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Abstract
We give the classification of the maximal infinite algebraic subgroups of the real Cremona

group of the plane up to conjugacy and present a parametrisation space of each conjugacy
class. Moreover, we show that the real plane Cremona group is not generated by a countable
union of its infinite algebraic subgroups.
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1. Introduction

1. Introduction
It is most natural to study actions of algebraic groups on algebraic varieties. One tends

to assume the action to be regular, but this is quite restrictive; any algebraic group acting
regularly on the n-dimensional projective space Pn is a subgroup of Autk(Pn) = PGLn+1(k).
It is therefore interesting to study rational group actions on Pn, or, equivalently, algebraic
subgroups of Birk(Pn). Algebraic subgroups of the complex Cremona group have been stud-
ied by many mathematicians, we refer to [2] for a historical note where also the complete
classification of the maximal algebraic subgroups of the complex Cremona group BirC(P2)
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is presented.
In this paper, we give a classification of the maximal infinite algebraic subgroups of the

real Cremona group BirR(P2). The classification is built on the classification of minimal real
smooth projective surfaces given in [7], which is manageable, quite opposed to the case of a
general perfect field.

The finite subgroups of the real Cremona group of odd order have already been classified
in [24]; they are conjugate to a subgroup of the automorphism group of a real del Pezzo
surface. It is also interesting to look at the group of birational transformations of a rational
real smooth minimal model X that are well defined on the set of real points. The group is
usually called the group of birational diffeomorphisms of X and has been studied for instance
in [1, 18, 11, 14, 4, 16]. The birational diffeomorphisms of the sphere of prime order have
been classified in [16].

In the classification of the infinite algebraic subgroups of BirR(P2), two of the infinite fam-
ilies in the classification of the complex algebraic subgroups of the Cremona group split into
two families each: There exist four isomorphism classes of real del Pezzo surfaces of degree
6, and the automorphism group of two of them are infinite maximal algebraic subgroups.
The family of conic bundles splits into real conic bundles coming from a del Pezzo surface
of degree 6 obtained by blowing up the sphere in a pair of non-real conjugate points and into
real conic bundles coming from Hirzebruch surfaces. In both cases, an infinite number of
them have automorphism groups that are maximal infinite algebraic subgroups of BirR(P2),
pairwise non-conjugate. More concretely, the classification is as follows.

By D6 we denote the dihedral group with twelve elements.

Theorem 1.1. Every infinite algebraic subgroup of BirR(P2) is contained in a maximal
algebraic subgroup.

An infinite maximal algebraic subgroup of BirR(P2) is conjugate to G = AutR(X) where
X is a real del Pezzo surface or to G = AutR(X, π) where π : X → P1 is a real conic bundle,
and the pairs (X,G) are described as follows:

(1) X � P2 and G � PGL3(R),
(2) X � 3,1 ⊂ P3 is the real rational minimal surface defined by w2 = x2 + y2 + z2

whose real part is diffeomorphic to the 2-sphere S2, and G � POR(3, 1),
(3) X � P1 × P1 and G � (PGL2(R) × PGL2(R)) � 〈τ〉, where τ : (x, y) �→ (y, x),
(4) X is a del Pezzo surface of degree 6 obtained by blowing up a pair of non-real con-

jugate points on F0, and the action of G on Pic(X) induces the split exact sequence

1→ SO2(R)2 → G → D6 → 1,

(5) X is a del Pezzo surface of degree 6 obtained by blowing up two real points on F0,
and the action of G on Pic(X) induces the split exact sequence

1→ (R∗)2 → G → D6 → 1,

(6) X � Fn, n ≥ 2, is the n-th Hirzebruch surface and G � Rn+1 � GL2(R)/μn, where
μn = {±1} if n is even and μn = {1} if n is odd.

(7) η : X → X[2] is a birational morphism of real conic bundles, where π[2] : X[2] → P1 is
the conic bundle obtained by blowing up a pair of non-real conjugate points on 3,1.
The morphism η blows up n ≥ 1 pairs of non-real conjugate points with non-real
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fibres on the non-real conjugate disjoint (−1)-curves of X[2] that are the exceptional
divisors of X[2] → 3,1. The action of G on P1 induces the split exact sequence

1→ SO2(R) � Z/2Z→ G → HΔ → 1

where HΔ ⊂ PGL2(R) is the subgroup preserving the set of images in P1 of the points
blown up by η and the interval π(X(R)) = π[2](X[2](R)),

(8) η : X → Fn is a birational morphism of real conic bundles that is the blow-up of
2n ≥ 4 points on the zero section sn of self-intersection n (see Section 4.2). The
action of G on P1 induces a split exact sequence

1→ (R∗/μn) � Z/2Z→ G → HΔ → 1,

where HΔ ⊂ PGL2(R) is the subgroup preserving the set of images in P1 of the points
blown up by η, and μn = {±1} if n is even and μn = {1} if n is odd.

Furthermore, the families (1) − (8) are distinct and pairwise non-conjugate in BirR(P2).

We also give the parameter space of the maximal infinite algebraic subgroups of BirR(P2).

Theorem 1.2. The families in Theorem 1.1 are distinct families and the conjugacy classes
in each family are parametrised by

(1)-(5) One point.
(6) One point for each n ≥ 2.
(7) For each n ≥ 1, the set of n pairs of non-real conjugate points in P1 modulo the
action of AutR(P1, [0,∞]).
(8) For each n ≥ 2, the set of 2n points in P1 consisting of real points or pairs of
non-real conjugate points, modulo the action of AutR(P1) = PGL2(R).

The groups listed in Theorem 1.1 are contained in infinite (complex) algebraic subgroups
of BirC(P2) (classified in [2, Theorem 2]), and they are all dense in their complex counterpart.

The elements of the group of birational diffeomorphisms of the sphere of prime order
are contained in AutR(3,1), or are automorphisms of real del Pezzo surfaces of degree 2
or 4, or are automorphisms of real conic bundles as in family (7) [16]. The finite subgroups
of BirR(P2) of odd order are contained in automorphism groups appearing in the families
(1), (2), (3), (4) or in automorphism groups of del Pezzo surfaces of degree 5 [24]. The
classification in Theorem 1.1 does not list automorphism groups of del Pezzo surfaces of
degree 5 because they are finite.

The real Cremona group of the plane is generated by the family of standard quintic trans-
formations and AutR(P2) [4], and its abelianisation BirR(P2)/〈〈AutR(P2)〉〉 �⊕

(0,1] Z/2Z is
generated by the classes of the standard quintic transformations [25]. The classification of
the maximal infinite subgroups of BirR(P2) yields the following theorem.

Theorem 1.3. An infinite algebraic subgroup of BirR(P2) with non-trivial image in the
abelianisation BirR(P2)/〈〈AutR(P2)〉〉 � ⊕

(0,1] Z/2Z has finite image in the abelianisation
and is conjugate to a subgroup of an algebraic group in family (7) of Theorem 1.1.

Furthermore, for each generator of
⊕

(0,1] Z/2Z there is a conjugacy class of infinite
algebraic groups in family (7) of Theorem 1.1 which is sent onto the generator.
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Corollary 1.4. The group BirR(P2) is not generated by a countable union of infinite al-
gebraic subgroups.

Quite the opposite is true for the Cremona group BirC(P2) of the complex plane. As the
standard quadratic transformation of P2 is conjugate to an automorphism of P1 × P1, it fol-
lows from the Noether-Castelnuovo theorem [6] that BirC(P2) is generated by the infinite
algebraic groups AutC(P2) and AutC(P1 × P1).

2. First steps

2. First steps2.1. Algebraic groups.
2.1. Algebraic groups. For a projective algebraic variety X defined over k, we denote by

Birk(X) its group of birational self-maps defined over k and by Autk(X) ⊂ Birk(X) the group
of k-automorphisms of X defined over k.

Note on the side: the group Autk(X) is the group of k-rational points of a group scheme
locally of finite type over k, having at most countably many connected components.

The definition of rational actions on varieties goes back to Weil and Rosenlicht (see for
instance [23, 17]).

Definition 2.1. Let X be an algebraic variety over k.
(1) Let G be an algebraic group defined over k. A k-rational action ρ of G on X is a

k-rational morphism ρ : G × X � X such that
• ρ(e, x) = x for all x ∈ X,
• ρ is associative whenever it is defined, i.e. ρ(g1, ρ(g2, x)) = ρ(g1g2, x) whenever
ρ is defined at (g2, x), at (g1, ρ(g2, x)) and at ρ(g1g2, x),
• there exist open dense subsets U,V ⊂ G × X such that the k-rational map G ×

X � G × X, (g, x) �� (g, gx) restricts to an isomorphism U → V and the
projection of U and V to the first factor is surjective onto G.

For each k-rational point g ∈ G, we get a k-birational map ρ(g, ·) : X � X, and this
induces a group homomorphism G(k)→ Birk(X).

(2) We say that X is a G-variety if ρ is regular. Then the action induces a group homo-
morphism G(k)→ Autk(X).

Remark 2.2. Let G be an algebraic group with a k-rational action on X. For g ∈ G we ob-
tain a k-birational map ρ(g, ·) : X � X if and only if g ∈ G(k). The induced homomorphism
G(k)→ Birk(X) is injective if the action of G on X is faithful.

In this paper, we classify the infinite (not necessarily connected) maximal algebraic sub-
groups G(k) up to conjugation inside Birk(X) for k = R. The classification over algebraically
closed fields of characteristic zero is done in [2] (in fact, it also classifies the finite maximal
ones).

As result of looking at G(R) only, the groups in the classification are real linear algebraic
groups, i.e. can be embedded into some GLN(R).

Definition 2.3. Let G be an algebraic group with a k-rational faithful action on X. Then
the induced group homomorphism G(k) → Birk(X) is injective, and we call G(k) an alge-
braic subgroup of Birk(X).
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Remark 2.4. Note that classically, the algebraic group G is called algebraic subgroup of
Birk(X), and not the group G(k). However, only the k-rational points of G can be viewed as
elements of Birk(X).

For a real variety (X, σ), one can also define an algebraic subgroup of BirR(X) to be an
algebraic subgroup G ⊂ BirC(X) such that σ(G) = G. If we further impose that G(R) is
dense in G, then the classification of infinite maximal algebraic subgroups of BirR(P2) is
exactly the one in Theorem 1.1. However, without this condition, the classification is longer.
The additional examples appear in Section 3.1. Let G := AutC(X[2]) = (C∗)2 � D6. Then

G ⊃ AutR(X[2]) = (R>0 × SO2(R)) � (Z/2Z × Z/2Z)

and

G ⊃ AutR(X[3,3,1]) = SO2(R) � (Z/2Z × Z/2Z)

are two maximal algebraic groups ([2, Théorème 2]) whose real locus G(R) = AutR(X[2]) is
not dense in G.

