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Abstract
The explicit description of the Frobenius structure for the elliptic root system of type Dil‘l) in

terms of the characters of an affine Lie algebra of type Dil) is given.

1. Introduction

As a generalization of root systems, the elliptic root systems are defined in Saito [16]. The
Frobenius structure (also called “the flat structure™) for the elliptic root system is introduced
[17, 22]. One of the purposes of introducing this structure is to construct the automorphic
functions (cf. Saito [15]), where the explicit description of the Frobenius structure is impor-
tant. For the elliptic root systems of types G;l’l) [19, 3], thl’l) [20] and Eél’l) [21], the results
of the explicit descriptions of the Frobenius structures are given.

In Satake-Takahashi [23], the description of the Frobenius structure for the elliptic root
system of type DE‘I’I) in [20] is compared with the orbifold Gromov-Witten invariants for the
elliptic orbifold of type (2,2, 2,2). However, the proofs of the results of [20] are omitted. In
this paper, we give the proofs of the results of [20].

The contents of this paper are as follows. In Section 2, we recall the elliptic root system
[17]. Also, the normalized characters of affine Lie algebras are introduced in this setting. In
Section 3, we review the construction of the Frobenius structure for the elliptic root system
[17, 22]. In Section 4, the main theorem (Theorem 4.1) which gives the explicit description
of a flat generator system and the potential of the Frobenius structure for the elliptic root
system of type Dil’]) is given.

In Section 5, the proof of the main theorem is given. The relation of the Frobenius struc-
ture and the normalized characters of affine Lie algebras are, as formula, very simple. How-
ever, the conceptual relation among these structures is not yet known. Thereby, we first
construct “Jacobi forms” (5.1) from the normalized characters. Then the relation between
these Jacobi forms and the Frobenius structure is studied in Proposition 5.4 using differen-
tial relations satisfied by Jacobi forms which are given in Section 6. In Proposition 5.7, the
relations of the normalized characters of affine Lie algebras and the Frobenius structure are
studied, where we need the analyses of the respective solutions of both the Kaneko-Zagier
equations and the Halphen’s equations which are given in Section 7.

For the Jacobi forms, the integers called “weight” and “index” are defined and their “ini-
tial terms” are also defined. However, these notions do not fit the differential operators which
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appear in the construction of the Frobenius structure. Thus, in Section 6 we formulate the
(lifted) Jacobi forms and the differential operators on a 1-dimensional higher space where
they fit together well. Then we obtain results such as “the determinant construction” of the
Jacobi forms from normalized characters in Section 6.2.2 and a description of the intersec-
tion form of the Frobenius structure. Then we give a reduction to the 1-dimensional lower
space discussed in Section 5. This is the reason for separating Section 5 and Section 6.

In Section 7, the Kaneko-Zagier equations and the Halphen’s equations satisfied by mod-
ular forms are studied. In Section 8, the duality of the solutions of the Kaneko-Zagier
equations is formulated. These results allow for the description of the Frobenius structure.
In Appendix A, we give a lemma on the connection used to construct flat sections in Propo-
sition 5.6.

2. W-invariants for elliptic root systems

We recall the elliptic root systems (cf. Saito [17]). Some parts are changed in order to fit
the notations of Kac [8].

2.1. Elliptic root systems. In this subsection, we define the elliptic root systems (cf.
[17D).

Let [ be a positive integer. Let F' be a real vector space of rank / + 2 with a positive semi-
definite symmetric bilinear form / : F X F — R, whose radical radl := {x € F|I(x,y) =
0,Vy € F} is a vector space of rank 2. For a non-isotropic vector @ € F (i.e. I(a,a) # 0),
we put @ := 2a/I(a,a) € F. The reflection w, with respect to « is defined by w,(u) :=
u—Iu,a)a (VuceF).

DermviTion 2.1. A set R of non-isotropic elements of F is an elliptic root system belonging
to (F, I) if it satisfies the axioms (1)-(iv):
(i) The additive group generated by R in F, denoted by Q(R), is a full sub-lattice of F.
(ii) I(a,BY) € Z for a,B € R.
(iii)) we(R) = R for Vo € R.
@iv) If R = Ry U R,, with R; L R», then either R; or R, is void.

We have Q(R) Nradl ~ Z2>. We call a 1-dimensional vector space G C rad/ satisfying
G N Q(R) = Z, amarking. We fix a,6 € F s.t. G N Q(R) = Za and Q(R) Nradl = Za & ZJ.

The isomorphism classes of the elliptic root systems with markings are classified in [16].
Hereafter we restrict ourselves to the elliptic root systems of type Xl(l’l) X1 =A,LB,--,Gy)
in the notation of [16].

For these elliptic root systems, an R-basis of F is given as follows. We have a natural
projection p : F — F/radl. Put R := p(R). Then, R, C F/radl with an R-bilinear form on
F/radl induced by I gives a finite root system. We take ay,- - ,a; € R s.t. p(ay), -+, p(a))
give simple roots, where we follow the enumeration of the vertices of the Dynkin diagram
of Kac [8, p.53]. We put F := EBLI Ra;. Then we have F = F, ® R6 & Ra.

We fix some notations. There exists a unique 6 € F¢ N R which satisfies the condition that
p(0) is the highest root of the finite root system p(R) C F/radl. Hereafter we assume that
1(6,60) = 2 which is satisfied by a constant multiplication of [ if necessary. For @ € R, we put

@’ =2a/l(a,@). Fori=1,---,1, we define a; € R by the coefficients of 6 = Zﬁ:l a’al.
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Also we put a; = 1. These a; (i = 0,---,[) are known to be positive integers and called
colabels. We put @y = 6 — 6. We have o € R. Then we have § = Zﬁ:o alay.

2.2. Hyperbolic extension and fundamental weights. We introduce a hyperbolic ex-
tension (F, 1) of (F, 1), i.e. F is a (I + 3)-dimensional R-vector space of which contain F as
a subspace and 7 is a symmetric R-bilinear form on £ which satisfies 7|z = I and rad/ = Ra.
It is unique up to isomorphism.

We fix some notations. We define A € F which satisfies I(Ao, a/l.v) =0p; fori=0,---,1
and I(Ag, Ag) = 0. Then we have a decomposition F' = F®RAy. Fori =1,--- ,1, we define
w; € Fa by I(w;,a}) = §;jfor j=1,-- 1. We put A; := a; Ao + w; € Ffori=1,---,1. We
call Ao, - -+, Ay, the fundamental weights. We remark that I(Ai,ajv.) =¢;jfori, j=0,---,L
We denote the sum of fundamental weights Zﬁ:o A; by p.

2.3. The elliptic Weyl group and the affine Weyl group. We define the elliptic Weyl
group. We first define O(F, radl) := {g € GL(F) | I(gx,gy) = I(x,y) Yx,y € F, glaas = id.}.
For @ € R, we define a reflection @, € O(F,radl) by i, (u) = u — I(u,a")a for u € F.
We define the elliptic Weyl group W by the group generated by @, (@ € R). We have a
homomorphism: pr, : O(F,radl) — GL(F/Ra) induced by pr : F — F/Ra. Also we have
a homomorphism &!_,Ze; — W which is defined by Y, ki) + (u > u—a ¥ I(Y ki, u)).
Then we have the following exact sequence (cf. Saito-Takebayashi [18]):

!
2.1) 0 P Za) > W - pr.w) - 1.
i=0
We also define the affine Weyl group Wy by the group generated by @,, (i = 0,---,1).
Then Wy gives a splitting of the exact sequence (2.1) and we have a semi-direct product
decomposition:

/
2.2) W= Wy = (@ Za)).
i=0

We have a group homomorphism & : Wy — {£1} defined by the parity of number of reflec-
tions which define w € Wy.

2.4. Domains and a bilinear form. We define two domains:

Y := {x € Homg(F, C)|(a, x) = —2nV—1, Re(s, x) > 0},
H := {x € Homg(radl, C) | {a, x) = —27V—1, Re(5, x) > 0}.

We have a natural morphism n : ¥ — H. Hereafter we shall identify H and H := {z €
C|Imz > 0} by the function 6/a : H — H. We define the left action of g € W on Y by
(g-x,y) ={x,g7" -y). for x € Y and y € F. We remark that the domain Y and the action of
W and Wy on Y is naturally identified with Kac [8, p.225].

We shall regard 6, a1, - - - , @, Ag as a coordinate system of Y.

