0, T [.

(ii) un belongs to C1,2([0, T [×Rd) and satisfies

∂tun(t, x) + 〈bn(t, x),Dxun(t, x)〉 + 1
2

tr(σnσ
ᵀ
n(t, x)D2

xun(t, x))

+ f (t, x, un(t, x), σᵀn(t, x)Dxun(t, x)) = 0, ∀ (t, x) ∈ [0, T [×Rd.

(iii) (un, bn, σn) converges pointwise to (u, b, σ) on [0, T [×Rd as n→ ∞.
(iv) The set DT = {x ∈ R : u(·, ·) is discontinuous at (T, x)} has Lebesgue measure equal

to zero.
(v) For some positive constants C and m

|u(t, x)| ≤ C
(
1 + |x|m),
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for all (t, x) ∈ [0, T ] × Rd.
(vi) u(T, x) = h(x) for almost every x ∈ Rd.

Notice that under Assumptions (A0)-(A0)’ there exists at most one strong-viscosity solution
(in the above sense) to equation (2.1). Let us give an idea on how to prove this result: the
proof is an adaptation of the proofs of Theorems 2.5. Given (t, x) ∈ [0, T [×Rd, for every
T0 ∈ [t, T [ we apply Theorem 2.5 on the time interval [t, T0] instead of [t, T ]. Indeed u is a
strong solution (in the sense of Definition 2.3) of (2.1), replacing T with T0. Then, we get
for Yt,x

s = u(s, Xt,x
s ), s ∈ [t, T0],

(2.8) Yt,x
s = u(T0, X

t,x
T0

) +
∫ T0

s
f (r, Xt,x

r , Yt,x
r , Zt,x

r ) dr −
∫ T0

s
Zt,x

r dWr, t ≤ s ≤ T0.

Now, by item (iv) of and (A0)’ that the event N = {ω ∈ Ω : Xt,x
T (ω) ∈ DT } has probability

zero. Then, up to a null subset of Ω, we have

lim
T0→T

u(T0, X
t,x
T0

) = u(T, Xt,x
T ) = h(Xt,x

T ).

We observe that the above limit also holds in L2 since u satisfies the polynomial growth
condition (v). This allows to pass to the limit as T0 → T in (2.8) and to prove that
(Yt,x

s , Zt,x
s )s∈[t,T ] ∈ S2(t, T ) × H2(t, T )d, with Yt,x

s = u(s, Xt,x
s ), is the unique solution to the

backward stochastic differential equation (2.7). From the uniqueness of (Yt,x, Zt,x), and in
particular of Yt,x

t , we conclude that u(t, x) = Yt,x
t , t < T, is uniquely determined. Therefore,

there exists at most one strong-viscosity solution (in the above sense) to equation (2.1). This
shows uniqueness for strong-viscosity solutions in the present sense.

Concerning the existence results, namely Theorems 2.13 and 2.16, they need f and h to be
continuous. However, exploiting more refined results in the theory of regularity of parabolic
equations (e.g., with f and h possibly discontinuous, but σ such that uniform ellipticity
holds), it is potentially possible to prove an existence result for a strong-viscosity solution
in the sense of the above definition. We provide below a simple example where this can be
done. This example also shows that there might be equations of the form (2.1) for which
we have a unique strong-viscosity solution (in the above sense) but infinitely many viscosity
solutions.

Take d = 1, b ≡ 0, σ ≡ 1, f ≡ 0, and h(x) = 1[1,∞[(x) for all x ∈ R. Then equation (2.1)
becomes

(2.9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu(t, x) + 1

2 D2
xu(t, x) = 0, ∀ (t, x) ∈ [0, T [×R,

u(T, x) = 1[1,∞[(x), ∀ x ∈ R.
Notice that Assumptions (A0)-(A0)’ hold, therefore there exists at most one strong-viscosity
solution (in the above sense) to equation (2.9). Indeed, the unique strong-viscosity solution
to equation (2.9) is given by the following explicit formula:

v(t, x) = 1 − Φ
( 1 − x√

T − t

)
, ∀ (t, x) ∈ [0, T [×R, v(T, x) = 1[1,∞[(x), ∀ x ∈ R,

where Φ(z) =
∫ z
−∞

1√
2π

e−
1
2 z2

dz. As a matter of fact, u = v fulfills previous items (iv), (v), (vi).
Moreover v is C1,2([0, T [×Rd), so item (ii) holds with bn ≡ 0 and σn ≡ 1. Items (i) and (iii)
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are also trivially fulfilled: we do not need to regularize the coefficients, so we take un ≡ v.
Finally v a strong-viscosity solution in the sense of the present definition.

Let us now prove that there are infinitely many viscosity solutions to equation (2.9).
Firstly, fix a ∈ [0, 1] and define

va(t, x) = 1 − Φ
( 1 − x√

T − t

)
, ∀ (t, x) ∈ [0, T [×R, va(T, x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, x < 1,

a, x = 1,

1, x > 1,

∀ x ∈ R.

Notice that v ≡ v1. Let us prove that each va is a (discontinuous) viscosity solution to
equation (2.9): we refer for instance to Section 2 in [28] for the definition of discontinu-
ous viscosity solution. As a matter of fact, consider the lower and upper semi-continuous
envelopes of va:

(va)∗(t, x) = lim inf
(s,y)→(t,x)

s<T

va(s, y), (va)∗(t, x) = lim sup
(s,y)→(t,x)

s<T

va(s, y),

for every (t, x) ∈ [0, T ] × R. Notice that (va)∗ ≡ v0 and (va)∗ ≡ v1, for every a ∈ [0, 1]. It is
easy to see that v0 is a viscosity subsolution to equation (2.9), since v0(T, ·) ≤ h, moreover
v0 is C1,2([0, T [×Rd) and solves equation (2.9) on [0, T [×R. Similarly, we see that v1 is
a viscosity supersolution to equation (2.9). This implies that each va is a (discontinuous)
viscosity solution to equation (2.9). We conclude that there is no uniqueness result for
viscosity solutions to equation (2.9).

2.4. Second definition of strong-viscosity solution.
2.4. Second definition of strong-viscosity solution. Our second definition of strong-

viscosity solution to equation (2.1) is more in the spirit of the standard definition of viscosity
solution, which is usually required to be both a viscosity subsolution and a viscosity super-
solution. Indeed, we introduce the concept of generalized strong-viscosity solution, which
has to be both a strong-viscosity subsolution and a strong-viscosity supersolution. As it will
be clear from the definition, this new notion of solution is more general (in other words,
weaker), than the concept of strong-viscosity solution given earlier in Definition 2.3. For
this reason, we added the adjective generalized to its name.

First, we introduce the standard notions of classical sub and supersolution.

Definition 2.6. A function u : [0, T ] × Rd → R is called a classical subsolution (resp.
classical supersolution) to equation (2.1) if u ∈ C1,2([0, T [×Rd)∩C([0, T ]×Rd) and solves⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu(t, x) + 〈b(t, x),Dxu(t, x)〉 + 1
2 tr(σσᵀ(t, x)D2

xu(t, x))

+ f (t, x, u(t, x), σᵀ(t, x)Dxu(t, x)) ≥ (resp. ≤) 0, ∀ (t, x) ∈ [0, T [×Rd,

u(T, x) ≤ (resp. ≥) h(x), ∀ x ∈ Rd.

We state the following probabilistic representation result for classical sub and supersolu-
tions.

Proposition 2.7. Suppose that Assumption (A0) holds.
(i) Let u : [0, T ] × Rd → R be a classical supersolution to equation (2.1), satisfying the
polynomial growth condition

|u(t, x)| ≤ C′
(
1 + |x|m′), ∀ (t, x) ∈ [0, T ] × Rd,
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for some positive constants C′ and m′. Then, we have

u(t, x) = Yt,x
t , ∀ (t, x) ∈ [0, T ] × Rd,

for some uniquely determined (Yt,x
s , Zt,x

s ,K
t,x
s )s∈[t,T ] ∈ S2(t, T ) × H2(t, T )d × A+,2(t, T ), with

(Yt,x
s , Zt,x

s ) = (u(s, Xt,x
s ), σᵀ(s, Xt,x

s )Dxu(s, Xt,x
s )1[t,T [(s)), solving the backward stochastic dif-

ferential equation, P-a.s.,

Yt,x
s = h(Xt,x

T ) +
∫ T

s
f (r, Xt,x

r , Yt,x
r , Zt,x

r ) dr + Kt,x
T − Kt,x

s −
∫ T

s
〈Zt,x

r , dWr〉, t ≤ s ≤ T.

(ii) Let u : [0, T ] × Rd → R be a classical subsolution to equation (2.1), satisfying the
polynomial growth condition

|u(t, x)| ≤ C′
(
1 + |x|m′), ∀ (t, x) ∈ [0, T ] × Rd,

for some positive constants C′ and m′. Then, we have

u(t, x) = Yt,x
t , ∀ (t, x) ∈ [0, T ] × Rd,

for some uniquely determined (Yt,x
s , Zt,x

s ,K
t,x
s )s∈[t,T ] ∈ S2(t, T ) × H2(t, T )d × A+,2(t, T ), with

(Yt,x
s , Zt,x

s ) = (u(s, Xt,x
s ), σᵀ(s, Xt,x

s )Dxu(s, Xt,x
s )1[t,T [(s)), solving the backward stochastic dif-

ferential equation, P-a.s.,

Yt,x
s = h(Xt,x

T ) +
∫ T

s
f (r, Xt,x

r , Yt,x
r , Zt,x

r ) dr − (Kt,x
T − Kt,x

s ) −
∫ T

s
〈Zt,x

r , dWr〉, t ≤ s ≤ T.

Proof. The proof can be done proceeding as in the proof of Proposition 2.2, see Theorem
3.6 in [7]. �

We can now provide the definition of generalized strong-viscosity solution.

Definition 2.8. A function u : [0, T ] × Rd → R is called a strong-viscosity superso-
lution (resp. strong-viscosity subsolution) to equation (2.1) if there exists a sequence
(un, hn, fn, bn, σn)n of Borel measurable functions un : [0, T ] × Rd → R, hn : Rd → R,
fn : [0, T ] × Rd × R × Rd → R, bn : [0, T ] × Rd → Rd, and σn : [0, T ] × Rd → Rd×d,
such that the following holds.

(i) For some positive constants C and m,

| bn(t, x) − bn(t, x′) | + |σn(t, x) − σn(t, x′) | ≤ C|x − x′|,
| fn(t, x, y, z) − fn(t, x, y′, z′) | ≤ C

(|y − y′| + |z − z′|),
| bn(t, 0) | + |σn(t, 0) | ≤ C,

| un(t, x) | + | hn(x) | + | fn(t, x, 0, 0) | ≤ C
(
1 + |x|m),

for all t ∈ [0, T ], x, x′ ∈ Rd, y, y′ ∈ R, and z, z′ ∈ Rd. Moreover, the functions un(t, ·),
hn(·), fn(t, ·, ·, ·), n ∈ N, are equicontinuous on compact sets, uniformly with respect
to t ∈ [0, T ].

(ii) un is a classical supersolution (resp. classical subsolution) to
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂tun(t, x) + 〈bn(t, x),Dxun(t, x)〉 + 1

2 tr(σnσ
ᵀ
n(t, x)D2

xun(t, x))

+ fn(t, x, un(t, x), σᵀn(t, x)Dxun(t, x)) = 0,∀ (t, x) ∈ [0, T [×Rd,

un(T, x) = hn(x), ∀ x ∈ Rd.

(iii) (un, hn, fn, bn, σn) converges pointwise to (u, h, f , b, σ) as n→ ∞.

A function u : [0, T ] × Rd → R is called a generalized strong-viscosity solution to equation
(2.1) if it is both a strong-viscosity supersolution and a strong-viscosity subsolution to (2.1).

Remark 2.9. Notice that a strong-viscosity subsolution (resp. supersolution) to equation
(2.1) in the sense of Definition 2.8 is a standard viscosity subsolution (resp. supersolution),
as it follows for instance from Lemma 6.1 and Remark 6.3 in [10]. As a consequence, a
generalized strong-viscosity solution is a standard viscosity solution. �

We can now state the following probabilistic representation result for strong-viscosity sub
and supersolutions, that is one of the main results of this paper, from which the comparison
principle will follow in Corollary 2.11.

Theorem 2.10. (1) Let u : [0, T ]×Rd → R be a strong-viscosity supersolution to equation
(2.1). Then, we have

u(t, x) = Yt,x
t , ∀ (t, x) ∈ [0, T ] × Rd,

for some uniquely determined (Yt,x
s , Zt,x

s ,K
t,x
s )s∈[t,T ] ∈ S2(t, T ) × H2(t, T )d × A+,2(t, T ), with

Yt,x
s = u(s, Xt,x

s ), solving the backward stochastic differential equation, P-a.s.,

(2.10) Yt,x
s = Yt,x

T +

∫ T

s
f (r, Xt,x

r , Yt,x
r , Zt,x

r ) dr+Kt,x
T −Kt,x

s −
∫ T

s
〈Zt,x

r , dWr〉, t ≤ s ≤ T.

(2) Let u : [0, T ] × Rd → R be a strong-viscosity subsolution to equation (2.1). Then, we
have

u(t, x) = Yt,x
t , ∀ (t, x) ∈ [0, T ] × Rd,

for some uniquely determined (Yt,x
s , Zt,x

s ,K
t,x
s )s∈[t,T ] ∈ S2(t, T ) × H2(t, T )d × A+,2(t, T ), with

Yt,x
s = u(s, Xt,x

s ), solving the backward stochastic differential equation, P-a.s.,

(2.11) Yt,x
s = Yt,x

T +

∫ T

s
f (r, Xt,x

r , Yt,x
r , Zt,x

r ) dr−(Kt,x
T −Kt,x

s
)−
∫ T

s
〈Zt,x

r , dWr〉, t ≤ s ≤ T.

Proof. We shall only prove statement (1), since (2) can be established similarly. To prove
(1), consider a sequence (un, hn, fn, bn, σn)n satisfying conditions (i)-(iii) of Definition 2.8.
For every n ∈ N and any (t, x) ∈ [0, T ] × Rd, consider the stochastic equation, P-a.s.,

Xs = x +
∫ s

t
bn(r, Xr) dr +

∫ s

t
σn(r, Xr) dWr, t ≤ s ≤ T.

It is well-known that there exists a unique solution (Xn,t,x
s )s∈[t,T ] to the above equation. More-

over, from Proposition 2.7 we know that un(t, x) = Yn,t,x
t , (t, x) ∈ [0, T ] × Rd, for some

(Yn,t,x
s , Zn,t,x

s , Kn,t,x
s )s∈[t,T ] ∈ S2(t, T ) × H2(t, T )d × A+,2(t, T ) solving the backward stochastic

differential equation, P-a.s.,
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Yn,t,x
s = Yn,t,x

T +

∫ T

s
fn(r, Xn,t,x

r , Yn,t,x
r , Zn,t,x

r ) dr+Kn,t,x
T −Kn,t,x

s −
∫ T

s
〈Zn,t,x

r , dWr〉, t ≤ s ≤ T.

Notice that, from the uniform polynomial growth condition of (un)n and estimate (A.4) in
Lemma A.2 (for the particular case when bn and σn only depend on the current value of
path, rather than on all its past trajectory) we have, for any p ≥ 1,

sup
n∈N
‖Yn,t,x‖Sp(t,T ) < ∞.

Then, it follows from Proposition B.1, the polynomial growth condition of ( fn)n in x, and
the linear growth condition of ( fn)n in (y, z), that

sup
n

(‖Zn,t,x‖H2(t,T )d + ‖Kn,t,x‖S2(t,T )
)
< ∞.

Set Yt,x
s = u(s, Xt,x

s ), for any s ∈ [t, T ]. Then, from the polynomial growth condition that u
inherits from the sequence (un)n, and using estimate (A.4) in Lemma A.2 (for the particular
case of non-path-dependent bn and σn), we deduce that ‖Yt,x‖Sp(t,T ) < ∞, for any p ≥ 1. In
particular, Y ∈ S2(t, T ) and it is a continuous process. We also have, using the convergence
result (A.5) in Lemma A.2 (for the particular case of non-path-dependent bn and σn), that
there exists a subsequence of (Xn,t,x)n, which we still denote (Xn,t,x)n, such that

(2.12) sup
t≤s≤T

|Xn,t,x
s (ω) − Xt,x

s (ω)| n→∞−→ 0, ∀ω ∈ Ω\N,

for some null measurable set N ⊂ Ω. Moreover, from estimate (A.4) in Lemma A.2 (for
the particular case of non-path-dependent bn and σn) it follows that, possibly enlarging N,
supt≤s≤T (|Xt,x

s (ω)| + |Xn,t,x
s (ω)|) < ∞, for any n ∈ N and any ω ∈ Ω\N. Now, fix ω ∈ Ω\N;

then

|Yn,t,x
s (ω) − Yt,x

s (ω)| = |un(s, Xn,t,x
s (ω)) − u(s, Xt,x

s (ω))|
= |un(s, Xn,t,x

s (ω)) − un(s, Xt,x
s (ω))| + |un(s, Xt,x

s (ω)) − u(s, Xt,x
s (ω))|.

For any ε > 0, from point (iii) of Definition 2.8 it follows that there exists n′ ∈ N such that

|un(s, Xt,x
s (ω)) − u(s, Xt,x

s (ω))| < ε

2
, ∀ n ≥ n′.

On the other hand, from the equicontinuity on compact sets of (un)n, we see that there exists
δ > 0, independent of n, such that

|un(s, Xn,t,x
s (ω)) − un(s, Xt,x

s (ω))| < ε

2
, if |Xn,t,x

s (ω) − Xt,x
s (ω)| < δ.

Using (2.12), we can find n′′ ∈ N, n′′ ≥ n′, such that

sup
t≤s≤T

|Xn,t,x
s (ω) − Xt,x

s (ω)| < δ, ∀ n ≥ n′′.

In conclusion, for any ω ∈ Ω\N and any ε > 0 there exists n′′ ∈ N such that

|Yn,t,x
s (ω) − Yt,x

s (ω)| < ε, ∀ n ≥ n′′.

Therefore, Yn,t,x
s (ω) converges to Yt,x

s (ω), as n tends to infinity, for any (s, ω) ∈ [t, T ]×(Ω\N).
In a similar way, we can prove that there exists a null measurable set N′ ⊂ Ω such that
fn(s, Xn,t,x

s (ω), y, z)→ f (s, Xt,x
s (ω), y, z), for any (s, ω, y, z) ∈ [t, T ] × (Ω\N′) × R × Rd. As a
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consequence, the claim follows from Theorem C.1. �

We can finally state a comparison principle for strong-viscosity sub and supersolutions,
which follows directly from the comparison theorem for BSDEs, for which we refer for
instance to Theorem 1.3 in [35].

