CURVES WITH MAXIMALLY COMPUTED CLIFFORD INDEX

Takao KATO and Gerriet MARTENS

(Received November 17, 2017)

Abstract

We say that a curve X of genus g has maximally computed Clifford index if the Clifford index c of X is, for $c>2$, computed by a linear series of the maximum possible degree $d<g$; then $d=2 c+3$ resp. $d=2 c+4$ for odd resp. even c. For odd c such curves have been studied in [6]. In this paper we analyze if/how far analoguous results hold for such curves of even Clifford index c.

1. Introduction

Let X denote a smooth irreducible projective curve defined over the complex numbers, and let $g \geq 4$ resp. $c \geq 0$ denote its genus resp. its Clifford index. We say that a (complete and base point free) linear series g_{d}^{r} on X, or a divisor in it, computes c if $d<g, r>0$ and $d-2 r=c$. It is well known ([5, Thm. C]) that in this case we have $d \leq 2 c+4$ if X is neither hyper- nor bi-elliptic (which certainly holds for $c>2$). For $c>2$ we say that the Clifford index c of X is maximally computed if X has a g_{d}^{r} computing c of the maximal possible degree, i.e. $d=2 c+3$ resp. $d=2 c+4$ if c is odd resp. even. Such curves exist for every $c>2([5,3.3])$ and examples are constructed on K3 surfaces.

Let X be such a curve. Then we have $g=d+1$ ([5, 3.2.5]).
For odd c we also know: X has gonality $c+3$ and infinitely many pencils g_{c+3}^{1} ([5, 3.2.2 and 2.3]), and by [6], 3.6 and 3.7 the g_{d}^{r} is the only series on X computing c (in particular, it is half-canonical, i.e. $\left|2 g_{d}^{r}\right|$ is the canonical series of X, and very ample); moreover, the g_{d}^{r} is even normally generated.

For even c our knowledge on X is less complete ([5], [10]) mainly because a basic Diophantine equation ([6, sections 1 and 2]) valid for X in the case of odd c is not available if X has even Clifford index. One knows, for even c :

- X has gonality $c+2$,
- for every pencil $|D|$ of degree $c+2$ on X there is a pencil $\left|D^{\prime}\right|$ of degree $c+2$ on X such that $g_{d}^{r}=\left|D+D^{\prime}\right|([5,3.2 .3$ and 3.2.4] $)$,
- X has no base point free pencil of degree $c+3$ ([5, 3.2.1]),
- X has no series computing c of degree e with $3(c+2) / 2<e<2(c+2)=d$ ([13, Cor. 1]); note that this implies that our g_{d}^{r} must be very ample.

In [5, 3.3.2] the following "recognition theorem" is proved: On any k-gonal curve ($k \geq 3$) having only finitely many base point free pencils of degree k and $k+1$, a linear series g_{d}^{r},

[^0]$r \geq 2$, computing its Clifford index c computes c maximally and is the only linear series computing c which is not a pencil. (Note that c is even, then, and the g_{d}^{r} is half-canonical.) Moreover, it follows that the g_{d}^{r} is even normally generated: Since there are (by assumption) only finitely many g_{c+2}^{1} the curve embedded into \mathbb{P}^{r} by the g_{d}^{r} lies on only finitely many quadrics of rank ≤ 4 which implies (cf. [2, III, ex. D-1 and V, ex. C-7]) that it is quadratically normal, and to see that it is n-normal for all other integers $n \geq 1$ we can use Green's results on Koszul-cohomology, as is done in [6, proof of Theorem 3.6].

However, there are curves whose (even) Clifford index c is computed maximally which have infinitely many pencils of degree $c+2$; this will be shown in the next section where we discuss the case $c=4$ in greater detail. So the recognition theorem does not always answer the

Question. Is, on our X, the g_{d}^{r} the only linear series computing c which is not a pencil?
In this paper we deal with this Question. For $c \equiv 0 \bmod 4$ we prove in Section 3 that every effective divisor of X computing c is contained in a divisor of the g_{d}^{r}; in particular, the g_{d}^{r} is then the only linear series on X computing c maximally. And for $c=4, c=6$ and $c=8$ we answer our Question in the affirmative. Finally, for X lying, via the g_{d}^{r}, on a K3 surface of degree $2 r-2$ we check if the divisor theory of the surface may be helpful to provide a negative answer.

Notation. The basic reference is [2]. For any curve $X, \operatorname{Div}(X)$ denotes its group of divisors and the symbol ~ means the linear equivalence of divisors. For $D, E \in \operatorname{Div}(X)$ we write $D \leq E$ (and say that D is contained in E) if $E-D$ is effective, i.e. $E-D \geq 0$, and for linear series g_{d}^{r}, g_{e}^{s} on X the notation $g_{d}^{r} \subset g_{e}^{s}$ means that every divisor in g_{d}^{r} is contained in a divisor of g_{e}^{s} (equivalently, $\left|g_{e}^{s}-g_{d}^{r}\right| \neq \emptyset$). We sometimes identify a complete g_{d}^{r} on X with the point in the variety $W_{d}^{r}=W_{d}^{r}(X)$ corresponding to it via the Abel-Jacobi map. (Specifically, for a canonical divisor K_{X} of X the canonical series $\left|K_{X}\right|$ likewise is the only point in $W_{2 g-2}^{g-1}$, for $g>0$.)

2. Clifford index $c=4$

For $c=4$ we construct a curve whose Clifford index c is maximally computed and satisfies $\operatorname{dim}\left(W_{6}^{1}\right)>0$.

Example. Let E denote a smooth elliptic curve and $S \rightarrow E$ be a ruled surface with invariant $e \geq 0$. Using the notations of $[9, \mathrm{~V}, 2]$ we can find a smooth elliptic curve H in the numerical equivalence class of $C_{0}+e \cdot f\left(C_{0}^{2}=-e, f\right.$ a fibre); we have $h^{0}(H)=e+1$, and $-C_{0}-H$ is a canonical divisor of $S([8,3.3])$. Observe that $H^{2}=e$ and $C_{0} \cdot H=0$. For $e>0$ we consider the divisor $D:=3 H$ of S; then $|D|$ is base point free and so a general member X in $|D|$ is a smooth curve, by Bertini's theorem. Writing $X=X_{1}+X_{2}$ with effective divisors X_{1}, X_{2} of S, we thus must have $X_{1} \cdot X_{2}=0$. If $X_{1} \equiv \alpha C_{0}+\beta f$ (here \equiv denotes numerical equivalence) we have $X_{2} \equiv(3-\alpha) C_{0}+(3 e-\beta) f$ with integers $\alpha, \beta \geq 0, \alpha \leq 3, \beta \leq 3 e$ ($[8$, 3.1]), and $X_{1} \cdot X_{2}=0$ implies the relation $(2 \beta-e \alpha)(2 \alpha-3)=3 e \alpha$ leading to $X_{1} \equiv 0$ for $\alpha=0$ resp. $X_{2} \equiv 0$ for $\alpha=3$ and $\beta=-e<0$ for $\alpha=1$ resp. $\beta=4 e>3 e$ for $\alpha=2$. Thus it
follows that X is irreducible, and its genus is, by adjunction, $g=3 e+1$.
Now, let $e=4$ and view the base curve E as an elliptic normal curve in $\mathbb{P}^{e-1}=\mathbb{P}^{3}$ (of degree $e=4$); let S_{0} denote the cone over E in \mathbb{P}^{4}. Blowing up the vertex of the elliptic cone S_{0} we obtain a ruled surface $S \rightarrow E$ of invariant $e=4$ as above ([9, V, 2.11.4]), and the blow down $S \rightarrow S_{0} \subset \mathbb{P}^{4}$ is defined by $|H|$. Our curve $X \subset S$ from above blows down to a curve $X^{\prime} \subset S_{0}$ of degree $X \cdot H=3 H^{2}=3 e=12=g-1$ and X^{\prime} is smooth since it misses the vertex of S_{0}. Since $h^{0}(S, H-X)=h^{0}(S,-2 H)=0$ the linear series $|H|$ of S cuts out on X a (maybe, incomplete) linear series of degree 12 and dimension $h^{0}(H)-1=e=4$. Hence X has Clifford index $c \leq 12-2 \cdot 4=4$. To see that $c=4$ we recall that on a curve of genus 13 its Clifford index can be computed by pencils; so we have to show that the gonality k of X is 6. Since the natural map $\pi: X \subset S \rightarrow E$ has degree $X \cdot f=3$ our curve X is a triple covering of an elliptic curve; in particular, X has infinitely many g_{6}^{1}. If $k<6$ we obtain, according to Castelnuovo's genus formula for curves with independent morphisms ([2, VIII, ex. C-1]), that $g \leq(k-1)(3-1)+3 g(E)=2 k+1 \leq 11$, a contradiction. So $k=6, c=4$, and the series $|H|_{X} \mid$ is a complete (and very ample) g_{12}^{4} on X thus computing $c=4$ maximally. Since $W_{6}^{1}(X)$ contains (at least) the one-dimensional irreducible component $\pi^{*} W_{2}^{1}(E)$ we clearly have $\operatorname{dim}\left(W_{6}^{1}(X)\right)>0$.