We define a vector field E by

0

where F(Y) is a space of holomorphic functions on Y and €(Y) is a space of holomorphic
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1

Mmax

1-forms on Y. Put mp,, := max{ay,--- ,a,’}. Then we define Eyory =

REMARK 2.2. E,om 18 used to define Euler field for the Frobenius structure. E is used to
count the degree of the W-invariants.

We define a symmetric bilinear form 7* : Q(Y) X Q(Y) — F(Y) and its Laplacian D and
Dby

0 0 0 0
' =—|—® — I,
[35 ® ahe " oA aa " Z (e “J) ® 9|’
52
D := Z I(a/,,a/])a 8011
i,j=1
9* —
D:=-]2 D].
[ 360y
We define a map
Y->H h o(h) = o) )
a(h)  —27v-1
and denote it by 7. We also define maps
Yy _ vy
Y - Homg(F, C), hl—>( B —_——= ],
s T Tl T oy

Ao(h) _ Ag(h)

Y—-C, he - = .
a(h) 2nV-1

Thus we have
(2.3) Y=2HXbcxC,

where we denote Homg (F, C) by b which is isomorphic to the complexified Cartan sub-
algebra of the finite dimensional Lie algebra corresponding to the root system R.;.

We remark that the symmetric bilinear form /* induces a morphism Q(Y) — ®&(Y) where
Q(Y) is a space of C-derivations of " and we also denote it by I*. Then we have

(2.4) r'dQ2rV-11) = E

2.5. The algebra of the invariants for the elliptic Weyl group. In this subsection, we
introduce the algebra of the invariants for the elliptic Weyl group.

We put F(H) := {f : H — C : holomorphic}. For m € Z, we put F,,(Y) := {f €
FY)|Ef =mf}. Byn*: F(H) = Fo(Y), induced by n: Y — H, F,,(Y) is a F(H)-module.

FormeZ,weputSY :={(f e F,(Y)|f(g-2) = f(z) Vg € W}, SV := @meZmSnvf. sW
is a graded algebra and we see that S 5‘/ is just " (F (H)). _

Theorem 2.3 ([1, 2, 9, 12, 24]). There exist | + 1 homogeneous elements P; € S Z‘i 0 <
i < 1) such that SV is a polynomial algebra of Py, - - , P; over F(H).
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2.6. S"-modules and S "-bilinear forms. We introduce S$" modules and tensors on
them.

We define Qgw as a set of 1-forms for the algebra S". We define @gw as C-derivations of
the algebra S". We have

l l
9
Osw = @SW_GP," Qsv = s"ar, Py =1

i=—1 i=—1
Thus Qgw, Ogw are free graded S "-modules of rank / + 2.
We introduce a filtration on Qgw by the degree of the S W-free generators:

dq

(2.5) Oy=F  ,cS" =2 =FycF,c---CF, =Qgw,
q

mmax
where

Fy = @ SYAP, (=1 <k < mmy),
deg Pi<k

which do not depend on the choice of P;.

We denote by ¢ the holomorphic function e™® = ¢V=17 on H. Then we have d—qq =
2nV-1dP_, = 2aV-1dr, q%} = 271«1/—_16% = 2m1/—_1t%' For f € F(H), we denote qdiqf by f’.
By the natural morphism Qgw — Q(Y), E, I*, D defined in Section 2.4 restricts:
(2.6) E: Qv —SY,
(27) Enorm : QSW - SW,
(2.8) I Qgw X Qgw — SV,
(2.9) D: Qv —SY,

since LiegE = 0, LiegI™ = 0. We call E, the Euler field.
For f € F(H), F € F,(Y) (m € Z), we have

(2.10) D(fF) = 2(qdiqf)(EF) + fD(F),
1
(2.11) I'(df.dg) = 5[D(fg) = fD(g) — gD()].

2.7. The normalized characters. We introduce the normalized characters ya, (i =
1,---,l) motivated by Kac [8, p.226].

DeriniTion 2.4, Fori =0, 1,--- , [, we define holomorphic functions on Y:
(2.12) chy, = [ Z &(w) ew(p+A,-)] / [ Z &(w) ew(p))
weWye weWye s
(2.13) XA, = efmAf‘sch,\i = q"™ichy,,
where my, = _itpP P

T 2[(Ai+po)  21(p.6)"

!
The function y,, is invariant by the action of EB Za/iv and Wy of the subgroups W. Then
i=0
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by (2.2), we have
Proposition 2.5. Fori=0,1,---,1, ya, € S(‘j_j.

2.8. Some modular forms. We put

(2.14) Eyi=1- 2420‘1(11)61",
n=1
(2.15) =g Ja-am,
n=1

where o (n) := X4 d*. E,, n are holomorphic functions on H and we have E, = 24(1’ /n).
We define chf_) and XE?-) € F(H) by cha,(7,0,0) and ya,(7,0,0) respectively, where
cha, (1, 2,1), xa,(T, 2, 1) are defined through the isomorphism (7,z,7) €e HXbhec xC = Y.

3. Frobenius structure
The following theorems are proved in [22] in the context of Frobenius manifolds.

Theorem 3.1. Assume that Xl(l’l) = thl’l),Eél’l),E;I’l),Eél’l),Fil’l),G(zl’l). Then there
exist the holomorphic metric J : Ogw®gw Ogw — SW and multiplication o : Ogw gw Ogw —
Qgw on Ogw, global unit field e : Qgw — SV, satisfying the following conditions:

(1) the metric is invariant under the multiplication, i.e. J(X o Y,Z) = J(X,Y o Z) for the
vector field X,Y,Z : Qgw — SV,

(ii) (potentiality) the (3, 1)-tensor Vo is symmetric (here V is the Levi-Civita connection of
the metric), i.e. Vx(Y o Z) —Y oVx(Z) - Vy(X 0 Z)+ X o Vy(Z) - [X,Y] 0 Z = O, for the
vector field X,Y,Z : Qgw — SV,
(iii) the metric J is flat,
(iv) e is a unit field and it is flat, i.e. Ve = 0,

(v) the Euler field Eyom satisfies Lieg,, (o) = 1-o, and Lieg,, (J)=1-J,
(vi) the intersection form coincides with I*: J(Epom, J*(w) o J* (")) = I'(w, &) for 1-forms
w,w € Qgw and J* : Qgw — Ogw is the isomorphism induced by J.

Theorem 3.2. For ¢ € C*, (¢ 'o,ce,c™'J) also satisfy the conditions Theorem 3.1. If
(o', €', J") satisfy conditions Theorem 3.1, then there exists ¢ € C* such that (o’,e’,J") =
(c Yo, ce,c™')). In particular the Levi-Civita connection V is unique and the vector space
V := Ce does not depend on the choice of e.

We introduce the potential 7 € SW of the Frobenius structure by the condition that
EvomF =2F,J(X o Y,Z) = XYZF for X,Y,Z € Ogw with VX = VY = VZ = 0.

We introduce the flat generator system as follows. Put 7_; := 271\/—_17'/ Mmax and d_; = 0.
Then we have Vdr_; = 0 and Eopmf-1 = d_11_;.

Lett; € SY (i=0,---,1) be such that Vdt; = 0, Epomt; = djt; and dt_;, dty, - - -, dt; form
an S "-free basis of Qgw. Then we call 7_y, o, - - - , 1; the flat generator system. By Theorem
3.1,weassumethat 0 <dy <---<d_1 <d;=1.

By the flat generator system, the potential F is uniquely determined up to adding a con-
stant multiple of tl2 by the inequality d;—; < d; = 1.

The following Proposition will be used to construct the potential F.
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Proposition 3.3. Fori # —1 or j # —1, we have *d'0'F = oF
o = J(di"). Fork=i=j= -1, 0f0'0'F = 0.

[z 1" (dti, dt))] for

Proof. Since &' is of degree d; — 1, the degree of 0*0'0'F is dy + d; + d; — 3 + 2, we
have 3*0'0/F = 0 fork = i = j = —1. By Theorem 3.1 (vi) and definition of 7, we have
I(d;, dt;) = Erorm0' 0'F = (d; + dj)aiajf'. Ifi # -1 or j # —1, then d; + d; # 0. Then we
have the result. O

4. Main theorem

Theorem 4.1. For the elliptic root system of type thl’l), the following holds.
() Putb_y := aN=17,bo := 172xn,» b1 := 7720, b2 i= 12X Ass b3 i= 12X Ass

b= Y. I'(dbidb)+ 2B 402+
i=0,1,2,3 2 n

Then by, - - - , by are polynomial generators of SV over F(H) and Vdb; = 0 (i = —1,--- ,4)
with respect to V defined in Theorem 3.2. Namely, b; (i = —1,--- ,4) are homogeneous flat
coordinates.