Corollary 2.11 (Comparison principle). Let ǔ : [0, T ] × Rd → R (resp. û : [0, T ] × Rd →
R) be a strong-viscosity subsolution (resp. strong-viscosity supersolution) to equation (2.1).
Then ǔ ≤ û on [0, T ]×Rd. In particular, there exists at most one generalized strong-viscosity
solution to equation (2.1).

Remark 2.12. (i) Notice that Theorem 2.5 follows from Corollary 2.11, since a strong-
viscosity solution (Definition 2.3) is in particular a generalized strong-viscosity solution.

(ii) There is no universal result concerning uniqueness for (classical) viscosity solutions.
There are only partial results, which impose several assumptions on the coefficients, for
instance Theorem 7.4 in [28]. �

Proof. We know that ǔ(T, x) ≤ g(x) ≤ û(T, x), for all x ∈ Rd. Moreover, from Theorem
2.10 we have

ǔ(t, x) = Y̌ t,x
t , û(t, x) = Ŷ t,x

t , for all (t, x) ∈ [0, T ] × Rd,

for some (Y̌ t,x
s , Žt,x

s , Ǩ
t,x
s )s∈[t,T ], (Ŷ t,x

s , Ẑt,x
s , K̂

t,x
s )s∈[t,T ] ∈ S2(t, T )×H2(t, T )d ×A+,2(t, T ) satisfy-

ing (2.11) and (2.10), respectively. Then, the result follows from a direct application of the
comparison theorem for backward stochastic differential equations, see, e.g., Theorem 1.3
in [35]. �

Now, we present two existence (and uniqueness) results for strong-viscosity solutions to
equation (2.1).

Theorem 2.13. Let Assumption (A0) hold and suppose that b = b(x) and σ = σ(x) do
not depend on t. Suppose also that the functions f and h are continuous. Then, the function
u given by

(2.13) u(t, x) = Yt,x
t , ∀ (t, x) ∈ [0, T ] × Rd,

where (Yt,x
s , Zt,x

s )s∈[t,T ] ∈ S2(t, T ) × H2(t, T )d is the unique solution to (2.7), is a strong-
viscosity solution to equation (2.1).

Remark 2.14. Since the seminal paper [34], we know that the function defined in (2.13)
is a viscosity solution. �

Proof (of Theorem 2.13). Let us fix some notations. Let q ∈ N\{0} and consider the
function φq ∈ C∞(Rq) given by

φq(w) = c exp
( 1
|w|2 − 1

)
1{|w|<1}, ∀w ∈ Rq,

with c > 0 such that
∫
Rq φq(w)dw = 1. Then, we define φq,n(w) = nqφq(nw), ∀w ∈ Rq, n ∈ N.

Let us now define, for any n ∈ N,
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bn(x) =
∫
Rd
φd,n(x′) b(x − x′) dx′, σn(x) =

∫
Rd
φd,n(x′)σ(x − x′) dx′,

fn(t, x, y, z) =
∫
Rd×R×Rd

φ2d+1,n(x′, y′, z′) f (t, x − x′, y − y′, z − z′) dx′dy′dz′,

hn(x) =
∫
Rd
φd,n(x′) h(x − x′) dx′,

for all (t, x, y, z) ∈ [0, T ] × Rd × R × Rd. Then, we see that the sequence of continuous
functions (bn, σn, fn, hn)n satisfies assumptions (i) and (iii) of Definition 2.3. Moreover, for
any n ∈ N we have the following.

• bn and σn are of class C3 with partial derivatives from order 1 up to order 3 bounded.
• For all t ∈ [0, T ], fn(t, ·, ·, ·) ∈ C3(Rd × R × Rd) and the two properties below.

– fn(t, ·, 0, 0) belongs to C3 and its third order partial derivatives satisfy a polyno-
mial growth condition uniformly in t.

– Dy fn, Dz fn are bounded on [0, T ] × Rd × R × Rd, as well as their derivatives of
order one and second with respect to x, y, z.

• hn ∈ C3(Rd) and its third order partial derivatives satisfy a polynomial growth con-
dition.

Therefore, it follows from Theorem 3.2 in [34] that a classical solution to equation (2.6) is
given by

(2.14) un(t, x) = Yn,t,x
t , ∀ (t, x) ∈ [0, T ] × Rd,

where (Yn,t,x
s , Zn,t,x

s )s∈[t,T ] ∈ S2(t, T ) × H2(t, T )d is the unique solution to the backward sto-
chastic differential equation: P-a.s.,

Yn,t,x
s = hn(Xn,t,x

T ) +
∫ T

s
fn(r, Xn,t,x

r , Yn,t,x
r , Zn,t,x

r ) dr −
∫ T

s
Zn,t,x

r dWr, t ≤ s ≤ T,

with

Xn,t,x
s = x +

∫ s

t
bn(r, Xn,t,x

r ) dr +
∫ s

t
σn(r, Xn,t,x

r ) dWr, t ≤ s ≤ T.

From (2.14), Proposition B.1, and estimate (A.4), we see that un satisfies a polynomial
growth condition uniform in n. It remains to prove that the sequence (un)n converges point-
wise to u as n → ∞, and that the functions un(t, ·), n ∈ N, are equicontinuous on compact
sets, uniformly with respect to t ∈ [0, T ]. Concerning this latter property, fix t ∈ [0, T ], a
compact subset K ⊂ Rd, and ε > 0. We have to prove that there exists δ = δ(ε,K) such that

(2.15) |un(t, x) − un(t, x′)| ≤ ε, if |x − x′| ≤ δ, x, x′ ∈ K.

To this end, we begin noting that from estimate (B.3) we have that there exists a constant C,
independent of n, such that

|un(t, x) − un(t, x′)|2 ≤ C E
[∣∣∣hn(Xn,t,x

T ) − hn(Xn,t,x′
T )
∣∣∣2]

+C
∫ T

t
E
[∣∣∣ fn(s, Xn,t,x

s , Yn,t,x
s , Zn,t,x

s ) − fn(s, Xn,t,x′
s , Yn,t,x

s , Zn,t,x
s )
∣∣∣2] ds,

for all t ∈ [0, T ] and x, x′ ∈ Rd. In order to prove (2.15), we also recall the following
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standard estimate: for any p ≥ 2 there exists a positive constant Cp, independent of n, such
that

E
[∣∣∣Xn,t,x

s − Xn,t,x′
s

∣∣∣p] ≤ Cp|x − x′|p,
for all t ∈ [0, T ], s ∈ [t, T ], x, x′ ∈ Rd, n ∈ N. Now, choose p > d, R > 0, and α ∈]0, p − d[.
Then, it follows from Garsia-Rodemich-Rumsey lemma (see, in particular, formula (3a.2)
in [1]) that, for all t ∈ [0, T ], s ∈ [t, T ], x, x′ ∈ Rd, n ∈ N,

(2.16) |Xn,t,x
s − Xn,t,x′

s | ≤ (Γn,t
s )1/p|x − x′|α/p,

for some process Γn,t = (Γn,t
s )s∈[t,T ] given by

Γn,t
s = Cd 8p 2α

(
1 +

2d
α

) ∫
{(y,y′)∈R2d : |y|,|y′|≤R}

|Xn,t,y
s − Xn,t,y′

s |
|y − y′|α+2d dydy′

and

(2.17) E
[
Γn,t

s
] ≤ Cd Cp

1
(p − d) − αRp−α,

where Cd is a universal constant depending only on d.
Now, let us prove that

(2.18) E
[∣∣∣hn(Xn,t,x

T ) − hn(Xn,t,x′
T )
∣∣∣2] ≤ ε, if |x − x′| ≤ δ, x, x′ ∈ K.

Let x, x′ ∈ K and let m be a strictly positive integer to be chosen later. Then, consider the
event (we omit the dependence on t, x)

Ωn,m =
{
ω ∈ Ω : Γn,t

T (ω) ≤ m, |Xn,t,x
T (ω)| ≤ m

}
.

From (2.16) we see that, onΩn,m, Xn,t,x′
T is also uniformly bounded by a constant independent

of n, t, x, x′, since x, x′ ∈ K. In particular, from the equicontinuity on compact sets of the
sequence (hn)n, it follows that there exists a continuity modulus ρ (depending on K, but
independent of n) such that

E
[∣∣∣hn(Xn,t,x

T ) − hn(Xn,t,x′
T )
∣∣∣2] ≤ E[ρ2(|Xn,t,x

T − Xn,t,x′
T |)1Ωn,m

]
+ E
[∣∣∣hn(Xn,t,x

T ) − hn(Xn,t,x′
T )
∣∣∣21Ωc

n,m

]
.

By (2.16) and Cauchy-Schwarz inequality

E
[∣∣∣hn(Xn,t,x

T ) − hn(Xn,t,x′
T )
∣∣∣2] ≤ ρ2(m1/p|x − x′|α/p)
+

√
E
[∣∣∣hn(Xn,t,x

T ) − hn(Xn,t,x′
T )
∣∣∣4]√P(Γn,t

T > m) + P(Xn,t,x
T > m).

From the standard inequalities |a − b|4 ≤ 8(a4 + b4), ∀ a, b ∈ R, and
√

c + d ≤ √c +
√

d,
∀ c, d ≥ 0, we see that√

E
[∣∣∣hn(Xn,t,x

T ) − hn(Xn,t,x′
T )
∣∣∣4] ≤

√
8E
[∣∣∣hn(Xn,t,x

T )
∣∣∣4] +

√
8E
[∣∣∣hn(Xn,t,x′

T )
∣∣∣4].

Now, using this estimate, the polynomial growth condition of hn (uniform in n), estimate
(A.4), estimate (2.17), and Chebyshev’s inequality, we obtain
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√
E
[∣∣∣hn(Xn,t,x

T ) − hn(Xn,t,x′
T )
∣∣∣4] ≤ CK ,

P(Γn,t
T > m) ≤ E

[
Γ

n,t
T
]

m
≤ CK

m
,

P(Xn,t,n
T > m) ≤ E

[|Xn,t,x
T |]

m
≤ CK

m
,

for some positive constant CK , possibly depending on K (in particular, on x and x′), but
independent of n, t. Therefore, we see that we can find m = m(ε,K) large enough such that

E
[∣∣∣hn(Xn,t,x

T ) − hn(Xn,t,x′
T )
∣∣∣2] ≤ ρ2(m1/p|x − x′|α/p) + ε

2
.

Then, there exists δ = δ(ε,K) > 0 such that (2.18) holds. In a similar way we can prove that,
possibly taking a smaller δ = δ(ε,K) > 0, we have

(2.19) E
[∣∣∣ fn(s, Xn,t,x

s , Yn,t,x
s , Zn,t,x

s ) − fn(s, Xn,t,x′
s , Yn,t,x

s , Zn,t,x
s )
∣∣∣2] ≤ ε,

if |x − x′| ≤ δ, x, x′ ∈ K, ∀ s ∈ [t, T ]. By (2.18) and (2.19) we deduce the validity of (2.15).
Finally, let us prove the pointwise convergence of the sequence (un)n to u. Using again

estimate (B.3), we find

|un(t, x) − u(t, x)|2 ≤ C E
[∣∣∣hn(Xn,t,x

T ) − h(Xt,x
T )
∣∣∣2](2.20)

+C
∫ T

t
E
[∣∣∣ fn(s, Xn,t,x

s , Yt,x
s , Zt,x

s ) − f (s, Xt,x
s , Y

t,x
s , Zt,x

s )
∣∣∣2] ds,

∀ (t, x) ∈ [0, T ] × Rd, n ∈ N, for some constant C, independent of n and depending only on
the (uniform in n) Lipschitz constant of fn with respect to (y, z). By the uniform convergence
on compact sets of (hn(·), fn(t, ·, y, z))n to (h(·), f (t, ·, y, z)), we have, P-a.s.,

hn(Xn,t,x
T )

n→∞−→ h(Xt,x
T ),(2.21)

fn(s, Xn,t,x
s , Yt,x

s , Zt,x
s )

n→∞−→ f (s, Xt,x
s , Y

t,x
s , Zt,x

s ),(2.22)

for all s ∈ [t, T ]. By Assumption (A0) and the polynomial growth condition of hn, fn, un (uni-
form in n), estimates (A.2) and (A.4), Proposition B.1, we can prove the uniform integrabil-
ity of the sequences (|hn(Xn,t,x

T )−h(Xt,x
T )|2)n and (| fn(s, Xn,t,x

s , Yt,x
s , Zt,x

s )− f (s, Xt,x
s , Y

t,x
s , Zt,x

s )|2)n,
∀ s ∈ [t, T ]. This, together with (2.21)-(2.22), implies that

E
[∣∣∣hn(Xn,t,x

T ) − h(Xt,x
T )
∣∣∣2] n→∞−→ 0,

E
[∣∣∣ fn(s, Xn,t,x

s , Yt,x
s , Zt,x

s ) − f (s, Xt,x
s , Y

t,x
s , Zt,x

s )
∣∣∣2] n→∞−→ 0,

for all s ∈ [t, T ]. From the second convergence, the polynomial growth condition of f and
fn (uniform in n), estimates (A.2) and (A.4), it follows that

lim
n→∞

∫ T

t
E
[∣∣∣ fn(s, Xn,t,x

s , Yt,x
s , Zt,x

s ) − f (s, Xt,x
s , Y

t,x
s , Zt,x

s )
∣∣∣2] ds = 0.

In conclusion, we can pass to the limit in (2.20) as n → ∞, and we obtain the pointwise
convergence of (un)n to u. �
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Remark 2.15. Notice that Theorem 2.13 gives an existence result for strong-viscosity
solutions (see Definition 2.3) to equation (2.1), which implies an existence result for gen-
eralized strong-viscosity solutions (see Definition 2.8). In Section 3 we will consider only
Definition 2.3 and extend it to the path-dependent case. �

We conclude this section providing another existence result for strong-viscosity solutions
to equation (2.1) under a different set of assumptions with respect to Theorem 2.13. In
particular, f = f (t, x) does not depend on (y, z), while b and σ can depend on t.

Theorem 2.16. Let Assumption (A0) hold and suppose that f = f (t, x) does not depend
on (y, z). Suppose also that the functions f and h are continuous. Then, the function u given
by

u(t, x) = Yt,x
t , ∀ (t, x) ∈ [0, T ] × Rd,

where (Yt,x
s , Zt,x

s )s∈[t,T ] ∈ S2(t, T ) × H2(t, T )d is the unique solution to (2.7), is a strong-
viscosity solution to equation (2.1).

Proof. The proof can be done proceeding as in the proof of Theorem 2.13, by smoothing
the coefficients, but using Theorem 6.1, Chapter 5, in [23] instead of Theorem 3.2 in [34].

�

3. Strong-viscosity solutions in the path-dependent case

3. Strong-viscosity solutions in the path-dependent case
One of the goals of the present section is to show that the notion of strong-viscosity so-

lution is very flexible and easy to extend, with respect to the standard notion of viscosity
solution, to more general settings than the Markovian one. In particular, we focus on semi-
linear parabolic path-dependent PDEs.

3.1. Semilinear parabolic path-dependent PDEs.
3.1. Semilinear parabolic path-dependent PDEs. Let us denote by C([−T, 0]) the Ba-

nach space of all continuous paths η : [−T, 0] → R endowed with the supremum norm
‖η‖ = supt∈[−T,0] |η(t)|. Let us consider the following semilinear parabolic path-dependent
PDE (for simplicity of notation, we consider the unidimensional case, with η taking values
in R):

(3.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂t + DH

 + b(t, η)DV
 + 1

2σ(t, η)2DVV


+ F(t, η, , σ(t, η)DV
 ) = 0, ∀ (t, η) ∈ [0, T [×C([−T, 0]),

 (T, η) = H(η), ∀ η ∈ C([−T, 0]),

where DH
 , DV

 , DVV
 are the functional derivatives introduced in [9], whose definition

is recalled below. Concerning the coefficients b : [0, T ] × C([−T, 0]) → R, σ : [0, T ] ×
C([−T, 0]) → R, F : [0, T ] × C([−T, 0]) × R × R → R, and H : C([−T, 0]) → R of equation
(3.1), we shall impose the following assumptions.

(A1) b, σ, F, H are Borel measurable functions satisfying, for some positive constants C
and m,

|b(t, η) − b(t, η′)| + |σ(t, η) − σ(t, η′)| ≤ C‖η − η′‖,
|F(t, η, y, z) − F(t, η, y′, z′)| ≤ C

(|y − y′| + |z − z′|),
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|b(t, 0)| + |σ(t, 0)| ≤ C,

|F(t, η, 0, 0)| + |H(η)| ≤ C
(
1 + ‖η‖m),

for all t ∈ [0, T ], η, η′ ∈ C([−T, 0]), y, y′, z, z′ ∈ R.

3.2. Recall on functional Itô calculus.
3.2. Recall on functional Itô calculus. In the present subsection we recall the results of

functional Itô calculus needed later, without pausing on the technicalities and focusing on
the intuition. For all technical details and rigorous definitions, we refer to [9].

We begin introducing the functional derivatives. To this end, it is useful to think of
 =  (t, η) as  =  (t, η(·)1[−T,0[ + η(0)1{0}), in order to emphasize the past η(·)1[−T,0[

and present η(0) of the path η. Then, we can give, at least formally, the following definitions,
see Definition 2.23 in [9].

• Horizontal derivative. We look at the sensibility of  with respect to a constant extension
of the past η(·)1[−T,0[, keeping fixed the present value at η(0):

DH
 (t, η) := lim

ε→0+

 (t, η(·)1[−T,0[ + η(0)1{0}) − (t, η(· − ε)1[−T,0[ + η(0)1{0})
ε

.

• First vertical derivative. We look at the first variation with respect to the present, with the
past fixed:

DV
 (t, η) := lim

ε→0

 (t, η(·)1[−T,0[ + (η(0) + ε)1{0}) − (t, η(·)1[−T,0[ + η(0)1{0})
ε

.

• Second vertical derivative. We look at the second variation with respect to the present,
with the past fixed:

DVV
 (t, η) := lim

ε→0

DV
 (t, η(·)1[−T,0[ + (η(0) + ε)1{0}) − DV

 (t, η(·)1[−T,0[ + η(0)1{0})
ε

.