Proposition 2.1. Let X be a curve whose Clifford index $c=4$ is computed maximally. Assume that $\operatorname{dim}\left(W_{6}^{1}\right)>0$. Then X admits a triple covering $\pi: X \rightarrow E$ over an elliptic curve $E, \pi^{*}\left(W_{2}^{1}(E)\right)$ is the only infinite irreducible component of W_{6}^{1}, and this component is singular with finitely many singularities. Furthermore, X has only one series g_{12}^{4} (computing c maximally), and the variety W_{12}^{4} is not reduced.

Proof. By de Franchis' theorem, on any k-gonal curve X with an infinite set S of g_{k}^{1} either infinitely many g_{k}^{1} in S are compounded of the same irrational involution or there are only finitely many compounded g_{k}^{1} in S. For $k=6$, in the latter case such a curve is a smooth plane septic $(g=15)$ or we have $g \leq 11$ ([4]), and in the first case infinitely many g_{6}^{1} in S are induced by a covering $\rho: X \rightarrow Y$ over a non-hyperelliptic curve Y of genus 3 or by a triple covering $\pi: X \rightarrow E$ over an elliptic curve E. Now, let X be a curve whose Clifford index $c=4$ is computed maximally and admitting infinitely many g_{6}^{1}. Since $g=13$ we then are in the first case from above.

Assume that $\rho: X \rightarrow Y$ is a double covering of X over a curve Y of genus 3. Then Y is a smooth plane quartic, and every g_{6}^{1} on X is induced by ρ since otherwise we would have $g \leq(6-1)(2-1)+2 g(Y)=11$, by Castelnuovo's genus formula for curves with independent morphisms. Hence we have $W_{6}^{1}(X)=\rho^{*}\left(W_{3}^{1}(Y)\right)=\rho^{*} K_{Y}-\rho^{*}\left(W_{1}(Y)\right)$. Since we know that there are pencils g_{6}^{1}, h_{6}^{1} on X such that $g_{12}^{4}=\left|g_{6}^{1}+h_{6}^{1}\right|$ we thus have pencils L_{1}, L_{2} of degree 3 on Y such that $g_{12}^{4}=\left|\rho^{*}\left(L_{1}\right)+\rho^{*}\left(L_{2}\right)\right|$. But (cf. [12, p. 1797])

$$
h^{0}\left(X, \rho^{*}\left(L_{1}+L_{2}\right)\right)=h^{0}\left(Y, L_{1}+L_{2}\right)+h^{0}\left(Y,\left(L_{1}+L_{2}\right)-D\right)=4+h^{0}\left(Y, L_{1}+L_{2}-D\right)
$$

for a divisor D of Y such that $2 D$ is linearly equivalent to the branch divisor B of ρ (i.e. B is made up by the points of Y over which ρ ramifies). So $2 \operatorname{deg}(D)=\operatorname{deg}(B)=2 g-2-2(2 g(Y)-$ $2)=16$, i.e. $\operatorname{deg}(D)=8>6=\operatorname{deg}\left(L_{1}+L_{2}\right)$ which implies that $h^{0}\left(Y, L_{1}+L_{2}-D\right)=0$. Thus we obtain $h^{0}\left(X, \rho^{*}\left(L_{1}+L_{2}\right)\right)=4$ which contradicts $\left|\rho^{*}\left(L_{1}+L_{2}\right)\right|=g_{12}^{4}$.

So X admits a triple covering $\pi: X \rightarrow E$ over an elliptic curve E. Our very ample g_{12}^{4}
embeds X as a curve of degree 12 in \mathbb{P}^{4}. Assume that there is another series on X computing c maximally, i.e. a $h_{12}^{4} \neq g_{12}^{4}$. Then $\left|h_{12}^{4}-g_{12}^{4}\right|=\emptyset$, and, according to a refinement of the base point free pencil trick ([2, III, ex. B-6]) we have: $\operatorname{dim}\left(\left|h_{12}^{4}+g_{12}^{4}\right|\right) \geq 2 \cdot 4-\operatorname{dim}\left(\mid h_{12}^{4}-\right.$ $\left.g_{12}^{4} \mid\right)+4-1=12=g-1$ whence $h_{12}^{4}=\left|K_{X}-g_{12}^{4}\right|$ and so $\left|2 g_{12}^{4}\right| \neq\left|K_{X}\right|$. Thus it follows that $\operatorname{dim}\left(\left|2 g_{12}^{4}\right|\right)=g-2=11=3 \cdot 4-1$, and so a result of Castelnuovo ([2, p. 120]) implies that X lies on a non-degenerate surface S of minimal degree in \mathbb{P}^{4}, i.e. on a cubic rational normal scroll. But this is impossible: By Segre's formula for curves on a rational normal scroll whose ruling consists of n-secant lines for the curve, we obtain $13=g=$ $(n-1)(\operatorname{deg}(X)-1-(n / 2) \operatorname{deg}(S))=(n-1)(12-1-(n / 2) \cdot 3)$ which cannot hold. Consequently, we see that a $h_{12}^{4} \neq g_{12}^{4}$ cannot exist on X, i.e. W_{12}^{4} is a point, and this point is not a smooth point of W_{12}^{4} since the tangent space to W_{12}^{4} at it has positive dimension ([2, IV, ex. A-2]; observe that the unique g_{12}^{4} on X is half-canonical).
$W_{6}^{1}(X)$ has the irreducible component $\pi^{*}\left(W_{2}^{1}(E)\right)$. The argument in the beginning of this proof shows that a further infinite irreducible component of $W_{6}^{1}(X)$ gives rise to a second triple covering $\pi^{\prime *}: X \rightarrow E^{\prime}$ over an elliptic curve E^{\prime}; but applying Castelnuovo's genus bound for curves admitting independent morphisms to the pair (π, π^{\prime}) of coverings we get the contradiction $g \leq(3-1)(3-1)+3 g(E)+3 g\left(E^{\prime}\right)=10$.

For simplicity we identify our g_{12}^{4} on X with the point ℓ of $W_{12}^{4}(X)$ corresponding to it. Then the irreducible component $\ell-\pi^{*}\left(W_{2}^{1}(E)\right)$ of $W_{6}^{1}(X)$ coincides with $\pi^{*}\left(W_{2}^{1}(E)\right)$. Hence there are four points $p_{1}, \ldots, p_{4} \in E$ such that $\ell=\left|\pi^{*}\left(p_{1}+\ldots+p_{4}\right)\right|$. Since, on E, $p_{1}+\ldots+p_{4} \sim 2 q_{1}+2 q_{2}$ for two points $q_{1}, q_{2} \in E$ there exists a $g_{6}^{1}=\left|\pi^{*}\left(q_{1}+q_{2}\right)\right|$ on X such that $\left|2 g_{6}^{1}\right|=\ell$, and since X has only finitely many 2 -torsion points X has only a finite number of such g_{6}^{1}. Recall that the embedding series ℓ is the only g_{12}^{4} on X. Hence $\left|2 g_{6}^{1}\right|=\ell$ is equivalent with $\operatorname{dim}\left|2 g_{6}^{1}\right| \geq 4$, and it follows ([2, IV, 4.2]) that the g_{6}^{1} in $\pi^{*}\left(W_{2}^{1}(E)\right.$) satisfying $\left|2 g_{6}^{1}\right|=\ell$ correspond to the singularities of the component $\pi^{*}\left(W_{2}^{1}(E)\right)$ of $W_{6}^{1}(X)$.