(i1) We take 6% (i =-1,---,4) SV-free basis of Ogw. Then % € V. Put ey := %. By
Theorem 3.2, we have the unique Frobenius structure whose unit of the product is ey. We
denote its holomorphic metric by Jo. Then we have

0 0

(Jo(db;, db))) =

S O O NN OoO O
(= el S ool el
(=3 S eNeNolNe
S O O o O -

- o O O O
S O O DO

The following function
Fo := %(n\/—_l‘r)(lu)z + %b4(b§ + b7 + b3 + b3) + fo(bob1b2b3)
+%f1(bg + b} + b + b3)
+é Fo(bghi + bybs + bibs + bibs + bib3 + b3b3)

gives a potential for this Frobenius structure where

1
Jo = §7I4X§\01),
fi= ) (ﬁEz + 241 Xn |

301 |
=2 (=E - —©).
f2 2(24 27 4 X
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RemMark 4.2. In Satake [20] and Satake-Takahashi [23], the corresponding results are de-

scribed.  The relation of 774)(5?3,174)(581) and @p;,0,, ; in [23] is ®O’I(eﬂ\/jlr) _

1@V, @y, 167V = (VT P(e27V717) because of the result of

string function in [9]. We remark that ¢ in [23] is V=17 whereas q is V=17 in this pa-

per. Also the functions X; in Lemma 2.3 of [23] is the same of the functions &; in Section
7.2 (7.9). Thus we may identify our results with those in [23].

5. Proof of main theorem

5.1. Characterization of the unit field. In this subsection, we discuss under the setting
of Section 3. We give a characterization of the unit field e up to constant multiple which will
be used in Proposition 5.4.

We first remind following general results for the Frobenius structure.

Proposition 5.1. Let J* : Qgw X Qg¢w — SV be a dual of J. Then we have J* = Lie,I".
Also we have Lie,Lie,I" = 0.

Proof. By Hertling [7, p.146], Lie,J = 0, Lie,o = o, Lie,Enomm = e. Then we have the
results. m]

We return to the situation of the Frobenius structures for elliptic root systems. We put
Vi ={veOgw|Lieg_v=-v, Vo=0}, V, :={ve®gw|Lieg,__v=—v, Lie,Lie,I" = 0}.

norm norm

Proposition 5.2. For V in Theorem 3.2, we have V = V; = V,.

Proof. We see V C V;, V c V,. For the case the Froenius structure for the elliptic root
system, the degrees of flat generator system are described by 0, a.’ /mpa (0 < i < 1) and we
see that dimcV; = 1. The fact that dimcV, = 1 is shown in Saito [17, §9.3]. Thus we have
the result. O

5.2. Proof of main theorem. We give a proof of Theorem 4.1 by using Proposition 5.4,
5.5,5.6,5.7.
We put

(5.1a) s_y = nV-1r,
51b) o= (67 {000 Oray +xas +xa) = ) +x +x) (ean)|

0

(5.00)  s=a A XA XA — XAy X XD,
(5.1d) 52:= 170 (=2KA, + XAs XA
(5.1e) 53 := 17 0 (0As = XAs)»
| T, 8 8 * 8 8

(5.11) S41= 50 [317(d(17°s53),d(n" 53)) + 1" (d(17°52), d(1”° 52))].
We also put §_; := s_1, §p := S0, §] = 7]4S1, Sy 1= 7’]8S2, §3 1= 7]8.93, S4 1= 7712.5‘4.

Remark 5.3. The functions sy, - - - , 54 are reductions of the Jacobi forms defined in Sec-
tion 6 (for the precise statement, see Proposition 6.13 (ii)). The functions 5, --- , §; are

twisted by 7 so that the automorphic factor do not appear. They appear in the calculation of



ExpLiciT DESCRIPTION OF THE FROBENIUS STRUCTURE 191
the bilinear forms (see Proposition 6.4 (iii)).

Proposition 5.4. The following results hold.
(i) 3o, , 84 give polynomial generators of the algebra SV over F(H).
(i1) By (1), we could take % (i=-1,---,4)as S" free basis of Ogw. Then a% e V. We put

= 0
e| .= 75

Proof. We give the proof of (i). By Proposition 6.13, s¢, - - - , s4 are polynomial generators

of $% over F(H). Since 7 is a unit of F(H), we have (i). For the proof of (ii), by Proposition
2

6.14, (a%) I"(ds;,ds;) = O for i, j = —1,--- ,4. Then by Proposition 5.2, we have 55—54 eV.

O

By Proposition 3.2 and Proposition 5.4 (ii), there exists uniquely the Frobenius structure
for SV such that the unit of the product o coincides with e;. We denote the holomorphic
metric for this Frobenius structure by J;. Then the dual metric of J; coincides with Lie,, I*
by Proposition 5.1. We put J := Lie, I".

Proposition 5.5. (i) Fords;(j=-1,---,4), we have
0 0 0 0 0 1
0 67]4E~‘2‘ 6774E6 0 0 —%T]4 ~451
v, 7~ . 0 6U4E6 67]4E4 0 0 —%774§Q

(J1(d5i,d5p) = 0 0 127" 0 0

0 0 0 0 4nt 0
~ 4 ~ ~

1 =20*Essi —3n*50 0 0 L[58+ LES + 1E8%),

where

Ey:=1+240 Y o3(n)g" = 1+240g + - ,

n=1

Eg:=1-504 ) os(n)g" =1-504g—---,
n=1
E, :=n3E4 E¢ := n7"2E¢ and oi(n) := 2udin d~.
(i1) The connection matrix of V defined in Theorem 3.2 can be calculated by Ji(d5;, d5;)
(i,j=-1,---,4) and be expressed in terms of n, ' /n = 21—4E2, E4, Egand 5y, , 5.

Proof. We give the proof of (i). We first show that I*(d5;,ds;) for i,j = —1,---.,4
could be expressed by 7, E;, §;i=2,4,6,j=0,---,4. Forthe casesi = -1 or j = -1,
then they are shown by the equation (2.4). For the cases i,j = 0,---,4, then they are
shown by Proposition 6.16 and the equation (6.11). Therefore we obtain the results because
Ji(d5;,d5§)) = e I"(ds;,ds;) for i.j = —1,--- ,4. For the proof of (ii), by Theorem 3.2, the
connection V for Frobenius structure could be calculated as the Levi-Civita connection of
J1, we obtain the connection form by the derivatives of the J7(d5;,d5;) and they could be
expressed by 1, E;, §;i=2,4,6,j=0,---,4 using (7.8). m|
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Proposition 5.6. There exist unique vy, - - - ,v4 € Qgw such that v;—ds; € Fo for0 <i <3
and vy — dsy € Fy for the filtration deﬁned in (2.5) and Vv] = 0for 0 < j <4, where Vv is
a connection obtained by the reduction of the entries of the connection matrix of V defined
in Theorem 3.2 by Qgw — Qgw,pay (more precicely, V:Qgw — Qgw ) pa) ®sw Qsw is a
composition of the connection V : Qgw — Qgw ®gw Qgw with Qgw @gw Qgw — Qgw ) p) Ogw
Qgw induced by the natural morphism Qgw — Qgw ). We have

Y| N Y/
vo = dSo — ((772) n 250 - 3 (Ean 8)774S1) ?q,
1 d
o1 = ds — (7)Y 75 - A SO) qq

|
v =dS — (( E)
(e

U3 = dS3 - 5 )
U4 = duy,
where
-1 4 B 1 1 5
(5.2) Uy = §4+ S5 A+ Ez( =t p® 5)? +24.3(S3))
and
A= E6§% - ZEifofl + E4E6§%,
B = E4§é - 2E6§0§1 + Eig%
Putv_y = E—q For the SV -free basis v_y,--- ,v4, we have
0 0 0 0 0 0
0 2% -n*/6 0 0 0
0 —1/30*%Ey) 2Ly 0 0 0ldg
53 Vo (oo Vo) = (g, -, 7 ) e
(5.3) (Vo v4) = (v-1 v4)0 0 0 2% o o|q.
0 0 0 0 2%) 0
0 0 0 0 0 0
and
0 0 0 0 0 1
0 677452 6n*Es 0 0 0
. 10 6n*Es 6n*Ey, 0 0 O
(5.4) Gieo)=lo 5T e o o
0 0 0 0 4n5* 0
1 0 0 0 0 0J.