Remark 2.5. Let G be an algebraic group. Recall that a morphism G → Birk(X) is defined
as follows (see for instance [3]): let μ : G × X � G × X be a k-rational map inducing an
isomorphism U → V , where U,V ⊂ G × X are open dense subsets whose projections onto
G are surjective. The rational map μ is given by (g, x) �� (g, p2(μ(g, x))), where p2 is the
second projection, and for each k-rational point g ∈ G, the birational map x �→ p2(μ(g, x))
corresponds to an element fg ∈ Birk(X). The maps g �→ fg represent a map from G(k) to
Birk(X), which is called a morphism from G to Birk(X).

If the map G(k) → Birk(X) is a homomorphism of groups, then its image is an algebraic
subgroup of Birk(X).

The group Birk(X) can be endowed with the so-called Zariski topology, introduced by
[3, 9, 20], which is compatible with the concept of morphism of varieties into Birk(X);
a subset F ⊂ Birk(X) is closed if for any algebraic variety A and any morphism A →
Birk(X), the pre-image of F is closed. Endowed with the Zariski topology, Birk(Pn) is not
an ind-variety, algebraic stack or algebraic space if n ≥ 2 [3, Theorem 1, Remark 3.5]. The
following remark gives a sufficient and necessary condition for a subgroup of Birk(Pn) to be
an algebraic subgroup.

Remark 2.6. Let G ⊂ Birk(Pn) be a subgroup. It is an algebraic subgroup if and only if it
is closed in the Zariski topology and of bounded degree [3, Remark 2.20]. In that case, G is
by definition the group of k-rational points of an algebraic group H acting rationally on Pn.
The group H is affine [3, Remark 2.21], and so G is an affine [22, §4.4, Corollary].

The fact that algebraic subgroups of Birk(P2) are linear algebraic groups, makes them
approachable with classical tools.

Lemma 2.7. Let k be a perfect field, G a linear algebraic group and X a smooth G-
surface, all defined over k. Then there exists a smooth projective G-surface Y and a G-
equivariant birational map X � Y.
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Proof. Forgetting about the group action, we see that X is contained as open set in a
complete surface, which can be desingularised [15]. Smooth complete surfaces are projec-
tive, hence X is contained as open set in a projective surface and thus is quasi-projective.
Let G0 be the neutral component of G. We can apply [21, Theorem 4.9]; there exists a G0-
equivariant smooth completion of X. Equivalently, X admits a G0-linearisable ample line
bundle. [5, Lemma 3.2] implies that X admits a G-linearised ample line bundle and hence a
G-equivariant completion Y of X. We may replace Y with a G-equivariant desingularisation.
We have found a birational G-equivariant map X � Y to a smooth projective G-surface. �

By k̄ we denote the algebraic closure of the field k.

Definition 2.8. An algebraic variety X over k is geometrically rational if Xk̄ := X ×Spec(k)

Spec(k̄) is rational, i.e. if it is rational as variety over k̄.
A geometrically rational variety X is k-rational if there is a birational map X � Pn defined
over k.

The following lemma is classical and states a necessary and sufficient condition for a (ab-
stract) subgroup of Autk(X) to have the structure of a linear algebraic group acting regularly
on X.

Definition 2.9. For a smooth projective variety X over a perfect field k with X(k) � ∅, we
have k̄[Xk̄]∗ = (k̄)∗ and then Pic(X) = Pic(Xk̄)Gal(k̄/k) is the Galois-invariant Picard group [19,
Lemma 6.3(iii)]. We denote by Pic(X)G = Pic(Xk̄)Gal(k̄/k)×G the G-invariant Picard group.

The action of Autk(X) on X induces a homomorphism of (abstract) groups

Autk(X)→ Aut(Pic(X)).

Lemma 2.10. Let X be a smooth projective variety defined over a perfect field k.

(1) Let D be a very ample divisor on X defined over k and G ⊂ Autk(X) the group of
elements fixing D. Then the k-embedding X ↪→ Pn given by the linear system of D
conjugates G to a closed subgroup of PGLn+1(k).

(2) The kernel K = ker(Autk(X)→ Aut(Pic(X))) has the structure of a linear algebraic
group acting regularly on X via the given inclusion K ⊂ Autk(X).

(3) Any subgroup G ⊂ Autk(X) containing K whose action on Pic(X) is finite has the
structure of a linear algebraic group acting regularly on X via the inclusion G ⊂
Autk(X).

(4) Suppose that G is a linear algebraic group and X a k-rational G-variety. If G con-
tains K, then G has finite action on Pic(X).

Proof. (1): The linear system of D induces a closed embedding ϕD : X ↪→ PN defined over
k. Let G ⊂ Autk(X) be the subgroup of elements whose image in Aut(Pic(X)) fix D. Denote
by H ⊂ PGLN+1(k) the subgroup preserving ϕD(X), which is a closed subgroup. It is also a
subgroup of Autk(ϕD(X)), and G is conjugate to H via ϕD.

(2): For any very ample divisor D on X defined over k, the group G from (1) contains
K as a closed subgroup, which is therefore a linear algebraic group as well and acts on X
regularly.
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(3): If G ⊂ Autk(X) has finite action on Pic(X) and contains K, then G/K is finite. As K
is a linear algebraic group, also G is one.

(4): The group G is a linear algebraic group by assumption and the group K is a normal,
closed linear algebraic group by (2), so the group G/K is a linear algebraic group. If X is
a k-rational smooth projective variety then Pic(X) is finitely generated and has no torsion,
i.e. Pic(X) � Zn for some n ∈ N. By assumption, X is a G-variety, so there is an inclusion
G ⊂ Autk(X) of abstract groups. Then G/K ⊂ Aut(Pic(X)) ⊂ GLn(Z). Since GLn(Z) is
countable, the group G/K is finite. �

2.2. Minimal surfaces.
2.2. Minimal surfaces.

Definition 2.11. We denote by (X,G) the pair consisting of a smooth projective surface
X defined over k and G a subgroup of Autk(X).

(1) We say that (X,G) is a minimal pair (or X is G-minimal) if for any smooth projective
surface Y over k any birational G-morphism X → Y is an isomorphism.

(2) Let π : X → C be a G-equivariant morphism, where C a curve. We say that π is

relatively G-minimal if for any decomposition π : X
η→ Y

π′→ C, where π′ is a G-
equivariant morphism and η is a birational G-equivariant morphism, η is in fact an
isomorphism,

Note that for G = {1}, a G-minimal surface is just a minimal surface.

Definition 2.12. We say that a smooth projective G-surface X admits a conic bundle
structure if there exists π : X → C, where C is a smooth curve and the fibre over closed point
t is isomorphic to a reduced conic over the residue field k(t) of t.

Remark 2.13. A G-surface admitting a conic bundle structure π : X → C is relatively
G-minimal if any k-birational G-equivariant morphism X → Y of conic bundles is an iso-
morphism.

If X is a geometrically rational smooth surface, then Ck̄ � P1. If moreover X(k) � ∅, then
C(k) � ∅, and so C � P1 over k.

A real smooth projective surface X can be seen as a pair (XC, σ) consisting of a smooth
projective complex variety XC and an antiholomorphic involution σ.

Definition 2.14. For a real conic bundle π : X → P1, we define

AutR(X, π) := { f ∈ AutR(X) | ∃α ∈ AutR(P1) : π f = απ} ⊂ AutR(X),

the group of automorphisms preserving the conic bundle structure, and

AutR(X/π) := { f ∈ AutR(X, π) | π f = π} ⊂ AutR(X, π),

its subgroup acting trivially on P1.

Every Hirzebruch surface Fn admits a natural real structure with real points: writing

Fn � {([x0 : x1 : x2], [u : v]) ∈ P2 × P1 | x1v
n = x2un}
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the standard antiholomorphic involution of P2 × P1, that is, the standard antiholomorphic
involution on either factors, descends to a antiholomorphic involution on Fn.

Definition 2.15. By 3,1 ⊂ P3, we denote the real surface given by w2 = x2 + y2 + z2

endowed with the standard antiholomorphic involution on P3.

Remark 2.16. Note that 3,1(R) = S2 is the 2-dimensional real sphere, F2n(R) = S1 × S1

is the real torus and F2n+1(R) is the Klein bottle for any n ≥ 0. The isomorphism of complex
surfaces

(3,1)C −→ (P1 × P1)C
ϕ : [w : x : y : z] �→ ([w + z : y + ix], [w + z : y − ix])

= ([y − ix : w − z], [y + ix : w − z])
ϕ−1 : ([x0 : x1], [y0 : y1]) �→ [x0y0 + x1y1 : i(x0y1 − x1y0) : x0y1 + x1y0 : x0y0 − x1y1]

induces an isomorphism of real surfaces ϕ : 3,1 → (P1 × P1, σS ), where

σS : ([x0 : x1], [y0 : y1]) �→ ([ȳ0 : ȳ1], [x̄0 : x̄1])

Note that 3,1 is a del Pezzo surface of degree 8 with rk(Pic(3,1)) = 1, whereas rk(Pic(P1 ×
P1)) = 2.

Theorem 2.17 ([7]). Let X be a minimal geometrically rational real surface X with
X(R) � ∅. If X is R-rational, then X is R-isomorphic to P2, to the quadric 3,1 or to a
real Hirzebruch surface Fn, n � 1.

Definition 2.18. By X[2] we denote a del Pezzo surface of degree 6 obtained by blowing
up 3,1 in a pair of non-real conjugate points. The notation is motivated by the fact that
rkPic(X[2]) = 2.

Lemma 2.19. Any real surface X[2] is isomorphic to

X[2] � {([w : x : y : z], [u : v]) ∈ P3 × P1 | wz = x2 + y2, uz = vw}
endowed with the antiholomorphic involution that is the restriction of the standard antiholo-
morphic involution on P3 × P1.

Proof. Consider the surface S ⊂ P3 given by wz = x2 + y2. The isomorphism [w : x : y :
z] �→ [w+ z : x : y : w− z] yields an isomorphism 3,1 � S . Pick a non-real point p ∈ S and
denote by η : X[2] → S the blow-up of p, p̄. We find an automorphism of S that sends p onto
[0 : 1 : i : 0] [16, Lemma 4.8]. The blow-up of p, p̄ on 3,1 is the restriction of the blow-up
of P3 along the line l given by w = z = 0, as the intersection of l and S is transversal and
equal to the set {p, p̄}. This yields the claim. �

Remark 2.20. The projection π[2] : X[2] → P1, ([w : x : y : z], [u; v]) �→ [u : v] is a
real conic bundle morphism with two singular fibres, which lie over 0 and ∞, and without
sections.

Proposition 2.21. Let G be an infinite algebraic subgroup of BirR(P2). Then there exists
a G-equivariant real birational map P2 � X to a real smooth G-surface X, which is one of
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the following:

(1) X is a real del Pezzo surface of degree 6, 8 or 9 such that rk(Pic(X)G) = 1.
(2) X admits a real conic bundle structure πX : X → P1 with rk(Pic(X)G) = 2 and

G ⊂ AutR(X, πX).
Furthermore, in (2), there is a birational morphism of conic bundles η : X → Y, where Y is
a Hirzebruch surface Fn, n ≥ 1, or Y � X[2].