Though $\operatorname{dim}\left(W_{6}^{1}\right)>0$ is possible, on every curve X whose Clifford index $c=4$ is computed maximally only the unique g_{12}^{4} and the pencils of degree 6 compute c. To see this, recall that X has no series computing c of degree d with $3(c+2) / 2<d<2(c+2)$, i.e. no g_{10}^{3}. A g_{8}^{2} on X (computing c) cannot be simple since we know that $W_{7}^{1}=W_{6}^{1}+W_{1}$ which implies that $\left|g_{8}^{2}-P\right|$ has a base point, for every point $P \in X$. So a g_{8}^{2} on X is compounded thus inducing a double covering $\rho: X \rightarrow Y$ over a smooth plane quartic, i.e. over a nonhyperelliptic curve of genus 3. But in the proof of the Proposition we observed already that this is impossible.

Finally, we just note that one can show that the curve X of Proposition 2.1 is as in the example. (In fact, viewing X as being embedded by the g_{12}^{4} it lies in the intersection of two irreducible quadrics in \mathbb{P}^{4}, i.e. on a surface of degree 4 which turns out to be an elliptic cone.)

3. The main result

The following general result is elementary but useful, for our purposes.
Lemma 3.1. On any curve Y of genus g and Clifford index c let D, E be effective divisors computing c. Then the greatest common divisor (D, E) of D and E has Clifford index $\operatorname{cliff}((D, E)) \leq c$, and if $\operatorname{dim}|(D, E)|>0$ then (D, E) and one of the divisors $D+E-(D, E)$
(the "least common multiple" of D and E) resp. its dual $K_{Y}-(D+E-(D, E))$ compute c.
Proof. Recall that, for a divisor Δ of Y, we have $\operatorname{cliff}(\Delta)=\operatorname{deg}(\Delta)-2 h^{0}(\Delta)+2, \operatorname{cliff}\left(K_{X}-\right.$ $\Delta)=\operatorname{cliff}(\Delta)$, and that the Clifford index c of Y is the minimum of all $\operatorname{cliff}(\Delta)$ such that $h^{0}(\Delta) \geq 2$ and $h^{1}(\Delta) \geq 2$ holds.

It is easy to prove the inequality (cf. [14, 2.21])

$$
\operatorname{cliff}(D)+\operatorname{cliff}(E) \geq \operatorname{cliff}((D, E))+\operatorname{cliff}(D+E-(D, E))
$$

Since $\operatorname{cliff}(D)=c=\operatorname{cliff}(E)$ the first claim of the Lemma follows from this inequality provided that $\operatorname{cliff}(D+E-(D, E)) \geq c$. So assume that $\operatorname{cliff}(D+E-(D, E))<c$. Since $h^{0}(D+E-(D, E)) \geq h^{0}(D) \geq 2$ we then must have $h^{1}(D+E-(D, E)) \leq 1$, and so we obtain $c>\operatorname{cliff}(D+E-(D, E))=\operatorname{cliff}\left(K_{Y}-(D+E-(D, E))\right)=2 g-2-$ $(\operatorname{deg}(D)+\operatorname{deg}(E)-\operatorname{deg}((D, E)))-2 h^{1}(D+E-(D, E))+2 \geq \operatorname{deg}((D, E))$ (recall that $\operatorname{deg}(D)<g$ and $\operatorname{deg}(E)<g)$. But $\operatorname{deg}((D, E))<c$ implies that $h^{0}((D, E))=1$ whence it follows that $\operatorname{cliff}((D, E))=\operatorname{deg}((D, E))<c$.

Assume that $h^{0}((D, E)) \geq 2$. We then have $\operatorname{cliff}((D, E)) \geq c$, and by the (just proved) first claim of the Lemma we see that (D, E) computes c. Hence the inequality at the beginning of this proof shows that $\operatorname{cliff}(D+E-(D, E)) \leq c$. Since $h^{0}(D+E-(D, E)) \geq 2$ it follows that $|D+E-(D, E)|$ or its dual series computes c (depending on which of these two series has degree $<g$) provided that $h^{1}(D+E-(D, E)) \geq 2$, too. But for $h^{1}(D+E-(D, E)) \leq 1$ we obtain $c \geq \operatorname{cliff}\left(K_{Y}-(D+E-(D, E))\right) \geq 2 g-2-(\operatorname{deg}(D)+\operatorname{deg}(E)-\operatorname{deg}((D, E))) \geq$ $\operatorname{deg}((D, E))$ whence $h^{0}((D, E)) \leq 1$, a contradiction.

From now on we use the following notation: X always denotes a curve of genus g whose Clifford index c is even and computed maximally. We set $d_{0}:=g-1=2 c+4, r_{0}:=$ $\left(d_{0}-c\right) / 2=(c+4) / 2$, and $g_{d_{0}}^{r_{0}}$ is an arbitrary but fixed series on X (computing c maximally). Finally, I denotes the set of effective divisors D of X computing c such that $\operatorname{deg}(D)>c+2$. (Clearly, $I \neq \emptyset$ since it contains the $g_{d_{0}}^{r_{0}}$.)

Theorem 3.2. Assume that there is a divisor $D \in I$ which is not contained in a divisor of the $g_{d_{0}}^{r_{0}}$. Then $c \equiv 2 \bmod 4, D$ computes c maximally and $W_{d_{0}}^{r_{0}}$ is infinite.

Proof. For a divisor $D \in I$ let $d:=\operatorname{deg}(D)$, and $r:=\operatorname{dim}(|D|)=(d-c) / 2 \geq 2$. Using a notation of [5], for any integer $e \geq r-1$ the set

$$
V_{e}^{r-2}(|D|):=\{E \in \operatorname{Div}(X): E \geq 0, \operatorname{deg}(E)=e \text { and } \operatorname{dim}|D-E| \geq 1\}
$$

is the variety of e-secant $(r-2)$-plane divisors of X; if $V_{e}^{r-2}(|D|) \neq \emptyset$ every irreducible component Z of it has dimension $\operatorname{dim}(Z) \geq 2(r-1)-e$. By [5, 1.2] we know that $V_{2 r-3}^{r-2}(|D|) \neq$ \emptyset, and for $E \in V_{2 r-3}^{r-2}(|D|)$ we have $|D-E| \in W_{c+3}^{1}=W_{c+2}^{1}+W_{1}$. Hence for every $E \in V_{2 r-3}^{r-2}(|D|)$ there is exactly one point $P_{E} \in X$ such that $E+P_{E} \in V_{2 r-2}^{r-2}(|D|)$. So the assignment $E \mapsto$ $E+P_{E}$ defines a surjection $V_{2 r-3}^{r-2}(|D|) \rightarrow V_{2 r-2}^{r-2}(|D|)$ with finite fibres whence $\operatorname{dim} V_{2 r-2}^{r-2}(|D|)=$ $\operatorname{dim} V_{2 r-3}^{r-2}(|D|) \geq 2(r-1)-(2 r-3)=1$. Let $i: V_{2 r-2}^{r-2}(|D|) \rightarrow W_{c+2}^{1}$ be the natural map defined by $F \mapsto|D-F|$ for $F \in V_{2 r-2}^{r-2}(|D|)$.

For any pencil L in the image of i there is a divisor $F \in V_{2 r-2}^{r-2}(|D|)$ resp. a pencil L^{\prime} of degree $c+2$ on X such that $|D|=|L+F|$ resp. $g_{d_{0}}^{r_{0}}=\left|L+L^{\prime}\right|$, and for any point P in the
support of F we can find a divisor $E^{\prime} \in L^{\prime}$ containing P. Hence for any $E \in L$ the greatest common divisor $G:=\left(E+F, E+E^{\prime}\right)$ of $E+F \in|D|$ and $E+E^{\prime} \in g_{d_{0}}^{r_{0}}$ contains the divisor $E+P$. So $\operatorname{deg}(G)>\operatorname{deg}(E)=c+2$, and by Lemma 3.1 we know that $\operatorname{cliff}(G) \leq c$. Since $\operatorname{dim}|G| \geq \operatorname{dim}|E|=1$ we see that G computes c, i.e. $G \in I$.