Proof. By the homogeneity of J;, the Levi-Civita connection V is homogeneous of degree
0. Thus V preserves the filtration Fy C F'; C F; defined in (2.5). Then by using Lemma A.1
inductively, we obtain v; explicitly. m|
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Proposition 5.7. (i) Put
2 () (0)
n 0 Xa XA
(5.5) A :=( _2), Aj 3=( P () N (1) /)
0 61 0 1y, ).
Then A, := ApA; satisfies

(5.6) dAs +yA; = 0, fory = 2 s
' PEYRERITY I ystEy 2D ),
and
6n*E?  6n*Es 6°-48 0
. AT _4 224, =
.7) (42) (6774E6 6 Ey) 2 0 6316/,
Put x_1 == v_1,xp := T]_ZUQ,X3 = 77_203,)64 = vy, (X0, X1) := (vo,v1)As. Then the sections
X_1,--+ , X4 are flat and we have
0 0 0 0 0 1
0 6°-48 0 0 0 O
. 0 0 616 0 0 0
(5.8) (J1(xi, x7) = 0o 0 0 2 0 0
0 0 0 0 4 0
1 0 0 0 0 0
(i1) Put(y_l y4) = (x_1 x4)M’1f0r
1 0 0 0O O O
072 0 0 0 O
0O 0 24 -2 0 O
(5-9) M=o 0 24 1 1 0
o 0 24 1 -1 0
O 0 0 o o0 1)
Then
(510)  (yo1 -+ ya) = @@V=17),d0rxn,) A0T2xa,)» (T 2 A,), dO7 XA ,)s 04)
and
000 O0O01
020000
. {00 2 0 0 0
(5.11) (J1Wi,yj) = 000200
00 0O0Z20
1 000 00O

in particular, the invariants N =17, 2x ays 72X A, 12X As» 12X A, » Us COnstitute the flat gen-
erator system and 172X ng» 172X A 1T X A3 1T X A,» Ug are polynomial generators of SV over
F(H).
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(i) The following function
F o= %(ﬂ\/—_lr)(u4)2 + iu4(b§ + b3 + b3+ b2) + fobobibabs)
+%f1(bg + b + by + b3)
+é H(bEbT + bybs + bib3 + bib3 + bib; + bib3)

gives a potential for the above Frobenius structure where fy, f1, f> are defined in Theorem
4.1.

(iv) The function uy defined (5.2) coincides with the function b4 in Theorem 4.1(1).

Proof. We give the proof of (i). By Proposition 7.1 (i), (iii), we obtain (5.6) and (5.7)
respectively. By (5.6), x; are flat. By (5.7), we have (5.8). For the proof of (ii), by the fact
that the determinant of A; is 4 (Proposition 7.1 (ii)), we have (5.10). We give the proof of
(iii). In the proof of Proposition 5.5 (i), we obtain I*(d5;, d5;). We could express I*(y;, y ;)
by 7, 1*xags T'x A1 /0, Eiyy; j = 0,--+ ,4 using the results of Proposition 7.2. Then by
Proposition 3.3, we have (iii). By the result of (iii), we obtain uy = b4, which gives the proof
of (iv). m]

Proof of Theorem 4.1. By Theorem 3.2, the connection in Theorem 4.1 is the same as
one in Proposition 5.5 (ii). Then (i) is a consequence of Proposition 5.7 (ii) and (iv). By
Proposition 5.7 (iv), we have ey = e;. Then we have Jy = J; and the function F; gives the
potential of the Theorem 4.1. |

6. Jacobi forms

6.1. Domains and differential operators. In order to define Jacobi forms, we prepare
domains, group actions on them and differential operators.

We formulate Jacobi forms on the new domains (see (6.13)) which have 1 extra parameter
than the domain Y so that the automorphic factors for the group actions do not appear. We
also formulate differential operators which are invariant for the group actions on the new
domains (see (6.5)). We use notations introduced in Section 2.

6.1.1. Domains and group actions. We put U := {g € C||g| < 1}, Yg := HX he X C,
Yy := U XxDbe xC, Y := {0} x bc x C. We prepare C* with the coordinate w. The maps:
H— U, 7+ *V-I" and {0} — U induce the following diagram:

C' XYy —— C'xYy <¢—2C*><Y{0}

(6.1) nl nl nl
C'xH —2 C'xU «2— C'x {0},
where 7 denotes natural projection.
We shall define the Metaplectic group (cf. [8, p.253]). We first introduce SL,(Z) action

onHbyA 7:= % for A = (a Z) € SL,(Z) and 7 € H. We define the Metaplectic group
c

Mp,(Z) by the set of pair
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(e 2

with the product. (Ay, j1)(Az, j2) = (A1A3, j3) where j3(7) = ji1(Az - 7)j2(7). We define the
action of Mp,(Z) on C* x H by (A, j) - (w,7) = (jw, A - 7).
We define the action of Mp,(Z) on (w, T,2,t) € C* X Yy by

j2=c7+d}

z (2, 2)
Jt+
+d 2(ct+d)

(A,j)-(a),‘r,z,t):(jw,A-T,CT )EC*XYH
b
d
non-degenerate R-bilinear form on F induced by (F, I).

We define the W action on Yy by the isomorphism Y =~ Yy which was obtained in (2.3)
and W action on Y defined in Section 2.4. The domain C* X Y3 also has the W action whose
action on C* is trivial.

for A = (Ccl ) € SLy(Z) and (z,z) is a non-degenerate C-bilinear form on / induced by a

6.1.2. Differential operators. We remind the notion of “f-related” which we shall use
frequently. Let f : M| — M, be a morphism of complex manifolds M; and M,. Let X; be
a holomorphic vector field on M; (i = 1,2). The vector fields X; and X, are called f-related
it df((X1),) = (X2)s for any p € M; where df : T,M; — Ty, M>. Then we have a
commutative diagram:

F(My) «L— F(My)
(6.2) xll le

F(My) —L— F(My)

for the function spaces F(M;) (i = 1,2). For this case, we use the same notation X; = X, =
X. If P; is a differential operator on M; (i = 1,2) such that the diagram

F(My) «L— F(My)
(6.3) n| |

FM) —— F(My)

commutes, then we also call D, and D, “f-related” and use the same notation P = P; = P5.

We return to the situation of Section 6.1.1. On each space of the diagram (6.1), we define
the vector field w+- a . They are g;-related (i = 1,2) and n-related, thus we simply denote
them by E,,.

On each space of the upper line of the diagram (6.1), we define the vector field 3%0. They
are @;-related (i = 1, 2), thus we simply denote them by E.

On each space C* X Yy, C* X Yy and C* X Y)p), we define the differential operators

]7/ o 62
p+2T 11 2 :
T { A, +“’aAaw}]

P 5 20 &
2 ~D+ 5 E
@ [ Vg0, 2\ 'ang T andm ||

W
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— 2 0 lig
D+ ==
T4 { aho ‘”aAaw}]
respectively, where the symbol ’ is defined in Section 2.6. They are ¢;-related (i = 1, 2), thus

we simply denote them by D.
On each space C* x H, C* x U and C* x {0}, we define vector fields

[ 1 0 1 0
-4 27V-1t
—E - —|,
@ | 24 (e )‘”aa) " 2mvV—=1 GT]
[ 1 0 0
-4
—E - -
w % z(q)wawwaq],
124 dw

respectively. They are ¢;-related and ¢,-related, thus we simply denote them by ¢,.

Proposition 6.1. (i) On the space C* X Yy, E,,, E and D are invariant w.r.t. the Mp,(Z)
action and W action. We also have [E,,, D] = (-4)D.
(ii) On the space C* x H, E,, and 6, are invariant w.r.t. the Mp,(Z) action. We also have
[Ew, 041 = (=4)0,.

We could easily check the above facts so we omit a proof.
6.1.3. Function spaces. For k € %Z, m € Z and for each X = H, U and {0}, we put

Fim(C* X Yx) :={f : C* X Yx = C: holomorphic|E,f = (=2k)f, Ef = mf},
Fi(C xX):={f:C"xX — C: holomorphic|E, f = (—2k)f}.

Since the vector fields E,, and E are g;-related (i = 1, 2), we have the induced morphisms ¢;
on these function spaces.
By [E,, D] = (-4)D and [E,,, §,] = (=4)d,, the differential operators D, ¢, define

(6.4) D: Fip(C" X Yx) = Firi2m(C" X Yy),
(6.5) 0q - Fi(C" x X) > Fira(C* x X).

Since the differential operator D and ¢, are g;-related (i = 1,2), the above action on the
function spaces commutes with (¢;)* and (¢;)* (cf. Proposition 6.4).