Proof. By Remark 2.6, G is a linear algebraic subgroup of BirR(P2). So, there is a real
smooth algebraic G-surface X′ and a G-equivariant real birational map φ : X′ � P2 by [23,
Proposition 4] and [17, Theorem 1]. By Lemma 2.7 there exists a smooth real projective
G-surface X′′ and a G-equivariant real birational map X � X′′. After contracting all the sets
of disjoint G-invariant real (−1)-curves and all sets of disjoint G-invariant pairs of non-real
conjugate (−1)-curves, we obtain a real smooth projective G-variety X that can be one of the
following possibilities by [13, Excerise 2.18] and Lemma 2.10 (4):

(i) X is a del Pezzo surface and rk(Pic(X)G) = 1,
(ii) X admits a real conic bundle structure X

πX−−→ P1 and rk(Pic(X)G) = 2.
Due to Comessatti [7], the minimal smooth geometrically rational real surfaces are R-
isomorphic to P2, to 3,1 or to a real Hirzebruch surface Fn, n � 1. Thus, forgetting about
the action of G and πX , there is a real birational morphism X → Y where Y is one of these
minimal surfaces.

In case (i), the situation is as follows: Any real geometrically rational del Pezzo surface
is the blow-up of at most 8 C-points on one of the three real minimal surfaces. The automor-
phism group of a del Pezzo surface of degree ≤ 5 is finite [10, Section 6]. Any real del Pezzo
surface X of degree 7 has three (−1)-curves, one of which is real. Hence X is the blow-up of
F0 or 3,1 in one real point p and any automorphism of X preserves its exceptional divisor
and hence is the lift of an automorphism from 3,1 or F0. In particular, AutR(X) is conjugate
by the blow-up of p to a subgroup of AutR(F0) or AutR(3,1). This leaves degree 6, 8 and 9.

In case (ii), the situation is as follows: Forgetting the action of G, there is a real birational
morphism of real conic bundles X → Y , which is the contraction of all disjoint real and
disjoint pairs of non-real (−1)-curves in the fibres. We obtain a relatively minimal real conic
bundle πY : Y → P1 with no real (−1)-curves and no non-real conjugate singular fibres, i.e.
it has at most real singular fibres whose components are non-real conjugate (−1)-curves.
Forgetting about πY , we obtain a real birational morphism Y → Z to a minimal real smooth
rational surface, and Z(R) is connected and homeomorphic to the real projective plane, the
sphere, the torus or the Klein bottle (see Remark 2.16). It follows that Y has either none or
exactly two singular fibres (otherwise Y(R) is not connected and thus not rational). In this
case, Y is the blow-up of 3,1 in a pair of non-real conjugate points, i.e. Y � X[2], or Y has
no singular fibres and is isomorphic to a real Hirzebruch surface Fn, n � 1. �

Lemma 2.22 (Real version of [2, Proposition 2.2.6]). Let X be a real smooth projective
geometrically rational surface.

(1) If X is a del Pezzo surface, then AutR(X) is a linear algebraic group.
(2) If π : X → P1 is a real conic bundle, AutR(X, π) is a linear algebraic group.
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Proof. (1): Any element of AutR(X) fixes any multiple of the anti-canonical divisor, so the
claim follows from Lemma 2.10 (1).

(2): Since X is smooth projective and geometrically rational, Pic(X) is generated by KX

and the real classes of the irreducible components singular fibres of π (or if there are none,
the general fibre) of which there are finitely many. Furthermore, because X is geometrically
rational, Pic(X) � Zn. Let K := ker(AutR(X) → Aut(Pic(X))). Then AutR(X)/K is a sub-
group of GLn(Z) and fixes KX and the class of the general fibre. It therefore corresponds to a
subgroup of permutations of the components of the singular fibres, and is thus a finite group.
Lemma 2.10 (3) implies that AutR(X) is a linear algebraic group. �

Remark 2.23. It follows from Proposition 2.21 that every infinite algebraic subgroup
of BirR(P2) is contained in the automorphism group of one of the surfaces in Proposi-
tion 2.21, which are linear algebraic groups by Lemma 2.22. It now suffices to study the
pairs (X,AutR(X)) and (X,AutR(X, π)) for the cases stated in Proposition 2.21 and to deter-
mine which automorphism groups are maximal algebraic groups up to conjugacy.

3. Real rational del Pezzo surfaces of degree 6

3. Real rational del Pezzo surfaces of degree 6
According to Proposition 2.21, the maximal infinite algebraic subgroups of BirR(P2) are

contained in the automorphism groups of real del Pezzo surfaces of degree 9, 8 or 6 or the
automorphism groups of real conic bundles. In this section, we first classify the real del
Pezzo surfaces of degree 6 and give their automorphism groups as explicitly as we dare.

Lemma 3.1. Let X be a real del Pezzo surface of degree 6.

(1) Then X is the blow-up of 3,1 or F0 in two real or a pair of non-real conjugate points
and there are four isomorphism classes, represented in Figures 1, 2, 3 and 4.

(2) The rank of their invariant Picard group is 2, 3, 3 and 4, respectively.

Proof. The complex surface XC is the blow-up of three points in P2. It has thus exactly six
(−1)-curves, which are arranged as a hexagon on X. The antiholomorphic involution σ on X
acts on the hexagon as symmetry of order 2. The only possible cases are shown in Figure 1,
2, 3 and 4, the action of σ indicated by arrows. The second claim follows from the first. �

Let X be a real Del Pezzo surface of degree 6. There is an exact sequence

1→ K → AutR(X)
ρ→ Aut(Pic(X))

and K is of finite index, because the action of AutR(X) on Pic(X) is finite by Lemma 2.10
and Lemma 2.22. The image of ρ(AutR(X)) is a subgroup of the dihedral group D6 acting on
the hexagon of (−1)-curves.

3.1. The surfaces obtained by blowing up the sphere.
3.1. The surfaces obtained by blowing up the sphere. Blowing up the sphere in a pair

of non-real conjugate points p, p̄, we obtain the del Pezzo surface X[2] with rk(Pic(X[2])) = 2.
The lift of the antiholomorphic involution is indicated in Figure 1.

Remark 3.2. For a non-real point p ∈ 3,1, we denote by AutR(3,1, p, p̄) ⊂ AutR(3,1)
the subgroup of AutR(3,1) that fixes both points p and p̄. Choosing p = ([1 : 0], [0 : 1]),
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Fig.1. rk(Pic(X[2])) = 2 Fig.2. rk(Pic(X[3,3,1])) = 3

Fig.3. rk(Pic(X[3,F0])) = 3 Fig.4. rk(Pic(X[4])) = 4

it is isomorphic to the group {(d, d̄) ∈ PGL2(C) × PGL2(C) | d diagonal} [16, Lemma 4.5].
Conjugating with the real birational map 3,1 � (P1×P1, σS ) from Remark 2.16, we obtain
that

AutR(3,1, p, p̄) � {(d, d̄) ∈ PGL2(C) × PGL2(C) | d diagonal} � R>0 × SO2(R).

Proposition 3.3.
(1) The surface X[2] is isomorphic to

X[2] � {([w : x : y : z], [u : v]) ∈ P3 × P1 | wz = x2 + y2, uz = vw}.
(2) There is an exact sequence
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1→ ker(ρ)→ AutR(X[2])
ρ→ Z/2Z × Z/2Z→ 1

where ker(ρ) � AutR(3,1, p, p̄) � R>0 × SO2(R) and Z/2Z × Z/2Z � 〈ρ(α1)〉 ×
〈ρ(α2)〉, where

α1 : ([w : x : y : z], [u : v]) �→ ([z : −x : y : w], [v : u]),

α2 : ([w : x : y : z], [u : v]) �→ ([w : −x : y : z], [u : v]),

and ρ(α1) is a rotation of order 2 and ρ(α2) is a reflection, both exchanging Ep and
Ep̄.

(3) The automorphisms α1, α2 are lifts of elements of Aut(3,1, {p, p̄}). In particular, the
pair (X[2],AutR(X[2])) is not a minimal pair and the contraction morphism X[2] →
3,1 induces an embedding AutR(X[2]) ↪→ Aut(3,1).

Proof. (1) is Lemma 2.19. Let S ⊂ P3 be the surface given by wz = x2 + z2 and
ψ : S → 3,1, ψ : [w : x : y : z] �→ [w + z : 2x : 2y : w − z]. Any automorphism of
X[2] preserves the hexagon in Figure 1 and so ρ(AutR(X[2])) is contained in D6. The action of
the antiholomorphic involution indicated in Figure 1 implies that any element of AutR(X[2])
preserves the set {Ep, Ep̄}. The kernel of ρ is contained in the subgroup of AutR(X[2]) fixing
Ep and Ep̄. Any such automorphism descends to an automorphism of S fixing both points
p, p̄. Any element of AutR(3,1, p, p̄) also fixes fp and fp̄ and thus lifts to an element of
ker(ρ). It follows that ker(ρ) � AutR(3,1, p, p̄) � R>0 × SO2(R) (see Remark 3.2 for the
isomorphisms).

The only non-trivial elements of D6 preserving {Ep, Ep̄} and respecting the action of the
antiholomorphic involution are the rotation of order 2 and two reflections, one exchanging
Ep, Ep̄ and one fixing them. The automorphisms

α1 : ([w : x : y : z], [u : v]) �→ ([z : −x : y : w], [v : u])

and

α2 : ([w : x : y : z], [u : v]) �→ ([w : −x : y : z], [u : v])

are the lifts of automorphisms of S exchanging p and p̄ and hence exchange Ep and Ep̄. In

fact, via the R-isomorphism S
ϕψ−1

−→ (P1 × P1, σS ), where ϕ is as in Remark 2.16, α1 and α2

are conjugate to

ϕψ−1α1ψϕ
−1 : ([x0 : x1], [y0 : y1]) �→ ([x1 : x0], [y1 : y0])

ϕψ−1α2ψϕ
−1 : ([x0 : x1], [y0 : y1]) �→ ([y0 : y1], [x0 : x1])

and ϕψ−1(p) = ([0 : 1], [1 : 0]). This description implies that ρ(α1) is a rotation of order 2
and ρ(α2) is the reflection exchanging Ep, Ep̄. We have α2

1 = α
2
2 = (α1α2)2 = Id and hence

ρ : AutR(X[4])→ Z/2Z × Z/2Z is surjective and has a section. On the other hand, it follows
that every element of AutR(X[2]) is the lift of an element of AutR(3,1), which yields (3).

�

Blowing up the sphere in two real points p, q, we obtain the del Pezzo surface X[3,3,1]

with rk(Pic(X[3,3,1])) = 3. The lift of the antiholomorphic involution is indicated in Figure 2.
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Contracting two non-real conjugate (−1)-curves and one real (−1)-curve that are pairwise
disjoint, we obtain a birational morphism X[3,3,1] → P2 which is the blow-up of a real point
and a pair of non-real conjugate points on P2.