Now assume that D is not contained in a divisor of the $g_{d_{0}}^{r_{0}}$. Then G is properly contained in $E+F \in|D|$, and so $\operatorname{deg}(G)<d$. Thus the divisor $H:=\left(E+E^{\prime}\right)+(E+F)-G$ has degree $g-1+d-\operatorname{deg}(G) \geq g$, and, again by Lemma 3.1, $\left|K_{X}-H\right|$ is a linear series of degree at most $g-2=2 c+3$ computing c which implies that $\operatorname{deg}\left(K_{X}-H\right) \leq 3(c+2) / 2$, i.e. we have $2(c+2)-d+\operatorname{deg}(G)=\operatorname{deg}\left(K_{X}-H\right) \leq 3(c+2) / 2$. Hence $\operatorname{deg}(G) \leq d-(c+2) / 2$, and since $\operatorname{deg}(G)>c+2$ we obtain $d>3(c+2) / 2$. It follows that $d=2 c+4=g-1$, i.e. $|D|$ is a $g_{2 c+4}^{(c+4) / 2}$ on X different from our chosen $g_{d_{0}}^{r_{0}}$.

Claim. Assume that X has a linear series computing c maximally which is different from our $g_{d_{0}}^{r_{0}}$. Then $W_{d_{0}}^{r_{0}}$ is infinite, and X has linear series of degree $3(c+2) / 2$ computing c.

To prove this claim let $h_{d_{0}}^{r_{0}}$ be a $g_{2 c+4}^{(c+4) / 2}$ on X different from our $g_{d_{0}}^{r_{0}}$. For any $L \in W_{c+2}^{1}$ there is a unique pair $\left(L^{\prime}, L^{\prime \prime}\right)$ of different pencils $L^{\prime}, L^{\prime \prime}$ of degree $c+2$ on X such that $g_{d_{0}}^{r_{0}}=\left|L+L^{\prime}\right|$ and $h_{d_{0}}^{r_{0}}=\left|L+L^{\prime \prime}\right|$. Let $L=|E|$.

Assume that L^{\prime} and $L^{\prime \prime}$ are not compounded of the same involution. Then the General Position Theorem ([1, 4.1]) implies that there is a divisor $E^{\prime} \in L^{\prime}$ having with every divisor $E^{\prime \prime} \in L^{\prime \prime}$ at most one point in common, and for every point P in the support of E^{\prime} we can find a divisor $E^{\prime \prime} \in L^{\prime \prime}$ containing P. With this choice we see, by Lemma 3.1, that $G:=\left(E+E^{\prime}, E+E^{\prime \prime}\right)=E+\left(E^{\prime}, E^{\prime \prime}\right)=E+P$ is a divisor computing c which is impossible since $\operatorname{deg}(G)=c+3$.

Hence the two pencils $L^{\prime}=\left|g_{d_{0}}^{r_{0}}-L\right|, L^{\prime \prime}=\left|h_{d_{0}}^{r_{0}}-L\right|$ are compounded of the same (irrational) involution. Then there is a covering $\pi: X \rightarrow Y$ of maximum possible degree n such that $L^{\prime}, L^{\prime \prime}$ are induced from pencils of degree $(c+2) / n$ on the curve Y (in particular, n divides $c+2$). For this pair ($L^{\prime}, L^{\prime \prime}$) specified by $L=|E|$ we can choose, for any point $P \in X$, unique divisors $E_{P}^{\prime} \in L^{\prime}, E_{P}^{\prime \prime} \in L^{\prime \prime}$ having the point P in common. Then the greatest common divisor $\left(E_{P}^{\prime}, E_{P}^{\prime \prime}\right)$ of E_{P}^{\prime} and $E_{P}^{\prime \prime}$ is the divisor $\pi^{*}(\pi(P))$ of degree n of X. (Clearly, $\operatorname{dim}\left|\left(E_{P}^{\prime}, E_{P}^{\prime \prime}\right)\right|=0$. Choosing $E_{Q}^{\prime} \in L^{\prime}, E_{Q}^{\prime \prime} \in L^{\prime \prime}$ having another point $Q \in X$ in common we either have $\left(E_{Q}^{\prime}, E_{Q}^{\prime \prime}\right)=\left(E_{P}^{\prime}, E_{P}^{\prime \prime}\right)$ - which happens only in the case $\pi(Q)=\pi(P)-$ or that $\left(E_{Q}^{\prime}, E_{Q}^{\prime \prime}\right)$ and $\left(E_{P}^{\prime}, E_{P}^{\prime \prime}\right)$ have no point in common.) The divisor $G_{P}:=\left(E+E_{P}^{\prime}, E+E_{P}^{\prime \prime}\right)=E+\left(E_{P}^{\prime}, E_{P}^{\prime \prime}\right)$ has degree $\operatorname{deg}\left(G_{P}\right)=c+2+n=((\lambda+1) / \lambda)(c+2)$ if $2 \leq \lambda:=(c+2) / n$, and according to Lemma 3.1 it computes c. We will show that $\lambda=2$, i.e. $\operatorname{deg}\left(G_{P}\right)=3(c+2) / 2$; then Y is an elliptic curve.

For $m \geq 2$ points P_{1}, \ldots, P_{m} of X such that $\left(E_{P_{i}}^{\prime}, E_{P_{i}}^{\prime \prime}\right)$ and $\left(E_{P_{j}}^{\prime}, E_{P_{j}}^{\prime \prime}\right)$ have disjoint support for $1 \leq i<j \leq m$ we set $G_{P_{1}, \ldots, P_{m}}:=E+\left(E_{P_{1}}^{\prime}, E_{P_{1}}^{\prime \prime}\right)+\ldots+\left(E_{P_{m}}^{\prime}, E_{P_{m}}^{\prime \prime}\right)$. Then $\left(G_{P_{1}, \ldots, P_{m-1}}, G_{P_{m}}\right)=E$ computes c, and we have $G_{P_{1}, \ldots, P_{m}}=G_{P_{1}, \ldots, P_{m-1}}+G_{P_{m}}-E=G_{P_{1}, \ldots, P_{m-1}}+$ $G_{P_{m}}-\left(G_{P_{1}, \ldots, P_{m-1}}, G_{P_{m}}\right)$. Inductively applying Lemma 3.1 we see that $G_{P_{1}, \ldots, P_{m}}$ computes c as long as $\operatorname{deg}\left(G_{P_{1}, \ldots, P_{m}}\right)=c+2+m n=c+2+m(c+2) / \lambda=(1+(m / \lambda))(c+2)$ is strictly smaller than g, i.e. for $m \leq \lambda$. If $\lambda \geq 3$ we choose $m=\lambda-1$ and obtain that $G_{P_{1}, \ldots, P_{\lambda-1}}$ is a divisor computing c of degree strictly between $3(c+2) / 2$ and $2(c+2)$; this is not possible. Hence we have $\lambda=2$. Then we choose $m=\lambda$ whence $\operatorname{deg}\left(G_{P_{1}, P_{2}}\right)=2 c+4=d_{0}$. Since, for $Q \in X$, we have $G_{P_{1}, P_{2}} \sim G_{P_{1}, Q}$ iff $\left(E_{P_{2}}^{\prime}, E_{P_{2}}^{\prime \prime}\right)=\left(E_{Q}^{\prime}, E_{Q}^{\prime \prime}\right)$ (i.e. $\pi\left(P_{2}\right)=\pi(Q)$) we see
that - fixing P_{1} but varying P_{2} - we obtain this way infinitely many linear series on X which compute c maximally. This proves the claim.

Finally, we observe that $3(c+2) / 2=\operatorname{deg}\left(G_{P}\right) \equiv c \equiv 0 \bmod 2$ implies that $c \equiv 2 \bmod 4$.

Corollary 3.3. In the case $c \equiv 0 \bmod 4$ the $g_{d_{0}}^{r_{0}}$ is the only linear series on X computing c maximally.