Proposition 6.2. (i) For the natural inclusion mapping: n* : Fi(C* X X) — Fyo(C* X
Yx), we easily check that

(6.6) D(fF) = 264(f)E(F) + fD(F)

Jor f € Fi(C* x X), F € Fi,,(C* X Yx).
(ii) Forn/w € F1(C* X H),

(6.7) 64(n/w) = 0.

We could easily check the above facts so we omit a proof.
For Fy € Fy,,(C* X Yx), F» € Fk/,mr(C* X Yx), we put

1 .
(6.8) I(F, F»y) = 3 [D(F1F>) = D(F1)F> — D(F2)F1] € Fraios2,mem (C X Yx).
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We remark that ¢ is injective and ¢ is surjective, because ¢; is dominant and ¢; is a closed
immersion respectively. Hereafter we frequently identify Fy,,(C X Yy) with the subspace
01 (Frm(C X Yy)). For f € Fi,(C X Yy), we call ¢3(f) the initial term of f (see (6.17)).

6.1.4. Correspondence of the function spaces. By the natural projection C* X Yy —
Yg = Y (resp. C* x H — H), we have F,,(Y) = Fy,,(C* X Yg) (resp. F(H) — Fyo(C* x H)).
We also define their twisted version.

DeriniTiON 6.3. For each k € %Z, we define the isomorphism

Ly : Fpu(Y) = Fp (T X Yap),
L; : FH) - Fi(C" x H),

by f — w 2f. We put £y, := L E; for k = 2,4,6.
Proposition 6.4. (i) We have

FH) — F(C' xH) A F(C'XU) —2— F(C*x{0})

(6.9) akl @,l aql 541

Liso

@ @
FH) —— Fi2(C* XH) ¢—— Fi2(C* X U) —— Fn(C" x {0}),

where 0y : F(H) — F(H) by 0x(f) = f = £E>f = n?* (77 f) for f € F(H).
(i1) We have
(6.10)

L @] @5
Fu(Y) —— Fim(C X Yg) ¢—— F(C*xYy) —— Fn(C* X Yq)

Dkl lD lD lD
L . [ . ® ;
Fu(Y) —5 Fraom(C* X Ya) —— Fraom(C* X Yy) —— Fiom(C* X Yyg)),
where Dy(F) := [2(] - 2k)%g + D](F) = FIQ,(D(n"Z"F) for F € F,(Y).
(iii) For Fy € Fp(Y), F5 € Fop(Y),

—2k-2k"—4
77 )

(6.11) r'dm™F)),dn* Fy) = n* (5 L(L(F/), Ly (Fy)).

Proof. We have (i) and (ii) by direct calculations. For (iii), we have
WI(U)_ZkFl . a)_zk,Fz)
1 1

= 5w | D™ F 1 Fy) - Dw ™ F)w ™ F, - D™ Fy)w ™ Fy|

1 I-2k-2K 1 12k
=5 [771_2"_2]" D(n FiF;) - WD(U F)F; -

.
T 2yl
1 1

= 57w [P FiF2) = DOy Foer ™ Fa) = Doy P F)|

T D@ F2>F1]

| D6 FiFy) = DO~ FOG ™ Fa) = DO Fa)or 2 Fy)|
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1 . B L
= m’ (d*F)),d( Fy)).

Here we used (ii) and (2.10) and (2.11). m|

6.2. Definitions of modular forms and Jacobi forms.
6.2.1. Spaces of modular forms and Jacobi forms. We put
F,ff/m(C* X Yg) :={f € Fn(C" X Y)| f is invariant by the action of W},
FY(C* X Yy) == {f € Frn(C X Y0) | ¢ (f) € F,(C" X Yg)},
(6.12) Jem i =1{f € F,Zf/m(C* X Yy) | (f) is invariant by the action of Mp,(Z)},
(6.13) My :={f € Fi(C" x U)|¢](f) is invariant by the action of Mp,(Z)}.

We call My, and Jy ,, the space of the modular form of weight k£ and the space of Jacobi forms
of weight k and index m respectively.

We put M]‘{":1 = (Lk)‘l(cp’f(Mk)) and J;;l = (Lk)‘l(cp’f(Jk,m)). We remark that M]‘{":1 is
a usual space of modular forms of weight k on H. Also we remark that the space J,‘(‘j;l for
A(ll’l) case corresponds to the space of the even weak Jacobi forms defined in Eichler-Zagier
[5] by restricting H X he X C to H X he X {0}.

Proposition 6.5. (i) We have

M& —— g (M) —— My —— M
Lk [ 12

(6.14) al o | o | o |

M —— @i (Min) —— Myo —— MP,,,
Lyso o @5
where we put M]? := ¢5(My) and call it the space of the initial terms of the modular forms of

weight k.
(i1) We have

1 ~ ~ 0
‘]Itcum L (PT (Jk,m) « Jk,m « Jk m
, . ¢ @ ,

o el oL

=1 ~ - 0
Jeoam —7 > #1Ukszm) - Jkr2.m - Sev2m
k+2 1 )

where we put J? = ©5(Jim) and call it the space of the initial terms of the Jacobi forms of

k,m
weight k and index m.

Proof. Since 0, is Mp,(Z)-equivariant, the diagram (6.9) gives the commutative diagram
(6.14). Also since D is Mp,(Z)-equivariant, the diagram (6.10) gives the commutative dia-
gram (6.15). m|

6.2.2. Determinant construction of Jacobi forms.

Proposition 6.6. Let fi,--- . f, € F\ (C*XYx), fi, . fa € F{/ (C*XYy), Fy,--- ,F, €
Fi(C*xH), Fy, - ,F, € Fi(C*xU), 1, - ,¥n € Qand p : Mp»(Z) — GL,(C) satisfy the
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following conditions:
(i) fi = @ Fi@.q.2.0. . fu = " ful.q.2.0).
(i) Fi(w,7) =q"Fi(w,q),: -, Falw,7) = " Fy(w, q),
(i) (fi(g- (W, 7,2,0), -, fulg - (W, T, 2,0)) = (filw, 7,2,0), -, fu(w, T,2,1))p(9),
for g € Mp>(2),
1) (Fi(g - (w, ), , Fu(g - (w,7))) = (Fi(w,7), -+, Fp(w, 7)p(9).
Then we have 24y € Z fory =y + - -+ + v, and for

fioe

§PF, - &7F,
A = 6§3F1 e 823Fn

ﬁ)’l n

SFy - (ygpn )

(n/w)>* det A is a Jacobi form of type Xl(l’l) of weight  — 12y and index m for § = kn +
2B+ + Bk

Proof. We first study the behavior of det A at ¢ = 0. We first observe that for i > 2, the
(i, j) component of A is 5? (q”F_j) , so it could be factored as ¢”7b; j(q) by some holomorphic
function b; j(q) € Fi28,(C* X U). Thus detA is factored as detA = ¢"F(w, g,z, 1) by some
holomorphic function F(w, ¢, z,t) € F gf/m(C* x Yy).

Second, we study the modular invariance of det A. Here we consider the group of char-
acters: G := {y : Mpy(Z) — C*|y is a group homomorphism}. We call f € F,E’m(C* X Yr)
quasi-invariant (resp. invariant) for Mp,(Z) if there exist y € G s.t. f(g - (w,T,z,1) =
X@)f(w,7,z,1) (resp. f(g- (w,7,2,1) = f(w,7,2,1)) for all g € Mp>(Z).

We show that det A is quasi-invariant. Since ¢, is invariant w.r.t. Mp,(Z), we have

(G5 F1)(g - (@, 7)), (05 Fu)(g - (@, 7)) = (G F1(@,7), -, 6y Fulw, T))p(g),

thus we have
A(g - (w,7,2,1) = Aw, 7,2, )p(9).
Then we obtain the following relation of the determinants of both sides:
det(A(g - (w, 7, z,1))) = detp(g) det(A(w, 7, 2, 1)).
Thus det A is quasi-invariant for Mp,(Z).

1 1
We show 24y € Z. We take an element T := (( ),1) € Mpy(Z). Then by detA =

01

q"F(w,q,z,t), we have det(o(T)) = V=17 We remind the fact that the character group G
is isomorphic to cyclic group of order 24. Then (det(p(T))** = (e*™~17)?* must be 1. Thus
we have 24y € Z.