Given I = [0, T [ or I = [0, T ], we say that  : I × C([−T, 0]) → R is of class C1,2((I ×
past)×present)) if, roughly speaking, ∂t , DH

 , DV
 , and DVV

 exist and are continuous
together with  , for a rigorous definition we refer to [9], Definition 2.28.

We can finally state the functional Itô formula. Firstly, we fix some notation. As in Sec-
tion 2, we consider a complete probability space (Ω, , P). Given a real-valued continuous
process X = (Xt)t∈[0,T ] on (Ω, ,P), we extend it to all t ∈ R in a canonical way as follows:
Xt := X0, t < 0, and Xt := XT , t > T ; then, we associate to X the so-called window process
X = (Xt)t∈R, which is a C([−T, 0])-valued process given by

Xt := {Xt+s, s ∈ [−T, 0]}, t ∈ R.
Theorem 3.1. Let  : [0, T ] ×C([−T, 0])→ R be of class C1,2(([0, T ] × past) × present)

and X = (Xt)t∈[0,T ] be a real continuous finite quadratic variation process. Then, the follow-
ing functional Itô formula holds, P-a.s.,

 (t,Xt) =  (0,X0) +
∫ t

0

(
∂t (s,Xs) + DH

 (s,Xs)
)

ds +
∫ t

0
DV

 (s,Xs) d−Xs

+
1
2

∫ t

0
DVV

 (s,Xs) d[X]s,

for all 0 ≤ t ≤ T.
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Remark 3.2. (i) The term
∫ t

0 DV
 (s,Xs)d−Xs denotes the forward integral of DV

 (·,X·)
with respect to X defined by regularization (see, e.g., [39, 40, 42]), which coincides with the
classical stochastic integral whenever X is a semimartingale.

(ii) In the non-path-dependent case  (t, η) = F(t, η(0)), for any (t, η) ∈ [0, T ] × C([−T, 0]),
with F ∈ C1,2([0, T ] × R), we retrieve the finite-dimensional Itô formula, see Theorem 2.1
of [41]. �

3.3. Recall on strict solutions.
3.3. Recall on strict solutions. We recall the concept of strict solution to equation (3.1)

from Section 3 in [9].

Definition 3.3. A map  : [0, T ] × C([−T, 0]) → R in C1,2(([0, T [×past) × present) ∩
C([0, T ]×C([−T, 0])), satisfying equation (3.1), is called a strict solution to equation (3.1).

We present now a probabilistic representation result, for which we adopt the same nota-
tions as in Section 2.1, with dimension d = 1. First, we recall some preliminary results.
More precisely, for any (t, η) ∈ [0, T ] ×C([−T, 0]), we consider the path-dependent SDE

(3.2)

⎧⎪⎪⎨⎪⎪⎩
dXs = b(s,Xs) dt + σ(s,Xs) dWs, s ∈ [t, T ],

Xs = η(s − t), s ∈ [−T + t, t].

Proposition 3.4. Under Assumption (A1), for any (t, η) ∈ [0, T ] ×C([−T, 0]) there exists
a unique (up to indistinguishability) F-adapted continuous process Xt,η = (Xt,η

s )s∈[−T+t,T ]

strong solution to equation (3.2). Moreover, for any p ≥ 1 there exists a positive constant
Cp such that

(3.3) E
[

sup
s∈[−T+t,T ]

∣∣∣Xt,η
s

∣∣∣p] ≤ Cp
(
1 + ‖η‖p).

Proof. See Lemma A.1. �

Theorem 3.5. Suppose that Assumption (A1) holds. Let  : [0, T ] × C([−T, 0])→ R be
a strict solution to equation (3.1) satisfying the polynomial growth condition

(3.4) | (t, η)| ≤ C′
(
1 + ‖η‖m′), ∀ (t, η) ∈ [0, T ] ×C([−T, 0]),

for some positive constants C′ and m′. Then, the following Feynman-Kac formula holds

 (t, η) = Yt,η
t , ∀ (t, η) ∈ [0, T ] ×C([−T, 0]),

where (Yt,η
s , Zt,η

s )s∈[t,T ] = ( (s,Xt,η
s ), σ(s,Xt,η

s )DV
 (s,Xt,η

s )1[t,T [(s))s∈[t,T ] ∈ S2(t, T ) ×
H2(t, T ) is the unique solution to the backward stochastic differential equation: P-a.s.,

Yt,η
s = H(Xt,η

T ) +
∫ T

s
F(r,Xt,η

r , Y
t,η
r , Zt,η

r ) dr −
∫ T

s
Zt,η

r dWr, t ≤ s ≤ T.

In particular, there exists at most one strict solution to equation (3.1) satisfying a polynomial
growth condition as in (3.4).

Proof. See Theorem 3.4 in [9]. �

We state the following existence result.
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Theorem 3.6. Suppose that there exists N ∈ N\{0} such that, for all (t, η, y, z) ∈ [0, T ] ×
C([−T, 0]) ×R × R

b(t, η) = b̄
( ∫

[−t,0]
ϕ1(x + t) d−η(x), . . . ,

∫
[−t,0]

ϕN(x + t) d−η(x)
)
,

σ(t, η) = σ̄
( ∫

[−t,0]
ϕ1(x + t) d−η(x), . . . ,

∫
[−t,0]

ϕN(x + t) d−η(x)
)
,

F(t, η, y, z) = F̄
(
t,
∫

[−t,0]
ϕ1(x + t) d−η(x), . . . ,

∫
[−t,0]

ϕN(x + t) d−η(x), y, z
)
,

H(η) = H̄
( ∫

[−T,0]
ϕ1(x + T ) d−η(x), . . . ,

∫
[−T,0]

ϕN(x + T ) d−η(x)
)
,

where (we refer to Definition 2.4(i) in the companion paper [9] for a definition of the forward
integral with respect to η) the following assumptions are made.

(i) b̄, σ̄, F̄, H̄ are continuous and satisfy Assumption (A0).
(ii) b̄ and σ̄ are of class C3 with partial derivatives from order 1 up to order 3 bounded.

(iii) For all t ∈ [0, T ], F̄(t, ·, ·, ·) ∈ C3(RN+2) and moreover we assume the validity of the
properties below.
(a) F̄(t, ·, 0, 0) belongs to C3 and its third order partial derivatives satisfy a poly-

nomial growth condition uniformly in t.
(b) DyF̄, DzF̄ are bounded on [0, T ] × RN × R × R, as well as their derivatives of

order one and second with respect to x1, . . . , xN , y, z.
(iv) H̄ ∈ C3(RN) and its third order partial derivatives satisfy a polynomial growth

condition.
(v) ϕ1, . . . , ϕN ∈ C2([0, T ]).

Then, the map  given by

 (t, η) = Yt,η
t , ∀ (t, η) ∈ [0, T ] ×C([−T, 0]),

where (Yt,η
s , Zt,η

s )s∈[t,T ] ∈ S2(t, T ) ×H2(t, T ) is the unique solution to (3.7), is a strict solution
to equation (3.1).

Proof. See Theorem 3.6 in [9]. �

Remark 3.7. Notice that in Theorem 3.6 the functions b̄ and σ̄ do not depend on time.
For the case where b̄ and σ̄ are time-dependent, we refer to Theorem 3.5 in [9]. Notice that,
in this case, F = F(t, η) does not depend on (y, z). �

3.4. Strong-viscosity solutions.
3.4. Strong-viscosity solutions. In the present section, we introduce the notion of (path-

dependent) strong-viscosity solution to equation (3.1). To do it, we extend in a natural way
Definition 2.3 to the present path-dependent case, see also Remark 2.15.

Remark 3.8. As a motivation for the introduction of a viscosity type solution for path-
dependent PDEs, let us consider the following hedging example in mathematical finance,
taken from Section 3.2 in the survey paper [8]. Let b ≡ 0, σ ≡ 1, F ≡ 0 and consider the
lookback-type payoff
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H(η) = sup
x∈[−T,0]

η(x), ∀ η ∈ C([−T, 0]).

Then, we look for a solution to the following linear parabolic path-dependent PDE:

(3.5)

⎧⎪⎪⎨⎪⎪⎩
∂t + DH

 + 1
2 DVV

 = 0, ∀ (t, η) ∈ [0, T [×C([−T, 0]),

 (T, η) = H(η), ∀ η ∈ C([−T, 0]).

We refer to (3.5) as path-dependent heat equation. Notice that, however, (3.5) does not have
the smoothing effect characterizing the classical heat equation, in spite of some regularity
properties illustrated in Section 3.2 of [8]. Indeed, let us consider the functional

 (t, η) = E
[
H(Wt,η

T )
]
= E
[

sup
−T≤x≤0

W
t,η
T (x)
]
, ∀ (t, η) ∈ [0, T ] ×C([−T, 0]),

where, for any t ≤ s ≤ T ,

W
t,η
s (x) =

⎧⎪⎪⎨⎪⎪⎩
η(x + s − t), −T ≤ x ≤ t − s,

η(0) +Wx+s −Wt, t − s < x ≤ 0.

If  ∈ C1,2(([0, T [×past) × present) ∩ C([0, T ] × C([−T, 0])), then  could be proved to
solve equation (3.5). However, as claimed in [8],  is not a strict solution to (3.5). On the
other hand, since H is continuous and has linear growth, it follows from Theorems 3.10 and
3.12 that  is the unique strong-viscosity solution to equation (3.5). �

Definition 3.9. A function  : [0, T ] × C([−T, 0]) → R is called a (path-dependent)
strong-viscosity solution to equation (3.1) if there exists a sequence (n,Hn, Fn, bn, σn)n of
Borel measurable functions n : [0, T ]×C([−T, 0])→ R, Hn : C([−T, 0])→ R, Fn : [0, T ]×
C([−T, 0]) × R × R → R, bn : [0, T ] × C([−T, 0]) → R, σn : [0, T ] × C([−T, 0]) → R, such
that the following holds.

(i) For some positive constants C and m,

|bn(t, η)| + |σn(t, η)| ≤ C(1 + ‖η‖),
|bn(t, η) − bn(t, η′)| + |σn(t, η) − σn(t, η′)| ≤ C‖η − η′‖,

|Fn(t, η, y, z) − Fn(t, η, y′, z′)| ≤ C
(|y − y′| + |z − z′|),

|Hn(η)| + |Fn(t, η, 0, 0)| + |n(t, η)| ≤ C
(
1 + ‖η‖m),

for all t ∈ [0, T ], η, η′ ∈ C([−T, 0]), y, y′, z, z′ ∈ R. Moreover, the functions n(t, ·),
Hn(·), Fn(t, ·, ·, ·), n ∈ N, are equicontinuous on compact sets, uniformly with respect
to t ∈ [0, T ].

(ii) n is a strict solution to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂tn + DH

n + bn(t, η)DV
n +

1
2σn(t, η)2DVV

n

+ Fn(t, η,n, σn(t, η)DV
n) = 0, ∀ (t, η) ∈ [0, T [×C([−T, 0]),

n(T, η) = Hn(η), ∀ η ∈ C([−T, 0]).

(iii) (n,Hn, Fn, bn, σn)n converges pointwise to ( ,H, F, b, σ) as n→ ∞.

We present a Feynman-Kac type representation for a generic strong-viscosity solution to
equation (3.1), which, as a consequence, yields a uniqueness result.
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Theorem 3.10. Let Assumption (A1) hold and let  : [0, T ] × C([−T, 0]) → R be a
strong-viscosity solution to equation (3.1). Then, the following Feynman-Kac formula holds

(3.6)  (t, η) = Yt,η
t , ∀ (t, η) ∈ [0, T ] ×C([−T, 0]),

where (Yt,η
s , Zt,η

s )s∈[t,T ] ∈ S2(t, T ) × H2(t, T ), with Yt,η
s =  (s,Xt,η

s ), is the unique solution in
S2(t, T ) × H2(t, T ) to the backward stochastic differential equation: P-a.s.

(3.7) Yt,η
s = H(Xt,η

T ) +
∫ T

s
F(r,Xt,η

r , Y
t,η
r , Zt,η

r ) dr −
∫ T

s
Zt,η

r dWr, t ≤ s ≤ T.

In particular, there exists at most one strong-viscosity solution to equation (3.1).

Proof. Let (n,Hn, Fn, bn, σn)n be as in Definition 3.9 and, for any (t, η) ∈ [0, T ] ×
C([−T, 0]), denote by Xn,t,η = (Xn,t,η

s )s∈[t,T ] the unique solution to equation (A.3). Then, from
Theorem 3.5, (Yn,t,η

s , Zn,t,η
s )s∈[t,T ] = (n(s,Xn,t,η

s ), σn(s,Xn,t,η
s )DV

n(s,Xn,t,η
s )1[t,T [(s))s∈[t,T ] is

the unique solution to the backward stochastic differential equation: P-a.s.,

Yn,t,η
s = Hn(Xn,t,η

T ) +
∫ T

s
Fn(r,Xn,t,η

r , Yn,t,η
r , Zn,t,η

r ) dr −
∫ T

s
Zn,t,η

r dWr, t ≤ s ≤ T.

We wish now to take the limit when n goes to infinity in the above equation. We make use of
Theorem C.1, for which we check the assumptions. From the polynomial growth condition
of n together with estimate (A.4), there exists, for every p ≥ 1, a constant C̃p ≥ 0 such that

(3.8)
∥∥∥Yn,t,η

∥∥∥p

Sp(t,T )
≤ C̃p

(
1 + ‖η‖p), ∀ n ∈ N.

Now, from Proposition B.1, it follows that there exists a constant c̃ ≥ 0 (depending only on
T and on the Lipschitz constant C of Fn with respect to (y, z) appearing in Definition 3.9(i))
such that

∥∥∥Zn,t,η
∥∥∥2
H2(t,T )

≤ c̃
(∥∥∥Yn,t,η

∥∥∥2
S2(t,T )
+ E

∫ T

t
|Fn(s,Xn,t,η

s , 0, 0)|2ds
)
.

Therefore, from (3.8), the polynomial growth condition of Fn, and estimate (A.4), we find
that supn ‖Zn,t,η‖2

H2(t,T )
< ∞. Moreover, from (A.5) we see that, for any s ∈ [t, T ], ‖Xn,t,η

s (ω) −
X

t,η
s (ω)‖ → 0, as n → ∞, for P-a.e. ω ∈ Ω. Fix such an ω and consider the set Kω ⊂

C([−T, 0]) given by

Kω :=
( ∪n∈N

{
X

n,t,η
s (ω)

}) ∪ {Xt,η
s (ω)

}
.

Then, Kω is a compact subset of C([−T, 0]). Since the sequence (Fn(s, ·, ·, ·))n is equicon-
tinuous on compact sets and converges pointwise to F(s, ·, ·, ·), it follows that (Fn(s, ·, ·, ·))n

converges to F(s, ·, ·, ·) uniformly on compact sets. In particular, we have∣∣∣Fn(s,Xn,t,η
s (ω), 0, 0) − F(s,Xt,η

s (ω), 0, 0)
∣∣∣

≤ sup
η∈Kω

∣∣∣Fn(s, η, 0, 0) − F(s, η, 0, 0)
∣∣∣ + ∣∣∣F(s,Xn,t,η

s (ω), 0, 0) − F(s,Xt,η
s (ω), 0, 0)

∣∣∣ n→∞−→ 0.

Similarly, we have∣∣∣n(s,Xn,t,η
s (ω)) − (s,Xt,η

s (ω))
∣∣∣
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≤ sup
η∈Kω

∣∣∣n(s, η) − (s, η)
∣∣∣ + ∣∣∣ (s,Xn,t,η

s (ω)) − (s,Xt,η
s (ω))

∣∣∣ n→∞−→ 0.

Let us now define Yt,η
s :=  (s,Xt,η

s ), for all s ∈ [t, T ]. We can then apply Theorem C.1
(notice that, in this case, for every n ∈ N, the process Kn appearing in Theorem C.1 is
identically zero, so that K is also identically zero), from which it follows that there exists
Zt,η ∈ H2(t, T ) such that the pair (Yt,η, Zt,η) solves equation (3.7). From Theorem 3.1 in [33]
we have that (Yt,η, Zt,η) is the unique pair in S2(t, T )×H2(t, T ) satisfying equation (3.7). This
concludes the proof. �

By Theorem 3.10 we deduce Lemma 3.11 below, which says that in Definition 3.9 the
convergence of (n)n is indeed a consequence of the convergence of the coefficients
(Hn, Fn, bn, σn)n. This result is particularly useful to establish the existence of strong-
viscosity solutions, as in the proof of Theorem 3.12.

Lemma 3.11. Suppose that Assumption (A1) holds and let (n,Hn, Fn, bn, σn)n be as in
Definition 3.9, except that we do not assume the convergence of (n)n. Then, there exists
 : [0, T ] × C([−T, 0]) → R such that (n)n converges pointwise to  . In particular,  is
a strong-viscosity solution to equation (3.1) and is given by formula (3.6).

Proof. Let us prove the pointwise convergence of the sequence (n)n∈N to the function 

given by formula (3.6). To this end, we notice that, from Theorem 3.5, for every n ∈ N, n

is given by

n(t, η) = Yn,t,η
t , ∀ (t, η) ∈ [0, T ] ×C([−T, 0]),

where (Yn,t,η, Zn,t,η) = (n(·,Xn,t,η), σn(·,Xn,t,η)DV
n(·,Xn,t,η)1[t,T [) ∈ S2(t, T ) × H2(t, T ) is

the unique solution to the backward stochastic differential equation: P-a.s.,

Yn,t,η
s = Hn(Xn,t,η

T ) +
∫ T

s
Fn(r,Xn,t,η

r , Yn,t,η
r , Zn,t,η

r ) dr −
∫ T

s
Zn,t,η

r dWr, t ≤ s ≤ T,

with

Xn,t,η
s = η(0 ∧ (s − t)) +

∫ t∨s

t
bn(r,Xn,t,η

r ) dr +
∫ t∨s

t
σn(r,Xn,t,η

r ) dWr, −T + t ≤ s ≤ T.

Consider the function  given by formula (3.6). From estimate (B.3), there exists a constant
C, independent of n ∈ N, such that

|n(t, η) − (t, η)|2 ≤ C E
[∣∣∣Hn(Xn,t,η

T ) − H(Xt,η
T )
∣∣∣2]

+C
∫ T

t
E
[∣∣∣Fn(s,Xn,t,η

s , Yt,η
s , Zt,η

s ) − F(s,Xt,η
s , Y

t,η
s , Zt,η

s )
∣∣∣2] ds,

for all t ∈ [0, T ] and η ∈ C([−T, 0]). Now we recall the following.
(i) (Hn, Fn, bn, σn)n∈N converges pointwise to (H, F, b, σ) as n→ ∞.