Remark. Let $V_{e}^{n}\left(g_{d_{0}}^{r_{0}}\right):=\left\{E \in \operatorname{Div}(X): E \geq 0, \operatorname{deg}(E)=e\right.$ and $\left.\operatorname{dim}\left(\left|g_{d_{0}}^{r_{0}}-E\right|\right) \geq r_{0}-1-n\right\} ;$ here $n \in \mathbb{Z}$ with $n \leq e-1$ and $n \leq r_{0}-1$. Choose an integer r such that $1<r<r_{0}$ and set $d=c+2 r$ (note that $d_{0}-d=2\left(r_{0}-r\right)$). The upshot of the Theorem, then, is that $V_{2\left(r_{0}-r\right)}^{r_{0}-1-r}\left(g_{d_{0}}^{r_{0}}\right) \cong W_{d}^{r}\left(\right.$ via $\left.E \mapsto\left|g_{d_{0}}^{r_{0}}-E\right|\right)$. For $r=1$ (i.e. $\left.d=c+2\right)$ this bijection is wrong since $V_{2 r_{0}-2}^{r_{0}-2}\left(g_{d_{0}}^{r_{0}}\right)$ is the set of all effective divisors of degree $2 r_{0}-2=c+2$ of X which move in a non-trivial linear series, i.e. $V_{2 r_{0}-2}^{r_{0}-2}\left(g_{d_{0}}^{r_{0}}\right)=\left\{0 \leq E \in \operatorname{Div}(X):|E|=g_{c+2}^{1}\right\}$; so $V_{2 r_{0}-2}^{r_{0}-2}\left(g_{d_{0}}^{r_{0}}\right)$ is a \mathbb{P}^{1}-bundle over W_{c+2}^{1}.
The Theorem thus relates the question if $W_{d}^{r} \neq \emptyset\left(1<r<r_{0}\right)$ to the existence of a $2\left(r_{0}-r\right)$ secant $\left(r_{0}-1-r\right)$-plane for the curve X viewed as imbedded into $\mathbb{P}^{r_{0}}$ by the $g_{d_{0}}^{r_{0}}$. And for $2(c+2)>d>3(c+2) / 2$ (i.e. for $0<r_{0}-r<(c+2) / 4$) we know that there is no such plane.

Corollary 3.4. Assume that there exists a divisor $D \in I$ of degree $d<g-1$. Then W_{c+2}^{1} contains a one-dimensional irreducible component W such that for every pencil $L \in W$ we have $\operatorname{dim}|D-L|=0$, and the unique divisor in $|D-L|$ is contained in a divisor of the pencil $\left|g_{d_{0}}^{r_{0}}-L\right|$ of degree $c+2$.

Proof. We use the notation from the proof of the Theorem. Let $r:=\operatorname{dim}(|D|)$ and $\left.i\right|_{Z}$: $Z \rightarrow W_{c+2}^{1}$ be the natural map from an irreducible component Z of $V_{2 r-2}^{r-2}(|D|)$ into W_{c+2}^{1}; recall that $\operatorname{dim}(Z) \geq 1$. Since there is no pencil of degree $2 r-2=d-c-2<c+2$ on X the map i is injective whence we have $\operatorname{dim}(i(Z)) \geq 1$. But since $\operatorname{dim}\left(W_{c+2}^{1}\right) \leq 1$ ([2, VII, ex. C-2]) it follows that $\operatorname{dim}(i(Z))=1=\operatorname{dim}(Z)$. (In particular, $V_{2 r-2}^{r-2}(|D|)$ is equi-dimensional of dimension 1.)

Let $W:=i(Z)$. Then W is an infinite irreducible component of W_{c+2}^{1}, and for every $L \in W$ there is a divisor $F \in Z$ such that $|D|=|L+F|$. Since $\operatorname{deg}(F)=2 r-2=d-(c+2)<c+2$ we have $|D-L|=\{F\}$, and, by the Theorem, F is contained in a divisor of the pencil $\left|g_{d_{0}}^{r_{0}}-L\right|$.

Recall that $D \in I, \operatorname{deg}(D)<g-1=2 c+4$ implies that $\operatorname{deg}(D) \leq 3(c+2) / 2$, and for $c \equiv 0 \bmod 4$ we even have $d<3(c+2) / 2$ since $d \equiv c \equiv 0 \bmod 2$. We add the following observation.

Corollary 3.5. In Corollary 3.4, if $d<3(c+2) / 2$ then W_{c+2}^{1} contains a one-dimensional irreducible component (namely $g_{d_{0}}^{r_{0}}-W$) such that no two different pencils in it are compounded of the same involution.

Proof. In Corollary 3.4 we have $\left|g_{d_{0}}^{r_{0}}-D\right| \subset\left|g_{d_{0}}^{r_{0}}-L\right|$ for any $L \in W$. Setting $d=\operatorname{deg}(D)$ we clearly have $\operatorname{deg}\left(\left|g_{d_{0}}^{r_{0}}-D\right|\right)=d_{0}-d$, and we know that $(c+2) / 2=2(c+2)-3(c+2) / 2 \leq$ $d_{0}-d \leq(2 c+4)-(c+4)=c$. In particular, $\left|g_{d_{0}}^{r_{0}}-D\right|$ consists of a single divisor $E \geq 0$.

Assume that two pencils $L^{\prime} \neq L^{\prime \prime}$ in $g_{d_{0}}^{r_{0}}-W$ are compounded of the same involution thus giving rise to a covering $\pi: X \rightarrow Y$ of degree $n \geq 2$ such that $L^{\prime}, L^{\prime \prime}$ are induced from pencils of degree $(c+2) / n$ on the curve Y. We can choose divisors $E^{\prime} \in L^{\prime}, E^{\prime \prime} \in L^{\prime \prime}$ whose greatest common divisor $\left(E^{\prime}, E^{\prime \prime}\right)$ contains E. We may assume that $n=\operatorname{deg}\left(\left(E^{\prime}, E^{\prime \prime}\right)\right)$; then $n \geq \operatorname{deg}(E) \geq(c+2) / 2$, and so we obtain $n=(c+2) / 2=\operatorname{deg}(E)$. Thus $d=3(c+2) / 2 ; Y$ is an elliptic curve, then, and $g_{d_{0}}^{r_{0}}-W=\pi^{*}\left(W_{2}^{1}(Y)\right)$. However, for $d<3(c+2) / 2$ this does not occur.

We see that the divisor $D \in I$ in Corollary 3.5 endows X with a feature of its pencils of minimal degree which - observing that their Brill-Noether number is negative - is apparently only known to be shared by the smooth plane curves (of degree ≥ 6). Cf. Remark 3.8 in [6].

Corollary 3.6. For integers d, r such that $c+2 \leq d \leq g-1$ and $d-2 r=c$ we have $\operatorname{dim}\left(W_{d}^{r}\right) \leq 1$.

Proof. We have $\operatorname{dim}\left(W_{c+2}^{1}\right) \leq 1\left(\left[2\right.\right.$, VII, ex. C-2]), and since $W_{d_{0}}^{r_{0}} \subset g_{c+2}^{1}+W_{c+2}^{1}$ for a fixed pencil g_{c+2}^{1} on X it follows that $\operatorname{dim}\left(W_{d_{0}}^{r_{0}}\right) \leq 1$. So we assume that $c+2<d<$ $d_{0}=g-1$. Let K be an irreducible component of maximal dimension of W_{d}^{r}. Then $\bigcup_{g_{d}^{r} \in K}$ $i\left(V_{2 r-2}^{r-2}\left(g_{d}^{r}\right)\right) \subset W_{c+2}^{1}$ is a union of one-dimensional irreducible components W_{1}, \ldots, W_{n} of W_{c+2}^{1}. If $K_{j}:=\left\{g_{d}^{r} \in K \mid i\left(V_{2 r-2}^{r-2}\left(g_{d}^{r}\right)\right) \supset W_{j}\right\}(j=1, \ldots, n)$ we thus have $K=K_{1} \cup \ldots \cup K_{n}$. Fixing $L_{j} \in W_{j}$ we have, by Corollary 3.4, a map $\gamma_{j}: K_{j} \rightarrow \mathbb{P}^{1}$ which assigns to $g_{d}^{r} \in K_{j}$ that divisor of the pencil $\left|g_{d_{0}}^{r_{0}}-L_{j}\right|$ which contains the (unique) divisor $E=\left|g_{d_{0}}^{r_{0}}-g_{d}^{r}\right|$. Since E specifies g_{d}^{r} (and since the divisor $\gamma_{j}\left(g_{d}^{r}\right)$ of degree $c+2$ contains only a finite number of effective divisors of degree $d_{0}-d \leq c$) the fibres of γ_{j} are finite. Choosing j such that $\operatorname{dim}\left(K_{j}\right)=\operatorname{dim}(K)=\operatorname{dim}\left(W_{d}^{r}\right)$ it follows that $\operatorname{dim}\left(W_{d}^{r}\right) \leq \operatorname{dim}\left(\mathbb{P}^{1}\right)=1$.