Put ¢ := (n/w)* detA. Since n/w is quasi-invariant for Mp,(Z), ¢ is also quasi-
invariant for Mp,(Z). We see that ¢ is invariant w.r.t. 7T € Mp,(Z). Since the elements

of the character group G is distinguished by the value on T = (((1) }), 1) € Mpy(Z), we see

that ¢ is invariant for Mp,(Z).
Then (17/w)~>* det A has a modular property and satisfy cusp conditions, so it satisfies
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the conditions of Jacobi forms. O

6.2.3. Theorem of Wirthmiiller. We put J.., := (P Jin M. := (D) M;. We review

k,meZ kezZ
the result of Wirthmiiller [24].

Theorem 6.7 ((3.6) Theorem in [24]). (i) For the Jacobi forms of types X\""(X; = A,
By, -+ ,Gy) except Egl’l), there exist Jacobi forms ¢; € Jy, (i =0, -, 1) for some k;,m; € Z
such that these are polynomial generator of J.. over M..

(i1) The functions L,:OI(QDT(%)), e ,L,:ll(go*l‘ (¢))) are polynomial generator of SV over F(H).

RemMark 6.8. For the Jacobi forms of type Eél’l), the existence of the polynomial generator
is not known.

6.3. DS’]) case. Hereafter we restrict ourselves to the case of type thl’l). Then Theorem
6.7 for this case asserts the existence of the Jacobi forms ¢y € Jo 1, ¢1 € J_o1, ¢2 € J_4y,
@3 € J_41, ¢a € J_g such that these are polynomial generator of J, . over M,. Wirthmiiller
constructs them by the technique of lifting from lower rank Jacobi forms.

Here we shall construct Jacobi forms by the method of “the determinant construction”
introduced in Section 6.2.2 using the normalized characters introduced in (2.7).

Fori = 0,1,3,4, put fa, := Lo(xa,) € Fo1(C* X Yu), cha, := Lo(chy,) € Fo1(C* X Yz),
20 = L) € Fo(C* x H), chy, = Lo(chY) € Fo(C* x E).

Proposition 6.9. (i) Fori=0,1,3,4, we have

chy, € Fo (C* x Yy),
chy € Fo(C* x U),
/\>Ai = qui C,h/\i’

N ~ (0
B0 = gmichy.

where my, are defined in Section 2.7 and for our case we have my, = —24—4, ma, = My, =
ma, = %
(i)
0 00 I 1 1
1 00 r 1 -1
(6.16) 010 20t -1
0 01 1 -1 -1

where ¥} = ¥a(g - (,T,2,0) for g € Mpy(Z) (i = 0,1,3,4) and T

S = (((1) _01) , \/?) € Mp>(Z) and \7 is defined as 0 < arg(\/7) < %

(ii1) Fori=0,1,3,4, the initial terms ochhAl. are

@3 (cha,) = ™5 (0),
@5(cha,) = ™S (wy),
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@3(cha,) = ™8 (w3),

@3(cha,) = ™S (wa),
where wy is a fundamental weight,

(6.17) S (wy) := > ek,
weWy /the isotropy subgroup of w;
where Wy is a finite Weyl group generated by wy,,- -+ , Wa,.
@(v) /\;(0) — /\;(0) — /\;(0)
A A3 A4'
(v) D(ya,) =0fori=0,1,3,4.

4
(vi) Forw € @ Zw;, we have D(S (w)) = I(w, w)S (w).

i=1

Proof. For (i), (ii), we refer Kac [8]. For the proof of (iii), we use the fact that the initial

term of chyra,) is the character of the corresponding highest weight module of the finite
dimensional Lie algebra, which is known to S(0) (i = 0) and S (w;) (i = 1,3,4). Thus we
have (iii). For the proof of (iv), we use the fact that the automorphism of D, root system
induces the cyclic group action on Ay, A3, A4. Then we have (iv). For the proof of (v), we
use the theory of string function developped in Kac-Peterson [9]. Then x4, is a product of
n~* and theta function. Since the theta function is annihilated by D, we have (v). For the
proof of (vi), we observe that W, preserves /. Then we have the result. O

Proposition 6.10. Put
)?A(10)+ )2/\(30)4- /%AE‘()) )2/\(00) ]
0g(n, T Xp, T XA Oqlly, ’

. 4o [A XA T XA, XA
§1:= (n/w) det(x(og + ~(0) N L0 O |
Al XA} XA4 AO

§o == (=6)(/w)™* det(

82 1= (/W) (=20, + Ras + An,),
83 1= (/@) (Raq = Fa)-
Then these are Jacobi forms with Sy € Jo1, §1 € J_2.1, 2 € J_a1, §3 € J_4,1 and their initial
terms are
($2)"(30) = MW (S (W) + S (w3) + S (wy) +48),
(p2)'B1) = MW (S (1) + S (w3) + S (ws) = 24),
(92)"(82) = MW (=25 (1) + 8 (w3) + S (wa)),
($2)"(83) = MW (S (w3) = S (wa)).
Proof. By Proposition 6.9 (ii), 1-dimensional vector spaces C(—=2¢a, +{a; +1a,)s C(ta, —
X, and a 2-dimensional vector space C(ya, + a, +Xa,) ® C(¥a,) have the Mp,(Z) action.

Then by the determinant construction (Proposition 6.6), we have Jacobi forms. Their initial
terms are calculated by Proposition 6.9 (iii). |
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Proposition 6.11. Put

1
§4 = ﬁ(?ﬁl(fg,, §3) + I(S‘z, §2))
Then 34 is a Jacobi form with §4 € J_g and its initial term is
A =1 oa 12 2 2 2
(¢2)"(34) = 36¢ ‘w28 (w1)” + 28 (w3)” + 28 (W)™ + S (w1)S (w3) + S(w1)S (wa) +
S'(w3)S (wg) + 24(S (w1) + S (w3) + S (w4)) — 365 (wy) — 288)].

Proof. By the diagram (6.15), we have §; € J_¢». By the diagram (6.15), the calculation

of the initial terms reduces to the D action on C[S (w)), - - - , S (w4)]. The action of the opera-
tor D on the monomials of S (w;) could be calculated by Proposition 6.9 (v) and Proposition
6.12. ]

Proposition 6.12. For w € Zsow; + - - - + Zsow, the vector space
Vi=(S() | < w)

has the following 2 bases:
@ {S(w) " <w},
(i) (ITizy S (@)™ | Ziy mwi < ),
where < is a partial ordering on F| defined by the positive roots. We also have the algorithm
to obtain the explicit relation of these bases.

Proof. The former assersion is obtained by the decomposition
SWHSW) = Y apmSw”)
w/// <w/+w//

for a,~ € Zso which is an easy consequence of Bourbaki [4, Ch 6. §3]. The latter assersion
is obtained by representation theory (cf. [11]). ]

Proposition 6.13. (i) So,---, 84 are polynomial generators of J. . over M..
(i) For sg,--- , 84 defined in (5.1), s; = L,;1(<p’[(§,~)). In particular s; are polynomial gener-
ators of SV over F(H).

Proof. We give the proof of (i). By the structure theorem of Jacobi forms (Theorem
6.7), we should check that §; € Jo.1 \E4J_4,1, S1 € Joo \ {0}, Cs, & Cs3 = J a1, Sy €
J_62 \ (J-2.1 - J—a1). These are checked by the initial terms given by Proposition 6.10 and
Proposition 6.11. We give the proof of (ii). Fori = 0,1,2,3, we have s; = L,;l(go’[(fl-)).
For i = 4, we have s; = L' (¢](5)) by (6.11). By (i) and Theorem 6.7 (ii), L;' (¢} (1)) are
polynomial generators of " over F(H), then we have (ii). m|

We put Sy := F(H)[So, - , 53] ® S4FE)[S0, - -+ , 531, 2 := 325", Then we have SV =
S1895,.

Proposition 6.14. In the decomposition SV = S @S5, S»-component of I* (d5;, ds)) e S w
isOfori,j=-1,---,4
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Proof. For the cases i = —1 or j = —1, the assertions are shown by (2.4). We assume

> 0. We put J; := M.[So, - ,83] ® S4M.[S0,---,583], Jo := s4J** Then we have

Jox = J1 & J. By (6.11), we should only prove that J>-component of the Jacobi form
1(5;,8;) is 0. We show it by checking its weight and index. The weight and index of this
Jacobi form is k; + k; + 2 and m; + m;. However the J>-component of such weight and index

must be 0 because of the structure theorem of Wirthmiiller. Thus we have the result. ]
We put sz = ker(Jim — JO ). Then we have quSp (E3 Eé)]k,lz,m. Then we have

the following lemma.
Lemma 6.15. If Ji_12,, = {0}, then Jy,, — J]?m is an isomorphism.

