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Abstract
In this paper, we solve affirmatively B.-Y. Chen’s conjecture for hypersurfaces in the Eu-

clidean space, under a generic condition. More precisely, every biharmonic hypersurface of the
Euclidean space must be minimal if their principal curvatures are simple, and the associated
frame field is irreducible.

1. Introduction

1. Introduction
In this paper, we solve B.-Y.Chen’s conjecture for hypersurfaces of the Euclidean space

in the case that every principal curvature is simple and some generic condition is satisfied.
A map ϕ : (M, g) → (N, h) is called harmonic if it is a critical point of the energy

functional E(ϕ) =
1
2

∫
M
|dϕ|2 vg. Its Euler-Lagrange equation is that the tension field τ =

τ(ϕ) vanishes. Recall that an isometric immersion ϕ : (M, g) → (N, h) is minimal if and
only if it is harmonic.

In 1983, Eells and Lemaire [8] introduced the notion of k-energy. A map ϕ : (M, g) →
(N, h) is called biharmonic if it is a critical point of the bienergy E2(ϕ) =

1
2

∫
M
|τ(ϕ)|2 vg.

A minimal isometric immersion is always biharmonic, and many researchers have asked
whether the converse is true, namely under which conditions, a biharmonic isometric im-
mersion is minimal. In this connection, Chen [4] proposed the conjecture

B.-Y. Chen’s conjecture: Every biharmonic submanifold of the Euclidean space must
be minimal.

Caddeo, Montald and Oniciuc [2] raised the generalized Chen’s conjecture:

The generalized B.-Y. Chen’s conjecture: Every biharmonic submanifold of a Rie-
mannian manifold of non-positive curvature must be minimal.

In 2010, Ou [15] gave a counter example of the generalized conjecture.
On the other hand, Hasanis and Vlachosin [9], and Defever [6] showed the Chen’s con-

jecture is true for hypersurfaces in the 4-dimensional Euclidean space. Recently, Akutagawa
and Maeta [1] showed that any complete, proper (i.e., the preimage of each compact subset
is compact) biharmonic submanifold of the Euclidean space is minimal.

The main theorem in this paper is as follows:
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Main theorem. Let M be an n-dimensional biharmonic hypersurface of the (n + 1)-
dimensional Euclidean space En+1. Assume that all the principal curvatures are simple and
that g(∇viv j, vk) � 0 for all distinct triplets {vi, v j, vk} of unit principal curvature vectors in
the kernel of dτ. Then, M is minimal.

For more precise statement of this theorem, see Theorem 8.2 and Definition 6.1 of irre-
ducibility.

We emphasize that we need not completeness assumption to M in Theorem 8.2.
The outline of this paper is as follows. In Section 2, we prepare several materials on bi-

harmonic submanifolds M in a Riemannian manifold M, and show that every n-dimensional
Riemannian manifold M can be embedded as a biharmonic, but not minimal hypersurface
in some (n + 1)-dimensional Riemannian manifold M (Theorem 2.3).

In Section 3, we treat n-dimensional non-minimal biharmonic submanifold Mn of the
(n + m)-dimensional space form M

n+m
(K) with constant sectional curvature K. We show

that if K ≤ 0, then |τ|2 does not attain a local maximum.
In Section 4, we treat non-minimal biharmonic hypersurfaces Mn of the space form

M
n+1

(K) with K ≤ 0. In this case, −τ/2 becomes a simple principal curvature of M. Let
{λi}i≤n be the principal curvatures of M, where λn = −τ/2, and {vi} be the corresponding
orthonormal principal curvature vectors. Since τ is not constant, F = {x ∈ M | τ(x) =
(constant c)} is a hypersurface of M around every generic point of M, and every vi is tangent
to F except vn. We call F a characteristic hypersurface of M. Every vi becomes a principal
curvature vector of F in M except vn. Let μi be the principal curvature of F in M for the
direction vi. We show that {λi, μi}i<n satisfies an over-determined ODE along the vn-curves
(Proposition 4.7).

In Section 5, we analyze the over-determined ODE, and show that the set of all initial
values of the ODE is an algebraic manifold in R2(n−1).

In Section 6, we introduce the notion of the irreducibility of the frame field {vi}i<n of F
(Definition 6.1). We show that {λi} and {μi} are linearly related under irreducibility assump-
tion.

In Section 7, we show that {λi} and {μi} are constant along F.
Finally, in Section 8, we give a proof to our main theorem, Theorem 8.2.

2. Biharmonic submanifolds in a Riemannian manifold

2. Biharmonic submanifolds in a Riemannian manifold
A smooth map between Riemannian manifolds ϕ : (M, g) → (M, g) is said to be bi-

harmonic if it is a critical point of the bienergy E2(ϕ) =
1
2

∫
M
|τ|2 vg. The Euler-Lagrange

equation is given by

(2.1) Δτ − gi jR(τ, ∂i)∂ j = 0,

where ∂i is the partial differentiation with respect to the local coordinates of M, R,R are the
curvature tensors of M and M, respectively, and

α(∂i, ∂ j) := ∇∂i(ϕ∗∂ j) − ϕ∗(∇∂i∂ j), τ := trα, Δ := −gi j∇i∇ j, Δ := −gi j∇i∇ j.(2.2)

In the following, we assume that M is a submanifold of (M, g) and the inclusion map ι is a
biharmonic map with respect to the induced metric g = ι∗g. Such a submanifold M is called
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a biharmonic submanifold of M. Then, ι∗T M is decomposed into T M ⊕ T M⊥ and α, τ have
their values in T M⊥. We also denote the normal connection of T M⊥ by ∇.

We decompose the equation (2.1) into the tangential direction and the normal direction.
For Δτ, we have

g((Δτ)	, ∂i) = g((∇ jα)(∂ j, ∂i), τ) + 2g(α(∂ j, ∂i),∇ jτ),(2.3)

(Δτ)⊥ = Δτ + gi jgk�g(α(∂ j, ∂k), τ)α(∂i, ∂�).