(ii) The functions Hn(·), Fn(t, ·, ·, ·), bn(t, ·), σn(t, ·), n ∈ N, are equicontinuous on com-
pact sets, uniformly with respect to t ∈ [0, T ].

We notice that (i) and (ii) imply the following property:
(iii) (Hn(ηn), Fn(t, ηn, y, z), bn(t, ηn), σn(t, ηn)) converges to (H(η), F(t, η, y, z), b(t, η),

σ(t, η)) as n → ∞, ∀ (t, y, z) ∈ [0, T ] × R × R, ∀ (ηn)n∈N ⊂ C([−T, 0]) with ηn →
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η ∈ C([−T, 0]).
Let us now remind that, for any r ∈ [t, T ], we have

X
n,t,η
s (x) =

⎧⎪⎪⎨⎪⎪⎩
η(s − t + x), x ∈ [−T, t − s],

Xn,t,η
s+x , x ∈ ]t − s, 0],

X
t,η
s (x) =

⎧⎪⎪⎨⎪⎪⎩
η(s − t + x), x ∈ [−T, t − s],

Xt,η
s+x, x ∈ ]t − s, 0].

Therefore, for every p ≥ 1,

(3.9) E
[

sup
t≤s≤T

‖Xn,t,η
s − Xt,η

s ‖p∞
]
= E
[

sup
t≤s≤T

|Xn,t,η
s − Xt,η

s |p
] n→∞−→ 0,

where the convergence follows from (A.5). Then, we claim that the following convergences
in probability hold:

∣∣∣Hn(Xn,t,η
T ) − H(Xt,η

T )
∣∣∣2 P−→

n→∞ 0,(3.10)
∣∣∣Fn(s,Xn,t,η

s , Yt,η
s , Zt,η

s ) − F(s,Xt,η
s , Y

t,η
s , Zt,η

s )
∣∣∣2 P−→

n→∞ 0,(3.11)

for all s ∈ [t, T ]. Concerning (3.10), we begin noting that it is enough to prove that, for every
subsequence (|Hnm(Xnm,t,η

T ) − H(Xt,η
T )|2)m∈N there exists a subsubsequence which converges

to zero. From (3.9) and property (iii) above, it follows that there exists a subsubsequence
(|Hnm

(X
nm ,t,η
T ) − H(Xt,η

T )|2)∈N which converges P-a.s., and therefore in probability, to zero.
This concludes the proof of (3.10). In a similar way we can prove (3.11).

From (3.10) and (3.11), together with the uniform integrability of the sequences
(|Hn(Xn,t,η

T ) − H(Xt,η
T )|2)n∈N and (|Fn(s,Xn,t,η

s , Yt,η
s , Zt,η

s ) − F(s,Xt,η
s , Y

t,η
s , Zt,η

s )|2)n∈N, for every
s ∈ [t, T ], we deduce that

lim
n→∞E

[∣∣∣Hn(Xn,t,η
T ) − H(Xt,η

T )
∣∣∣2] = 0,

lim
n→∞E

[∣∣∣Fn(s,Xn,t,η
s , Yt,η

s , Zt,η
s ) − F(s,Xt,η

s , Y
t,η
s , Zt,η

s )
∣∣∣2] = 0.

From the second convergence, the polynomial growth condition of F and Fn (uniform in
n), and standard moment estimates for ‖Xn,t,η‖∞ ≤ supt≤s≤T |Xn,t,η

s | (see estimate (A.4)), it
follows that

lim
n→∞

∫ T

t
E
[∣∣∣Fn(s,Xn,t,η

s , Yt,η
s , Zt,η

s ) − F(s,Xt,η
s , Y

t,η
s , Zt,η

s )
∣∣∣2] ds = 0.

As a consequence, we have |n(t, η) − (t, η)|2 → 0 as n→ ∞, which concludes the proof.
�

We can now state an existence result. Notice that it holds under quite general conditions
on the terminal condition H of equation (3.1).

Theorem 3.12. Let Assumption (A1) hold and suppose that H is continuous. Suppose
also that there exists a nondecreasing sequence (Nn)n∈N ⊂ N\{0} such that, for all n ∈ N and
(t, η, y, z) ∈ [0, T ] ×C([−T, 0]) × R × R,

bn(t, η) = b̄n

( ∫
[−t,0]

ϕ1(x + t) d−η(x), . . . ,
∫

[−t,0]
ϕNn(x + t) d−η(x)

)
,
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σn(t, η) = σ̄n

( ∫
[−t,0]

ϕ1(x + t) d−η(x), . . . ,
∫

[−t,0]
ϕNn(x + t) d−η(x)

)
,

Fn(t, η, y, z) = F̄n

(
t,
∫

[−t,0]
ϕ1(x + t) d−η(x), . . . ,

∫
[−t,0]

ϕNn(x + t) d−η(x), y, z
)
,

where the following holds.

(i) b̄n, σ̄n, F̄n are continuous and satisfy Assumption (A0) with constants C and m
independent of n.

(ii) For every n ∈ N, b̄n, σ̄n, F̄n satisfy items (ii) and (iii) of Theorem 3.6.
(iii) The functions bn(t, ·), σn(t, ·), Fn(t, ·, ·, ·), n ∈ N, are equicontinuous on compact sets,

uniformly with respect to t ∈ [0, T ].
(iv) ϕ1, . . . , ϕNn ∈ C2([0, T ]) are uniformly bounded with respect to n ∈ N, and their first

derivative are bounded in L1([0, T ]) uniformly with respect to n ∈ N.
(v) (bn, σn, Fn)n converges pointwise to (b, σ, F) as n→ ∞.

Then, the map  given by

(3.12)  (t, η) = Yt,η
t , ∀ (t, η) ∈ [0, T ] ×C([−T, 0]),

where (Yt,η
s , Zt,η

s )s∈[t,T ] ∈ S2(t, T ) × H2(t, T ) is the unique solution to (3.7), is a (path-
dependent) strong-viscosity solution to equation (3.1).

Proof. We divide the proof into four steps. In the first three steps we construct an approx-
imating sequence of smooth functions for H. We conclude the proof in the fourth step.

Step I. Approximation of η ∈ C([−t, 0]), t ∈ ]0, T ], with Fourier partial sums. Consider the
sequence (ei)i∈N of C∞([−T, 0]) functions:

e0 =
1√
T
, e2i−1(x) =

√
2
T

sin
(2π

T
(x + T )i

)
, e2i(x) =

√
2
T

cos
(2π

T
(x + T )i

)
,

for all i ∈ N\{0}. Then (ei)i∈N is an orthonormal basis of L2([−T, 0]). Let us define the linear
operator Λ : C([−T, 0])→ C([−T, 0]) by

(Λη)(x) =
η(0) − η(−T )

T
x, x ∈ [−T, 0], η ∈ C([−T, 0]).

Notice that (η − Λη)(−T ) = (η − Λη)(0), therefore η − Λη can be extended to the entire real
line in a periodic way with period T , so that we can expand it in Fourier series. In particular,
for each n ∈ N and η ∈ C([−T, 0]), consider the Fourier partial sum

(3.13) sn(η − Λη) =
n∑

i=0

(ηi − (Λη)i)ei, ∀ η ∈ C([−T, 0]),

where (denoting ẽi(x) =
∫ x
−T ei(y) dy, for any x ∈ [−T, 0]), by the integration by parts formula

(2.4) of [9],

ηi =

∫ 0

−T
η(x)ei(x) dx = η(0)ẽi(0) −

∫
[−T,0]

ẽi(x) d−η(x) =
∫

[−T,0]
(ẽi(0) − ẽi(x)) d−η(x),

(3.14)

since η(0) =
∫

[−T,0] d−η(x). Moreover we have
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(Λη)i =

∫ 0

−T
(Λη)(x) ei(x) dx =

1
T

∫ 0

−T
xei(x) dx

( ∫
[−T,0]

d−η(x) − η(−T )
)
.(3.15)

Define σn =
s0+s1+···+sn

n+1 . Then, by (3.13),

σn(η − Λη) =
n∑

i=0

n + 1 − i
n + 1

(ηi − (Λη)i)ei, ∀ η ∈ C([−T, 0]).

We know from Fejér’s theorem on Fourier series (see, e.g., Theorem 3.4, Chapter III, in
[45]) that, for any η ∈ C([−T, 0]), σn(η − Λη)→ η − Λη uniformly on [−T, 0], as n tends to
infinity, and ‖σn(η−Λη)‖∞ ≤ ‖η−Λη‖∞. Let us define the linear operator Tn : C([−T, 0])→
C([−T, 0]) by (denoting e−1(x) = x, for any x ∈ [−T, 0])

Tnη = σn(η − Λη) + Λη =
n∑

i=0

n + 1 − i
n + 1

(ηi − (Λη)i)ei +
η(0) − η(−T )

T
e−1

=

n∑
i=0

n + 1 − i
n + 1

yiei + y−1e−1,

where, using (3.14) and (3.15),

y−1 =

∫
[−T,0]

1
T

d−η(x) − 1
T
η(−T ),

yi =

∫
[−T,0]

(
ẽi(0) − ẽi(x) − 1

T

∫ 0

−T
xei(x) dx

)
d−η(x) +

1
T

∫ 0

−T
xei(x) dx η(−T ),

for i = 0, . . . , n. Then, for any η ∈ C([−T, 0]), Tnη → η uniformly on [−T, 0], as n tends to
infinity. Furthermore, there exists a positive constant M such that

(3.16) ‖Tnη‖∞ ≤ M‖η‖∞, ∀ n ∈ N, ∀ η ∈ C([−T, 0]).

Then, we define

H̃n(η) := H(Tnη), ∀ (t, η) ∈ [0, T ] ×C([−T, 0]).

Notice that H̃n satisfies a polynomial growth condition as in Assumption (A1) with constants
C and m independent of n. Moreover, since H is uniformly continuous on compact sets, from
(3.16) we see that (H̃n)n is equicontinuous on compact sets. Now, we define the function
H̄n : Rn+2 → R as follows

H̄n(y−1, . . . , yn) := H
( n∑

i=0

n + 1 − i
n + 1

yiei + y−1e−1

)
, ∀ (y−1, . . . , yn) ∈ Rn+2.

Then, we have

H̃n(η) = H̄n

( ∫
[−T,0]

ψ−1(x + T ) d−η(x) + a−1η(−T ), . . . ,
∫

[−T,0]
ψn(x + T ) d−η(x) + anη(−T )

)
,

for all η ∈ C([−T, 0]), n ∈ N, where

ψ−1(x) =
1
T
, ψi(x) = ẽi(0) − ẽi(x − T ) − 1

T

∫ 0

−T
xei(x) dx, x ∈ [−T, 0],
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a−1 = − 1
T
, ai =

1
T

∫ 0

−T
xei(x) dx.

Step II. Smoothing of η(−T ) through mollifiers. Consider the function φ ∈ C∞([0,∞[) given
by

φ(x) = c exp
( 1

x2 − T 2

)
1[0,T [(x), ∀ x ≥ 0,

with c > 0 such that
∫ ∞

0 φ(x) dx = 1. Then, we define φm(x) = mφ(mx), ∀ x ≥ 0, m ∈ N.
Notice that ∫ 0

−T
η(x)φm(x + T ) dx = η(0)φ̃m(T ) −

∫
[−T,0]

φ̃m(x + T ) d−η(x)

=

∫
[−T,0]

(
φ̃m(T ) − φ̃m(x + T )

)
d−η(x),

where φ̃m(x) =
∫ x

0 φm(z)dz, x ∈ [0, T ]. In particular, we have

lim
m→∞

∫
[−T,0]

(
φ̃m(T ) − φ̃m(x + T )

)
d−η(x) = lim

m→∞

∫ 0

−T
η(x)φm(x + T ) dx = η(−T ).

Then, we define

Hn(η) := H̄n

(
. . . ,

∫
[−T,0]

ψi(x + T ) d−η(x) + ai

∫
[−T,0]

(
φ̃n(T ) − φ̃n(x + T )

)
d−η(x), . . .

)

= H
(
Tnη +

( n∑
i=0

n + 1 − i
n + 1

aiei + a−1e−1

) ∫ 0

−T

(
η(x) − η(−T )

)
φn(x + T ) dx

)

= H
(
Tnη +

(
Tnγ +

1
T (T − 1)

e−1

) ∫ 0

−T

(
η(x) − η(−T )

)
φn(x + T ) dx

)
,(3.17)

for all η ∈ C([−T, 0]) and n ∈ N, where γ(x) := −x/(T − 1), ∀ x ∈ [−T, 0]. Then, the
sequence (Hn)n is equicontinuous on compact sets and converges pointwise to H as n→ ∞.

Step III. Smoothing of H̄n(·). From (3.17) it follows that for any compact subset K ⊂
C([−T, 0]) there exists a continuity modulus mK , independent of n ∈ N, such that∣∣∣∣∣H̄n

(
. . . ,

∫
[−T,0]

ψi(x + T ) d−η1(x) + ai

∫
[−T,0]

(
φ̃n(T ) − φ̃n(x + T )

)
d−η1(x) + ξi, . . .

)

− H̄n

(
. . . ,

∫
[−T,0]

ψi(x + T ) d−η2(x) + ai

∫
[−T,0]

(
φ̃n(T ) − φ̃n(x + T )

)
d−η2(x) + ξi, . . .

)∣∣∣∣∣

≤ mK(‖η1 − η2‖∞),
(3.18)

for all η1, η2 ∈ K, n ∈ N, ξ = (ξ−1, . . . , ξn) ∈ En+2, where En+2 := {ξ = (ξ−1, . . . , ξn) ∈
Rn+2 : |ξi| ≤ 2−(i+1), i = −1, . . . , n}. Indeed, set

 := K ∪ K̃,

where

K̃ :=
{
η ∈ C([−T, 0]) : η = Tnη1 +

(
Tnγ +

1
T (T − 1)

e−1

) ∫ 0

−T

(
η1(x) − η1(−T )

)
φn(x + T ) dx
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+

n∑
i=0

n + 1 − i
n + 1

ξiei + ξ−1e−1, for some η1 ∈ K, n ∈ N, ξ ∈ En+2

}
.

Digression.  is a relatively compact subset of C([−T, 0]). Since K is compact, it is enough
to prove that K̃ is relatively compact. To this end, define

K1 :=
{
η ∈ C([−T, 0]) : η = Tnη1 +

(
Tnγ +

1
T (T − 1)

e−1

) ∫ 0

−T

(
η1(x) − η1(−T )

)
φn(x + T ) dx

for some η1 ∈ K, n ∈ N
}
,

K2 :=
{
η ∈ C([−T, 0]) : η =

n∑
i=−1

ξiei, for some n ∈ N, ξ ∈ En+2

}
.

Then K̃ ⊂ K1+K2, where K1+K2 denotes the sum of the sets K1 and K2, i.e., K1+K2 = {η ∈
C([−T, 0]) : η = η1 + η2, for some η1 ∈ K1, η2 ∈ K2}. In order to prove that K̃ is relatively
compact, it is enough to show that both K1 and K2 are relatively compact sets.

Firstly, let us prove that K1 is relatively compact. Take a sequence (η)∈N in K1. Our aim
is to prove that (η)∈N admits a convergent subsequence. We begin noting that, for every
 ∈ N, there exist η1, ∈ C([−T, 0]) and n ∈ N such that

η = Tnη1, +
(
Tnγ +

1
T (T − 1)

e−1

) ∫ 0

−T

(
η1,(x) − η1,(−T )

)
φn(x + T ) dx.

Let us suppose that (n)∈N admits a subsequence diverging to infinity (the other cases can
be treated even simpler), still denoted by (n)∈N. Then Tnγ → γ in C([−T, 0]). Since
(η1,)∈N ⊂ K and K is compact, there exists a subsequence, still denoted by (η1,)∈N, which
converges to some η1,∞ ∈ K. Then, Tnη1, → η1,∞ as  → ∞. Indeed

‖Tnη1, − η1,∞‖∞ ≤ ‖Tnη1, − Tnη1,∞‖∞ + ‖Tnη1,∞ − η1,∞‖∞.
Then, the claim follows since Tnη1,∞ → η1,∞ in C([−T, 0]) and

‖Tnη1, − Tnη1,∞‖∞
by (3.16)≤ M‖η1, − η1,∞‖∞ →∞−→ 0.

Proceeding in a similar way, we see that∫ 0

−T

(
η1,(x) − η1,(−T )

)
φn(x + T ) dx =

∫ 0

−T
η1,(x)φn(x + T ) dx − η1,(−T )

→∞−→ η1,∞(−T ) − η1,∞(−T ) = 0.

In conclusion, we get η → η1,∞, from which the claim follows.
Let us now prove that K2 is relatively compact. Let (η)∈N be a sequence in K2 and let us

prove that (η)∈N admits a convergent subsequence in C([−T, 0]). We first notice that, for
every  ∈ N, there exists n ∈ N and ξ = (ξ−1,, . . . , ξn,) ∈ En+2 such that

η =

n∑
i=−1

ξi,ei.

As we already did in the proof for K1, we suppose that the sequence (n)∈N diverges to
∞. Notice that, for every i ∈ {−1, 0, 1, 2, . . .}, there exists a subsequence of (ξi,) which
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converges to some ξi,∞ satisfying |ξi,∞| ≤ 2−(i+1). By a diagonalisation argument we construct
a subsequence of (η)∈N, still denoted by (η)∈N, such that for every i the sequence (ξi,)∈N
converges to ξi,∞. As a consequence, η converges to η∞ =

∑∞
i=−1 ξi,∞ei as  → ∞. This

proves the claim.

Step III (Continued). Since  is a relatively compact subset of C([−T, 0]), property (3.18)
follows from the fact that H is continuous on C([−T, 0]), and consequently uniformly con-
tinuous on .

To alleviate the presentation, we suppose, without loss of generality, that Hn has the
following form (with the same functions ϕi as in the expression of bn, σn, Fn)

Hn(η) = H̄n

( ∫
[−T,0]

ϕ1(x + T ) d−η(x), . . . ,
∫

[−T,0]
ϕNn(x + T ) d−η(x)

)
.