Corollary 3.7. If the $g_{d_{0}}^{r_{0}}$ on X is not unique then every pencil of degree $c+2$ on X is induced by a pencil of degree 2 on a smooth elliptic curve (which is covered by X with $(c+2) / 2$ sheets), and I consists of divisors of degree $3(c+2) / 2$ and $2(c+2)=d_{0}$.

Proof. Let $L \in W_{c+2}^{1}$. There are pencils $L^{\prime}, L^{\prime \prime} \in W_{c+2}^{1}$ with $L^{\prime \prime} \neq L$ such that $\operatorname{dim}\left(\mid L^{\prime}+\right.$ $L \mid)=r_{0}=\operatorname{dim}\left(\left|L^{\prime}+L^{\prime \prime}\right|\right)$, and from the proof of the Claim in the proof of the Theorem we see that L and $L^{\prime \prime}$ are compounded of the same elliptic involution of order $(c+2) / 2$. The remaining assertion follows from Corollary 3.5.

Lemma 3.8. X has no net computing c if $c>8$.
Proof. Assume that X has a net g_{c+4}^{2}. Then for every point $P \in X$ the pencil $g_{c+4}^{2}(-P)$ of degree $c+3$ has a base point since $W_{c+3}^{1}=W_{c+2}^{1}+W_{1}$. Hence the g_{c+4}^{2} is not simple. Then it induces a morphism $X \rightarrow Y$ of degree $m>1$ upon an integral plane curve Y of degree $(c+4) / m$. If $m>2$ or if Y has singularities the normalization of Y has a pencil of degree $d<(c+2) / m$ which induces a pencil of degree $m d<c+2$ on X which cannot exist. Hence $m=2$ and Y is a smooth plane curve of degree $(c+4) / 2$. Then Y has genus $g(Y)=(1 / 2)((c+4) / 2-1)((c+4) / 2-2)=c(c+2) / 8$, and by the Riemann-Hurwitz genus formula for coverings we obtain $2 c+5=g \geq 2 g(Y)-1=c(c+2) / 4-1$, i.e. $(c-3)^{2} \leq 33$ which implies $c \leq 8$.

For $c=6$ and $c=8$ we don't know yet if X has no net computing c.
4. Clifford index $c=6$ and $c=8$

In this section we turn to the Question posed in the Introduction, for $c=6$ and $c=8$. In these cases the series computing c, besides those computing c maximally, are at most pencils, nets and webs. First, we reduce to pencils and nets, by the

Lemma 4.1. Let $c=6$ or $c=8$. If X has a web computing c then it also has a net computing c.

Proof. Assume that X has a g_{c+6}^{3}. Then this series is base point free and simple thus inducing a birational morphism onto an integral space curve X^{\prime} of degree $c+6$.

Let $D \in g_{c+6}^{3}$. The number ρ_{2} of conditions imposed on quadrics in \mathbb{P}^{2} by a general plane section of X^{\prime} is at most $h^{0}(2 D)-h^{0}(D)$, and from the proof of Corollary 1 in [13] we know that $h^{0}(2 D) \geq 4 \cdot 3-2=10$, i.e. $|2 D|=g_{2 c+12}^{r}$ with $r \geq 9$. If $r \geq 10$ then X has a $g_{24}^{10}=\left|K_{X}-g_{8}^{2}\right|$ for $c=6$ which is impossible resp. X has a $g_{28}^{10}=\left|K_{X}-g_{12}^{2}\right|$ for $c=8$ in which case there is a net computing $c=8$ on X. So we may assume that $r=9$ whence $\rho_{2} \leq 10-4=6=2 \operatorname{dim}(|D|)$. By a lemma of Castelnuovo and Fano's extension of it ([3, 1.10 and 3.1]) this implies that X^{\prime} lies on a surface S of degree at most 3 in \mathbb{P}^{3}. The proof of Corollary 1 in [13] shows that $X^{\prime} \subset \mathbb{P}^{3}$ cannot lie on a quadric; so S is a cubic surface.

The projection $\pi: X^{\prime} \rightarrow \mathbb{P}^{2}$ with center a smooth point of X^{\prime} is birational onto its image Y since $c+5$ is a prime number for $c=6$ and $c=8$. Hence Y is a plane curve of degree $c+5$ which cannot be smooth. Since X has no base point free g_{c+3}^{1} all singular points of Y are triple points (points of multiplicity 3). Thus the fibre of π at a singular point of Y consists of 3 points of X^{\prime}. Consequently, X^{\prime} has a quadrisecant line through every smooth point. Clearly, then, all these lines must lie on the cubic S; since our g_{c+6}^{3} is complete this is only possible if S is an elliptic cone. The ruling of the cone makes X a 4-fold covering of an elliptic curve. In particular, X has infinitely many g_{8}^{1} which is impossible for $c=8$. For $c=6$ we use Segre's formula for the arithmetic genus of a curve on an elliptic scroll whose ruling are n-secant lines for the curve,
$p_{a}\left(X^{\prime}\right)=(n-1)\left(\operatorname{deg}\left(X^{\prime}\right)-1-(1 / 2) n \operatorname{deg}(S)\right)+n=3(12-1-(1 / 2) \cdot 4 \cdot 3)+4=19>g=17$. So X^{\prime} has at least one singular point; taking the projection $X^{\prime} \rightarrow \mathbb{P}^{2}$ with center this point we obtain a net of degree $m \leq \operatorname{deg}\left(X^{\prime}\right)-2=c+4=10$ on X. Since $c=6$ we must have $m=10$, and so we are done.

Theorem 4.2. For $c=6$ and $c=8$ the $g_{d_{0}}^{r_{0}}$ is the only non-pencil on X computing c.
Proof. By Corollary 3.7, Lemma 4.1 for $c=6$ resp. Corollary 3.3 for $c=8$, the $g_{d_{0}}^{r_{0}}$ on X is unique (and so, in particular, half-canonical). By Lemma 4.1 it remains to show the non-existence of nets on X computing c. So assume there is a g_{c+4}^{2} on X. As in the proof of Lemma 3.8 we see that this net induces a double covering $\pi: X \rightarrow Y$ over a smooth plane curve Y of degree $(c+4) / 2$. Let $\sigma\left(\sigma^{2}=i d\right.$.) denote the unique automorphism of X / Y.

By Theorem 3.2 there is an effective divisor D_{c} of X of degree $d_{0}-(c+4)=c$ such that $g_{c+4}^{2}=\left|g_{d_{0}}^{r_{0}}-D_{c}\right|$. Since the g_{c+4}^{2} is base point free the support of a general divisor $D^{\prime} \in g_{c+4}^{2}$ consists of pairwise different points (is "separable") and is disjoint to the support of D_{c}. Since all divisors in our g_{c+4}^{2} are of the form $\pi^{*}(\delta)$ for a divisor δ in the unique net $g_{(c+4) / 2}^{2}$
on Y the divisor D^{\prime} (being separable) contains no ramification point of π and is σ-invariant (i.e. $\sigma D^{\prime}=D^{\prime}$).

Let $D_{0}:=D^{\prime}+D_{c}$. Then $D_{0} \in g_{d_{0}}^{r_{0}}$. Since the $g_{d_{0}}^{r_{0}}$ on X is unique we have $\sigma\left(g_{d_{0}}^{r_{0}}\right)=g_{d_{0}}^{r_{0}}$. In particular, $D^{\prime}+D_{c}=D_{0} \sim \sigma D_{0}=\sigma D^{\prime}+\sigma D_{c}=D^{\prime}+\sigma D_{c}$, i.e. $\sigma D_{c} \sim D_{c}$. But dim $\left|D_{c}\right|=0$, and so it follows that $\sigma D_{c}=D_{c}$ and, then, $\sigma D_{0}=D_{0}$.