Proposition 3.4.
(1) The surface X[3,3,1] is isomorphic to

{([x0 : x1 : x2], [y0 : y1 : y2] ∈ P2 × P2 | x0y0 = x1y2 + x2y1, x1y1 = x2y2}.
(2) There is a split exact sequence

1→ ker(ρ)→ AutR(X[3,3,1])
ρ→ Z/2Z × Z/2Z→ 1,

where ker(ρ) � SO2(R) and Z/2Z × Z/2Z � 〈ρ(α1)〉 × 〈ρ(α2)〉, where

α1 : ([x0 : x1 : x2], [y0 : y1 : y2]) �→ ([y0 : y1 : y2], [x0 : x1 : x2]),

α2 : ([x0 : x1 : x2], [y0 : y1 : y2]) �→ ([x0 : x2 : x1], [y0 : y2 : y1]),

and ρ(α1) is a rotation of order 2 and ρ(α2) a reflection fixing Ep, Eq.
(3) The automorphisms α1, α2 are lifts of elements of Aut(3,1). In particular,

(X[3,3,1],AutR(X[3,3,1])) is not a minimal pair, and the contraction X[3,3,1] → 3,1

induces an embedding AutR(X[3,3,1]) ↪→ Aut(3,1).

Fig.5. The surface X[3,3,1] and the blow-ups ε and η.

Proof. Let X[3,3,1] → 3,1 be the blow-up of two real points p, q on 3,1. On X there
are two pairs of non-real conjugate (−1)-curves – they are the strict transforms of the fibres
fp, fp and fq, fq passing through p and q (see Figure 2), and by abuse of notation we denote
them by fp, fp and fq, fq as well. The contraction of the disjoint (−1)-curves Ep, fq, fq yields
a real birational morphism ε : X[3,3,1] → P2. We call the images of the (−1)-curves r, s, s̄
respectively. Composing with an automorphism of P2, we may choose r = [1 : 0 : 0] and
s = [0 : 1 : i]. The contraction of the disjoint (−1)-curves Eq, fp, fp yields a real birational
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morphism η : X[3,3,1] → P2 and we can assume that they are contracted onto r, s, s̄ as well.
Our choice implies that the pencil of lines through r, s, s̄ respectively is sent onto the pencil
of lines through r, s, s̄ respectively (see Figure 5). In fact, ηε−1 is – up to automorphisms of
P2 fixing the points r, s, s̄ – just the birational involution

ηε−1 : [x0 : x1 : x2] �� [x2
1 + x2

2 : x0x2 : x0x1].

The blow-ups ε and η yield an injection ε × η : X[3,3,1] → P2 × P2 whose image is described
in (1).

The kernel of ρ is isomorphic to the subgroup of PGL3(R) fixing the points r, s, s̄, which
is isomorphic to SO2(R).

Any automorphism of X[3,3,1] preserves the hexagon in Figure 2 and is hence a sub-
group of the dihedral group D6. The action of the antiholomorphic involution indicated in
Figure 2 shows that any automorphism of X[3,3,1] preserves the set {Ep, Eq}, which means
that ρ(AutR(X[3,3,1])) contains, besides the identity map, at most a rotation of order 2 (ex-
changing Ep, Eq) and two reflections, one fixing Ep and Eq and one exchanging them. The
automorphism

α1 : ([x0 : x1 : x2], [y0 : y1 : y2]) �→ ([y0 : y1 : y2], [x0 : x1 : x2])

is the lift of the real birational involution ηε−1 of P2 and exchanges Ep, Eq and fp, fq and so
ρ(α1) is a rotation of order 2. The automorphism

α2 : ([x0 : x1 : x2], [y0 : y1 : y2]) �→ ([x0 : x2 : x1], [y0 : y2 : y1])

is the lift of a linear map of P2 exchanging s, s̄ and fixing r. It therefore fixes Ep and Eq

and exchanges fp, fp, which means that ρ(α2) is a reflection. Moreover, α3 := α1α2 = α2α1

is the reflection exchanging Ep and Eq. The relations α2
1 = α2

2 = (α2α1)2 = Id imply that

AutR(X[3,3,1])
ρ→ Z/2Z×Z/2Z is surjective and ρ(αi) �→ αi is a section of ρ. This yields (2).

The automorphisms α1, α2 both preserve the set {Ep, Eq} and descend via the contractions
of Ep and Eq to automorphisms of S that respectively exchange or fix the points p, q. This
yields (3). �

3.2. The surfaces obtained by blowing up F0.
3.2. The surfaces obtained by blowing up F0. Blowing up a pair of non-real conjugate

points p, p̄ on F0, we obtain the del Pezzo surface X[3,F0] with rk(Pic(X[3,F0])) = 3. The
lift of the action of the antiholomorphic involution is indicated in Figure 3 by arrows. By
Aut(F0, p, p̄, pr) ⊂ AutR(F0) we denote the subgroup fixing p and p̄ and preserving the
fibrations.

Proposition 3.5.
(1) The surface X[3,F0] is isomorphic to

{([x0 : x1], [y0 : y1], [z0 : z1]) ∈ P1 × P1 × P1 | x0y0z1 + x0y1z0 + x1y0z0 − x1y1z1 = 0}.
(2) There is a split exact sequence

0→ ker(ρ)→ AutR(X[3,F0])
ρ−→ D6 → 1

where ker(ρ) � AutR(F0, p, p̄, pr) � SO2(R) × SO2(R).
(3) The group ρ(AutR(X[3,F0])) � D6 is generated by the reflection ρ(α1) fixing Ep and
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Ep̄, where

α1 : ([x0 : x1], [y0 : y1], [z0 : z1]) �→ ([y0 : y1], [x0 : x1], [z0 : z1]),

and the rotation ρ(α2) of order 6, where

α2 : ([x0 : x1], [y0 : y1], [z0 : z1]) �→ ([z1 : z0], [x0 : −x1], [y1 : y0]).

(4) The pair (X[3,F0],AutR(X[3,F0])) is a minimal pair.
(5) There is exactly one finite AutR(X[3,F0])-orbit on X[3,F0], namely the one of the six

intersection points of the (−1)-curves.

Fig.6. The surface X[3,F0] and the blow-ups ε and η.

Proof. Let ε : X[3,F0] → P1×P1 be the blow-up of two non real conjugate points in P1×P1.
We may assume that the points are p = ([1 : i], [1 : i]) and its conjugate. With this choice
of the points, there is a birational morphism η : X → P1 × P1 which corresponds to the
contraction of the fibres gp and gp (see Figure 6). This yields an injection ε× η : X → (P1)4.
The fibration given by g (meaning the fibres linearly equivalent to g, drawn punctuated in
Figure 6) is preserved by the birational map ηε−1 from P1 × P1 to itself. Composing η with
an automorphism of the first factor, we obtain that ηε−1 is the identity map on the first factor.
Furthermore, we calculate that – up to isomorphism of the second factor – the map ηε−1 is
given by

ηε−1 : ([x0 : x1], [y0 : y1]) �� ([x0 : x1], [x0y0 + x1y1 : x0y1 − x1y0]).

The projection of (P1)4 dropping the third factor thus yields an injection ϕ : X
ε×η−→ (P1)4 →

P1 × P1 × P1 and we get (1) after the isomorphism y1 �→ −y1.
For the second part, the map ρ stands for the induced map coming from the action of

Aut(X) on Pic(X). As the action of any automorphism of X preserves the hexagon in Fig-
ure 3, the image of ρ is contained in the dihedral group D6. The image contains the reflections
ρ(α1) and ρ(α0), where
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α1 : ([x0 : x1], [y0 : y1], [z0 : z1]) �→ ([y0 : y1], [x0 : x1], [z0 : z1]),

which is the lift of an automorphism exchanging the fibrations of F0 and whose image by ρ
exchanges fp and gp and fixes Ep, and

α0 : ([x0 : x1], [y0 : y1], [z0 : z1]) �→ ([x0 : −x1], [z1 : z0], [y1 : y0]),

which is the lift of an automorphism of F0 (the one on the right side in Figure 6) exchanging
gp and gp and whose image by ρ exchanges gp, gp and Ep, fp. Their composition

α2 := α1α0 : ([x0 : x1], [y0 : y1], [z0 : z1]) �→ ([z1 : z0], [x0 : −x1], [y1 : y0])

has order 6. The image ρ(α2) is the composition of the two reflections ρ(α1) and ρ(α0) and
hence is a rotation of order 6. The elements ρ(α1) and ρ(α2) generate D6. This yields the
exact sequence (2). Moreover, the relations α2

1 = α
6
2 = (α2α1)2 = Id imply that ρ(αi) �→ αi,

i = 1, 2 is a section of ρ : AutR(X[3,S ])→ D6 and the sequence splits.
Last but not least, ker(ρ) is the group of automorphisms of F0 fixing the points p and p̄

and preserving the fibrations of F0, and which is isomorphic to SO2(R) × SO2(R). Its only
finite orbits are its fixed points p, p̄ and the intersection points of fp with gp and of fp with
gp. The group D6 acts transitively on the intersection points of the (−1)-curves of X[3,F0], and
this yields (5).

Finally, the description of AutR(X[3,F0]) in (2)–(3) implies that we cannot contract any (−1)
curves on X[3,F0] AutR(X[3,F0])-equivariantly. In particular, the pair (X[3,F0],AutR(X[3,F0])) is a
minimal pair. �

Blowing up two real points p, q on F0, we obtain a del Pezzo surface X[4] with rk(Pic(X[4])
= 4. The lift of the antiholomorphic involution is indicated on Figure 4 by arrows. Blowing
down three of the six real (−1)-curves on X[4] yields a birational morphism X[4] → P2 which
is the blow-up of three real non-collinear points r1, r2, r3 on P2.

Proposition 3.6.
(1) The surface X[4] is isomorphic to

{([x0 : x1 : x2], [y0 : y1 : y2] ∈ P2 × P2 | x0y0 = x1y1 = x2y2}.
(2) There is a split exact sequence

1→ ker(ρ)→ AutR(X[4])
ρ→ D6 → 1

where ker(ρ) � (R∗)2 is the diagonal subgroup of PGL3(R).
(3) The group ρ(AutR(X[4])) = D6 is generated by the rotation ρ(α1) and the reflection

ρ(α2), where

α1 : ([x0 : x1 : x2], [y0 : y1 : y2]) �→ ([y2 : y0 : y1], [x2 : x0 : x1])

and

α2 : ([x0 : x1 : x2], [y0 : y1 : y2]) �→ ([x1 : x0 : x2], [y1 : y0 : y2]).

(4) The pair (X[4],AutR(X[4])) is a minimal pair.
(5) There is only one finite AutR(X[4])-orbit on X[4], namely the one of the six intersec-

tion points of the (−1)-curves.
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Proof. The surface X[4] is the blow-up of three non-collinear real points in P2 and hence
isomorphic to {([x0 : x1 : x2], [y0 : y1 : y2]) ∈ P2 × P2 | x0y0 = x1y1 = x2y2}, the blow-up of
the real points [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1].