So that H̄n : RNn → R. Then, property (3.18) can be written as follows: for any compact
subset K ⊂ C([−T, 0]) there exists a continuity modulus ρK , independent of n ∈ N, such that∣∣∣∣∣ H̄n

( ∫
[−T,0]

ϕ1(x + T ) d−η1(x) + ξ1, . . .
)

(3.19)

− H̄n

( ∫
[−T,0]

ϕ1(x + T ) d−η2(x) + ξ1, . . .
) ∣∣∣∣∣ ≤ mK(‖η1 − η2‖∞),

for all η1, η2 ∈ K, n ∈ N, ξ = (ξ1, . . . , ξNn) ∈ ENn , where we recall that

ENn = {ξ = (ξ1, . . . , ξNn) ∈ RNn : |ξi| ≤ 21−i, i = 1, . . . ,Nn}.
Now, for any n consider the function ρn ∈ C∞(RNn) given by

(3.20) ρn(ξ) = c
Nn∏
i=1

exp
( 1
ξ2

i − 22(i−1)

)
1{|ξi |<2i−1}, ∀ ξ = (ξ1, . . . , ξNn) ∈ RNn ,

with c > 0 such that
∫
RNn ρn(ξ)dξ = 1. Set ρn,k(ξ) := kNnρn(k ξ), ∀ ξ ∈ RNn , k ∈ N. Let us

now define, for any n, k ∈ N,

H̄n,k(x) =
∫
RNn

ρn,k(ξ)H̄n(x − ξ)dξ =
∫

ENn

ρn,k(ξ)H̄n(x − ξ)dξ,

for all (t, x, y, z) ∈ [0, T ]×Rd×R×Rd. Notice that, for any n ∈ N, the sequence (H̄n,k(·))k∈N is
equicontinuous on compact subsets of RNn , satisfies a polynomial growth condition (uniform
in both n and k), converges pointwise to H̄n(·), and satisfies item (iv) of Theorem 3.6. Then,
we define

Hn,k(η) = H̄n,k

( ∫
[−T,0]

ϕ1(x + T ) d−η(x), . . . ,
∫

[−T,0]
ϕNn(x + T ) d−η(x)

)
,

for all η ∈ C([−T, 0]) and n, k ∈ N. Notice that the functions Hn,k, n, k ∈ N, are equicontinu-
ous on compact subsets of C([−T, 0]). Indeed, let K be a compact subset of C([−T, 0]) and
η1, η2 ∈ K, then (using property (3.19) and the fact that

∫
ENn

ρn,k(ξ) dξ = 1)

|Hn,k(η1) − Hn,k(η2) |
=

∣∣∣∣∣ H̄n,k

( ∫
[−T,0]

ϕ1(x + T ) d−η1(x), . . .
)
− H̄n,k

( ∫
[−T,0]

ϕ1(x + T ) d−η2(x), . . .
) ∣∣∣∣∣
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≤
∫

KNn

ρn,k(ξ)
∣∣∣∣∣H̄n

( ∫
[−T,0]

ϕ1(x + T ) d−η1(x) + ξ1, . . .
)

− H̄n

( ∫
[−T,0]

ϕ1(x + T ) d−η2(x) + ξ1, . . .
)∣∣∣∣∣ dξ ≤ mK(‖η1 − η2‖∞).

This proves the equicontinuity on compact sets of Hn,k, n, k ∈ N. Set G := H, Gn := Hn, and
Gn,k := Hn,k, for all n, k ∈ N. Then, a direct application of Lemma D.1 yields the existence
of a subsequence (Hn,kn)n∈N which converges pointwise to H. For simplicity of notation, we
denote (Hn,kn)n∈N simply by (Hn)n∈N.

Step IV. Conclusion. Let us consider, for any n ∈ N and (t, η) ∈ [0, T ] × C([−T, 0]), the
following forward-backward system of stochastic differential equations:
(3.21)⎧⎪⎪⎨⎪⎪⎩

Xn,t,η
s = η(0 ∧ (s − t)) +

∫ t∨s
t bn(r,Xn,t,η

r ) dr +
∫ t∨s

t σn(r,Xn,t,η
r ) dWr, s ∈ [t − T, T ],

Yn,t,η
s = Hn(Xn,t,η

T ) +
∫ T

s Fn(r,Xn,t,η
r , Yn,t,η

r , Zn,t,η
r ) dr − ∫ T

s Zn,t,η
r dWr, s ∈ [t, T ].

Under the assumptions on bn and σn, it follows from Proposition 3.4 that there exists a
unique continuous process Xn,t,η strong solution to the forward equation in (3.21). Moreover,
from Theorem 4.1 in [33] it follows that, under the assumptions on Fn and Hn, there exists
a unique solution (Yn,t,η, Zn,t,η) ∈ S2(t, T ) × H2(t, T ) to the backward equation in (3.21).

Then, it follows from Theorem 3.6 that, for any n ∈ N, the function

n(t, η) = Yn,t,η
t = E

[ ∫ T

t
Fn(s,Xn,t,η

s , Yn,t,η
s , Zn,t,η

s ) ds + Hn(Xn,t,η
T )
]
,

∀ (t, η) ∈ [0, T ] × C([−T, 0]), is a strict solution to equation (3.1) with coefficients Hn, Fn,
bn, and σn. From estimates (A.4) and (B.3) together with the polynomial growth condition
of Fn,Hn (uniform in n), we see that n satisfies a polynomial growth condition uniform in
n.

We can now apply Lemma 3.11 to the sequence (n,Hn, Fn, bn, σn)n∈N, from which we
deduce: first, the convergence of the sequence (n)n∈N to the map  given by (3.12); sec-
ondly, that  is a strong-viscosity solution to equation (3.1). This concludes the proof. �

Remark 3.13. (i) Here we notice that Theorem 3.12 applies when b, σ, F have a Markov-
ian structure. More precisely, suppose that there exist b̄, σ̄, f̄ satisfying Assumption (A0),
with f̄ continuous, such that

b(t, η) = b̄(η(0)), σ(t, η) = σ̄(η(0)), F(t, η, y, z) = f̄ (t, η(0), y, z),

for all (t, η, y, z) ∈ [0, T ]×C([−T, 0])×R×R. Recalling from the integration by parts formula
(2.4) in [9] that η(0) =

∫
[−t,0] 1 d−η(x), we see that b, σ, F have automatically a cylindrical

form, as a matter of fact

b(t, η) = b̄
( ∫

[−t,0]
1 d−η(x)

)

and similarly for σ and F. Therefore, taking b, σ, F of this form, and H continuous (as in
the statement of Theorem 3.12), we deduce from Theorem 3.12 that the map  given by
(3.12) is a strong-viscosity solution to equation (3.1).
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(ii) The result of Theorem 3.12 can be improved as follows. Items (ii) and (iii) in Theorem
3.12 can be replaced by the following weaker assumption: for every compact subset K ⊂
C([−T, 0]), there exists a continuity modulus mK, independent of n ∈ N, such that∣∣∣∣∣ F̄n

(
t,
∫

[−t,0]
ϕ1(x + t) d−η1(x) + ξ1, . . . , y, z

)
− F̄n

(
t,
∫

[−t,0]
ϕ1(x + t) d−η2(x) + ξ1, . . . , y, z

) ∣∣∣∣∣
+

∣∣∣∣∣ b̄n

( ∫
[−t,0]

ϕ1(x + t) d−η1(x) + ξ1, . . .
)
− b̄n

( ∫
[−t,0]

ϕ1(x + t) d−η2(x) + ξ1, . . .
) ∣∣∣∣∣

+

∣∣∣∣∣ σ̄n

( ∫
[−t,0]

ϕ1(x + t) d−η1(x) + ξ1, . . .
)
− σ̄n

( ∫
[−t,0]

ϕ1(x + t) d−η2(x) + ξ1, . . .
) ∣∣∣∣∣

≤ mK(‖η1 − η2‖∞),

for all n ∈ N, η1, η2 ∈ K, y, z ∈ R, t ∈ [0, T ], ξ ∈ ENn, where ENn = {ξ = (ξ1, . . . , ξNn) ∈
RNn : |ξi| ≤ 21−i, i = 1, . . . ,Nn}.

In this case, we perform a smoothing of (b̄n, σ̄n, F̄n) by means of convolutions as we did
for H̄n in Step III of the proof of Theorem 3.12, in order to end up with a sequence of
regular coefficients satisfying items (ii) and (iii) in Theorem 3.12. Then, we conclude the
proof proceeding as in Step IV of the proof of Theorem 3.12.
(iii) The particular case b ≡ 0, σ ≡ 1, and F ≡ 0 was addressed in Theorem 3.4 of [8].
Concerning the case with general coefficients b, σ, F, we refer to Theorem 3.16 below. �

We also state the following existence result, which holds under slightly different assump-
tions than Theorem 3.12.

Theorem 3.14. Let Assumption (A1) hold. Suppose also that H is continuous and F
does not depend on (y, z). In addition, suppose that there exists a nondecreasing sequence
(Nn)n∈N ⊂ N\{0} such that, for all n ∈ N and (t, η) ∈ [0, T ] ×C([−T, 0]),

bn(t, η) = b̄n

(
t,
∫

[−t,0]
ϕ1(x + t) d−η(x), . . . ,

∫
[−t,0]

ϕNn(x + t) d−η(x)
)
,

σn(t, η) = σ̄n

(
t,
∫

[−t,0]
ϕ1(x + t) d−η(x), . . . ,

∫
[−t,0]

ϕNn(x + t) d−η(x)
)
,

Fn(t, η) = F̄n

(
t,
∫

[−t,0]
ϕ1(x + t) d−η(x), . . . ,

∫
[−t,0]

ϕNn(x + t) d−η(x)
)
.

We suppose that items (i), (iii), (iv), (v) of Theorem 3.12 hold, while item (ii) is replaced by
the following:

(ii)’ For every n ∈ N, b̄n, σ̄n, F̄n satisfy:
(ii)’-(a) b̄n and σ̄n are continuous functions, with first and second spatial derivatives

continuous and satisfying a polynomial growth condition.
(ii)’-(b) F̄n is continuous and, for all t ∈ [0, T ], the function F̄n(t, ·) belongs to C2(RNn)

and its second order spatial derivatives satisfy a polynomial growth condition
uniformly in t.

Then, the map  given by (3.12) is a (path-dependent) strong-viscosity solution to equation
(3.1).
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Remark 3.15. Notice that the requirement that F does not depend on (y, z) imposed in
Theorem 3.14 is used only at a specific point in the proof of Theorem 3.14, namely when
it is used Theorem 3.5 in [9], which relies on Theorem 6.1, Chapter 5, in [23], that is a
regularity result for linear (rather than semilinear) parabolic partial differential equations.
However, if one would have at disposal a more general regularity result than Theorem 6.1,
Chapter 5, in [23], which applies to semilinear parabolic partial differential equations, then
we would be able to extend Theorem 3.14 (as well as Theorem 3.5 in [9]) to the case where
F also depends on (y, z). �

Proof. The proof can be done proceeding along the same lines as in the proof of Theorem
3.12, the only difference being that in Step IV we rely on Theorem 3.5 in [9] rather than on
Theorem 3.6 of this paper. �

We finally state the following existence result, which relies on the previous Theorem 3.14.

Theorem 3.16. Let Assumption (A1) hold. We also suppose the following.

(a) b, σ, F, H are continuous;
(b) F does not depend on (y, z);
(c) for every t ∈ [0, T ], the map F(t, ·) is continuous uniformly with respect to t ∈ [0, T ];
(d) b, σ, F satisfy the following property:

(3.22) b(t, η) = b(t, γ), σ(t, η) = σ(t, γ), F(t, η) = F(t, γ),

for every t ∈ [0, T ], η, γ ∈ C([−T, 0]), with η(x) = γ(x) for any x ∈ [−t, 0].
Then, the map  given by (3.12) is a (path-dependent) strong-viscosity solution to equation
(3.1).

Remark 3.17. Notice that the requirement that F does not depend on (y, z) is needed only
because in the proof of Theorem 3.16 we use Theorem 3.14 above, for which in turn we
refer to Remark 3.15. �

Proof. By Theorem 3.14, it is enough to prove that there exists a nondecreasing sequence
(Nn)n∈N ⊂ N\{0} such that, for all n ∈ N and (t, η) ∈ [0, T ] ×C([−T, 0]),

bn(t, η) = b̄n

(
t,
∫

[−t,0]
ϕ1(x + t) d−η(x), . . . ,

∫
[−t,0]

ϕNn(x + t) d−η(x)
)
,

σn(t, η) = σ̄n

(
t,
∫

[−t,0]
ϕ1(x + t) d−η(x), . . . ,

∫
[−t,0]

ϕNn(x + t) d−η(x)
)
,

Fn(t, η) = F̄n

(
t,
∫

[−t,0]
ϕ1(x + t) d−η(x), . . . ,

∫
[−t,0]

ϕNn(x + t) d−η(x)
)
,

where (bn, σn, Fn)n and (b̄n, σ̄n, F̄n)n satisfy items (i), (ii)’, (iii), (iv), (v) of Theorem 3.14.
Then, the fact that the map  given by (3.12) is a (path-dependent) strong-viscosity so-
lution to equation (3.1) follows directly from Theorem 3.14. We divide the proof of the
construction of the sequences (bn, σn, Fn)n and (b̄n, σ̄n, F̄n)n into five steps.

Step I. Polygonal approximation of η ∈ C([−T, 0]). For every n ∈ N, we consider the n-th
dyadic subdivision of [0, T ], namely
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0 = tn
0 < tn

1 < . . . < tn
Nn
= T, where Nn := 2n and tn

j :=
j

2n T, ∀ j = 0, . . . , 2n.

For every fixed n ∈ N, t ∈ [0, T ], η ∈ C([−T, 0]), we consider the n-th polygonal approxi-
mation η̃t

n ∈ C([−T, 0]) of path η at time t, defined as
• η̃t

n is constant on [−T,−t] and equal to η(−t);
• η̃t

n is linear on [(tn
j−1 ∧ t) − t, (tn

j ∧ t) − t], for every j = 1, . . . ,Nn;
• η̃t

n((tn
j ∧ t) − t) = η((tn

j ∧ t) − t), for every j = 0, . . . ,Nn.
Notice that −t = (tn

0 ∧ t) − t < (tn
1 ∧ t) − t < · · · < (tn

Nn
∧ t) − t = 0, so that the finite

sequence ((tn
j ∧ t) − t) j is a subdivision of [−t, 0]. Then, on the interval [−t, 0] we see that

the continuous function η̃t
n is given by

η̃t
n(x) =

η((tn
j ∧ t) − t) − η((tn

j−1 ∧ t) − t)

(tn
j ∧ t) − (tn

j−1 ∧ t)
x

+
((tn

j ∧ t) − t) η((tn
j−1 ∧ t) − t) − ((tn

j−1 ∧ t) − t) η((tn
j ∧ t) − t)

(tn
j ∧ t) − (tn

j−1 ∧ t)
,

for every x ∈ [(tn
j−1 ∧ t) − t, (tn

j ∧ t) − t], whenever tn
j−1 < t, so that (tn

j−1 ∧ t) − t < (tn
j ∧ t) − t.

Notice that, for any η, γ ∈ C([−T, 0]) with η(x) = γ(x) for any x ∈ [−t, 0], we have η̃t
n ≡ γ̃t

n.
Moreover, for any η ∈ C([−T, 0]), let ηt ∈ C([−T, 0]) denote the continuous path satisfying:
ηt ≡ η(−t) on [−T,−t] and ηt ≡ η on [−t, 0]. Then, from the uniform continuity of η, and
hence of ηt, we deduce that ‖η̃t

n − ηt‖∞ → 0 as n→ +∞.
Define the maps b̃n : [0, T ] ×C([−T, 0])→ R, σ̃n : [0, T ] ×C([−T, 0])→ R, F̃n : [0, T ] ×

C([−T, 0])→ R as

(3.23) b̃n(t, η) := b(t, η̃t
n), σ̃n(t, η) := σ(t, η̃t

n), F̃n(t, η) := F(t, η̃t
n),

for every (t, η) ∈ [0, T ]×C([−T, 0]). Since ‖η̃t
n−ηt‖∞ → 0 and b, σ, F satisfy property (3.22),

we deduce that the sequence (b̃n, σ̃n, F̃n)n converges pointwise to (b, σ, F) as n→ +∞.
Now, given y = (y0, . . . , yNn) ∈ RNn+1 and t ∈ [0, T ], we define the polygonal η̃t

n,y ∈
C([−T, 0]) associated with y, defined as follows:

• η̃t
n,y is constant on [−T,−t] and equal to y0;

• η̃t
n,y is linear on [(tn

j−1 ∧ t) − t, (tn
j ∧ t) − t], for every j = 1, . . . ,Nn;

• η̃t
n((tn

j ∧ t) − t) = y j, for every j = 0, . . . ,Nn.

More precisely, on the interval [−t, 0] the continuous function η̃t
n,y is given by

η̃t
n,y(x) :=

y j − y j−1

(tn
j ∧ t) − (tn

j−1 ∧ t)
x +

((tn
j ∧ t) − t) y j−1 − ((tn

j−1 ∧ t) − t) y j

(tn
j ∧ t) − (tn

j−1 ∧ t)
,

for every x ∈ [(tn
j−1 ∧ t) − t, (tn

j ∧ t) − t], whenever tn
j−1 < t, so that (tn

j−1 ∧ t) − t < (tn
j ∧ t) − t.

Define the maps b̂n : [0, T ]×RNn+1 → R, σ̂n : [0, T ]×RNn+1 → R, F̂n : [0, T ]×RNn+1 → R
as

b̂n(t, y0, . . . , yNn) := b(t, η̃t
n,y), σ̂n(t, y0, . . . , yNn) := σ(t, η̃t

n,y),

F̂n(t, y0, . . . , yNn) := F(t, η̃t
n,y),

for every t ∈ [0, T ], y = (y0, . . . , yNn) ∈ RNn+1. Notice that there exists the following relation
between the maps b̃n, σ̃n, F̃n and b̂n, σ̂n, F̂n:
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b̃n(t, η) = b̂n(t, η((tn
0 ∧ t) − t), . . . , η((tn

Nn
∧ t) − t)),

σ̃n(t, η) = σ̂n(t, η((tn
0 ∧ t) − t), . . . , η((tn

Nn
∧ t) − t)),

F̃n(t, η) = F̂n(t, η((tn
0 ∧ t) − t), . . . , η((tn

Nn
∧ t) − t)),

for every (t, η) ∈ [0, T ] × C([−T, 0]). Recalling from the integration by parts formula (2.4)
in [9] that η((tn

j ∧ t) − t) =
∫

[−t,0] 1[0,tn
j ](x + t) d−η(x), we can rewrite the above equalities as

follows:

b̃n(t, η) = b̂n

(
t,
∫

[−t,0]
1[0,tn

0](x + t) d−η(x), . . . ,
∫

[−t,0]
1[0,tn

Nn
](x + t) d−η(x)

)
,

σ̃n(t, η) = σ̂n

(
t,
∫

[−t,0]
1[0,tn

0](x + t) d−η(x), . . . ,
∫

[−t,0]
1[0,tn

Nn
](x + t) d−η(x)

)
,

F̃n(t, η) = F̂n

(
t,
∫

[−t,0]
1[0,tn

0](x + t) d−η(x), . . . ,
∫

[−t,0]
1[0,tn

Nn
](x + t) d−η(x)

)
,

for every (t, η) ∈ [0, T ] ×C([−T, 0]).