Proposition 6.16. We have
A | A
(80, 83) = _6(3E4S1 + E65,)53,
IS L. A
1(81,83) = —6(2S0 + E45,)83,
1(52,583) = —§§1§3,
1(53,583) =484 — §§1§2

1
I1(8,5) = 1284 + §§1§2,

1A 1

L(51,%5) = —§§0§2 - ZE4S3§3 + Eéﬁzfz,

L(30, $2) = _iE6§3§3 - 1—12(6E4§1 - E682)8,,

11, 81) = 648 — i — 57 Bo(5afa + 38355),

L(8p, $1) = 6E¢5, — %E4s1s1 - %EAz(szsz + 38353),

Lo, §0) = 6E384 5 Ee8181 — £ Eafot — 57 Ballg(5nda + 38355),

1(83,584) = §S3(8S1S1 + 8508, + Ey$:%, + 3E4S3S3)

(5, 84) = %SOS3S3 + gslslsz - 1:#8S0s2s2 + é&;sz(szh + 358383),

(8, 584) = —§s054 + 1;—4E4s1(szsz + 3853853) + @Emz(sz + 383)(—52 + 383),

1(50,84) = —%E451S4 + ﬁEésl(szsz +35383) + 8;4 4§2(§2 + 3583)(—5, + 353),

1(54,54) = ; 54(8s1 + E4s2 + 3E4s3) 77576 sosl(s2 + 353) — 31104E6 o
51184E4s1s2(s2 +383)(—58 + 383) — 10;68E6S3(2 52,
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. 24
D(S()) = —§E4S1.

Proof. For each equation, the both sides are Jacobi forms of same weight and index. For
these weight and index, we could check that the space of cusp forms are {0} by Lemma 6.15.
Thus we should only check that the initial terms of both sides coincide. This could be done
by calculating the D action on C[S (w1), -+, S (wq)]. which is discussed in Proposition 6.12.

O

7. Differential relations satisfied by modular forms

In Section 7.1, we show that ij*y (O) (i = 0, 1) satisfy the linear differential equation called

“the Kaneko-Zagier equation” in Proposmon 7.1eq. (7.2). Itis used to give the flat generator
system in Proposition 5.7 (ii). In Section 7.2, we show that 7*y (0) (i = 0, 1) satisfy the non-
linear differential equations called “the Halphen’s equations” in Pr0p0s1tion 7.2 eq. (7.10).
It is used to give a description of the potential of the Frobenius structure in Proposition 5.7.

7.1. The Kaneko-Zagier equations. For k € %Z, we consider the following differential
equation:
k k+2
12 12

which we call “the Kaneko-Zagier equation” [10] for k € %Z, where we denote ' — %Ez f
by 0, f for f € F(H) defined in Proposition 6.4.

(7.1) 20k f = 5 —5Esf,

Proposition 7.1. (i) Fori=0,1, 774 © satisﬁes the Kaneko-Zagier equation for k = 2:

22+2
(7.2) 040(n* (0)) “h 1 4774)653).
(V] (0)
.. Xno XA
(ii) detK =4 for K := (_ 0 _ )
4(/\/583 4(X(0)

(iii) The matrix K satisfies the followmg relation:

48 O)

(7.3) (CK)MCK = (0 16

1/6 0 _(E3 Es
for € (0 1)M'(é EJ

Proof. By Proposition 6.16, we have D($;) = %@0, D($5y) = -TZE4§1. Then we have

2 .
(7.4) DDG) = 5Eib1.
b 4. o
Substituting §; = (n/w)™*det (XA‘ g;}é) A ;é})‘;) in Proposition 6.10 (here we used
Ay Ao

)25(\)1) = /{/(O) = /\?5?) which is shown in Proposition 6.9), and using D(fF) = 204( HEFE) +
fD(F) in (6.6), 6,(n/w) = 01in (6.7) and D(};) = 0 (i = 0, 1) in Proposition 6.9, we have
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det |18 A J:O/)Qm Xno o ) _ %E4 det ()?Al +/\A//}6)+)A(A4 )?é})%)
4040413, 1 40404L5,1) 9 3¥a, Xho

Comparing of coeflicients of Yo, and ¥, + ¥a, + ta,, We have
. [ PN
(7.5) 8,04(Ry) = Bk
fori = 0, 1. Then we have
. . . [ .
76 X&) = H@/w)RY) 6,6,/w0) 7)) = T Eatn/w)'R})-

This means that (n/ a))4)(f?)

’ satisfies differential equation of Proposition 8.2 for k = 2. Then

by Proposition 8.2, we have (i). The g-expansions of 774)553) are

(1.7) ' =1+ eClghi'y) = 8¢7 + -+ € g°Clg}.
Applying (8.3), we have (ii). By Proposition 8.3 (iii), we have (iii). ]

7.2. The Halphen’s equations. For E,, E4, Eg, we see that by the famous relations
, 1 , 1 , 1
(7.8) (B2 = 5(B3 = Ea),  (Ea) = S(ExEy — Ee),  (Ee)' = 5(E2Ee — EY).

(cf. Kaneko-Koike [10]), the C-algebra generated by E», E4, E¢ has a structure of differential
algebra.

We assert that the C-algebra generated by r]4)(583, n* /\(58]), 1’ /n also has a structure of differ-
ential algebra which contains the above differential algebra.

For that purpose, we first introduce the following functions

(7.92) & :=2(log Y ¢" V1,
nez

(7.9b) & 1=2og ) 4",
nez

(7.9¢) & :=2(log ) (-)'q" %Y.
nez

They satisfy the following differential relations studied by Halphen [6]:

(7.10a) & = 683 + Er84 - E3¢4,
(7.10b) & = &3 — E84 + E3¢y,
(7.10c) &, = —bé3 + E84 + E3¢y,

which we call “the Halphen’s equations”. For these equations, we refer Ohyama [14].

Proposition 7.2. 774/\(583, n4)(§8]), n’ /n satisfy the following relations.

! ' 1 1
(7.11a) 'y = 4(17“)(&‘)3)% = @)+ Sy,

, 7,1
(7.11b) ') = 46t ); + 5(774)( X,
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/ / 2
n . (n

(7.11c) )= 2(;) 2532 'O + 3 0P,
and

_oa
(7.12) E,=24T,

n

(7.13) Eq = ('x\)” + 30 %))

— 043 (0) 042
(7.14) Eo = (%) = 90 ) 'y )2,

We show the following proposition.

Proposition 7.3.
) = (46, — 265 - 2£9),
¥ = (26 - 269),

T _ L re e,
n 6

Proof. We first remark that % = %(52 + &3 + &4) by Jacobi’s derivative formula (cf. [13]).
Fori =2,3,4, we have

22+2
O
forof = f' - %Ezf since
2242
0220261~ = 1+2 Edé;
2 1 22+ 1
=@ - T Eaey + 2 Ve,
, , 2(2 1
= (&) - T(4(§2+§3 FENE) + A& + & + E)VE
= 2&663€s.

Here we use E/, = 1—'2(E§ — Ey) for 1st equality, use E, = 4(&; + &3 + &4) for 2nd equality and
use (7.10) for the last equality.

Thus if a + b+ ¢ = 0 for a,b,c € C, then a&, + b&; + c&, satisfies the Kaneko-Zagier
equation for k = 2.

Since 174)(5?), n* /\/E?) also satisfy the Kaneko-Zagier equation for k = 2, we obtain the result

by comparing the leading terms of the g-expansions. m|
Proof of Proposition 7.2. In Ohyama [14], the following relations are obtained:
(7.15) hy = —=1/48E,s, hs =1/2°3°Eg,

where hiy 1= & + & + &, 1= 66 + H64 + &84, by 1= 6H684, hy == hy — 1/3K3,
hs = hy — 1/3hhy + 2/27h?. By Proposition 7.3, the equations (7.10a)—(7.10c) and (7.15),
we have the results. |



ExpLiciT DESCRIPTION OF THE FROBENIUS STRUCTURE 207

8. Duality for the Kaneko-Zagier equation

Let V. be a solution space of the Kaneko-Zagier equation for k € %Z. For k # 0,4, we
find the duality between V; and V,4_;, which appeared already in Proposition 5.7 (i) eq. (5.7)
for k = 2 and [21, (3.25)] for k = 3. This duality is important for the study of the differential
algebra generated by V; which will be used to the explicit construction of the potential of the
Frobenius structure for the elliptic root systems of type Eél’l) (k = 3 case) and E;l’l) (k = %
case).