Let R_{1}, \ldots, R_{n} be the ramification points of π; then $R:=R_{1}+\ldots+R_{n} \in \operatorname{Div}(X)$ is the ramification divisor of π, and we have $n=12$ for $c=6, n=4$ for $c=8$. For a σ invariant divisor $D=\sum_{i=1}^{n} k_{i} R_{i}+\sum_{j} l_{j}\left(P_{j}+\sigma\left(P_{j}\right)\right) \in \operatorname{Div}(X)$ with $P_{j} \neq R_{i}$ for all i, j we define a divisor $\pi_{0} D$ of Y by $\pi_{0} D:=\sum_{i=1}^{n}\left[k_{i} / 2\right] \pi\left(R_{i}\right)+\sum_{j} l_{j} \pi\left(P_{j}\right) \in \operatorname{Div}(Y)$, and we let $V_{e}(D):=\left\{f \in H^{0}(D) \mid f \circ \sigma=f\right\}$ resp. $V_{o}(D):=\left\{f \in H^{0}(D) \mid f \circ \sigma=-f\right\}$ be the even resp. odd part of $H^{0}(D)$. Then $\operatorname{deg}\left(\pi_{0} D\right) \leq(1 / 2) \operatorname{deg}(D)$, and we have equality here iff $\pi^{*}\left(\pi_{0} D\right)=D$. Furthermore, $V_{e}(D) \cong H^{0}\left(Y, \pi_{0} D\right)$ (since $f \in V_{e}(D)$ has a pole of even order at every ramification point R_{i} of π), and $H^{0}(D)=V_{e}(D) \oplus V_{o}(D)$.

Let $V_{e}:=V_{e}\left(D_{0}\right), V_{o}:=V_{o}\left(D_{0}\right)$. Since $H^{0}\left(Y, \pi_{0} D^{\prime}\right) \cong V_{e}\left(D^{\prime}\right) \subset V_{e}$ we have $\operatorname{dim}\left(V_{e}\right) \geq$ $h^{0}\left(\pi_{0} D^{\prime}\right)=3$. Furthermore, $\operatorname{dim}\left(V_{e}\right)=h^{0}\left(\pi_{0} D_{0}\right)$ with $\operatorname{deg}\left(\pi_{0} D_{0}\right) \leq d_{0} / 2=c+2=2 \operatorname{deg}(Y)-$ 2. Since Y is a smooth plane curve it follows that $h^{0}\left(\pi_{0} D_{0}\right) \leq 4$, and if $h^{0}\left(\pi_{0} D_{0}\right)=4$ holds then $\operatorname{deg}\left(\pi_{0} D_{0}\right)=c+2$. So we see that $\operatorname{dim}\left(V_{e}\right) \leq 4$, and if $\operatorname{dim}\left(V_{e}\right)=4$ then $\pi^{*}\left(\pi_{0} D_{0}\right)=D_{0}$.

We first consider the case $\operatorname{dim}\left(V_{e}\right)=3$, i.e. $V_{e}=V_{e}\left(D^{\prime}\right)$. Then $\operatorname{dim}\left(V_{o}\right)=h^{0}\left(D_{0}\right)-3=$ $(((c+4) / 2)+1)-3=c / 2$.

Let $D_{c} \leq R$ (i.e. $\pi_{0} D_{c}=0$); this is only possible for $c=6$. By adjunction we have $K_{X} \sim \pi^{*}\left(K_{Y}\right)+R \sim \pi^{*}(2 \delta)+R \sim 2 D^{\prime}+R$ for a divisor δ in the net $g_{(c+4) / 2}^{2}$ on Y, and since $\left|D_{0}\right|$ is half-canonical we have $K_{X} \sim 2 D_{0}=2 D^{\prime}+2 D_{c}$. Hence we have $2 D_{c} \sim R$. For a suitable numbering of the ramification points R_{1}, \ldots, R_{12} of π we thus have $2\left(R_{1}+\ldots+R_{6}\right) \sim$ $R_{1}+\ldots+R_{6}+R_{7}+\ldots+R_{12}$, i.e. $R_{1}+\ldots+R_{6} \sim R_{7}+\ldots+R_{12}$. But X has no g_{6}^{1}; hence it follows that $R_{1}+\ldots+R_{6}=R_{7}+\ldots+R_{12}$ which is not true.

So we have $2 R_{i} \leq D_{c}$ for some i or $P+\sigma(P) \leq D_{c}$ for a non-ramification point $P \in X$. Let $k_{i} \geq 2$ resp. $l \geq 1$ be the multiplicity of R_{i} resp. P in $D_{c} ;$ note that k_{i} is odd. Choose a basis $f_{1}, \ldots, f_{c / 2}$ of V_{o} such that R_{i} resp. P is a pole of order k_{i} resp. l of these functions. Then there are $a_{1}, \ldots, a_{(c / 2)-1} \in \mathbb{C}$ such that the functions $g_{j}:=f_{c / 2}-a_{j} f_{j} \in V_{o}(j=1, \ldots,(c / 2)-1)$ have a pole of order $k_{i}-2$ at R_{i} resp. $l-1$ at $P($ and $\sigma(P))$. Then the vector space $V_{e} \oplus$ $\operatorname{span}\left(g_{1}, \ldots, g_{(c / 2)-1}\right)$ of dimension $\operatorname{dim}\left(V_{e}\right)+((c / 2)-1)=(c / 2)+2$ gives rise to a linear series on X of dimension $(c / 2)+1$ and degree $\operatorname{deg}\left(D^{\prime}\right)+2((c / 2)-1)=2 c+2$. Since this series computes c we obtain a contradiction.

So we have $\operatorname{dim}\left(V_{e}\right)=4$, i.e. $h^{0}\left(\pi_{0} D_{0}\right)=4$. Then $\pi^{*}\left(\pi_{0} D_{0}\right)=D_{0}$ whence ([12, p. 1797])

$$
((c+4) / 2)+1=h^{0}\left(X, D_{0}\right)=h^{0}\left(X, \pi^{*}\left(\pi_{0} D_{0}\right)\right)=h^{0}\left(Y, \pi_{0} D_{0}\right)+h^{0}\left(Y, \pi_{0} D_{0}-E\right)
$$

for a divisor E of Y such that $2 E$ is linearly equivalent to the branch divisor $\pi_{*}(R)$ of π.
Thus we obtain $h^{0}\left(\pi_{0} D_{0}-E\right)=(c+6) / 2-4=(c-2) / 2$, i.e. $h^{0}\left(\pi_{0} D_{0}-E\right)=2$ for $c=6$ and $h^{0}\left(\pi_{0} D_{0}-E\right)=3$ for $c=8$. But for $c=6$ we have $\operatorname{deg}(E)=n / 2=6$ and so $\operatorname{deg}\left(\pi_{0} D_{0}-E\right)=(1 / 2) \operatorname{deg}\left(D_{0}\right)-\operatorname{deg}(E)=(c+2)-6=2$, i.e. $\left|\pi_{0} D_{0}-E\right|$ is a g_{2}^{1} on Y which is impossible. Let $c=8$. Then we have $\operatorname{deg}(E)=n / 2=2$ whence $\operatorname{deg}\left(\pi_{0} D_{0}-E\right)=8$, i.e. $\left|\pi_{0} D_{0}-E\right|$ is a g_{8}^{2} on Y. Let δ be a divisor in the unique net g_{6}^{2} on Y. Then there are points $p_{1}, p_{2}, q_{1}, q_{2}$ of Y such that $\pi_{0} D_{0} \sim 2 \delta-p_{1}-p_{2}$ and $\pi_{0} D_{0}-E \sim \delta+q_{1}+q_{2}$. (In
fact, it is well known that $W_{8}^{2}(Y)=W_{6}^{2}(Y)+W_{2}(Y)=|\delta|+W_{2}(Y)$ for a smooth plane sextic Y whence $W_{10}^{3}(Y)=\left|K_{Y}\right|-W_{8}^{2}(Y)=|3 \delta|-\left(|\delta|+W_{2}(Y)\right)=|2 \delta|-W_{2}(Y)$.) So we obtain $\delta+q_{1}+q_{2} \sim \pi_{0} D_{0}-E \sim 2 \delta-p_{1}-p_{2}-E$, i.e. $\delta-E \sim p_{1}+p_{2}+q_{1}+q_{2}$ which implies that $h^{0}(\delta-E) \geq 1$. But we have $3=h^{0}\left(X, \pi^{*}(\delta)\right)=h^{0}(Y, \delta)+h^{0}(Y, \delta-E)=3+h^{0}(Y, \delta-E)$ which shows that $h^{0}(Y, \delta-E)=0$, and this contradiction proves the Theorem.