Step II. The maps b̂n, σ̂n, F̂n satisfy item (i) of Theorem 3.14. We begin noting that, given
y = (y0, . . . , yNn), y′ = (y′0, . . . , y

′
Nn

) ∈ RNn+1, we have

(3.24) ‖η̃t
n,y‖∞ ≤ max

j
|y j| ≤ |y|, ‖η̃t

n,y − η̃t
n,y′ ‖∞ ≤ max

j
|y j − y′j| ≤ |y − y′|,

where |y| = (y2
0 + · · · + y2

Nn
)1/2 denotes the Euclidean norm of y. Then, denoting by C and m

the constants appearing in assumption (A1), it follows that b̂n, σ̂n, F̂n satisfy the following
conditions (with the same constants C and m):

|b̂n(t, y) − b̂n(t, y′)| + |σ̂n(t, y) − σ̂n(t, y′)| ≤ C|y − y′|,
|b̂n(t, 0)| + |σ̂n(t, 0)| ≤ C,

|F̂n(t, y)| ≤ C
(
1 + |y|m),

for all t ∈ [0, T ], y, y′ ∈ RNn+1. Now, fix n ∈ N, y = (y0, . . . , yNn) ∈ RNn+1, s, t ∈ [0, T ], with
s ≤ t. Notice that

η̃s
n,y(x) =

⎧⎪⎪⎨⎪⎪⎩
y0, x ∈ [−T,−T + (t − s)],

η̃t
n,y(x − (t − s)), x ∈ [−T + (t − s), 0].

This proves the continuity of the map t �→ η̃t
n,y, from [0, T ] to C([−T, 0]). From this latter

property, together with (3.24) and the continuity of b, σ, F, we deduce that the maps b̂n, σ̂n,
F̂n are continuous in both arguments. In conclusion, b̂n, σ̂n, F̂n satisfy item (i) of Theorem
3.14.

Step III. The maps b̃n, σ̃n, F̃n satisfy item (iii) of Theorem 3.14. Fix a compact set K ⊂
C([−T, 0]). Our aim is to prove that the following subset of C([−T, 0]) is relatively compact:

(3.25)  :=
{
γ ∈ C([−T, 0]) : γ ≡ η̃t

n, for some n ∈ N, t ∈ [0, T ], η ∈ K
}
.

To this end, take a sequence (γk)k∈N ⊂ . Then, for every k ∈ N, there exist nk ∈ N,
tk ∈ [0, T ], ηk ∈ C([−T, 0]) such that γk ≡ η̃tk

k,nk
. Since K is compact, there exists η ∈ K

such that, up to a subsequence, (ηk)k∈N converges to η in C([−T, 0]). Similarly, there exists
t ∈ [0, T ] such that, up to a subsequence, (tk)k∈N converges to t. Finally, concerning the
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sequence (nk)k∈N we distinguish two cases: (nk)k∈N goes, up to a subsequence, to +∞; (nk)k∈N
is identically equal to some n0 ∈ N, up to a subsequence. This latter case is easier to be
treated, therefore we do not report the proof for this case, and in the sequel we suppose that
nk → +∞. Let us then prove that the sequence (η̃tk

k,nk
)k∈N converges to ηt in C([−T, 0]), where

we recall from Step I that the continuous path ηt ∈ C([−T, 0]) is equal to the constant η(−t)
on [−T,−t] and coincides with η on [−t, 0]. From the triangular inequality, we have

‖η̃tk
k,nk
− ηt‖∞ ≤ ‖η̃tk

k,nk
− η̃tk

nk
‖∞ + ‖η̃tk

nk
− ηt‖∞,

where we recall that η̃tk
nk denotes the nk-th polygonal approximation of η relative to time tk,

while η̃tk
k,nk

denotes the nk-th polygonal approximation of ηk relative to time tk. Then, from
(3.24), we obtain

‖η̃tk
k,nk
− η̃tk

nk
‖∞ ≤ max

j

∣∣∣η((tnk
j ∧ tk) − tk) − η((tnk

j ∧ tk) − tk)
∣∣∣ ≤ ‖η − ηk‖∞.

On the other hand, we notice that the term ‖η̃tk
nk − ηt‖∞ goes to zero as k → +∞, as a conse-

quence of the uniform continuity of η and of the fact that η̃tk
nk is a polygonal approximation

of η on [−tk, 0]. In conclusion, we deduce that ‖η̃tk
k,nk
− ηt‖∞ goes to zero as k → +∞. This

proves that the set  is relatively compact.
From the definition (3.23) of b̃n, σ̃n, F̃n, it follows that they satisfy item (iii) of Theorem

3.14. As a matter of fact, fix a compact set K ⊂ C([−T, 0]) and define the set  as in (3.25).
Since b, σ, F are continuous, they are uniformly continuous on the relatively compact set
[0, T ]×. Therefore, by (3.23), we see that there exists a continuity modulus mK (depending
only on b, σ, F, and the compact set K) such that

(3.26) |b̃n(t, η) − b̃n(t, η′)| + |σ̃n(t, η) − σ̃n(t, η′)| + |F̃n(t, η) − F̃n(t, η′)| ≤ mK(‖η − η′‖∞),

for all t ∈ [0, T ], η, η′ ∈ K.

Step IV. Smooth approximation of x �→ 1[0,tn
j ](x). Our aim is to find, for every n ∈ N and

j = 0, . . . ,Nn, a sequence of functions (ϕn, j,k)k∈N ⊂ C2([0, T ]), bounded uniformly with
respect to n, j, k, with first derivatives bounded in L1([0, T ]) uniformly with respect to n, j,
k, such that

η((tn
j ∧ t) − t) =

∫
[−t,0]

1[0,tn
j ](x + t) d−η(x) = lim

k→+∞

∫
[−t,0]

ϕn, j,k(x + t) d−η(x).

We begin approximating the term
∫

[−t,0] 1[0,tn
j ](x + t) d−η(x) = η((tn

j ∧ t) − t), for any j =

1, . . . ,Nn. Let Φ(x) = 1√
2π

∫ x
−∞ exp(− 1

2 z2)dz, for any x ∈ R, be the cumulative distribution
function of the standard Gaussian distribution. Then, we notice that, for any tn

j , with j ≥ 1,
and for any t ∈ [0, T ],

η((tn
j ∧ t) − t) =

∫
[−t,0]

1[0,tn
j ](x + t) d−η(x) = lim

k→+∞

∫
[−t,0]

[
1 − Φ(k(x + t − tn

j ))
]
d−η(x).

More precisely, we have (using the integration by parts formula (2.4) in [9])

sup
t∈[0,T ]

( ∫
[−t,0]

[
1 − Φ(k(x + t − tn

j ))
]
d−η(x) − η((tn

j ∧ t) − t)
)
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= sup
t∈[0,T ]

([
1 − Φ(k(t − tn

j ))
]
η(0) +

∫ 0

−t
η(x)

k√
2π

e−
1
2 k2(x+t−tn

j )
2
dx − η((tn

j ∧ t) − t)
)

= sup
t∈[0,T ]

([
1 − Φ(k(t − tn

j ))
]
η(0) +

∫ k(t−tn
j )

−ktn
j

η
( z
k
+ tn

j − t
) 1√

2π
e−

1
2 z2

dz − η((tn
j ∧ t) − t)

)

= sup
t∈[0,T ]

([
1 − Φ(k(t − tn

j ))
][
η(0) − η((tn

j ∧ t) − t)
] − Φ(−ktn

j )η((tn
j ∧ t) − t)

+

∫ k(t−tn
j )

−ktn
j

[
η
( z
k
+ tn

j − t
)
− η((tn

j ∧ t) − t)
] 1√

2π
e−

1
2 z2

dz
)

k→+∞−→ 0.

It remains to consider the term corresponding to j = 0, namely
∫

[−t,0] 1[0,tn
0](x + t) d−η(x) =

η(−t). We notice that we have (using the integration by parts formula (2.4) in [9])

sup
t∈[0,T ]

( ∫
[−t,0]

[
1 − Φ(k(x + t − 1/

√
k))
]
d−η(x) − η(−t)

)

= sup
t∈[0,T ]

([
1 − Φ(k(t − 1/

√
k))
]
η(0) +

∫ k(t−1/
√

k)

−√k
η
( z
k
+

1√
k
− t
) 1√

2π
e−

1
2 z2

dz − η(−t)
)

= sup
t∈[0,T ]

([
1 − Φ(k(t − 1/

√
k))
][
η(0) − η(−t)

] − Φ(−√k)η(−t)

+

∫ k(t−1/
√

k)

−√k

[
η
( z
k
+

1√
k
− t
)
− η(−t)

] 1√
2π

e−
1
2 z2

dz
)

k→+∞−→ 0.

In conclusion, we obtain (the same property holds for the coefficients σ̃n and F̃n)

sup
t∈[0,T ]

[
b̂n

(
t,
∫

[−t,0]

[
1 − Φ(k(x + t − 1/

√
k))
]
d−η(x),

∫
[−t,0]

[
1 − Φ(k(x + t − tn

1))
]
d−η(x), . . .

)

−b̂n

(
t,
∫

[−t,0]
1[0,tn

0](x + t) d−η(x), . . . ,
∫

[−t,0]
1[0,tn

Nn
](x + t) d−η(x)

)]
k→+∞−→ 0,

for every η ∈ C([−T, 0]). Now, define

b̃n,k(t, η) := b̂n

(
t,
∫

[−t,0]

[
1−Φ(k(x+t−1/

√
k))
]

d−η(x),
∫

[−t,0]

[
1−Φ(k(x+t−tn

1))
]
d−η(x), . . .

)
,

for all n, k ∈ N, t ∈ [0, T ], η ∈ C([−T, 0]). In a similar way, we define σ̃n,k and F̃n,k.
Proceeding along the same lines as in the previous Step III, we see that, for every compact
set K ∈ C([−T, 0]), we have (with the same continuity modulus as in (3.26))

|b̃n,k(t, η) − b̃n,k(t, η′)| + |σ̃n,k(t, η) − σ̃n,k(t, η′)| + |F̃n,k(t, η) − F̃n,k(t, η′)| ≤ mK(‖η − η′‖∞),

for all t ∈ [0, T ], η, η′ ∈ K. In other words, the functions b̃n,k(t, ·), σ̃n,k(t, ·), F̃n,k(t, ·), n, k ∈ N,
are equicontinuous on compact sets, uniformly with respect to t ∈ [0, T ]. Then, it fol-
lows from Lemma D.1 that there exists a subsequence (b̃n,kn , σ̃n,kn , F̃n,kn)n∈N which converges
pointwise to (b, σ, F) on [0, T ] ×C([−T, 0]).

From now on, to alleviate the notation, we denote the subsequence (b̃n,kn , σ̃n,kn , F̃n,kn)n∈N
simply by (b̃n, σ̃n, F̃n)n∈N, with

b̃n(t, η) = b̂n

(
t,
∫

[−t,0]
ϕ1(x + t) d−η(x), . . . ,

∫
[−t,0]

ϕNn(x + t) d−η(x)
)
,
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σ̃n(t, η) = σ̂n

(
t,
∫

[−t,0]
ϕ1(x + t) d−η(x), . . . ,

∫
[−t,0]

ϕNn(x + t) d−η(x)
)
,

F̃n(t, η) = F̂n

(
t,
∫

[−t,0]
ϕ1(x + t) d−η(x), . . . ,

∫
[−t,0]

ϕNn(x + t) d−η(x)
)
,

for every (t, η) ∈ [0, T ] × C([−T, 0]), for some sequence of functions (ϕ j) j∈N ⊂ C2([0, T ]),
bounded uniformly with respect to j, with first derivatives bounded in L1([0, T ]) uniformly
with respect to j.

Step V. Conclusion. In order to conclude the proof, it remains to perform a smooth approxi-
mation of b̂n, σ̂n, F̂n. To this end, we proceed along the same lines as in Step III of the proof
of Theorem 3.12. More precisely, for every n ∈ N, we consider the function ρn ∈ C∞(RNn)
given by (3.20). As in Step III of the proof of Theorem 3.12, we set ρn,k(z) := kNnρn(k z),
∀ z ∈ RNn , k ∈ N, and we define

b̂n,k(t, y) =
∫
RNn

ρn,k(z)b̂n(t, y − z) dz,

for all (t, y) ∈ [0, T ] × RNn . In a similar way, we define σ̂n,k and F̂n,k. We denote

b̌n,k(t, η) := b̂n,k

(
t,
∫

[−t,0]
ϕ1(x + t) d−η(x), . . . ,

∫
[−t,0]

ϕNn(x + t) d−η(x)
)
,

for all n, k ∈ N, t ∈ [0, T ], η ∈ C([−T, 0]). We define similarly σ̌n,k and F̌n,k. By Lemma D.1,
we deduce that there exists a subsequence (b̌n,kn , σ̌n,kn , F̌n,kn)n∈N which converges pointwise
to (b, σ, F). Then, we define b̄n := b̂n,kn , σ̄n := σ̂n,kn , F̄n := F̂n,kn , and also bn := b̌n,kn ,
σn := σ̌n,kn , Fn := F̌n,kn . We see that the sequences (bn, σn, Fn)n∈N and (b̄n, σ̄n, F̄n)n∈N
satisfy items (i), (ii)’, (iii), (iv), (v) of Theorem 3.14. This concludes the proof. �

3.5. The Markovian case revisited.
3.5. The Markovian case revisited. In the present section we show that, in the Mar-

kovian case, Definition 3.9 of (path-dependent) strong-viscosity solution is coherent with
Definition 2.3. In particular, consider the semilinear parabolic PDE

(3.27)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂tu(t, x) + 〈b(t, x),Dxu(t, x)〉 + 1

2 tr(σσᵀ(t, x)D2
xu(t, x))

+ f (t, x, u(t, x), σᵀ(t, x)Dxu(t, x)) = 0, ∀ (t, x) ∈ [0, T ) × R,
u(T, x) = h(x), ∀ x ∈ R,

with b, σ, f , h satisfying Assumption (A0). Then, equation (3.27) can be rewritten as the
following semilinear parabolic path-dependent PDE

(3.28)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂t + DH

 + b̃(t, η)DV
 + 1

2 σ̃(t, η)2DVV


+ F̃(t, η, , σ(t, η)DV
 ) = 0, ∀ (t, η) ∈ [0, T [×C([−T, 0]),

 (T, η) = H̃(η), ∀ η ∈ C([−T, 0]),

where b̃ : [0, T ]×C([−T, 0])→ R, σ̃ : [0, T ]×C([−T, 0])→ R, F̃ : [0, T ]×C([−T, 0])×R×
R→ R, H̃ : C([−T, 0])→ R are defined as

b̃(t, η) := b(t, η(0)), σ̃(t, η) := σ(t, η(0)), F̃(t, η, y, z) := f (t, η(0), y, z),

H̃(η) := h(η(0)),
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for every (t, η, y, z) ∈ [0, T ] ×C([−T, 0]) × R × R. Since b, σ, f , h satisfy Assumption (A0),
it follows that b̃, σ̃, F̃, H̃ satisfy Assumption (A1). Moreover, we have the following result.

Proposition 3.18. Suppose that Assumption (A0) holds.

(1) Every strong-viscosity solution u : [0, T ]×R→ R to equation (3.27), in the sense of
Definition 2.3, is such that the map  : [0, T ] ×C([−T, 0])→ R, defined by

 (t, η) := u(t, η(0)), ∀ (t, η) ∈ [0, T ] ×C([−T, 0]),

is a (path-dependent) strong-viscosity solution to equation (3.28) in the sense of
Definition 3.9.

(2) Viceversa, every (path-dependent) strong-viscosity solution  : [0, T ] × C([−T, 0])
→ R to equation (3.28), in the sense of Definition 3.9, can be represented as

 (t, η) = u(t, η(0)), ∀ (t, η) ∈ [0, T ] ×C([−T, 0]),

for some function u : [0, T ] × R → R. Moreover, under the assumptions of either
Theorem 2.13 or Theorem 2.16, u is a strong-viscosity solution to equation (3.27)
in the sense of Definition 2.3.

Proof. Proof of point (1). Let u : [0, T ]×R→ R be a strong-viscosity solution to equation
(3.27) in the sense of Definition 2.3, so that there exists a sequence (un, hn, fn, bn, σn)n of
Borel measurable functions un : [0, T ] × R → R, hn : R → R, fn : [0, T ] × R × R × R → R,
bn : [0, T ] × R → R, σn : [0, T ] × R → R, satisfying points (i)-(ii)-(iii) of Definition 2.3.
Define  : [0, T ] × C([−T, 0]) → R as  (t, η) := u(t, η(0)). Let us prove that  is a (path-
dependent) strong-viscosity solution to equation (3.28) in the sense of Definition 3.9. For
every n, define b̃n : [0, T ] × C([−T, 0]) → R, σ̃n : [0, T ] × C([−T, 0]) → R, F̃n : [0, T ] ×
C([−T, 0]) × R × R→ R, H̃n : C([−T, 0])→ R as

b̃n(t, η) := bn(t, η(0)), σ̃n(t, η) := σn(t, η(0)), F̃n(t, η, y, z) := fn(t, η(0), y, z),

H̃n(η) := hn(η(0)),

for every (t, η, y, z) ∈ [0, T ]×C([−T, 0])×R×R. Moreover, let n : [0, T ]×C([−T, 0])→ R
be given by n(t, η) = un(t, η(0)). Then, the sequence (n, H̃n, F̃n, b̃n, σ̃n)n satisfies points
(i)-(ii)-(iii) of Definition 3.9, from which it follows that  is a (path-dependent) strong-
viscosity solution to equation (3.28) in the sense of Definition 3.9.