For g jkR(τ, ∂ j), ∂k)	, we have

g((g jkR(τ, ∂ j), ∂k))	, ∂i) = g jkg(R(∂i, ∂k), ∂ j), τ)(2.4)

= g jkg((∇∂iα)(∂k, ∂ j) − (∇∂kα)(∂i, ∂ j), τ) (by Codazzi eq.)

= g(∇∂iτ, τ) − g((∇ jα)(∂ j, ∂i), τ)

=
1
2
∇i|τ|2 − g((∇ jα)(∂ j, ∂i), τ).

Now we introduce the following notions:

(δα)(∂i) := −(∇ jα)(∂ j, ∂i), (α2)(V) := gi jgk�g(α(∂ j, ∂k),V)α(∂i, ∂�),(2.5)

(R
⊥
V )(∂i, ∂ j) := (R(V, ∂i)∂ j)⊥.

By (2.1) ∼ (2.5), the equations of biharmonic submanifolds can be written as follows:

Lemma 2.1. A submanifold M of (M, g) is a biharmonic submanifold if and only if the
following two equations hold:

Δτ + α2(τ) − tr R
⊥
τ = 0,(2.6a)

− 2g((δα)(∂i), τ) + 2g(α(∂ j, ∂i),∇ jτ) − 1
2
∇i|τ|2 = 0.(2.6b)

By using these equations, we first give examples of biharmonic hypersurfaces which are
not minimal submanifolds. In the following, we regard α, τ to be real values in terms of the
unit normal vector field N. We need first the following lemma.

Lemma 2.2. In a Riemannian manifold (M = M × R, g = g(t) + dt2), the second fun-
damental form αi j and the symmetric bilinear form βi j := g(R

⊥
N(∂i, ∂ j),N) on M are given

by

αi j = −1
2
g′i j, βi j = −1

2
g′′i j +

1
4
gk�g′ikg

′
j�,(2.7)

where, ∗′ means the differentiation with respect to t.
As a consequence, for every pair of symmetric bilinear forms α and β on M, there exists

a Riemannian metric g = g(t) + dt2 such that α coincides with the second fundamental form
at t = 0 and β coincides with g(R

⊥
N(∂i, ∂ j),N) at t = 0, respectively.

Proof. We add t to the coordinates {xi} of M to become the coordinates of M. We denote
the differentiation with respect to xi by ∂i, and the differentiation with respect to t by ∂t. For
the second fundamental form α, it is well known that

(2.8) αi j = g(∇∂i∂ j, ∂t) = −1
2
g′(∂i, ∂ j) = −1

2
g′i j.
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Furthermore, since g(∇∂i∂t, ∂t) = 0 and g(∇∂i∂t, ∂ j) = −g(∂t,∇∂i∂ j) =
1
2
g′i j, we have

∇∂i∂t =
1
2
gk�g′ik∂�. Thus, since g(∇∂t∂t, ∂i) = −g(∂t,∇∂t∂i) = 0 we have∇∂t∂t = 0. Therefore,

we obtain

g(R(∂t, ∂i)∂ j, ∂t) = g(∇∂t∇∂i∂ j − ∇∂i∇∂t∂ j, ∂t)

(2.9)

= ∂t{g(∇∂i∂ j, ∂t)} − g(∇∂i∂ j,∇∂t∂t) − ∂i{g(∇∂t∂ j, ∂t)} + g(∇∂t∂ j,∇∂i∂t)

= −1
2
g′′i j − 0 − 0 +

1
4
g(gpqg′jp∂q, g

k�g′ki∂�)

= −1
2
g′′i j +

1
4
gk�g′kig

′
� j.

Since for any α and β, we can solve (2.7) as a system of equations for g′ and g′′, the latter
half statement holds. �

By using Lemma 2.2, we have the following.

Theorem 2.3. Every n dimensional Riemannian manifold M can be embedded into an
(n+1)-dimensional Riemannian manifold M as a biharmonic hypersurface, but not minimal.

Proof. For every c � 0, we apply Lemma 2.2 to α = cg, β = (c2/n)g, and we construct
a Riemannian metric g. Then, it holds that τ = nc, which implies (2.6b), and that c2 · nc −
nc2/n · nc = 0, which implies (2.6a), respectively. �

Note that our Riemannian metric g satisfies that the sectional curvature
(gii)−1g(R(N, ∂i)∂i,N) = (gii)−1βii = c2/n > 0.

3. Biharmonic submanifolds Mn in a space form M
n+m

3. Biharmonic submanifolds Mn in a space form M
n+mFor submanifolds Mn in a space form M

n+m
of sectional curvature K, Codazzi equation

holds: ∇iα jk = ∇ jαik ([13], Corollary 4.4). Therefore, we have

(R
⊥
τ )(∂i, ∂ j) = Kg(∂i, ∂ j)τ, tr R

⊥
τ = nKτ,(3.1)

(δα)(∂i) = −(∇ jα)(∂ j, ∂i) = −(∇iα)(∂ j, ∂
j) = −∇iτ,

− 2g((δα)(∂i), τ) = 2g(∇iτ, τ) = ∇i|τ|2.
Thus, (2.6) is written as

Δτ + α2(τ) − nKτ = 0,(3.2a)
1
2
∇i|τ|2 + 2g(α(∂ j, ∂i),∇ jτ) = 0.(3.2b)

By taking the inner product of (3.2a) and τ, we have

g(Δτ, τ) = −∇i(g(∇iτ, τ)) + g(∇iτ,∇iτ) =
1
2
Δ|τ|2 + |∇τ|2,(3.3)

g(α2(τ), τ) = |ατ|2,
where we put (ατ)i j := g(α(∂i, ∂ j), τ). Therefore, |τ|2 satisfies
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(3.4)
1
2
Δ|τ|2 + |∇τ|2 + |ατ|2 − nK|τ|2 = 0.