The kernel of ρ is isomorphic to the subgroup of AutR(P2) = PGL3(R) fixing each of the
three points [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], which is the diagonal subgroup.

The image by ρ of AutR(X[4]) is contained in D6 because any automorphism of X[4] pre-
serves the hexagon in Figure 4. The involution

β1 : ([x0 : x1 : x2], [y0 : y1 : y2]) �→ ([y0 : y1 : y2], [x0 : x1 : x2])

is the lift of the standard Cremona involution on P2 and hence ρ(β1) is a rotation of order 2.
The automorphism

β2 : ([x0 : x1 : x2], [y0 : y1 : y2]) �→ ([x2 : x0 : x1], [y2 : y0 : y1])

of order 3 is the lift of the automorphism of P2 that permutes the three points [1 : 0 : 0], [0 :
1 : 0], [0 : 0 : 1] and so ρ(β2) is a rotation of order 3. Their composition

α1 := β2β1 = β1β2 : ([x0 : x1 : x2], [y0 : y1 : y2]) �→ ([y2 : y0 : y1], [x2 : x0 : x1])

is of order 6 and ρ(α1) is a rotation of order 6 by construction. Furthermore, we find that the
involution

α2 : ([x0 : x1 : x2], [y0 : y1 : y2]) �→ ([x1 : x0 : x2], [y1 : y0 : y2])

is the lift of the automorphism of P2 that exchanges [1 : 0 : 0] and [0 : 1 : 0] and fixes
[0 : 0 : 1], hence ρ(α2) acts as a reflection. It follows that ρ(α1) and ρ(α2) generated D6, and
we get the exact sequence in (2). Furthermore, the relations α6

1 = α
2
2 = (α1α2)2 = Id imply

that ρ(αi) �→ αi is a section of ρ : AutR(X[4])→ D6 and the sequence splits.
The above description of AutR(X[4]) yields that we cannot contract any (−1)-curve on X[4]

AutR(X[4])-equivariantly. In particular, (X[4],AutR(X[4])) is a minimal pair.
The fact that D6 acts transitively on the intersection points of the six (−1)-curves and that

the only fixed points of ker(ρ) are the points [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] implies (5).
�

4. Pairs of real conic bundles

4. Pairs of real conic bundles
Recall that for a real conic bundle π : X → P1 we denote by AutR(X, π) ⊂ AutR(X) the

subgroup of automorphisms respecting the conic bundle structure on X. The morphism π

induces a homomorphism α : AutR(X, π) → AutR(P1) = PGL2(R) whose kernel we denote
by ker(α) = AutR(X/π). We get an exact sequence

(∗) 1→ AutR(X/π)→ AutR(X, π)
α→ AutR(P1).

Proposition 2.21 and Lemma 2.22 imply that a minimal pair (X,G) of a R-rational G-variety
is either a del Pezzo surface of degree 9, 8 or 6 and G = AutR(X), or it admits a real conic
bundle π : X → P1 with a real birational morphism of conic bundles X → Y , where Y is
the sphere blown up in a pair of non-real conjugate points or a Hirzebruch surface, and
G = AutR(X, π). In this section, we aim at classifying the real conic bundles π : X → P1 that



698 M.F. Robayo and S. Zimmermann

are relatively AutR(X, π)-minimal.
The following lemma is an adaption of [2, Lemma 4.3.5] to our purpose.

Lemma 4.1. Suppose π : X → P1 is a relatively AutR(X, π)-minimal real conic bundle
with a morphism η : X → Y of real conic bundles where Y is as above, and η is not an
isomorphism. Let

G := AutR(X/π) ∩ ( ker(AutR(X, π)→ Aut(Pic(X)) ) .

If G is non-trivial, there exists n ≥ 1 and a (perhaps non-real) birational morphism
X → Fn of conic bundles defined over C that blows up 2n points in a section s with s2 = n
which is disjoint from the exceptional section of Fn, and the strict transform of these two
sections are exchanged by an element of AutR(X, π).

If G is trivial, then AutR(X/π) � (Z/2Z)r for r ∈ {0, 1, 2}.
Proof. By assumption, η blows up at least one point on Y , hence X has at least one singu-

lar fibre. All its singular fibres have exactly two irreducible components because π : X → P1

is relatively AutR(X, π))-minimal. Note that G is a normal subgroup of Aut(X, π). Forgetting
the antiholomorphic involution on X, we contract in each singular fibre one component and
obtain a (perhaps non-real) G-equivariant morphism η′ : X → Fn for some n ≥ 0. By chang-
ing the choice of the components we contract, we obtain n ≥ 1 and further that η′ does not
blow-up any points on the exceptional section En of Fn. Let R := η′G(η′)−1 ⊂ AutR(Fn).

Suppose that G is not trivial. The group R fixes the points blown-up by η′ and it preserves
En. Hence G preserves the strict transform Ẽn of En in X. By construction of η′, the curve
Ẽn intersects exactly one component of each singular fibre of X. The morphism π : X → P1

is relatively AutR(X, π))-minimal, so there exists h ∈ AutR(X, π) exchanging the compo-
nents of singular fibres of X. As G is normal in AutR(X, π), the we have hGh−1 = G. Thus
Fix(G) = Fix(hGh−1) = h(Fix(G)) contains the section h(Ẽn), and h(Ẽn) � Ẽn. In particular,
R preserves the section s := η′(h(Ẽn)) � En. As R ⊂ PGL2(C(t)) is a non-trivial subgroup, it
fixes at most two points on each fibre of Fn, thus En ∪ s = Fix(R) and s contains all points
blown up by η′. Further, the two curves Ẽn and h(Ẽn) have the same self-intersection, which
is equal to −n because η′ does not blow up any points on En. Moreover, since the elements
of R ⊂ PGL2(C(t)) fix exactly two points on all but finitely many fibres, they are diagonal-
isable and hence fix two points on every fibre. It follows that En and s are disjoint. Hence
s ∼ En + n f and therefore s2 = n. It follows that η′ is the blow-up of 2n points on s.

Suppose that G is trivial. Then every non-trivial element of AutR(X/π) is an involution.
As AutR(X/π) ⊂ PGL2(C(x)), it follows that AutR(X/π) is isomorphic to (Z/2Z)r for r ∈
{0, 1, 2}. �

4.1. Real conic bundles obtained by blowing up a del Pezzo surface.
4.1. Real conic bundles obtained by blowing up a del Pezzo surface. In this subsec-

tion, we study the ones with a real birational morphism of conic bundles η : X → Y to the
surface Y obtained by blowing up the sphere in a pair of non-real conjugate points. The
surface Y is a del Pezzo surface of degree 6 with rk(Pic(Y)) = 2 and so, by Lemma 3.1,

pr1 : Y = X[2] → 3,1

is isomorphic to the blow-up of the points r := [0 : 1 : i : 0] and r̄ = [0 : 1 : −i : 0] (see
Proposition 3.3). The generic fibre of the projection
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pr : X[2] → P1, ([w : x : y : z], [u : v]) �→ [u : v]

is the non-rational conic C ⊂ P2
R(t) given by x2 + y2 − tz2 = 0, which makes pr : X[2] → P1 a

conic bundle. However, the description in Lemma 4.2 of the conic bundle (X[2], pr) will turn
out to be more convenient.

As described in Remark 2.16, the isomorphism of complex surfaces ϕ : 3,1 −→ P1 × P1,

ϕ : [w : x : y : z] �−→([w + z : y + ix], [w + z : y − ix])

= ([y − ix : w − z], [y + ix : w − z])

ϕ−1 : ([x0 : x1], [y0 : y1]) �→[x0y0 + x1y1 : i(x0y1 − x1y0) : x0y1 + x1y0 : x0y0 − x1y1]

induces an isomorphism of real surfaces ϕ : 3,1 → (P1 × P1, σS ), where

σS : ([x0 : x1], [y0 : y1]) �→ ([ȳ0 : ȳ1], [x̄0 : x̄1])

and p := ϕ(r) = ([0 : 1], [1 : 0]) and p̄ = ϕ(r̄) = ([1 : 0], [0 : 1]).

Lemma 4.2.
(1) The real surface X[2] is isomorphic to

(X[2], σ) �
(
{([x0 : x1 : x2], [y0 : y1 : y2]) ∈ P2 × P2 | x0y0 = x1y1 = x2y2}, σ[2]

)
where σ[2] : ([x0 : x1 : x2], [y0 : y1 : y2]) �→ ([y1 : y0 : y2], [x1 : x0 : x2]) and the
conic bundle structure π[2] : X[2] → P1 is given by

π[2] : ([x0 : x1 : x2], [y0 : y1 : y2]) �−→ [x0 : x1] = [y1 : y0].

(2) The irreducible components of the singular fibres of π[2] : X[2] → P1 are given by

fp : y1 = y2 = 0, fp : x0 = x2 = 0, fp̄ : x1 = x2 = 0, fp̄ : y0 = y2 = 0

(see Figure 7) and the pair of non-real conjugate (−1)-“sections” by

s : x0 = x1 = 0, s̄ : y0 = y1 = 0.

Proof. Over C, there is only one del Pezzo surface of degree 6 and it is isomorphic to

Z := {([x0 : x1 : x2], [y0 : y1 : y2]) ∈ P2 × P2 | x0y0 = x1y1 = x2y2}
(see Proposition 3.6). The abstract birational morphism

Z −→ P1 × P1

([x0 : x1 : x2], [y0 : y1 : y2]) �−→ ([x0 : x2], [x2 : x1]) = ([y2 : y0], [y1 : y2])

([ru : sv : su], [sv : ru : rv]) ��([r : s], [u : v])

contracts the (−1)-curves s1 = {x0 = x1 = 0} and s2 = {y0 = y1 = 0} onto p and p̄, respec-
tively. In Figure 1, they are therefore denoted by Ep and Ep̄. The lift of the antiholomorphic
involution σS onto Z is σ[2] and makes (Z, σ[2]) a real del Pezzo surface isomorphic to X[2]

(Lemma 3.1) and s2 = s1. The morphism

π[2] : X[2] → P1, ([x0 : x1 : x2], [y0 : y1 : y2]) �−→ [x0 : x1] = [y1 : y0]

is the projection onto the (−1)-curves s and s̄ and is thus a conic bundle. The antiholomorphic
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involution σ[2] descends to the standard antiholomorphic involution [u : v] �→ [ū : v̄] on
P1, which makes π[2] : X[2] → P1 a real conic bundle. The morphisms are visualised in
Figure 7. The equations of the irreducible components of the singular fibres are checked by
calculation.

By abuse of notation, we will denote the surface Z by X[2] endowed with σ[2]. �

Fig.7. The real conic bundle π[2] : X[2] → P1.

The following lemma gives a necessary condition for a real conic bundle π : X → P1 to be
relatively AutR(X, π))-minimal. It will turn out in Proposition 4.5 that the condition is also
sufficient. A reference picture is drawn in Figure 8.