If a smooth curve in \mathbb{P}^{5} on a cone over a 4 -gonal canonical curve of genus 5 is cut out there by a quadric hypersurface it has maximally computed Clifford index 6 and infinitely many g_{8}^{1}; so Theorem 4.2 is, for $c=6$, not merely a consequence of the recognition theorem stated in the Introduction.

5. X on a K3 surface

Viewing X as being embedded into $\mathbb{P}^{r_{0}}$ by our $g_{d_{0}}^{r_{0}}$ it possibly lies on a smooth projective K3 surface S of degree $2 r_{0}-2$ in $\mathbb{P}^{r_{0}}$. (In fact, the examples of curves with maximally computed Clifford index have been constructed in this way, cf. [5, 3.2.6, 3.2.7].) If so, observing that $c<[(g-1) / 2]=c+2$ there exists an effective divisor D of S such that its restriction $\left.D\right|_{X}$ to X computes c ([7]). Hence one may ask if it is possible to find an (unexpected) $g_{c+2 r}^{r}$ with $1<r<r_{0}$ on $X \subset S$ with the aid of a suitable divisor of S. As a consequence of an interesting result of Knutsen for curves on a K3 surface ([11, 3.4]) we have the

Theorem 5.1. Assume that X lies, as a curve of degree d_{0}, on a $K 3$ surface S of degree $2 r_{0}-2$ in $\mathbb{P}^{r_{0}}$. Then for every complete linear series $|D|$ of S without a base curve such that $\left.D\right|_{X}$ computes c we have $\operatorname{deg}\left(\left.D\right|_{X}\right)=2 c+4$ or $\operatorname{deg}\left(\left.D\right|_{X}\right)=c+2$.

Proof. Let H be a hyperplane section of S. We have $H^{2}=\operatorname{deg}(S)=2 r_{0}-2=c+2$, $X^{2}=2 g-2=4 c+8$ and $H \cdot X=d_{0}=2 c+4$, i.e. $(H \cdot X)^{2}=4(c+2)^{2}=H^{2} X^{2}$ which implies, by the Hodge index theorem ([9, V, 1.9 and ex. 1.9]), that $X \sim\left((H \cdot X) / H^{2}\right) H=2 H$. Since the canonical series of S is trivial we have $h^{0}(H-X)=h^{0}(-H)=h^{2}(H)=0$ and $h^{1}(H-X)=h^{1}(X-H)=h^{1}(H)=0([15,2.2])$ whence by a standard exact sequence and by the Riemann-Roch theorem $([9, \mathrm{~V}, 1.6])$ it follows that $h^{0}\left(X,\left.H\right|_{X}\right)=h^{0}(H)=2+(1 / 2) H^{2}=$ $r_{0}+1$, i.e. $|H|_{X} \mid=g_{d_{0}}^{r_{0}}$.

Let D be an effective divisor of S such that $|D|$ has no base curve and $\left.D\right|_{X}$ computes c. Then $D^{2} \geq 0$, and since $\operatorname{deg}(D)=D \cdot H=(1 / 2) D \cdot X=(1 / 2) \operatorname{deg}\left(\left.D\right|_{X}\right)<g-1=d_{0}=\operatorname{deg}(X)$ we have $h^{0}(D-X)=0$.

Assume that $h^{1}(D)=0$. Then a standard exact sequence shows that $h^{0}\left(X,\left.D\right|_{X}\right)=h^{0}(D)+$ $h^{1}(D-X)$. Likewise, if X_{0} is an arbitrary smooth irreducible curve in $|2 H|$ we have $h^{0}\left(X_{0},\left.D\right|_{X_{0}}\right)=h^{0}(D)+h^{1}\left(D-X_{0}\right)$. Clearly, $D-X_{0} \sim D-X$ implies that $h^{1}\left(D-X_{0}\right)=h^{1}(D-X)$ whence $h^{0}\left(X_{0},\left.D\right|_{X_{0}}\right)=h^{0}\left(X,\left.D\right|_{X}\right)$. Since, by [7], X_{0} has the same Clifford index c as X, we see that $\left.D\right|_{X_{0}}$ computes the Clifford index of X_{0}.

Choose X_{0} general in $|2 H|$. Then X_{0} has only finitely many pencils g_{c+2}^{1}, according to a theorem of Knutsen ([11, 3.4]), and since the Clifford index c of X_{0} is maximally computed (by $\left.H\right|_{X_{0}}$) there are no base point free g_{c+3}^{1} on X_{0}. Consequently, the recognition theorem (applied to X_{0}) shows that $\left.D\right|_{X_{0}}$ computes c maximally or $|D|_{X_{0}} \mid=g_{c+2}^{1}$. Hence, for X, we have $h^{0}\left(X,\left.D\right|_{X}\right)=r_{0}+1$ or (provided that $\left.D^{2}=0\right) h^{0}\left(X,\left.D\right|_{X}\right)=2$.

Assume that $h^{1}(D) \neq 0$. Then $D \sim k E_{0}$ for an irreducible curve E_{0} with $E_{0}^{2}=0$ and some integer $k \geq 2([15,2.6])$. We have $k \operatorname{deg}\left(\left.E_{0}\right|_{X}\right)=\operatorname{deg}\left(\left.D\right|_{X}\right) \leq g-1=2 c+4$, and since $h^{0}\left(X,\left.E_{0}\right|_{X}\right) \geq h^{0}\left(E_{0}\right) \geq 2+(1 / 2) E_{0}^{2}=2$ we have $\operatorname{deg}\left(\left.E_{0}\right|_{X}\right) \geq c+2$. Thus we obtain $k=2$ and $\operatorname{deg}\left(\left.D\right|_{X}\right)=2 c+4$.

References

[1] R.D.M. Accola: On Castelnuovo's inequality for algebraic curves. I, Trans. Amer. Math. Soc. 251 (1979), 355-373.
[2] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris: Geometry of Algebraic Curves. I, Grundlehren Math. Wiss., 267, Springer, New York 1985.
[3] C. Ciliberto: Hilbert functions of finite sets of points and the genus of a curve in a projective space; in Lecture Notes in Mathematics 1266, Springer, New York, 1987, 24-73.
[4] M. Coppens: Smooth curves having infinitely many linear systems g_{d}^{1}, Bull. Math. Soc. Belg., Ser. B 40 (1988), 153-176.
[5] M. Coppens and G. Martens: Secant spaces and Clifford's theorem, Compositio Math. 78 (1991), 193-212.
[6] D. Eisenbud, H. Lange, G. Martens and F.-O. Schreyer: The Clifford dimension of a projective curve, Compositio Math. 72 (1989), 173-204.
[7] M. Green and R. Lazarsfeld: Special divisors on curves on a K3 surface, Invent. Math. 89 (1987), 357-370.
[8] F.J. Gallego and B.P. Purnaprajna: Normal presentation on elliptic ruled surfaces, J. Algebar 186 (1996), 597-625.
[9] R. Hartshorne: Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, New York 1977.
[10] S. Kim: On the algebraic curve of Clifford index c, Comm. Korean Math. Soc. 14 (1999), 693-698.
[11] A.L. Knutsen: On two conjectures for curves on K3 surfaces, Int. J. Math. 20 (2009), 1547-1560.
[12] C. Keem and G. Martens: Curves without plane models of small degree, Math. Nachr. 281 (2008), 17911798.
[13] C. Keem, S. Kim and G. Martens: On a result of Farkas, J. Reine Angew. Math. 405 (1990), 112-116.
[14] H.H. Martens: Varieties of special divisors on a curve. II, J. Reine Angew. Math. 233 (1968), 89-100.
[15] B. Saint-Donat: Projective models of K3 surfaces, Amer. J. Math. 96 (1974), 602-639.

Takao Kato
13-1 Ogori-Ozaki-cho, Yamaguchi, 754-0006
Japan
e-mail: kato@yamaguchi-u.ac.jp
Gerriet Martens
Department Mathematik
Univ. Erlangen-Nürnberg
Cauerstr. 11, D-91058 Erlangen
Germany
e-mail: martens@mi.uni-erlangen.de

[^0]: 2010 Mathematics Subject Classification. Primary 14H45; Secondary 14H51.
 The first named author expresses his thanks to Univ. Erlangen-Nürnberg for the hospitality during his stay.