From this elliptic equation for |τ|2, we have the following

Proposition 3.1 ([14] Proposition 2.4). Assume that M
n+m

is a space form of constant
sectional curvature K less than or equal to 0, and that M is a biharmonic submanifold of
M. If |τ|2 admits a local maximum at some point, then Mn is minimal. In particular, if |τ|2 is
constant, then M is minimal.

Proof. If |τ|2 admits a local maximum at some point, Δ|τ|2 ≥ 0 holds at the point. There-
fore, we have |ατ|2 = 0, which implies that τ = 0. Thus, the local maximum must be 0, so it
hold that τ ≡ 0, locally. By real analyticity of biharmonic submanifolds, τ must be 0. �

4. An over-determined system of ODE

4. An over-determined system of ODE
In this section, we assume that the ambient space M

n+1
is a space form of sectional cur-

vature K, and Mn is a biharmonic hypersurface in M.
We can study more precisely biharmonic hypersurfaces since we can diagonalize the sec-

ond fundamental form. Indeed, by taking an orthonormal frame consisting of unit principal
curvature vectors {vi}, we can diagonalize the second fundamental form as α(vi, v j) = λiδi j.
Then, by (3.2b), we have

Δτ + |α|2τ − nKτ = 0,(4.1a)

τ∇iτ + 2αi�∇�τ = (τ + 2λi)∇iτ = 0 (for all 1 ≤ i ≤ n).(4.1b)

Therefore, in the case of K ≤ 0, if we assume that there is no principal curvature satisfying
that τ + 2λi = 0, then τ must be constant, and then Mn is minimal. Thus, we have

Proposition 4.1. If Mn is a non-minimal biharmonic submanifold of the space form M
n+1

of constant curvature K with K ≤ 0, (−1/2)τ is a principal curvature.

Proposition 4.1 is essentially important to continue our arguments below to obtain main
theorem.

From now on, we assume that M is a biharmonic hypersurface, but not minimal.
Thus, in the case that K ≤ 0, the mean curvature is not constant. In the case that K ≥ 0,

we assume that the mean curvature is not constant. We always assume that n ≥ 2.
Let {λi} be the principal curvatures, and let us denote their unit principal curvature vectors

by {vi}, and put τ :=
∑
λi. In the following, all the subscripts of the tensor fields mean the

ones with respect to not the local coordinates, but {vi}. For examples, αi j = α(vi, v j) = δi jλi.
And we denote the differentiation with respect to vi by vi[∗]. Furthermore, g(∇viv j, vk) =
vi[g(v j, vk)] − g(v j,∇vivk) = −g(v j,∇vivk), in particular, g(∇viv j, v j) = 0, which we will use
frequently.

Note that vi is not uniquely determined when λi has multiplicity. To select them suitably,
we need the following formula.

Lemma 4.2. For all i, j, k ≤ n, we have

∇iα jk = δ jkvi[λ j] + (λ j − λk)g(∇viv j, vk),(4.2a)
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δ jkvi[λ j] − δikv j[λi] = −(λ j − λk)g(∇viv j, vk) + (λi − λk)g(∇v jvi, vk).(4.2b)

Proof. Using αi j = δi jλi,

∇iα jk = vi[α jk] − α(∇viv j, vk) − α(v j,∇vivk)(4.3)

= vi[δ jkλ j] − λkg(∇viv j, vk) − λ jg(v j,∇vivk)

= δ jkvi[λ j] − λkg(∇viv j, vk) + λ jg(∇viv j, vk).

Hence the first equation holds. The second equation is derived from Codazzi equation:
∇iα jk = ∇ jαik. �

In case k = j � i and λ j = λi in (4.2b), we have vi[λ j] = 0. It means that if λi has
multiplicity > 1, then vi[λi] = 0. We renumber the indices {i} so that τ + 2λn = 0. From
(4.1b), if λi � λn, then vi[λn] = 0. Therefore, if λn has multiplicity > 1, then vi[λn] = 0 for
all i ≤ n, τ is constant on M, and M is minimal. Since M is not minimal, we conclude that
λn is simple.

For other λi with multiplicity > 1, we reselect vi as follows. For an index i0, let E be
the tangent sub-bundle on M generated by {vi | λi = λi0}. Since λn is simple, E has trivial
normal connection ∇E⊥ along each integral vn curve. Therefore, we can choose orthonormal
bases {vi} of E so that ∇E⊥

vn
vi = 0, i.e., g(∇vnvi, v j) = 0 for all i and j satisfying λi = λ j = λi0 .

Moreover, we have vi[τ] = −2vi[λn] = 0 for i < n.
We summarize the above selection of {vi} as follows, and, from now on, we assume the

frame field {vi} satisfies the property.

Lemma 4.3. The principal curvature λn = −τ/2 is simple, and it holds that vi[τ] = 0 for
any i < n. Moreover, we can choose the frame field {vi} so that g(∇vnvi, v j) = 0 if λi = λ j.

Moreover, the chosen vector fields vi have the following good property.

Lemma 4.4. For any i ≤ n, it holds that

(4.4) ∇vnvi = 0.

Proof. We consider the covariant differentiation of (4.1b).

0 = ∇ j(τ∇iτ + 2αi�∇�τ)(4.5)

= ∇ jτ∇iτ + τ∇ j∇iτ + 2∇ jαi�∇�τ + 2αi�∇ j∇�τ
= ∇ jτ∇iτ + τ∇ j∇iτ + 2∇ jαin∇nτ + 2λi∇ j∇iτ

= (τ + 2λi)∇i∇ jτ + 2∇nτ∇nαi j + ∇iτ∇ jτ.