Lemma 4.3. Let π : X → P1 be a relatively AutR(X, π)-minimal real conic bundle with
a birational morphism of real conic bundles η : X → X[2] that is not an isomorphism. Then
AutR(X, π) is finite, or η : X → X[2] is the blow-up of n ≥ 1 pairs of non-real conjugate
points of X[2] contained in s ∪ s̄ and in non-real fibres.

Proof. The morphism η blows up at least one point, so X has at least four singular fibres.
Let G := AutR(X/π) ∩ ( AutR(X, π)→ Aut(Pic(X)) ).

Suppose that G is non-trivial. By Lemma 4.1, there exists a non-real birational morphism
η′ : X → Fn, n ≥ 1, of conic bundles defined over C which blows up 2n ≥ 2 points on a
section s′ disjoint from the exceptional section En of Fn with (s′)2 = n.

Denote by s̃′ and Ẽn the strict transforms of s′ and En respectively. Note that they are
the unique (−n)-curves on X and hence are two real or a pair of non-real conjugate curves.
They descend via η : X → X[2] onto curves c1 and c2 on X[2]. As X[2] does not have any real
sections, we get c2 = c̄1, and hence s̃′ = Ẽn. In particular, the real morphism η contracts n−1
components of singular fibres only intersecting s̃′ and n − 1 components of singular fibres
only intersecting Ẽn. In other words, η blows up n ≥ 1 pairs of non-real conjugate points
contained in c1 ∪ c̄2, no two on the same fibre, so c2

1 = −1. In particular, c1 ∪ c̄1 = s ∪ s̄.
Suppose that G is trivial. Lemma 4.1 implies that AutR(X/π) is isomorphic to (Z/2Z)r for

r ∈ {0, 1, 2}. The group AutR(X, π) preserves X(R), hence its image H in PGL2(R) preserves
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π(X(R)) = π[2](X[2](R)) = [0,∞], i.e.

H ⊂ AutR(P1, [0,∞]) � R>0 � Z/2Z

Furthermore, H preserves the set of the images in P1 of the singular fibres of X, of which
there are at least four. This implies that H is finite. As AutR(X/π) and H are both finite, also
AutR(X, π) is finite. �

Definition 4.4(and construction). The abstract birational morphism

ε : X[2] −→ P1 × P1

([x0 : x1 : x2], [y0 : y1 : y2]) �−→ ([x0 : x1], [x2 : x0]) = ([y1 : y0], [y0 : y2])

([u0v1 : u1v1 : u0v0], [u1v0 : u0v0 : u1v1]) ��([u0 : u1], [v0, v1])

contracts the components fp and fp̄ of the singular fibres onto the points ([0 : 1], [1 : 0])
and ([1 : 0], [0 : 1]), respectively, and the sections s, s̄ onto the sections ε(s) = P1 × {[1 :
0]} and ε(s̄) = P1 × {[0 : 1]}. The antiholomorphic involution σ[2] descends to a rational
antiholomorphic involution

σC : ([u0 : u1], [v0 : v1]) �� ([u0 : u1], [u1v1 : u0v0])

on P1 × P1, not defined at ([1 : 0], [0 : 1]) and ([0 : 1], [1 : 0]). It makes ε a real birational
morphism of conic bundles, i.e. the diagram

(X[2], σ[2])

π[2]
������������

ε �� (P1 × P1, σC)

pr1
������������

P1

is commutative. The construction is visualised in Figure 8.

Fig.8. The real birational morphism ε : (X[2], σ[2])→ (P1 × P1, σC).
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Proposition 4.5. Let η : X → X[2] be the blow-up of n ≥ 1 pairs of non-real conjugate
points in s ∪ s̄ and in non-real fibres. Then π := π[2]η : X → P1 is a relatively AutR(X, π))-
minimal real conic bundle.

Let Δ ⊂ P1 be the image of the 2n + 2 singular fibres of X and HΔ ⊂ PGL2(R) be the
subgroup preserving Δ and π(X(R)) = [0,∞]. Then

(1) there exists a split exact sequence

1→ Aut(X/π)→ Aut(X, π)→ HΔ → 1

where Aut(X/π) � AutR(3,1, p, p̄) � Z/2Z � SO2(R) � Z/2Z,
(2) an element of SO2(R) ⊂ Aut(X/π) fixes the two (−(n + 1))-sections of X and the

generator of Z/2Z exchanges them,
(3) an element of Aut(X/π) \ SO2(R) is an involution fixing an irreducible curve on X[2]

which is a double cover of P1 ramified at Δ,
(4) the group SO2(R) acts trivially on Pic(X).

Proof. Any automorphism of X preserves the set of real points X(R), which is diffeomor-
phic via η to X[2](R) and is mapped to the interval [0,∞] by π. Therefore, the exact sequence
(∗) yields the exact sequence (1). Any element of HΔ lifts to a real automorphism of X[2]

fixing the points blown-up by η and thus lifts to an automorphism of X. The sequence splits.
Over C, there is a birational morphism X

η→ X[2] → F0, hence X has exactly two (−(n +
1))-sections [2, Lemma 4.3.1], and they are the strict transforms s′, s̄′ of the (−1)-curves
s, s̄ on X[2]. So AutR(X/π) acts on {s′, s̄′} and we claim that it acts non-trivially; we now
construct a birational involution of X[2] whose lift onto X is an automorphism respecting π
and exchanging s′, s̄′.

Let q1, . . . , qn ∈ s and q1, . . . , qn ∈ s̄ be the points blown up by η, and define pi := π[2](qi).
Let ε : (X[2], σ[2]) → (P1 × P1, σC) be the birational morphism of real conic bundles given
in Definition 4.4. Then ε(qi) = (pi, [1 : 0]) and ε(qi) = (pi, [0 : 1]). Let m1, . . . ,mn ∈
C[u0, u1] be homogenous linear polynomials vanishing on p1, . . . , pn respectively and define
P(u0, u1) :=

∏n
i=1 mi(u0, u1). The involution ϕ : P1 × P1 � P1 × P1,

ϕ : ([u0 : u1], [v0 : v1])� ([u0 : u1], [u1v1P(u0, u1) : u0v0P(u0, u1)])

commutes with the antimeromorphic involution σC and is undefined exactly at ε(q1), . . . ,
ε(qn), ε(q1), . . . , ε(qn), ([1 : 0], [0 : 1]), ([0 : 1], [1 : 0]) and exchanges ε(s) and ε(s̄). The
map ϕ is visualised in Figure 9.

The involution ϕ thus lifts via ε to a real birational involution of X[2] that exchanges s, s̄
and is undefined exactly at q1, . . . , qn, q1, . . . , qn. So, it lifts to a real automorphism of X that
exchanges s′, s̄′. Therefore AutR(X/π) acts non-trivially on the set {s′, s̄′}, which yields the
split exact sequence

1→ K → AutR(X/π)→ Z/2Z→ 0.

This also shows that we cannot contract any components of the singular fibres AutR(X/π)-
equivariantly, and hence also not AutR(X, π)-equivariantly. In particular, π : X → P1 is rela-
tively AutR(X, π))-minimal.

By definition of K, all of its elements fix s′1, s′2 and thus descend to a subgroup of
AutR(X[2]/π[2]) and hence via pr1 : X[2] → 3,1 to a subgroup of Aut(3,1, p, p̄), the automor-
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phism group of 3,1 fixing p and p̄, which is isomorphic to {(A, Ā) ∈ PGL2(C)2 | A diagonal}
via 3,1 � (P1 × P1, σS ) [16, Lemma 4.5]. On the other hand, any (diag(a, 1), diag(ā, 1)) ∈
Aut(3,1, p, p̄) lifts to the real automorphism

βa : ([x0 : x1 : x2], [y0 : y1 : y2]) �→ ([aāx0 : x1 : āx2], [y0 : aāy1 : ay2])

of X[2] which fixes s and s̄. On them, it acts by [y0 : y1] �→ [y0 : aāy1] and [x0 : x1] �→
[aāx0 : x1], respectively. Hence, βa lifts to an automorphism of X if and only if it fixes the
points blown up by η (there is at least one), which is equivalent to aā = 1. The lift of βa on
X then descends via π[2] to the identity map on P1. It follows that (diag(a, 1), diag(ā, 1)) ∈
AutR(3,1, p, p̄) is contained in Aut(X/π) if and only if aā = 1, which implies that K =
{(diag(a, 1), diag(ā, 1)) ∈ PGL2(C)2 | aā = 1}. Conjugating K with the real isomorphism
3,1 −→ (P1 × P1, σS ) from Remark 2.16 yields K � SO2(R). This finishes the proof of (1)
and yields (2), (4) and the first half of (3).

The group SO2(R) acts via ε on (P1 × P1, σC) by

([u0 : u1], [v0 : v1]) �→ ([u0 : u1], [v0 : av1]).

It follows that (a, ϕ) ∈ Aut(X/π) \ SO2(R) is an involution on (P1 × P1, σC) fixing the ir-
reducible curve au0v

2
0P(u0, u1) − u1v

2
1P(u0, u1) = 0, which is an irreducible double cover of

P1 ramified at Δ and ([1 : 0], [0 : 1]), ([0 : 1], [1 : 0]). Its strict transform on X[2] is an
irreducible double cover over P1 ramified over Δ. This yields the second part of (3). �

Remark 4.6. Note that the generator of Z/2Z in the description of Aut(X, π) in Proposi-
tion 4.5 is the composition of elementary links of the real conic bundle π[2] : X[2] → P1, each
blowing up a pair of non-real points on s ∪ s̄.

Fig. 9. The real birational map ϕ : (P1 × P1, σC) → (P1 × P1, σC) that lifts
to an automorphism of X generating Z/2Z ⊂ AutR(X/π)
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4.2. Real conic bundles obtained by blowing up a Hirzebruch surface.
4.2. Real conic bundles obtained by blowing up a Hirzebruch surface. The n-th

Hirzebruch surface is given by

Fn = {([x0 : x1 : x2], [u : v]) ∈ P2 × P1 | unx2 = v
nx1} ⊂ P2 × P1.

The canonical projection prn : Fn → P1 onto the second factor makes it a real conic bundle.
In this subsection, we study real conic bundles with a birational morphism X → Fn of real
conic bundles.

If n = 0, then F0 = P
1 × P1 with the standard antiholomorphic involution on it, and

AutR(F0, pr0) = PGL2(R)2.
If n = 1, then F1 is isomorphic to the blow-up of [1 : 0 : 0] ∈ P2, and any auto-

morphism preserves the unique (−1)-curve on it, which yields AutR(F1) = AutR(F1, pr1) �
AutR(P2, [1 : 0 : 0]).