In this section, we first formulate the Kaneko-Zagier equations as a connection on C* X H
(eq. (8.1)). Then we have a duality for any k € %Z (eq. (8.2)). This formulation is analogous
to the formulation of Saito [15, §5.4]. Then we restrict ourselves to the cases of 0 < k < 4
and give the duality for the Kaneko-Zagier equations (eq. (8.4)).

We put M := C* x H. We denote by O, the sheaf of holomorphic functions on M and by
Q,; the sheaf of holomorphic 1-forms on M. Let

0
X1 = w%, X2 = 6(1

be vector fields which give a frame on each p € M. Let

be dual 1-forms on M.
We define the non-degenerate O),-symmetric bilinear form 4 : Qy; X Qy — Oy by

(h(fl,&) h((l,fz))z 1 (E—i 0)(1;:421 E})(;—j 0)
W&, &) (e, &)) (20 1)\Ee E4J\O 1)

Fork e %Z, we define a connection V® : Q) — Qy ®¢,, Qs by

(8.1) (VO£ V05) = (¢, L)%,

where the connection form T'® := F(lk)§ 1+ T ;k)fz is given by

! 0 2k+2) 2 w52E, 0)

We see that it is a flat and torsion free connection on Q.
This connection has the following property which is obtained by direct calculation.

Proposition 8.1. We have
(8.2) dh(w, ) = h(VPw, ') + h(w, V¢ Pu')
for local sections w, W' of Q.

By torsion freeness of V), the flat section is a closed form. Thus the differential equations
V®A4F = 0 have 3-dimensional solutions which contain constant functions.

Hereafter we also assume the homogeneity. Then we have the following differential equa-
tions.
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Proposition 8.2. For k € %Z and for a local section F of Oy, the following conditions
are equivalent:

(1) X,F = (=2k)F, VWJF =0.

k k+2 4
2) XiF = (=2k)F, F=——"FEF
(2) X1 F = (=2k) 0404 TR

(3)There exists a local section f of Oy s.t. F = w 2kf and Oy 20 f = % Lz E4f.

For each k € %Z, we have 2-dimensional solutions. They contain non-zero constant
functions iff k£ = 0. Thus these solutions have pairing induced by # which is non-degenerate
for k # 0,4, and degenerate for k = 0, 4.

Hereafter we assume 0 < k < 4. For these cases, we shall write down the pairing ex-
plicitly. We have one solution f(k) € C{{q}} whose leading term is 1. We also have another
solution f(k) € g“C{{q}} whose leading term is ¢* where a = k” . By these conditions, f( )
(j = 1,2) are uniquely determined. Their g-expansions are

(k)

=l+aqg+---
(k) =q" +b1q"”" o
with a; = lZl;(k]:—l) b, 4(k+]1(:gk n
We see that
(k) (k) "
8.3 det an™®
(8.3) ( P f(k) P f(k)) n

by Wronskian and g-expansion.
(k) _ =2k o) (k) _ 2k (k)
Weput FI” =w = fi", F," = w™ = f,7.

Proposition 8.3. For 0 < k < 4, we have

(1)
WdF®,dF*™)  n@r,dFy™))  (12k@ - k) 0
WdFP,dF ™) n@ar®,ari=)) =\ o e ]
(i1) Put

Fo . (2010 2087
: p. f(k) P f(k) :

Then we have a duality:

1 (=L 2 = 12k(4 —
(8.4) etk ___ (24 O) (E4 E6) ( 24 0) Pk _ ( ( k) (k+125—k))
36 :

7 \o 1J\Es EjJ\0 1 0
Proof. Put
poe (A )
w Oty w Ot
Then

(h(ng"% dF\"™)  nar, de"‘b)
WdFP, dF*™ ) ndr®, ar{™)
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(Xngk) Xngk)) (h(§1,§1) h(, gz)) (X1 F40 x FéH
XiFY X FPI\WG, 0 WG, &)\ X P40 X F5Y

_ a0 (11541 h((l,fz)) A (4—k)
d (h(gz,a) henty)

must be constant matrix and the g-expansion of the last expression could be calculated by

(h(é'l,{l) h(é“u(z))
h(&2. 01 h(la,$)

and the g-expansions of f;k) (j = 1,2), we obtain (i).
Since

lim 7® = 7O,

w—1

we obtain (ii) by the proof of (i). m]

Appendix A A Lemma on the connection

In this appendix, we give a lemma on the connection which was used in the proof of
Proposition 5.6.

The idea is as follows. If we have a vector bundle £ on X and the flat connection V on E
and we have a submersion ¢ : X — Y with each fiber is contractible. Then the flat frame of
E on X could be obtained by 2 steps: (1) construct frame vy, - - - , v; of E which are flat along
every fiber of ¢ (2) find functions fi,---, fon Y s.t. Zﬁzl fiv; is flat on X.

The following lemma enables us to realize step (1) in the setting of Proposition 5.6. We
denote SW by S and F(H) by R in this appendix.

Lemma A.l. Let Ey C E, C E3 are graded S -free modules. The module E5 has a flat
connection

V:E; _>-QS/(C®S E;

of degree 0, preserving submodules E,, E| respectively. We assume that uy,--- ,u; are S -free
basis of E|, each u; is homogeneous of degree less than r. uy,--- ,u;, vy, ,0, are S -free
basis of E,, each v; is homogeneous of degree r. uy,- -+ ,uj, 01, , Uy, Wy, - , W, are S -free

basis of E3, each w; is homogeneous of degree greater than r, for some r € Zsy. We also
assume that
1
Vu; = Zaij@)uj (1<i<),

=1

m ]
Vu; = Zbij@vj + Zcijuj, (1 <i<m),
J=1 J=1

n m

!
Vwi:Zeb@wj-f-Ze?ivj—}-Ze?j@uj(l <i<n),

J=1 J=1 J=1

k
for aij € Qgyc, bij, cij, €;; € Qg
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(1) For1 <i,j <m, b;j € Qp/c.

(i1) For 1 <i < m, 1 < j < [, there exists uniquely d;j € S which is homogeneous and
ds/r(d;j) = n(cij) for m: Qg/c — Qg p.

(iii) For 1 < i < m, put v; = v; — 25':1 djju;. Then ¥; is homogeneous of degree k and
(1 <i<D,5;(1 <i<m),w (1l <i<n)areS-free basis of Es. By this basis, V is
represented as

!
Vui= ) aij@u;(1<i<l),

=1

m i
Vo; = Zbij@ﬁj + Zcijuj, (1 <i<m),
J=1 J=1

n m l ]
V= Y el@w+ Y ello;+ > djud + ) el @u; (1<i<n).
=1 j=1 k=1 j=1
Proof. For the proof of (i), we obtain it by the degree condition. We give the proof of (ii).
Let

g:Ez —>QS/R®S E,

be the composed mapping of the connection on E,: V : E; — Qg,c ®s E; and the mapping
Qg/c ®s Ey — Qg /r ®s E> induced by 7 : Qg/c — Qgz. Then V is also connection and it
is flat. By the assumption a;; € Qg)c (1 < i, j < I), we have Vu; =0(1 <i <. By (i),
we have Vy; = 25':1 m(cij) ® u; (1 < i < m). By the flatness of V and Vu; = 0, we have
dsr(7(cij)) = 0.

Since 7(c;;) is homogeneous of degree > 0 and the following sequence

ds/r ds/r

0 R S QS/R — QE‘/R

is exact which will be shown in Lemma A.2, we have the unique d;; € S s.t. dgr(d;;) =
71'(6‘,']'). _
We give the proof of (iii). By the construction of 3; (1 < i < m) and V7; = 0, we have

m I
Vo; = Zb,‘j@ﬁj-l-z_ﬁj@uj
p= =

for some f;; € § ®g Qg/c. Since V is flat and QI% c = 0, the entries of the connection matrix
is closed. Thus we have ds,cfi; = 0. Then f;; must be an element of Qg/c. By the degree
condition, f;; must be 0. The other part is a direct consequence of this result. |

Lemma A.2. The following sequence

ds/r ds/r

0 R S QS/R — Q%‘/R

is exact and if the homogeneous element w € Qg g satisfies dsjpw = 0, then we have an
algorithm to obtainn € S s.t. ds;r(7) = w.
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Proof. Since § is a polynomial algebra over R, the exactness of the sequence reduces
to the one for the case of a polynomial algebra over Q. For this case, the exactness of the
sequence holds. Each homogeneous part of the sequence could be represented by matrices
of Q-coeflicients by any Q-basis, thus we have an algorithm to obtain 7. |
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