Exchanging i and j in (4.5), and taking the difference between them, we have (λi −
λ j)∇i∇ jτ = 0. Assume that λi � λ j. Then it holds that ∇i∇ jτ = 0. Substituting it into
(4.5), we have ∇nαi j = 0, because ∇iτ = 0 or ∇ jτ = 0 and ∇nτ � 0. Substitute it into (4.2a)
replaced i, j, k by n, i, j. Then, we have 0 = (λi − λ j)g(∇vnvi, v j). Therefore, g(∇vnvi, v j) = 0
if λi � λ j.

On the other hand, g(∇vnvi, v j) = 0 if λi = λ j by Lemma 4.3. Thus, we have g(∇vnvi, v j) = 0
for any i, j ≤ n. We also have

(4.6) ∇nαi j = 0
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for i, j ≤ n and i � j, by (4.2a). �

Since τ is not constant, on a neighborhood of a point satisfying that dτ � 0, the set
τ = (a constant) is a hypersurface of M.

Definition 4.5. We call each F defined by τ = (a constant) a characteristic hypersurface
of M.

For i < n, (4.1b) implies that vi[τ] = 0, because λi � λn = −τ/2. Therefore, the set
{vi | 1 ≤ i < n} is a locally defined orthonormal frame field of the tangent bundle of F.

Moreover, every vi is a principal curvature vector filed of F as follows.

Lemma 4.6. Every vector vi (i < n) is a principal curvature vector of hypersurface F in
M. We denote by β the second fundamental form, and by μi the principal curvature for the
direction vi. Then, it holds that, for i, j < n,

(4.7) β(vi, v j) = g(∇viv j, vn) = δi jμi, ∇vivn = −μivi.

Proof. We consider (4.2b) with i = n, j, k < n and j � k. We have

(4.8) 0 = −(λ j − λk)g(∇vnv j, vk) + (λn − λk)g(∇v jvn, vk).

Since ∇vnv j = 0 by Lemma 4.4 and λk � λn, we have

(4.9) 0 = g(∇v jvn, vk) = −g(vn,∇v jvk) = −β(v j, vk).

It also implies that ∇v jvn is parallel to v j. Therefore, ∇v jvn = g(∇v jvn, v j)v j = −μ jv j. �

Now, we derive an over-determined ODE.

Proposition 4.7. Let Mn be a biharmonic hypersurface of the space form M
n+1

of sec-
tional curvature K ≤ 0. Then, λi and μi satisfy the following ordinary differential equations:

− τ′′ + τ′∑i<nμi + τ(
1
4
τ2 − nK +

∑
i<nλ

2
i ) = 0,(4.10a)

(λi)′ = (
1
2
τ + λi)μi,(4.10b)

(μi)′ = μ2
i −

1
2
τλi + K.(4.10c)

Here, τ is a function of {λi} defined by τ = (2/3)
∑

i<nλi, and ∗′ is the differentiation vn[∗].
Proof. For (4.10a), we calculate ∇i∇ jτ for i, j ≤ n.

∇i∇ jτ = (∇vi(∇τ))(v j) = vi[v j[τ]] − ∇∇vi v jτ = vi[v j[τ]] −∑
k≤ng(∇viv j, vk)∇vkτ(4.11)

= vi[v j[τ]] − g(∇viv j, vn)∇nτ.

Therefore, ∇i∇iτ = −μiτ
′ for all i < n, and ∇n∇nτ = τ

′′. Substituting it into (4.1a), we have
an expression of Δτ:

(4.12) Δτ = −∇n∇nτ −∑
i<n∇i∇iτ = −τ′′ + τ′∑i<nμi.

Thus, we have
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0 = Δτ + |α|2τ − nKτ(4.13)

= −τ′′ + τ′∑i<nμi + τ(
1
4
τ2 − nK +

∑
i<nλi

2),

which is (4.10a).
For vn[λi], we use (4.2b) with j = n, k = i < n. We have, using (4.6),

− vn[λi] = −(λn − λi)g(∇vivn, vi) = (−1
2
τ − λi)μi,(4.14)

which is (4.10b)
For vn[μi], differentiating the equation of the definition of μi, we have

vn[μi] = vn[g(∇vivi, vn)] = g(∇vn∇vivi, vn) + g(∇vivi,∇vnvn)(4.15)

= g(R(vn, vi)vi + ∇vi∇vnvi + ∇[vn,vi]vi, vn) (by ∇vnvn = 0)

= K + λnλi + g(∇∇vn vi−∇vi vnvi, vn) (by Gauss, ∇vnvi = 0)

= K − 1
2
τλi + μig(∇vivi, vn) (by∇vnvi = 0,∇vivn = −μivi)

= K + μ2
i −

1
2
τλi,

which is (4.10c). �

In the case K ≤ 0, note here that we can conclude non-existence of non-minimal bi-
harmonic hypersurfaces if the overdetermined differential system (4.10) has only solutions
satisfying τ ≡ const.

In the case n = 2, we can prove by a different manner the B.-Y. Chen’s theorem:

Corollary 4.8 (Chen [4], Jiang [12])). Every biharmonic submanifold in the 3 dimen-
sional space form of non-positive sectional curvature is minimal.

Proof. Substituting n = 2, (4.10b), (4.10c) and τ′ = (2/3)λ′1 into (4.10a), we have

(4.16) (2/27)λ1{14λ1
2 − 16μ1

2 − 9nK − 12K} = 0.

Since λ1 = (3/2)τ is not constant,

(4.17) 14λ1
2 − 16μ1

2 − 9nK − 12K = 0.

Substituting (4.10b) and (4.10c) into the equation {14λ1
2 − 16μ1

2 − 9nK − 12K}′ = 0, we
have

(4.18) −16μ1{3λ1
2 − 2μ1

2 − 2K} = 0.