If n ≥ 2, the automorphism group of Fn is

AutR(Fn) � Rn+1
� GL2(R)/μn,

where μn = {μ Id | μn = 1} [2]. An element(
(a0, . . . , an),

(
a b
c d

))
∈ Rn+1

� GL2(R)/μn

acts on the chart u � 0 by

([xun : yun : yvn], [u : v]) �→
([xun + y(a0v

n + a1uvn−1 + · · · + anun) : y(au + bv)n : y(cu + dv)n], [au + bv : cu + dv])

and in particular respects the conic bundle structure on Fn. Multiples of the identity matrix
act trivially on the base, and we get

AutR(Fn/ prn) � Rn+1
� (R∗/μn),

where we see μn ⊂ R∗ as μn = {±1} if n is even and μn = {1} if n is odd.
We denote by En := {([1 : 0 : 0], [u : v]) | [u : v] ∈ P1} ⊂ Fn its (−n)-section, by f the

general fibre of prn and by sn ⊂ Fn the section given by x0 = 0, i.e.

sn := {([0 : un : vn], [u : v]) | [u : v] ∈ P1}.
The conditions snEn = 0 and sn f = 1 yield sn ∼ En + n f as divisors and hence s2

n = n.
Let us give a necessary description of minimal pairs (X,AutR(X, π)) equipped with a bi-

rational morphism η : X → Fn of real conic bundles.

Lemma 4.7. Let π : X → P1 be a relatively AutR(X, π))-minimal real conic bundle
equipped with a brational morphism η : X → Fn of real conic bundles that is not an iso-
morphism.

If AutR(X/π)∩ker ( AutR(X, π)→ Aut(Pic(X)) ) contains a non-trivial element, then there
exists a birational morphism X → FN of real conic bundles blowing up 2N ≥ 2 points, all
contained in sN with pairwise distinct fibres.

Else, AutR(X/π) � (Z/2Z)r for r ∈ {0, 1, 2}.
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Proof. If G := AutR(X/π) ∩ ker ( AutR(X, π)→ Aut(Pic(X)) ) is trivial, the claim follows
from Lemma 4.1. Suppose that G is non-trivial. By Lemma 4.1, there exists a (perhaps non-
real) birational morphism X → FN , N ≥ 1, blowing up 2N points on a section s of FN

disjoint from EN and of self-intersection N. By c1 and c2 we denote the strict transforms of
s and EN in X. The real birational morphism η blows down one component of each fibre.
Furthermore, c1 is sent onto a curve of self-intersection N − r, where r is the number of
contracted components intersecting η(c1), and η(c2) is a curve of self-intersection N − (2N −
r) = −N + r. We can assume that r ≤ N (else we exchange the indices of c1 and c2). Then
η(c2)2 ≤ 0, hence η(c2) is the exceptional section of Fn. In particular, it is a real curve, hence
also c2 is a real curve. By Lemma 4.1 there is an element of AutR(X, π) exchanging c1 and
c2, thus c1 is a real curve as well. Therefore, only contracting components intersecting c1

commutes with the antiholomorphic involution of X. It follows that the birational morphism
X → FN from Lemma 4.1 is in fact a real morphism. �

In the first assertion of the lemma, the cases N = 0 and N = 1 yield relatively AutR(X, π))-
minimal conic bundles, but the groups AutR(X, π) are not maximal algebraic subgroups of
BirR(P2).

Proposition 4.8. Let η : X → Fn be the blow-up of 2n ≥ 4 points contained in sn. Then
π := prn η : X → P1 is a is relatively AutR(X, π))-minimal conic bundle.

Let Δ ⊂ P1 be the projection of the points blown up by η, HΔ ⊂ PGL2(R) the subgroup
preserving Δ and μn = {±1} if n is even and μn = {1} if n is odd. Then:

(1) There is a split exact sequence

1→ AutR(X/π)→ AutR(X, π)→ HΔ → 1

where AutR(X/π) � (R∗/μn) � Z/2Z.
(2) An element of (R∗/μn) ⊂ Aut(X/π) fixes the two (−n)-sections of X and the generator

of Z/2Z exchanges them.
(3) An element of Aut(X/π) \ (R∗/μn) is an involution fixing an irreducible curve on Fn

which is a double cover of P1 ramified at Δ.
(4) The group R∗/μn acts trivially on Pic(X).

Proof. Denote by s̃n, Ẽn ⊂ X the strict transforms of sn and En, respectively. Then π :=
pr η : X → P1 is a conic bundle with 2n singular fibres, whose components either intersect
s̃n or Ẽn. The action of AutR(X, π) descends to an action on P1 that preserves the set Δ. On
the other hand, any element of HΔ lifts to an automorphism of Fn preserving the set of the
points blown-up by η and hence lifts to an automorphism of X that permutes the singular
fibres. Thus the sequence splits.

The group AutR(X/π) acts on the set {Ẽn, s̃n} non-trivially: We can assume that the points
blown up by η are in the chart u = 1. They are thus of the form pi = ([0 : 1 : vn

i ], [1 : vi]) ∈ sn,
i = 1, . . . , 2n. The number of non-real points in Δ is even, hence the number of real points in
Δ is even as well. We order the points such that p1, . . . , p2k are real points and p2k+1, p2k+2 :=
p2k+1, . . . , p2n−1, p2n := p2n−1 are pairs of non-real conjugate points. For i = 1, . . . , 2k, let
li := t − vn

i ∈ R[t]. For i = 1, . . . , n − k, let mi := (t − vn
2(k+i)−1)(t − vn

2(k+i)) ∈ R[t]. We define
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P(r) :=
k∏

i=1

li
n−k∏
i=1

mi ∈ R[t].

Then the rational map ϕ : Fn �� Fn given on the chart u = 1 by

ϕ : ([x0 : x1 : x1v
n], [1 : v]) �� ([x1P(v) : x0 : x0v

n], [1 : v])

is a real involution respecting the conic bundle structure of Fn. It is undefined exactly at the
points p1, . . . , p2n and exchanges En and sn. It furthermore contracts the fibre through pi

onto pi. The map ϕ is visualised in Figure 10.
Therefore, ϕ lifts to an automorphism of the conic bundle X that exchanges s̃n and Ẽn.

This induces the split exact sequence

1→ K → AutR(X/π)→ Z/2Z→ 1.

It also proves that we cannot contract any components of the singular fibres on X AutR(X/π)-
equivariantly and thus also not AutR(X, π)-equivariantly. In particular, π : X → P1 is rela-
tively AutR(X, π))-minimal.

By definition of K, all of its elements fix s̃n and Ẽn pointwise and thus descend to elements
of AutR(Fn/ pr). On the other hand, an element ((a0, . . . , an), r) ∈ AutR(Fn/ prn) � Rn+1 �

(R∗ Id)/μn acts on the chart u � 0 by

([x0 : x1 : vnx1], [1 : v]) �−→ ([x0 + x1(anv
n + an−1v

n−1 + · · · a0) : rnx1 : rnvnx1], [1 : v])

and lifts to an automorphism of X if and only if it preserves sn (which is given by x0 = 0). It
follows that K = R∗/μn. This completes (1) and (2).

Every element (r, ϕ) ∈ AutR(X/π) \ (R∗/μn) fixes the curve x2
1P(v) − rnx2

0 = 0 (given on
the chart u � 0), which is a double cover of P1 ramified over Δ. This is (3).

Finally, the action of R∗/μn ⊂ AutR(X/π) fixes each fibre and it fixes En and sn. Hence it
acts trivially on Pic(X), which is (4). �

Fig.10. The real birational map ϕ : Fn � Fn that lifts to an automorphism of X.

The following lemma is an adapted version of Lemma [2, Lemma 5.2.1].
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Lemma 4.9. Let π : X → P1 be a relatively AutR(X, π))-minimal conic bundle with a bira-
tional morphism η : X → Fn of real conic bundles. Suppose that AutR(X/π)∩ker(AutR(X, π)
→ AutR(Pic(X))) = {1}. Then AutR(X, π) is finite or strictly contained in the automorphism
group of a real del Pezzo surface.

Proof. Suppose X has at least three singular fibres. The action of AutR(X, π) on P1 induces
the exact sequence

1→ AutR(X/π)→ AutR(X, π)→ H,

where H ⊂ AutR(P1) is the subgroup fixing the image of the set of the singular fibres.
The conic bundle X having three singular fibres implies that H is finite. By Lemma 4.7,
AutR(X/π) is finite as well, so AutR(X, π) is finite.

Suppose X has one or two singular fibres. Let Ẽn be the strict transform of the −n curve
of Fn. It is of self-intersection −r ≤ −n. As the pair (X,AutR(X, π)) is minimal, the singular
fibres intersect Ẽn, have exactly two components and there exists g ∈ AutR(X, π) exchanging
the components of each fibre. Then s := g(Ẽn) � En is a real section of self-intersection
−r. Forgetting about about the action of AutR(X, π), we contract in each fibre the component
intersecting s. This is a blow-down η′ : X → Fr, and r ≤ η′(s)2 = −r + m, where 1 ≤ m ≤ 2
is the number of points blown-up by η′. It follows that m = 2 and r ∈ {0, 1}. The case r = 0
is not possible, so r = 1. Hence η′ blows up two points in different fibres of F1, and X
is a del Pezzo surface of degree 6. Therefore, AutR(X, π) ⊂ AutR(X). Figures 4 and 3 and
Propositions 3.5 and 3.6 imply that the inclusion is strict. �

5. The maximal infinite algebraic subgroups

5. The maximal infinite algebraic subgroups
This section aims at proving Theorem 1.1 and Theorem 1.2. We first prove that any infinite

algebraic subgroup of BirR(P2) is contained in one of the groups in Theorem 1.1. We then
have to prove that all listed groups are in fact maximal.

Proposition 5.1. Let G ⊂ BirR(P2) be an infinite algebraic subgroup. Then G is conjugate
to a subgroup of one of the groups in Theorem 1.1.

Proof. Proposition 2.21 states that for an infinite algebraic subgroup G of BirR(P2) there
exists a G-equivariant birational morphism P2 � X where G acts on X regularly and X is
one of the following:

(1) X is a Del Pezzo surface of degree 6, 8 or 9 such that rk(Pic(X)G) = 1.
(2) X admits a real conic bundle structure πX : X → P1 with rk(Pic(X)G) = 2 and G ⊂

AutR(X, πX), and there is a birational morphism of conic bundles η : X → Y , where
Y � X[2] is the sphere blown up in a pair of non-real conjugate points or Y is a real
Hirzebruch surface Y = Fn, n � 1.

So G is conjugate to a subgroup of AutR(X) or AutR(X, π), where X is as in (1) or (2)
respectively. The pairs (X,AutR(X)) and (X,AutR(X, π)) are described as follows.

In the first case, we get:
• If deg(X) = 9, then X = P2 and AutR(P2) � PGL3(R).
• If deg(X) = 8, then X = F1 and AutR(X) is conjugate to a subgroup of PGL3(R), or

X is one of the following two by [7]:
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X = 3,1 and AutR(3,1) � POR(3, 1).
X = F0 and AutR(F0) = PGL2(R)2 � 〈τ′〉, where τ′ : (x, y) �→ (y, x).