Proof of point (2). We begin recalling that, since Assumption (A1) holds, by Theorem 3.10
we have that  is given by

(3.29)  (t, η) = Yt,η
t , ∀ (t, η) ∈ [0, T ] ×C([−T, 0]),

where (Yt,η
s , Zt,η

s )s∈[t,T ] ∈ S2(t, T ) × H2(t, T ) is the unique solution to the equation

Yt,η
s = H̃(Xt,η

T ) +
∫ T

s
F̃(r,Xt,η

r , Y
t,η
r , Zt,η

r ) dr −
∫ T

s
Zt,η

r dWr, s ∈ [t, T ],

with Xt,η window process of Xt,η = (Xt,η
s )s∈[−T+t,T ], solution of the equation⎧⎪⎪⎨⎪⎪⎩

dXt,η
s = b̃(s,Xt,η

s ) dt + σ̃(s,Xt,η
s ) dWs, s ∈ [t, T ],

Xt,η
s = η(s − t), s ∈ [−T + t, t].
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From the definition of Xt,η, we see that Xt,η
r (0) = Xt,η

r , for every r ∈ [t, T ]. Therefore, the
equation solved by Xt,η can be written as follows:⎧⎪⎪⎨⎪⎪⎩

dXt,η
s = b(s, Xt,η

s ) dt + σ(s, Xt,η
s ) dWs, s ∈ [t, T ],

Xt,η
s = η(s − t), s ∈ [−T + t, t].

We see that (Xt,η
s )s∈[t,T ] solves the same equation of the process Xt,η(0) = (Xt,η(0)

s )s∈[t,T ], namely
equation (2.2) with x = η(0). As a consequence, the processes (Xt,η

s )s∈[t,T ] and Xt,η(0) =

(Xt,η(0)
s )s∈[t,T ] are P-indistinguishable. From this result we deduce that the equation solved by

(Yt,η
s , Zt,η

s )s∈[t,T ] can be written as

Yt,η
s = h(Xt,η(0)

T ) +
∫ T

s
f (r, Xt,η(0)

r , Yt,η
r , Zt,η

r ) dr −
∫ T

s
Zt,η

r dWr, t ≤ s ≤ T.

We notice that (Yt,η
s , Zt,η

s )s∈[t,T ] solves the same equation of (Yt,η(0)
s , Zt,η(0)

s )s∈[t,T ], namely equa-
tion (2.5) with x = η(0). By uniqueness, it follows that ‖Yt,η − Yt,η(0)‖

S2(t,T )
= 0 and ‖Zt,η −

Zt,η(0)‖
H2(t,T )
= 0. Therefore, we deduce Yt,η

t = Yt,η(0)
t . Now, define the map u : [0, T ]×R→ R

as

(3.30) u(t, x) := Yt,x
t , ∀ (t, x) ∈ [0, T ] × R.

Then, the following relation between the map  in (3.29) and the function u in (3.30) holds:

 (t, η) = u(t, η(0)), ∀ (t, η) ∈ [0, T ] ×C([−T, 0]).

Finally, under the assumptions of either Theorem 2.13 or Theorem 2.16, we deduce that u is
a strong-viscosity solution to equation (3.27) in the sense of Definition 2.3. �

Appendix

Appendix A
In the present appendix we fix a complete probability space (Ω, ,P) on which a d-

dimensional Brownian motion W = (Wt)t≥0 is defined. We denote F = (t)t≥0 the completion
of the natural filtration generated by W.

. Estimates for path-dependent stochastic differential equations.
A. Estimates for path-dependent stochastic differential equations. Let C([−T, 0];Rd)

denote the Banach space of all continuous paths η : [−T, 0] → Rd endowed with the supre-
mum norm ‖η‖ = supt∈[0,T ] |η(t)|. Notice that, when d = 1, we simply write C([−T, 0]) in-
stead of C([−T, 0];R). In the present section we consider the d-dimensional path-dependent
SDE:

(A.1)

⎧⎪⎪⎨⎪⎪⎩
dXs = b(s,Xs) dt + σ(s,Xs) dWs, s ∈ [t, T ],

Xs = η(s − t), s ∈ [−T + t, t],

where on b : [0, T ] × C([−T, 0];Rd) → Rd and σ : [0, T ] × C([−T, 0];Rd) → Rd we shall
impose the following assumptions.

(Ab,σ) b and σ are Borel measurable functions satisfying, for some positive constant C,

| b(t, η) − b(t, η′) | + |σ(t, η) − σ(t, η′) | ≤ C‖η − η′‖,
| b(t, 0) | + |σ(t, 0) | ≤ C,
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for all t ∈ [0, T ] and η, η′ ∈ C([−T, 0];Rd).

Notice that equation (A.1) on [t, T ] becomes equation (2.2) when b = b(t, η) and σ =

σ(t, η) are non-path-dependent, so that they depend only on η(t) at time t. On the other
hand, when d = 1 equation (A.1) reduces to equation (3.2).

Lemma A.1. Under Assumption (Ab,σ), for any (t, η) ∈ [0, T ]×C([−T, 0];Rd) there exists
a unique (up to indistinguishability) F-adapted continuous process Xt,η = (Xt,η

s )s∈[−T+t,T ]

strong solution to equation (2.2). Moreover, for any p ≥ 1 there exists a positive constant
Cp such that

(A.2) E
[

sup
s∈[−T+t,T ]

∣∣∣Xt,η
s

∣∣∣p] ≤ Cp
(
1 + ‖η‖p).

Proof. Existence and uniqueness follow from Theorem 14.23 in [29]. Concerning esti-
mate (3.3) we refer to Proposition 3.1 in [9] (notice that in [9], estimate (3.3) is proved for
the case d = 1; however, proceeding along the same lines, we can prove (3.3) for a generic
d ∈ N\{0}). �

Lemma A.2. Suppose that Assumption (Ab,σ) holds and let (bn, σn)n be a sequence sat-
isfying Assumption (Ab,σ) with a positive constant C independent of n. Moreover, (bn, σn)
converges pointwise to (b, σ) as n → ∞. For any n ∈ N and (t, η) ∈ [0, T ] × C([−T, 0];Rd),
denote by Xn,t,η = (Xn,t,η

s )s∈[−T+t,T ] the unique solution to the path-dependent SDE

(A.3)

⎧⎪⎪⎨⎪⎪⎩
dXn,t,η

s = bn(s,Xn,t,η
s ) dt + σn(s,Xn,t,η

s ) dWs, t ≤ s ≤ T,

Xn,t,η
s = η(s − t), −T + t ≤ s ≤ t.

Then, for every p ≥ 1, we have

(A.4) E
[

sup
t≤s≤T

|Xn,t,η
s |p
]
≤ Cp

(
1 + ‖η‖p), ∀ (t, η) ∈ [0, T ] ×C([−T, 0];Rd), ∀ n ∈ N,

for some positive constant Cp, and

(A.5) lim
n→∞E

[
sup

t≤s≤T
|Xn,t,η

s − Xt,η
s |p
]
= 0, ∀ (t, η) ∈ [0, T ] ×C([−T, 0];Rd).

Proof. For any n ∈ N and (t, η) ∈ [0, T ] × C([−T, 0];Rd), the existence and uniqueness
of (Xn,t,η

s )s∈[−T+t,T ], as well as estimate (A.4), can be proved proceeding as in Lemma A.1. It
remains to prove (A.5). Observe that

Xn,t,η
s − Xt,η

s =

∫ s

t

(
bn(r,Xn,t,η

r ) − b(r,Xt,η
r )
)

dr +
∫ s

t

(
σn(r,Xn,t,η

r ) − σ(r,Xt,η
r )
)

dWr.

Then, taking the p-th power, we get (recalling the standard inequality (a+b)p ≤ 2p−1(ap+bp),
for any a, b ∈ R) that |Xn,t,η

s − Xt,η
s |p is less than or equal to

2p−1
∣∣∣∣∣
∫ s

t

(
bn(r,Xn,t,η

r ) − b(r,Xt,η
r )
)

dr
∣∣∣∣∣
p
+ 2p−1

∣∣∣∣∣
∫ s

t

(
σn(r,Xn,t,η

r ) − σ(r,Xt,η
r )
)

dWr

∣∣∣∣∣
p
.

In the sequel we shall denote cp a generic positive constant which may change from line to
line, independent of n, depending only on T , p, and the Lipschitz constant of bn, σn. Taking
the supremum over s ∈ [t, T ], and applying Hölder’s inequality to the drift term, we get



Strong-Viscosity Solutions for PDEs 363

‖Xn,t,η
s − Xt,η

s ‖p ≤ cp

∫ s

t

∣∣∣bn(r,Xn,t,η
r ) − b(r,Xt,η

r )
∣∣∣pdr

+ 2p−1 sup
t≤u≤s

∣∣∣∣∣
∫ u

t

(
σn(r,Xn,t,η

r ) − σ(r,Xt,η
r )
)

dWr

∣∣∣∣∣
p
.(A.6)

Notice that∫ s

t

∣∣∣bn(r,Xn,t,η
r ) − b(r,Xt,η

r )
∣∣∣pdr

≤ 2p−1
∫ s

t

∣∣∣bn(r,Xn,t,η
r ) − bn(r,Xt,η

r )
∣∣∣pdr + 2p−1

∫ s

t

∣∣∣bn(r,Xt,η
r ) − b(r,Xt,η

r )
∣∣∣pdr

≤ cp

∫ s

t
‖Xn,t,η

r − Xt,η
r ‖pdr + 2p−1

∫ s

t

∣∣∣bn(r,Xt,η
r ) − b(r,Xt,η

r )
∣∣∣pdr.(A.7)

In addition, from Burkholder-Davis-Gundy inequality we have

E

[
sup

t≤u≤s

∣∣∣∣∣
∫ u

t

(
σn(r,Xn,t,η

r ) − σ(r,Xt,η
r )
)

dWr

∣∣∣∣∣
p]
≤ cpE

[ ∫ s

t

∣∣∣σn(r,Xn,t,η
r ) − σ(r,Xt,η

r )
∣∣∣p/2dr

]

≤ cpE

[ ∫ s

t

∣∣∣σn(r,Xn,t,η
r ) − σn(r,Xt,η

r )
∣∣∣p/2dr

]
+ cpE

[ ∫ s

t

∣∣∣σn(r,Xt,η
r ) − σ(r,Xt,η

r )
∣∣∣p/2dr

]

≤ cp

∫ s

t
E
[‖Xn,t,η

r − Xt,η
r ‖p] dr + cp

∫ s

t
E
[∣∣∣σn(r,Xt,η

r ) − σ(r,Xt,η
r )
∣∣∣p/2] dr.

(A.8)

Taking the expectation in (A.6), and using (A.7) and (A.8), we find

E
[‖Xn,t,η

s − Xt,η
s ‖p] ≤ cp

∫ s

t
E
[‖Xn,t,η

r − Xt,η
r ‖p] dr + cp

∫ s

t
E
[∣∣∣bn(r,Xt,η

r ) − b(r,Xt,η
r )
∣∣∣p] dr

+ cp

∫ T

t
E
[∣∣∣σn(r,Xt,η

r ) − σ(r,Xt,η
r )
∣∣∣p/2] dr.

Then, applying Gronwall’s lemma to the map r �→ E[‖Xn,t,η
r − Xt,η

r ‖p], we get

E
[

sup
t≤s≤T

|Xn,t,η
s − Xt,η

s |p
]
≤ cp

∫ T

t
E
[∣∣∣bn(r,Xt,η

r ) − b(r,Xt,η
r )
∣∣∣p] dr

+ cp

∫ T

t
E
[∣∣∣σn(r,Xt,η

r ) − σ(r,Xt,η
r )
∣∣∣p/2] dr.

In conclusion, (A.5) follows from estimate (A.2) and Lebesgue’s dominated convergence
theorem. �

A. Estimates for backward stochastic differential equations.
B. Estimates for backward stochastic differential equations. We derive estimates for

the norm of the Z and K components for supersolutions to backward stochastic differen-
tial equations, in terms of the norm of the Y component. These results are standard, but
seemingly not at disposal in the following form in the literature. Firstly, let us introduce a
generator function F : [0, T ] ×Ω × R × Rd → R satisfying the usual assumptions:

(A.a) F(·, y, z) is F-predictable for every (y, z) ∈ R × Rd.
(A.b) There exists a positive constant CF such that

|F(s, y, z) − F(s, y′, z′)| ≤ CF
(|y − y′| + |z − z′|),
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for all y, y′ ∈ R, z, z′ ∈ Rd, ds ⊗ dP-a.e.
(A.c) Integrability condition:

E

[ ∫ T

t
|F(s, 0, 0)|2ds

]
≤ MF ,

for some positive constant MF .

Proposition B.1. For any t, T ∈ R+, t < T, consider (Ys, Zs,Ks)s∈[t,T ] satisfying the
following.

(i) Y ∈ S2(t, T ) and it is continuous.
(ii) Z is an Rd-valued F-predictable process such that P(

∫ T
t |Zs|2ds < ∞) = 1.

(iii) K is a real nondecreasing (or nonincreasing) continuous F-predictable process such
that Kt = 0.

Suppose that (Ys, Zs,Ks)s∈[t,T ] solves the BSDE, P-a.s.,

(B.1) Ys = YT +

∫ T

s
F(r, Yr, Zr) dr + KT − Ks −

∫ T

s
〈Zr, dWr〉, t ≤ s ≤ T,

for some generator function F satisfying conditions (A.b)-(A.c). Then (Z,K) ∈ H2(t, T )d ×
A+,2(t, T ) and

(B.2) ‖Z‖2
H2(t,T )d + ‖K‖2S2(t,T ) ≤ C

(
‖Y‖2

S2(t,T ) + E

∫ T

t
|F(s, 0, 0)|2ds

)
,

for some positive constant C depending only on T and CF, the Lipschitz constant of F. If in
addition K ≡ 0, we have the standard estimate

(B.3) ‖Y‖2
S2(t,T ) + ‖Z‖2H2(t,T )d ≤ C′

(
E
[|YT |2] + E

∫ T

t
|F(s, 0, 0)|2ds

)
,

for some positive constant C′ depending only on T and CF.

Proof. Proof of estimate (B.2). Let us consider the case where K is nondecreasing. For
every k ∈ N, define the stopping time

τk = inf
{
s ≥ t :

∫ s

t
|Zr |2dr ≥ k

}
∧ T.

Then, the local martingale (
∫ s

t Yr〈1[t,τk](r)Zr, dWr〉)s∈[t,T ] satisfies, using Burkholder-Davis-
Gundy inequality,

E

[
sup

t≤s≤T

∣∣∣∣∣
∫ s

t
Yr〈1[t,τk](r)Zr, dWr〉

∣∣∣∣∣
]
< ∞,

therefore it is a martingale. As a consequence, an application of Itô’s formula to |Ys|2 be-
tween t and τk yields

E
[|Yt|2] + E

∫ τk

t
|Zr |2dr = E

[|Yτk |2
]
+ 2E

∫ τk

t
YrF(r, Yr, Zr) dr + 2E

∫ τk

t
Yr dKr.(B.4)

In the sequel c and c′ will be two strictly positive constants depending only on CF , the
Lipschitz constant of F. Using (A.b) and recalling the standard inequality ab ≤ a2 + b2/4,
for any a, b ∈ R, we see that
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(B.5) 2E
∫ τk

t
YrF(r, Yr, Zr) dr ≤ cT‖Y‖2

S2(t,T ) +
1
4
E

∫ τk

t
|Zr |2dr + E

∫ T

t
|F(r, 0, 0)|2dr.

Regarding the last term on the right-hand side in (B.4), for every ε > 0, recalling the standard
inequality 2ab ≤ εa2 + b2/ε, for any a, b ∈ R, we have

(B.6) 2E
∫ τk

t
Yr dKr ≤ 1

ε
‖Y‖2

S2(t,T ) + εE
[|Kτk |2

]
.

Now, from (B.1) we get

Kτk = Yt − Yτk −
∫ τk

t
F(r, Yr, Zr) dr +

∫ τk

t
〈Zr, dWr〉.

Therefore, recalling that (x1 + · · · + x4) ≤ 4(x2
1 + · · · + x2

4), for any x1, . . . , x4 ∈ R

E
[|Kτk |2

] ≤ 8‖Y‖2
S2(t,T ) + 4TE

∫ τk

t
|F(r, Yr, Zr)|2dr + 4E

∣∣∣∣∣
∫ τk

t
〈Zr, dWr〉

∣∣∣∣∣
2
.

From Itô’s isometry and (A.b), we obtain

(B.7) E
[|Kτk |2

] ≤ c′(1 + T 2)‖Y‖2
S2(t,T ) + c′(1 + T )E

∫ τk

t
|Zr |2dr + c′TE

∫ T

t
|F(r, 0, 0)|2dr.

Then, taking ε = 1/(4c′(1 + T )) in (B.6) we get

2E
∫ τk

t
YrdKr ≤ 16c′(1 + T )2 + 1 + T 2

4(1 + T )
‖Y‖2

S2(t,T )(B.8)

+
1
4
E

∫ τk

t
|Zr |2dr +

T
4(1 + T )

E

∫ T

t
|F(r, 0, 0)|2dr

≤ c(1 + T 2)‖Y‖2
S2(t,T ) +

1
4
E

∫ τk

t
|Zr |2dr + cTE

∫ T

t
|F(r, 0, 0)|2dr.

Plugging (B.5) and (B.8) into (B.4), we end up with

E
[|Yτk |2

]
+

1
2
E

∫ τk

t
|Zr |2dr ≤ c(1 + T 2)‖Y‖2

S2(t,T ) + c(1 + T )E
∫ T

t
|F(r, 0, 0)|2dr.

Then, from monotone convergence theorem,

(B.9) E

∫ T

t
|Zr |2dr ≤ c(1 + T 2)‖Y‖2

S2(t,T ) + c(1 + T )E
∫ T

t
|F(r, 0, 0)|2dr.

Plugging (B.9) into (B.7), and using again monotone convergence theorem, we finally obtain

‖K‖2
S2(t,T ) = E

[|KT |2] ≤ c(1 + T 3)‖Y‖2
S2(t,T ) + c(1 + T 2)E

∫ T

t
|F(r, 0, 0)|2dr.