If μ1 ≡ 0, by (4.10b), τ = (2/3)λ1 must be constant. Thus, the submanifold is minimal. If
μ1 � 0 at a point, we have that 3λ1

2 − 2μ1
2 − 2K = 0. Then, together with (4.17), λ1 is

constant. We have done. �

5. Solutions to the over-determined system of ODE

5. Solutions to the over-determined system of ODE
In this section, we assume that Mn is a biharmonic hypersurface in the space form M

n+1

of sectional curvature K.
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We will analyze the algebraic ordinary differential system (4.10). In the following we
only treat the case i ≤ n − 1, and put n1 := n − 1. And for the summations which will be
treated in this section in i, we always assume that i run over the set 1 ≤ i ≤ n1. In this
section, we will treat a more general setting that it would occur that λi = λ j for different i
and j.

We will denote by λ = (λ1, · · · , λn1 ) ∈ Rn1 , and μ = (μ1, · · · , μn1 ) ∈ Rn1 . The solutions to
the ordinary differential system can be regarded as real analytic maps on a neighborhood of
the origin of R into R2n1 = {(λ, μ)}, and our τ is regarded as a function τ = (2/3)

∑
i≤n1

λi on
R2n1 .

Let S ⊂ R2n1 be the set of all the (λ, μ) such that the equation (4.10) has a solution with
initial value (λ, μ).

Lemma 5.1. Each (λ, μ) ∈ S is a zero point of the following polynomial.

P0 := −4
3
∑
λiμi

2 − 2
3
τ
∑
μi

2 +
4
9
∑
μi

∑
λiμi +

4
3
τ
∑
λi

2(5.1)

+
2
9
τ
(∑
μi

)2
+

1
2
τ3 − 2

3
(2n + 1)Kτ.

Proof. Assume that (λ, μ) = (λ(t), μ(t)) is a solution to (4.10). Then,

τ′ =
2
3
∑
λ′i =

2
3
∑

(
1
2
τμi + λiμi) =

1
3
τ
∑
μi +

2
3
∑
λiμi,(5.2)

τ′′ =
1
3
τ′
∑
μi +

1
3
τ
∑
μ′i +

2
3
∑
λ′iμi +

2
3
∑
λiμ
′
i .

Substituting this, (4.10b) and (4.10c) into (4.10a), we obtain the desired polynomial. �

Starting at P0, we determine the polynomial Pk inductively as follows: We substitute the
solution (λ(t), μ(t)) to the ordinary differential equation of normal form, (4.10b), (4.10c) in
the polynomial Pk, and differentiate it with respect to t, and substitute (4.10b), (4.10c) into
λ′i(t), μ

′
i(t). Then, we obtain a polynomial in {λi(t), μi(t)}. We define Pk+1, this polynomial.

Proposition 5.2. The set S of all initial values of (4.10) coincides with the algebraic
manifold ∩∞k=0(Pk)−1(0).

Proof. We proved that S ⊂ ∩∞k=0(Pk)−1(0). Conversely, let (λ, μ) be a point of
∩∞k=0(Pk)−1(0), and (λ(t), μ(t)) be the solution to the partial system (4.10b), (4.10c) with
initial value (λ, μ). Then, the k-th derivative of the left hand side of (4.10a) vanishes for any
k ≥ 0. Since the solution (λ(t), μ(t)) is real analytic, it means that (4.10a) is satisfied. �

For the ODE (4.10), we can classify all solutions giving minimal hypersurfaces.

Proposition 5.3. All the solutions to (4.10) satisfying that τ ≡ 0 are classified as follows:
In the case where K = 0 :

(5.3) μi = − 1
t + ci

, λi =
ai

t + ci
, or μi = 0, λi = ai.

In the case where K = −1 :

μi = − tanh(t + ci), λi =
ai

cosh(t + ci)
, or μi = ±1, λi = aie±t.(5.4)
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In the case where K = 1 :

(5.5) μi = tan(t + ci), λi =
ai

cos(t + ci)
.

Here, the sum of all the ai corresponding to the same ci must be zero:
∑
{i | ci=ck}ai = 0 for

every k. (regarding ci = ∞ for the singular solution in the case K = 0, and ci = ±∞ in the
case that K = −1). For example, if all the ci are different each other, it must be that ai = 0
for all i. If all ci are same, our condition is only that

∑
iai = 0.

Proof. Substituting τ = 0 in system (4.10), we see that equation (4.10a) is automatically
satisfied, and we have

(5.6) λ′i = λiμi, μ′i = μi
2 + K.

We solve the second equation, and substitute the solution into the first equation. Then we
get (5.3), (5.4), or (5.5). Each solution satisfies

∑
λi = (3/2)τ = 0 if and only if the last

condition for ai is satisfied. �

Proposition 5.4. There exist constant solutions to (4.10) which satisfy τ � 0 only in the
case n = 4, K > 0, and it holds that λi = ±

√
K, μi = 0, τ = ±2

√
K in this case.

Proof. Substituting λ′i = 0, μ′i = 0, τ′ = τ′′ = 0 into (4.10), we have(
1
2
τ + λi

)
μi = 0, μi

2 − 1
2
τλi + K = 0,(5.7)

1
4
τ2 − nK +

∑
iλi

2 = 0.

By the third one of (5.7), we have that K > 0, because τ � 0. In the case where λi = −τ/2
in the first and second ones of (5.7), we have μi

2 + (1/4)τ2 + K = 0 which does not occur.
Thus, we have μi = 0. Then, we have by the second one, λi = 2K/τ. By using together with
τ = (2/3)n1λi, we have τ = ±(2/

√
3)
√

n1K, λi = ±
√

3K/
√

n1. Substituting this into the third
one of (5.7), we obtain that n = 4 and the other claims. �

Corollary 5.5. In the case of the space form of constant curvature, the biharmonic hy-
persurface all of whose principal curvatures are constant and different each other must be
minimal.

Remark 5.6. There exist examples of biharmonic hypersurfaces having principal curva-
tures with multiplicities. They are isoparametric hypersurfaces in S n+1 (Ichiyama, Inoguchi
and Urakawa, [10], [11]). In the case where K ≤ 0, there are no such biharmonic hypersur-
faces which are not minimal by Proposition 3.1.