• If deg(X) = 6, then Lemma 3.1 and Propositions 3.3, 3.4, 3.5 and 3.6 imply that
X = X[2] and AutR(X[2]) is conjugate to a subgroup of AutR(3,1) (Proposi-

tion 3.3).
X = X[3,3,1] and AutR(X[3,3,1]) is conjugate to a subgroup of AutR(3,1) (Propo-

sition 3.4),
X = X[3,F0] and by Proposition 3.5 states the action of AutR(X) on Pic(X) induces

the split exact sequence

1→ SO2(R) × SO2(R)→ AutR(X[3,F0])→ D6 → 1,

or X = X[4] and Proposition 3.6 states that the action of AutR(X) induces the split
exact sequence

1→ (R∗)2 AutR(X[4])→ D6 → 1.

In the second case, we look up the results of Section 4:
• Lemma 4.3 implies that η : X → Y � X[2] is the blow-up of n ≥ 1 pairs of non-real

conjugate points in the exceptional divisors of X[2] → 3,1 and contained in non-
real fibres, and π = π[2]η : X → P1 is relatively AutR(X, π)-minimal. Proposition 4.5
implies that the action of AutR(X) on P1 induces the split exact sequence

1→ SO2(R) � Z/2Z→ AutR(X)→ �HΔ →,
where HΔ ⊂ PGL2(R) is the subgroup preserving the image in P1 of the 2n + 2
singular fibres of X and the interval π(X(R)) = π[2](X[2](R)) = [0,∞].
• If η : X → Y = Fn, then the following possibilities occur:

− If η is an isomorphism, then X = Fn and

AutR(F0, pr0) � AutR(F0)

AutR(F1, pr1) � AutR(P2) (see beginning of Section 4.2)

AutR(Fn, prn) = AutR(Fn) � Rn+1
� (GL2(R)/{μ Id | μn = 1}), n ≥ 2

− Else, AutR(X, π) being infinite and maximal, Lemma 4.7 and Lemma 4.9 imply
that there exists a birational morphism η′ : X → FN that is the blow-up of 2N points
on sN (see definition in beginning of Section 4.2).

If N = 0, then η′ : Y → F0 is an isomorphism, and we have already listed this
case.

If N = 1, then Y is a del Pezzo surface of degree 6; if η′ blows up two real points,
then Y � X[4] and if η′ blows up a pair of non-real conjugate points, then Y � X[3,F0]

(see Section 3). In either case, AutR(Y, π) ⊆ AutR(Y).
If N ≥ 2, then Proposition 4.8 states that π = πNη : Y → P1 is relatively

AutR(Y, π)-minimal and the action of AutR(X) on P1 induces the split exact sequence

1→ R∗/μN � Z/2Z→ AutR(Y)→ HΔ → 1,

where HΔ ⊂ PGL2(R) is the subgroup fixing the image in P1 of the 2N points and
μN ⊂ R∗ the group of N-th roots of unity. �
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Proposition 5.2. The groups in Theorem 1.1 are maximal algebraic subgroups of BirR(P2)
and the classes are pairwise non-conjugate.

Proof. Let (X,G) be a pair in the list of Theorem 1.1. To prove that the group G is a
maximal algebraic subgroup of BirR(P2), we have to check because of Proposition 5.1 that
any G-equivariant birational map f : X � Y , where Y is one of the surfaces listed in Theo-
rem 1.1, is in fact a G-equivariant isomorphism. This will also prove that all the classes are
distinct.

As X and Y are del Pezzo surfaces or conic bundles, [12, Theorem 2.5] (and [8, Ap-
pendix]) implies that any birational map X � Y is an isomorphism or the composition of
elementary links, which are divided into type I–IV, shown by the commutative diagrams
below, where the horizontal maps are blow-ups defined over R, and T ∈ {P1, ∗}.

X

��

X1��

��
∗ P1

X

��

Z
η2 ��η1�� X1

��
T

� �� T

X ��

��

X1

��
P1 ∗

X
� ��

��

X1

��
P1 P1

Type I Type II Type III Type IV

The decomposition into links can be made G-equivariant because G is a linear algebraic
group (Lemma 2.22) and its action on the Picard group is finite by Lemma 2.10. The hori-
zontal maps of the G-equivariant links blow up the finite G-orbit of a real point or the finite
G-orbit of a pair of non-real points.

Suppose that f is not an isomorphism and let f = Φn · · ·Φ1 be its decomposition into
G-equivariant links of type I–IV. Then:
• If Φ1 is a link of type I, then [12, Theorem 2.6] implies that X is a del Pezzo surface of

degree 9, 8 or 4. The latter case does not appear, and X = P2 or X = 3,1 or X = F0 by [7].
However, there are no finite G-orbits on X, which makes such a link impossible.
• If Φ1 is a link of type III, then [12, Theorem 2.6] implies that X � F1, X � X[3,S ] or

X � X[2] or X � X[4]. Only the latter is in our list. [12, Theorem 2.6] says that Φ1 must be
the contraction of an orbit of order 2, which does not exist by Proposition 3.6.
• IfΦ1 = η2η

−1
1 is a link of type II, then either X, X1 are both del Pezzo surfaces and T = ∗

or X, X1 are both conic bundles and T = P1. We look at these cases separately:
If X and X1 are del Pezzo surfaces, then [12, Theorem 2.6] implies that the degree of X

is 9, 8, 6, 5, 4, 3 or 2. Only the first three degrees appear in our list. If X has degree 9 or 8,
then, again, there are no finite G-orbits on X, so a link of type II is not possible. Suppose
that X is of degree 6, i.e. X � X[3,F0] or X � X[4] in Lemma 3.1. By [12, Theorem 2.6], η1 is
the blow-up of at most 5 points on X. That is impossible because the only finite G-orbit on
X has cardinality six by Propositions 3.5 and 3.6.

Suppose that X and X1 are real conic bundles. If X = Fn for some n ∈ N, then G does not
have a finite orbit and hence a link of type II cannot start with Fn.

If there exists a birational morphism X → X[2] of real conic bundles, then Proposition 4.5
states that AutR(X/π) contains an element exchanging the two unique (−(n + 1))-sections of
X. If there exists a birational morphism X → Fn of conic bundles that is not an isomorphism,
then Proposition 4.8 states that AutR(X/π) contains an element exchanging the two (−n)-
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sections of X. In either case, a G-orbit on X contains at least two points that are contained in
the same fiber, which is not allowed. So there is no link of type II starting with X.
• If Φ1 is a link of type IV, then [12, Theorem 2.6] implies that K2

X = 8, 4, 2, 1. So,
consulting our list, K2

X = 8 and, again by [12, Theorem 2.6], X = X1 = F0 and Φ1 exchanges
the two fibrations. In particular, Φ1 ∈ AutR(F0).

Summarised, one cannot find a decomposition of f into elementary links and hence f is
an isomorphism. �

Proof of Theorem 1.1. By Proposition 5.1, any algebraic subgroup of BirR(P2) is conju-
gate to a subgroup of one of the groups in the list. By Proposition 5.2, all of these groups are
maximal and pairwise non-conjugate. �

Proof of Theorem 1.2. The claim is clear for families (1)-(3) and (6). The rest of the
claim follows from the description of AutR(X) in Propositions 3.5 and 3.6 and of AutR(X, π)
in Propositions 4.5 and 4.8. �

Let us take a look at which infinite algebraic subgroups survive the abelianisation of
BirR(P2).

Remark 5.3. (1) The construction of the abelianisation ϕ : BirR(P2) → ⊕
(0,1] Z/2Z in

[25, §3.2.1, Proposition 5.3] yields the following: Let g1 and g2 be elementary links of the
real conic bundle π[2] : X[2] → P1 contracting pairs of non-real conjugate fibres f1, f̄1 and
f2, f̄2 respectively. Then g1 and g2 have the same image in the quotient if and only if

π[2]( f1) ∈ R · π[2]( f2) ∪ R · π[2]( f̄2) in P1.

(2) Let π : X
η→ X[2]

π[2]→ P1 be a surface as in Theorem 1.1 (7). We can see elements
of AutR(X, π) as birational transformations of X[2] preserving the conic bundle structure.
Let (q1, q̄1), . . . , (qn, q̄n) be the pairs of non-real conjugate points blown up by η. Then, by
definition of ϕ in [25, Definition 3.17] and the description of AutR(X, π) in the proof of
Proposition 4.5, we have

ϕ(g) =
n∑

i=1

eν(π(qi)) if g ∈ AutR(X, π) \ (SO2(R) ∪ HΔ), ϕ(g) = 0 if g ∈ SO2(R) ∪ HΔ

where ν([a + ib : 1]) = ν([a − ib : 1]) = 1 − |a|
a2+b2 and er is the “standard vector” with entry

1 at r and zero everywhere else.

Proof of Theorem 1.3. It suffices to see the image of the maximal infinite subgroups of
BirR(P2) have in the quotient BirR(P2)/〈〈AutR(P2)〉〉 �⊕

(0,1] Z/2Z. The quotient is abelian,
so it suffices to check the groups listed in Theorem 1.1.

Groups (1)–(3) have trivial image because their elements are conjugate to transformations
of P2 of degree at most 2.

The generators of group (4) either descend to automorphisms of F0 or to birational trans-
formations of F0 sending one fibration onto the other (Proposition 3.5). The latter are con-
jugate to transformations of P2 sending a pencil of lines through a real point onto the pencil
of lines through another real point. So, also the generators of (4) have trivial image in the
quotient.
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The generators of the group (5) are conjugate to transformations of P2 of degree at most
2 by Proposition 3.6, so they are contained in 〈〈AutR(P2)〉〉 [25, Lemma 6.6].

The groups in families (6) and (8) are conjugate to transformations of P2 preserving a
pencil of lines through a point. So, they have trivial image in the quotient [25, Proposition
5.3].

By Remark 5.3 there exist real conic bundles π : X
η→ X[2]

π[2]→ P1 as in family (7) that
have non-trivial image in

⊕
(0,1] Z/2Z. The image is finite and they are mapped onto the

generator er if and only if η blows up exactly one pair of non-real conjugate points q, q̄ such
that ν(π(p)) = r. �

Proof of Corollary 1.4. This is a direct consequence of the fact that the images of the
algebraic subgroups are finite by Theorem 1.3. �

Acknowledgements. The authors would like to express their warmest thanks to Jérémy
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Astérisque No. 332 (2010), Exp. No. 1000, vii, 75–100.
[21] H. Sumihiro: Equivariant completion II, J. Math. Kyoto Univ. 15 (1975), 573–605.
[22] W.C. Waterhouse: Introduction to Affine Group Schemes, Graduate Texts in Mathematics, 66. Springer-

Verlag, New York-Berlin, 1979.
[23] A. Weil: On Algebraic Groups of Transformations, Amer. J. Math. 77 (1955), 355–391.
[24] E. Yasinsky: Subgroups of odd order in the real plane Cremona group, J. Algebra 461 (2016), 87–120.
[25] S. Zimmermann: The abelianisation of the real Cremona group, Duke Math. J. 167 (2018), 211–267.

Maria Fernanda Robayo
Basel
Switzerland
e-mail: maferobayo@gmail.com

Susanna Zimmermann
LAREMA
Université d’Angers
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