Proof of estimate (B.3). The proof of this estimate is standard, see, e.g., Remark (b) imme-
diately after Proposition 2.1 in [20]. We just recall that it can be done in the following two
steps: first, we apply Itô’s formula to |Ys|2, afterwards we take the expectation, then we use
the Lipschitz property of F with respect to (y, z), and finally we apply Gronwall’s lemma to
the map v(s) := E[|Ys|2], s ∈ [t, T ]. Then, we end up with the estimate

(B.10) sup
s∈[t,T ]

E
[|Ys|2] + ‖Z‖2H2(t,T )d ≤ C̄

(
E
[|YT |2] + E

∫ T

t
|F(s, 0, 0)|2ds

)
,
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for some positive constant C̄ depending only on T and CF . In the second step of the proof
we estimate ‖Y‖2

S2(t,T ) = E[supt≤s≤T |Ys|2] proceeding as follows: we take the square in rela-
tion (B.1), followed by the sup over s and then the expectation. Finally, the claim follows
exploiting the Lipschitz property of F with respect to (y, z), estimate (B.10), and Burkholder-
Davis-Gundy inequality. �

B. Limit theorem for backward stochastic differential equations.
C. Limit theorem for backward stochastic differential equations. We prove a limit

theorem for backward stochastic differential equations designed for our purposes, which is
inspired by the monotonic limit theorem in [35], even if it is formulated under a different set
of assumptions. In particular, the monotonicity of the sequence (Yn)n is not assumed. On the
other hand, we impose a uniform boundedness for the sequence (Yn)n in Sp(t, T ) for some
p > 2, instead of p = 2 as in [35]. Furthermore, unlike [35], the terminal condition and the
generator function of the BSDE solved by Yn are allowed to vary with n.

Theorem C.1. Let (Fn)n be a sequence of generator functions satisfying assumption (Aa)-
(Ac), with the same constants CF and MF for all n. For any n, let (Yn, Zn,Kn) ∈ S2(t, T ) ×
H2(t, T )d × A+,2(t, T ), with Yn and Kn continuous, satisfying, P-a.s.,

Yn
s = Yn

T +

∫ T

s
Fn(r, Yn

r , Z
n
r ) dr + Kn

T − Kn
s −
∫ T

s
〈Zn

r , dWr〉, t ≤ s ≤ T

and

‖Yn‖2
S2(t,T ) + ‖Zn‖H2(t,T )d + ‖Kn‖S2(t,T ) ≤ C, ∀ n ∈ N,

for some positive constant C, independent of n. Suppose that there exist a generator func-
tion F satisfying conditions (Aa)-(Ac) and a continuous process Y ∈ S2(t, T ), in addition
supn ‖Yn‖Sp(t,T ) < ∞ for some p > 2, and, for some null measurable sets NF ⊂ [t, T ]×Ω and
NY ⊂ Ω,

Fn(s, ω, y, z)
n→∞−→ F(s, ω, y, z), ∀ (s, ω, y, z) ∈ (([t, T ] ×Ω)\NF) × R × Rd,

Yn
s (ω)

n→∞−→ Ys(ω), ∀ (s, ω) ∈ [t, T ] × (Ω\NY).

Then, there exists a unique pair (Z,K) ∈ H2(t, T )d × A+,2(t, T ) such that, P-a.s.,

(C.1) Ys = YT +

∫ T

s
F(r, Yr, Zr) dr + KT − Ks −

∫ T

s
〈Zr, dWr〉, t ≤ s ≤ T.

In addition, Zn converges strongly (resp. weakly) to Z in Lq(t, T ;Rd) (resp. H2(t, T )d), for
any q ∈ [1, 2[, and Kn

s converges weakly to Ks in L2(Ω,s, P), for any s ∈ [t, T ].

Remark C.2. Notice that, under the assumptions of Theorem C.1 (more precisely, given
that Y is continuous, supn ‖Yn‖Sp(t,T ) < ∞ for some p > 2, Yn

s (ω) → Ys(ω) as n tends to
infinity for all (s, ω) ∈ [t, T ] × (Ω\NY)), it follows that ‖Y‖Sp(t,T ) < ∞. Indeed, from Fatou’s
lemma we have

(C.2) E
[

lim inf
n→∞ sup

t≤s≤T
|Yn

s |p
]
≤ lim inf

n→∞ ‖Y
n‖p
Sp(t,T ) < ∞.

Moreover, since Y is continuous, there exists a null measurable set N′Y ⊂ Ω such that s �→
Ys(ω) is continuous on [t, T ] for every ω ∈ Ω\N′Y . Then, for any ω ∈ Ω\(NY ∪ N′Y), there
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exists τ(ω) ∈ [t, T ] such that

(C.3) sup
t≤s≤T

|Ys(ω)|p = |Yτ(ω)(ω)|p = lim
n→∞ |Y

n
τ(ω)(ω)|p ≤ lim inf

n→∞ sup
t≤s≤T

|Yn
s (ω)|p.

Therefore, combining (C.2) with (C.3), we end up with ‖Y‖Sp(t,T ) < ∞. �

Proof. We begin proving the uniqueness of (Z,K). Let (Z,K), (Z′,K′) ∈ H2(t, T )d ×
A+,2(t, T ) be two pairs satisfying (C.1). Taking the difference and rearranging the terms, we
obtain∫ T

s
〈Zr − Z′r, dWr〉 =

∫ T

s

(
F(r, Yr, Zr) − F(r, Yr, Z′r)

)
dr + KT − Ks − (K′T − K′s).

Now, the right-hand side has finite variation, while the left-hand side has not finite variation,
unless Z = Z′. This implies Z = Z′, from which we deduce K = K′.

The rest of the proof is devoted to the existence of (Z,K) and it is divided in different
steps.
Step 1. Limit BSDE. From the assumptions, we see that there exists a positive constant c,
independent of n, such that

E

∫ T

t
|Fn(r, Yn

r , Z
n
r )|2dr ≤ c, ∀ n ∈ N.

It follows that the sequence (Zn· , Fn(·, Yn· , Zn· ))n is bounded in the Hilbert space H2(t, T )d ×
L2(t, T ;R). Therefore, there exists a subsequence (Znk· , Fnk (·, Ynk· , Znk· ))k which converges
weakly to some (Z,G) ∈ H2(t, T )d × L2(t, T ;R). This implies that, for any s ∈ [t, T ], the
following weak convergences hold in L2(Ω,s, P) as k → ∞:∫ s

t
Fnk (r, Y

nk
r , Z

nk
r ) dr ⇀

∫ s

t
G(r) dr,

∫ s

t
〈Znk

r , dWr〉 ⇀
∫ s

t
〈Zr, dWr〉.

Since

Kn
s = Yn

t − Yn
s −
∫ s

t
Fn(r, Yn

r , Z
n
r ) dr +

∫ s

t
〈Zn

r , dWr〉

and, by assumption, Yn
s → Ys strongly in L2(Ω,s, P), we also have the weak convergence,

as k → ∞,

(C.4) Knk
s ⇀ Ks,

where

Ks := Yt − Ys −
∫ s

t
G(r) dr +

∫ s

t
〈Zr, dWr〉, t ≤ s ≤ T.

Notice that (Ks)t≤s≤T is adapted and continuous, so that it is a predictable process. We have
that E[|KT |2] < ∞. Let us prove that K is a nondecreasing process. For any pair r, s with
t ≤ r ≤ s ≤ T , we have Kr ≤ Ks, P-a.s.. Indeed, let ξ ∈ L2(Ω,s, P) be nonnegative,
then, from the martingale representation theorem, we see that there exist a random variable
ζ ∈ L2(Ω,r, P) and an F-predictable square integrable process η such that

ξ = ζ +

∫ s

r
ηu dWu.
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Therefore

0 ≤ E[ξ(Kn
s − Kn

r )] = E[ξKn
s ] − E[ζKn

r ] − E
[
E

[
Kn

r

∫ s

r
ηu dWu

∣∣∣∣∣r

]]

= E[ξKn
s ] − E[ζKn

r ]
n→∞−→ E[ξKs] − E[ζKr] = E[ξ(Ks − Kr)],

which shows that Kr ≤ Ks, P-a.s.. As a consequence, there exists a null measurable set
N ⊂ Ω such that Kr(ω) ≤ Ks(ω), for all ω ∈ Ω\N, with r, s ∈ Q ∩ [0, T ], r < s. Then, from
the continuity of K it follows that it is a nondecreasing process, so that K ∈ A+,2(t, T ).

Finally, we notice that the process Z in expression (C.4) is uniquely determined, as it can
be seen identifying the Brownian parts and the finite variation parts in (C.4). Thus, not only
the subsequence (Znk )k, but all the sequence (Zn)n converges weakly to Z in H2(t, T )d. It
remains to show that G(r) in (C.4) is actually F(r, Yr, Zr).
Step 2. Strong convergence of (Zn)n. Let α ∈ (0, 1) and consider the function hα(y) =
|min(y − α, 0)|2, y ∈ R. By applying Meyer-Itô’s formula combined with the occupation
times formula (see, e.g., Theorem 70 and Corollary 1, Chapter IV, in [37]) to hα(Yn

s − Ys)
between t and T , observing that the second derivative of hα in the sense of distributions is
a σ-finite Borel measure on R absolutely continuous to the Lebesgue measure with density
2 · 1]−∞,α[(·), we obtain

E
[|min(Yn

t − Yt − α, 0)|2] + E
∫ T

t
1{Yn

s−Ys<α}|Zn
s − Zs|2ds

= E
[|min(Yn

T − YT − α, 0)|2] + 2E
∫ T

t
min(Yn

s − Ys − α, 0)
(
Fn(s, Yn

s , Z
n
s ) −G(s)

)
ds

+ 2E
∫ T

t
min(Yn

s − Ys − α, 0) dKn
s − 2E

∫ T

t
min(Yn

s − Ys − α, 0) dKs.

Since min(Yn
s − Ys − α, 0) dKn

s ≤ 0, we get

E

∫ T

t
1{Yn

s−Ys<α}|Zn
s − Zs|2ds ≤ E[|min(Yn

T − YT − α, 0)|2]
(C.5)

+ 2E
∫ T

t
min(Yn

s − Ys − α, 0)
(
Fn(s, Yn

s , Z
n
s ) −G(s)

)
ds − 2E

∫ T

t
min(Yn

s − Ys − α, 0) dKs.

Let us study the behavior of the right-hand side of (C.5) as n goes to infinity. We begin
noting that

(C.6) E
[|min(Yn

T − YT − α, 0)|2] n→∞−→ α2.

Regarding the second-term on the right-hand side of (C.5), since the sequence (Fn(·, Yn· , Zn· )−
G(·))n is bounded in L2(t, T ;R), we have

sup
n∈N

(
E

[ ∫ T

t
|Fn(s, Yn

s , Z
n
s ) −G(s)|2ds

]) 1
2

=: c̄ < ∞.

Therefore, by Cauchy-Schwarz inequality we find

E

∫ T

t
|min(Yn

s − Ys − α, 0)||Fn(s, Yn
s , Z

n
s ) −G(s)| ds
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≤ c̄
(
E

[ ∫ T

t
|min(Yn

s − Ys − α, 0)|2ds
] ) 1

2 n→∞−→ c̄
√

T − t α.(C.7)

Concerning the last term on the right-hand side of (C.5), we notice that, by assumption and
Remark C.2, there exists some p > 2 such that, from Cauchy-Schwarz inequality,

sup
n∈N
E

[ ∫ T

t
|min(Yn

s − Ys − α, 0)| p2 dKs

]

≤ sup
n∈N

(
E
[

sup
t≤s≤T

|min(Yn
s − Ys − α, 0)|p

]) 1
2 (
E
[|KT |2]) 1

2 < ∞.

It follows that (min(Yn· −Y·−α, 0))n is a uniformly integrable sequence on ([t, T ]×Ω,([t, T ])
⊗ , dKs⊗dP). Moreover, by assumption, there exists a null measurable set NY ⊂ Ω such that
Yn

s (ω) converges to Ys(ω), for any (s, ω) � [t, T ]×NY . Notice that dKs⊗dP([t, T ]×NY) = 0,
therefore Yn converges to Y pointwise a.e. with respect to dKs ⊗ dP. This implies that

(C.8) E

[ ∫ T

t
|min(Yn

s − Ys − α, 0)| dKs

]
n→∞−→ αE[KT ].

By the convergence results (C.6), (C.7), and (C.8), (C.5) gives

(C.9) lim sup
n→∞

E

∫ T

t
1{Yn

s−Ys<α}|Zn
s − Zs|2 ds ≤ α2 + 2c̄

√
T − t α + 2αE[KT ].

From Egoroff’s theorem, for any δ > 0 there exists a measurable set A ⊂ [t, T ] × Ω, with
ds ⊗ dP(A) < δ, such that (Yn)n converges uniformly to Y on ([t, T ] × Ω)\A. In particular,
for any α ∈]0, 1[ we have |Yn

s (ω) − Ys(ω)| < α, for all (s, ω) ∈ ([t, T ] × Ω)\A, whenever n is
large enough. Therefore, from (C.9) we get

lim sup
n→∞

E

∫ T

t
1([t,T ]×Ω)\A|Zn

s − Zs|2 ds = lim sup
n→∞

E

∫ T

t
1([t,T ]×Ω)\A1{Yn

s−Ys<α}|Zn
s − Zs|2 ds

≤ lim sup
n→∞

E

∫ T

t
1{Yn

s−Ys<α}|Zn
s − Zs|2 ds ≤ α2 + 2c̄

√
T − t α + 2αE[KT ].

Sending α→ 0+, we obtain

(C.10) lim
n→∞E

∫ T

t
1([t,T ]×Ω)\A|Zn

s − Zs|2ds = 0.

Now, let q ∈ [1, 2[; by Hölder’s inequality,

E

∫ T

t
|Zn

s − Zs|qds = E
∫ T

t
1([t,T ]×Ω)\A|Zn

s − Zs|qds + E
∫ T

t
1A|Zn

s − Zs|qds

≤
(
E

∫ T

t
1([t,T ]×Ω)\A|Zn

s − Zs|2ds
) q

2

(T − t)
2−q

2 +

(
E

∫ T

t
|Zn

s − Zs|2ds
) q

2

δ
2−q

2 .

Since the sequence (Zn)n is bounded in H2(t, T )d, we have

sup
n∈N
E

∫ T

t
|Zn

s − Zs|2ds =: ĉ < ∞.

Therefore
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E

∫ T

t
|Zn

s − Zs|q ds ≤
(
E

∫ T

t
1([t,T ]×Ω)\A|Zn

s − Zs|2ds
) q

2

(T − t)
2−q

2 + ĉ
q
2 δ

2−q
2 ,

which implies, by (C.10),

lim sup
n→∞

E

∫ T

t
|Zn

s − Zs|q ds ≤ ĉ
q
2 δ

2−q
2 .

Sending δ → 0+ we deduce the strong convergence of Zn towards Z in Lq(t, T ;Rd), for any
q ∈ [1, 2[.

Notice that, for any q ∈ [1, 2[, we have (recalling the standard inequality (x + y)q ≤
2q−1(xq + yq), for any x, y ∈ R+)

E

[ ∫ T

t
|Fn(s, Yn

s , Z
n
s ) − F(s, Ys, Zs)|q ds

]
≤ 2q−1E

[ ∫ T

t
|Fn(s, Yn

s , Z
n
s ) − Fn(s, Ys, Zs)|q ds

]

+ 2q−1E

[ ∫ T

t
|Fn(s, Ys, Zs) − F(s, Ys, Zs)|q ds

]
.

Therefore, by the uniform Lipschitz condition on Fn with respect to (y, z), and the conver-
gence of Fn towards F, we deduce the strong convergence of (Fn(·, Yn· , Zn· ))n to F(·, Y·, Z·) in
Lq(t, T ;R), q ∈ [1, 2[. Since G(·) is the weak limit of (Fn(·, Yn· , Zn· ))n in L2(t, T ;R), we de-
duce that G(·) = F(·,Y·, Z·). In conclusion, the triple (Y, Z,K) solves the backward stochastic
differential equation (C.1). �

C. An additional result in real analysis.
D. An additional result in real analysis.

Lemma D.1. Let (Gn,k)n,k∈N, (Gn)n∈N, and G beRq-valued continuous functions on [0, T ]×
X, where (X, d) is a separable metric space, and

Gn,k(t, x)
k→∞−→ Gn(t, x), Gn(t, x)

n→∞−→ G(t, x), ∀ (t, x) ∈ [0, T ] × X.

Moreover, Gn,k(t, x)→ Gn(t, x) as k → ∞, for all x ∈ X, uniformly with respect to t ∈ [0, T ].
Suppose also that the functions Gn,k(t, ·), n, k ∈ N, are equicontinuous on compact sets,
uniformly with respect to t ∈ [0, T ]. Then, there exists a subsequence (Gn,kn)n∈N which
converges pointwise to G on [0, T ] × X.

Proof. We begin noting that, as a direct consequence of the assumptions of the lemma,
the functions G(t, ·), Gn(t, ·), and Gn,k(t, ·), for all n, k ∈ N, are equicontinuous on compact
sets, uniformly with respect to t ∈ [0, T ].

Let D = {x1, x2, . . . , x j, . . .} be a countable dense subset of X. Fix n ∈ N\{0}. Then, for
any j ∈ N there exists kn, j ∈ N such that

|Gn,k(t, x j) −Gn(t, x j) | ≤ 1
n
, ∀ k ≥ kn, j, ∀ t ∈ [0, T ].

Set kn := kn−1 ∨ kn,1 ∨ · · · ∨ kn,n, ∀ n ∈ N, where k−1 := 0. Then, we have

|Gn,kn(t, x j) −G(t, x j) | n→∞−→ 0, ∀ j ∈ N,
for all t ∈ [0, T ]. It remains to prove that the convergence holds for all (t, x) ∈ [0, T ]× X. To
this end, fix x ∈ X and consider a subsequence (x jm)m∈N ⊂ D which converges to x. Then,
the set K defined by
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K := (x jm)m∈N ∪ {x}
is a compact subset of X. Recall that the functions G(t, ·) and Gn,kn(t, ·), for all n ∈ N, are
equicontinuous on K, uniformly with respect to t ∈ [0, T ]. Then, for every ε > 0, there
exists δ > 0 such that, for all n ∈ N,

|Gn,kn(t, x1) −Gn,kn(t, x2) | ≤ ε

3
, |G(t, x1) −G(t, x2) | ≤ ε

3
,

whenever ‖x1 − x2‖ ≤ δ, x1, x2 ∈ K, for all t ∈ [0, T ]. Fix t ∈ [0, T ] and x jm0
∈ (x jm)m∈N

such that ‖x − x jm0
‖ ≤ δ. Then, we can find n0 ∈ N (possibly depending on t) for which

|Gn,kn(t, x jm0
) −G(t, x jm0

) | ≤ ε/3 for any n ≥ n0. Therefore, given n ≥ n0 we obtain

|Gn,kn(t, x) −G(t, x) | ≤ |Gn,kn(t, x) −Gn,kn(t, x jm0
) | + |Gn,kn(t, x jm0

) −G(t, x jm0
) |

+ |G(t, x jm0
) −G(t, x) | ≤ ε.

This implies that Gn,kn converges to G at (t, x), and the claim follows from the arbitrariness
of (t, x). �
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