Lemma 5.7. Let {λi, μi} be a solution to (4.10) with τ � 0. If λi ≡ λ j, then μi ≡ μ j or
λi ≡ −(1/2)τ. Conversely, if μi ≡ μ j, then λi ≡ λ j.

Proof. If λi ≡ λ j, then (τ/2 + λi)(μi − μ j) ≡ 0, hence τ/2 + λi ≡ 0 or μi ≡ μ j. Conversely,
if μi ≡ μ j, then τ(λi − λ j) ≡ 0. Since τ � 0, we have λi ≡ λ j. �

Note that the case λi ≡ −τ/2 does not occur when the solution comes from a non-minimal
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biharmonic hypersurface, because λn = −τ/2 is simple. Next we consider solutions with
same λi, under K = 0.

Lemma 5.8. The solution to (4.10) with K = 0 satisfying that all the λi are the same,
must satisfy τ ≡ 0.

Proof. We assume τ � 0. We may write as λi = λ. Since τ = (2/3)n1λ, we get λ �
−(1/2)τ. Thus, by Lemma 5.7, all the μi are equal to each other, we may write as μi = μ.
Substituting these into (4.10), we have

(5.8) λ′ =
n1 + 3

3
λμ, μ′ = μ2 − n1

3
λ2,

n1(n1 + 9)
9

λ3 + n1μλ
′ − λ′′ = 0.

Differentiating the first equation, and substituting into the third one into which the first and
second equations are substituted, we obtain

(5.9) λ{n1(n1 + 6)λ2 +
(
n1

2 − 9
)
μ2} = 0.

Thus, τ = 0 if n1 ≥ 3.
In the case that n1 ≤ 2, we have μ = c λ. Substituting this into λ′, μ′, and eliminating λ′,

we have (1 + c2)λ2 = 0 which implies that τ = 0. �

We can also solve (4.10b), (4.10c) with K = 0 if we know the function τ.

Proposition 5.9. The ordinary differential system (4.10b), (4.10c) with K = 0 can be
solved as follows if we regard τ as a known function. If we put λi = ri sin θi, μi = ri cos θi,

(5.10) θi =
1
2

∫
τ dt, ri =

−1∫
cos θi dt

.

Proof. Let us rewrite (4.10b), (4.10c) in terms of ri, θi,

r′i sin θi + θ
′
i ri cos θi = (

1
2
τ + ri sin θi)ri cos θi,(5.11)

r′i cos θi − θ′i ri sin θi = ri
2 cos2 θi − 1

2
τ ri sin θi.

By (5.11), we have r′i = ri
2 cos θi, and θ′i ri = (1/2)τri which solve θi, and ri. �

6. Irreducibility of principal curvature vector fields

6. Irreducibility of principal curvature vector fields
In this section, we assume that Mn is a non-minimal biharmonic hypersurface in the

Euclidean space M = En+1, and all the principal curvatures {λi} are simple.
We denote the covariant differentiation on the characteristic hypersurface F by ∇̃, and the

second fundamental form of F in En+1 by α̃. The second fundamental form of F in M is
denoted by β.

Note that the unit normal frame fields N and vn on M are parallel with respect to the
normal connection on F in En+1. In fact, since g(∇vi N, vn) = −g(N,∇vivn) = −αin = 0 for
every i < n, we have g(∇̃vi N, vn) = 0, and ∇̃vi N = 0, ∇̃vivn = 0.

Since the N-component of α̃ coincides with the restriction of α to the tangent space T F
of F because of g(∇viv j,N) = α(vi, v j), we use the same notation α for it. The vn-component
β of α̃ is βi j = δi jμi by (4.7). Thus, α̃ can be diagonalized by the frames {N, vn} whose
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eigenvalues are λi and μi.
We calculate the covariant differentiation of α̃ as follows:

∇̃iα̃ jk = (∇̃vi α̃)(v j, vk)(6.1)

= ∇̃vi(α̃(v j, vk)) − α̃(∇̃viv j, vk) − α̃(v j, ∇̃vivk)

= ∇̃vi(δ jk(λkN + μkvn)) − g(∇̃viv j, vk)(λkN + μkvn) − g(v j, ∇̃vivk)(λ jN + μ jvn)

= δ jk(vi[λk]N + vi[μk]vn) − g(∇̃viv j, vk)(λkN + μkvn) + g(∇̃viv j, vk)(λ jN + μ jvn)

= {δ jkvi[λk] + (λ j − λk)g(∇̃viv j, vk)}N + {δ jkvi[μk] + (μ j − μk)g(∇̃viv j, vk)}vn.

Since ∇̃iα̃ jk = ∇̃ jα̃ik, the N-component of α̃ coincides with

(6.2) δ jkvi[λk] + (λ j − λk)g(∇̃viv j, vk) = δikv j[λk] + (λi − λk)g(∇̃v jvi, vk).

For i � j = k, it holds that

(6.3) vi[λ j] = (λi − λ j)g(∇̃v jvi, v j).

In the case that all the i, j and k are different each other,

(6.4) ∇̃iα jk = (λ j − λk)g(∇̃viv j, vk) = (λi − λk)g(∇̃v jvi, vk).

We conclude that the quantities sλi jk defined by

(6.5) sλi jk := (λ j − λk)g(∇̃viv j, vk)

are symmetric for all distinct triplets {i, j, k}.
By the same way, we obtain the relations of μ, by considering the vn-component: For all

the i, j and k which are different each other, we can conclude that

vi[μ j] = (μi − μ j)g(∇̃v jvi, v j),(6.6)

sμi jk := (μ j − μk)g(∇̃viv j, vk) are symmetric for all the i, j, k.

Assume that all the principal curvatures are simple. If g(∇̃viv j, vk) � 0, it holds that
sλi jk � 0, which implies that g(∇̃v jvk, vi), g(∇̃vkvi, v j) � 0. Thus, we obtain the relations that

(6.7)
μi − μ j

λi − λ j
=
μ j − μk

λ j − λk
=
μk − μi

λk − λi
=

sμi jk

sλi jk

.

Therefore, if g(∇̃viv j, vk) � 0 for every distinct triplet {i, j, k}, then all the
μi − μ j

λi − λ j
coincide

each other for every distinct pair {i, j}. Thus, if we denote the common quantity by ϕ, then
all μi −ϕλi have the same value. If we denote it by ψ, then it holds that μi −ϕλi = ψ for all i.

Conversely, if there exist ϕ and ψ satisfying that μi = ϕλi + ψ for all i, and there exist at
least two different λi, ϕ and ψ are uniquely determined. Really, we assume the following
weaker conditions:

Definition 6.1. Put J = {{i, j} | 1 ≤ i, j ≤ n1, i � j}. If a distinct triplet {i, j, k} satisfies
g(∇viv j, vk) � 0, then we define {i, j} ∼ { j, k} ∼ {i, k}. Let ∼J be the equivalence relation on
J generated by ∼. If all {i, j} ∈ J are equivalent under ∼J , the frame field {vi} is irreducible.



Biharmonic Submanifolds in a RiemannianManifold 337

Otherwise, the frame field is reducible.

Definition 6.2. If there exist functions ϕ, ψ satisfying μi = ϕλi + ψ for all 1 ≤ i ≤ n1, we
say that {λi} and {μi} are linearly related.

As we saw, we have

Lemma 6.3. If the frame field {vi} is irreducible, then {λi} and {μi} are linearly related.

When n1 = 3, the frame field {vi} is reducible if and only if all g(∇v1v2, v3) = g(∇v2v3, v1) =
g(∇v3v1, v2) = 0.

Proposition 6.4. If {λi} and {μi} have linear relation μi = ϕλi + ψ, and if there exist at
least three distinct λi, then ϕ and ψ are constant on F.

Proof. For i � j, we have (6.3)

vi[λ j] = (λi − λ j)g(∇̃v jvi, v j),

and (6.6)

vi[μ j] = (μi − μ j)g(∇̃v jvi, v j).

Since μi = ϕλi + ψ, we obtain that

(6.8) vi[ϕ] λ j + ϕ vi[λ j] + vi[ψ] = ϕ (λi − λ j) g(∇̃v jvi, v j) = ϕ vi[λ j].

Thus, we have vi[ϕ]λ j + vi[ψ] = 0 (i � j). Since we assume the existence of three different
λ j, we can conclude that vi[ϕ] = vi[ψ] = 0. Therefore, ϕ and ψ are constant on F. �

7. Constantness of principal curvatures

7. Constantness of principal curvatures
In this section, we assume that Mn is a non-minimal biharmonic hypersurface in the

Euclidean space En+1.
In the following, we assume that {λi(t)} and {μi(t)} have linear relation μi(t) = ϕ(t)λi(t) +

ψ(t). This assumption holds, under the case n1 = 2 or the condition that {vi} is irreducible in
the case n1 ≥ 3.

In this section, we do not assume that all the λi are simple. However, by Lemma 5.8, for
the solutions other than the one satisfying that τ ≡ 0, there exist at least two λi, so ϕ and ψ
are uniquely determined.

In the following, we will assume that τ � 0, and treat the solutions having λi different
each other.

Lemma 7.1. The functions ϕ, ψ must satisfy the following two ordinary differential equa-
tions:

(7.1) ϕ′ = −1
2
τ(ϕ2 + 1) + ϕψ, ψ′ = (ψ − 1

2
τϕ)ψ.

Proof. By substituting μi = ϕλi + ψ and (4.10c) into (4.10b), we have

(7.2)
{
ψ′ − ψ2 +

1
2
τϕψ

}
+

{
ϕ′ +

1
2
τ(ϕ2 + 1) − ψϕ

}
λi = 0.
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Due to Lemma 5.8, there exist λi which are different each other, and we have (7.1) for ϕ′, ψ′.
�

Later on, we will proceed calculations dividing by ϕ, we first have to show in the follow-
ing Lemma, which enables us to assume that ϕ � 0.

Lemma 7.2. The function ϕ is not 0 at a generic point.

Proof. Assume that ϕ ≡ 0. By substituting this into the first equation of Lemma 7.1, we
obtain τ = 0. We get Lemma 7.2. �

By Lemma 7.2, we will always assume that ϕ � 0. Furthermore, we will have several
lemmas for later uses. We define the function Λk :=

∑
i≤n1

λi
k (k = 0, 1, . . . ). Note that

Λ0 = n1 by definition.

Lemma 7.3. The differentiations λ′i and τ′ can be expressed in terms of ϕ, ψ, and λi as
follows:

λ′i =
1
2
τψ + (ψ +

1
2
τϕ)λi + ϕ(λi)2, τ′ =

1
3

(n1 + 3)τψ +
1
2
τ2ϕ +

2
3
ϕΛ2.(7.3)

Proof. The first equation of (7.3) can be obtained by substituting μi = ϕλi +ψ simply into
(4.10b), and we get the second one by summing it up. �

Lemma 7.4. The functions Λk satisfy the following ordinary differential equations.

(7.4) Λ′k = k
{

1
2
τψΛk−1 + (

1
2
τϕ + ψ)Λk + ϕΛk+1

}
.

Proof. Lemma 7.3 implies that

Λ′k =
∑

((λi)k)′ = k
∑
λi

k−1λ′i(7.5)

= k
∑
λi

k−1
{

1
2
τψ + (ψ +

1
2
τϕ)λi + ϕ(λi)2

}

= k
∑{

1
2
τψλi

k−1 + (
1
2
τϕ + ψ)λi

k + ϕλi
k+1

}
,

from which we obtain immediately (7.4). �

Lemma 7.5. The function τ satisfies the following ordinary differential equation:

(7.6) τ′′ −
{

n1ψ +
3τ(ϕ2 + 1)

2ϕ

}
τ′ +

τ2(τϕ + (n1 + 3)ψ)
2ϕ

= 0.

Proof. We differentiate Λ1 = (3/2)τ in t, and apply Lemma 7.4, and express Λ1 in terms
of τ. Then we have

(7.7) Λ2 =
6τ′ − 3τ2ϕ − 2(n1 + 3)τψ

4ϕ
,

and
∑
μi = ϕΛ1 + n1ψ. Substituting these into

∑
μi,

∑
λi

2 of (4.10a), we obtain (7.6). �
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Lemma 7.6. The function ϕ is not constant.

Proof. By Lemma 7.2, ϕ � 0. Substituting ϕ = c (� 0) (7.1) in Lemma 7.1, we have
2cψ− (1+ c2)τ = 0, ψ′ = ψ2 − (1/2)cτψ, thus we obtain τ′ = (2c)−1τ2. Substituting it and its
differentiation into (7.6) in Lemma 7.5, we have (1 + c2)τ3 = 0, which completes the proof.

�

Next, we will show that ψ is not constant if τ � 0. To do it, we first show that ψ � 0.
Assume that ψ(t1) = 0 at some point t1 for the solution (λi, μi, ϕ, ψ). Then, Lemma 7.1 and
the uniqueness of solution to the ordinary differential equation imply that ψ(t) ≡ 0. Then, it
holds that μi = ϕ λi for all i. All the angles θi = arctan(λi/μi) = arctan(1/ϕ) in Proposition
5.9 are equal to each other, so we may write them as θ. Then, if we write by p, one of
indefinite integrals

∫
cos θ dt, we have that ϕ = cot θ, p′ = cos θ, and

θ =
1
2

∫
τ dt, ri =

−1
p + bi

,(7.8)

μi =
− cos θ
p + bi

, λi =
− sin θ
p + bi

, τ = −2
3

sin θ ·∑i≤n1

1
p + bi

.

We define shortly sk :=
∑

i(p + bi)−k. Since τ � 0, p is not constant, and we can define sk

for generic t. Then, substituting these into (5.1) in Lemma 5.1, we have

(7.9) cos2 θ =
s1

3 + 6s1s2

3(2s1s2 + 3s3)
.

Differentiating this and substitute p′ = cos θ and θ′ = τ/2, we have

2s1 sin2 θ = −(2s1s2 + 3s3)−2{4s1
3s2

2 − 4s1
4s3 + 9s1

2s2s3(7.10)

+ 18s2
2s3 + 36s1s3

2 − 9s1
3s4 − 54s1s2s4}.

By eliminating cos θ and sin θ from (7.9) and (7.10), we have

Q(p) := −4s1
5s2 + 12s1

3s2
2 − 18s1

4s3 + 63s1
2s2s3(7.11)

+ 54s2
2s3 + 162s1s3

2 − 27s1
3s4 − 162s1s2s4

= 0.

Since τ � 0, p is not constant. Thus, Q(p) must vanish identically as a rational function
in p. Thus, we obtain in particular, lim

p→∞ p7Q(p) = 0. On the other hand, since lim
p→∞ pk sk = n1

for each sk, we obtain that 0 = −2n1
3(n1 − 3)(n1 + 3)(2n1 + 3). Thus we have that n1 = 3.

Next, denote by m, the number of bi which are equal to b1. Let us consider the coefficients
of (p + b1)−7 in the partial fraction decomposition of Q(p). Then, since the coefficients are
equal to the one exchanging each sk into m in Q(p), the coefficient is equal to −2m3(m −
3)(m + 3)(2m + 3), and it must vanish. Thus, we obtain that m = 3.

It means that all the bi are equal to each other. But, in this case, all the λi must be equal
to each other, and due to Lemma 5.8, we obtain that τ ≡ 0.

Therefore, we obtain the following lemma.

Lemma 7.7. The function ψ does not attain 0.

Finally, we can show that ψ is not constant by Lemma 7.7.
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Lemma 7.8. The function ψ is not constant.

Proof. Assume that ψ = c � 0. Then, by substituting it into (7.1) in Lemma 7.1, we have
ϕ′ = (1/2)(2cϕ − τ(1 + ϕ2)), and c(2c − τϕ) = 0. Then, we have ϕ = 2c/τ, τ′ = τ3/(4c).
Together it and its differentiation, and Lemma 7.5, we obtain τ3 = 0. Thus, we have τ ≡ 0.

�

Proposition 7.9. Assume that n1 ≥ 3, all the principal curvatures λi are simple, and
τ � 0. Then, all the τ, ϕ, ψ, λi, and μi must be constant on F.

Proof. In the following, we will show inductively that Λk are constant along each F.
Λ0 = n1, and Λ1 = (3/2)τ are constant along each F. Assume that all the Λ� with � ≤ k, are
constant along each F. Then, their differentiations with respect to t are also constant along
each F. Therefore, by Lemma 7.4,

(7.12)
1
2
τψΛk−1 + (

1
2
τϕ + ψ)Λk + ϕΛk+1

are also constant along each F. Since ϕ and ψ are constant along each F by Proposition 6.4,
and ϕ � 0, Λk+1 is also constant along each F.

Therefore, all the elementary symmetric polynomials in λi are constant, and every λi is
also constant along each F. �

8. Proof of Main theorem

8. Proof of Main theorem
In this section, we assume that Mn is a non-minimal biharmonic hypersurface in the

Euclidean space En+1, all the principal curvatures of M are simple, and the frame field is
irreducible.

For every distinct triplet {i, j, k}, (6.3) and (6.5) hold, i.e.,

vi[λ j] = (λi − λ j)g(∇̃v jvi, v j), and sλi jk := (λ j − λk)g(∇̃viv j, vk) are symmetric in i, j and k.

(8.1)

By Proposition 7.9, λ j are constant along each F, which imply that vi[λ j] = 0. Thus, since
λi are simple, it holds that g(∇̃v jvi, v j) = 0. Therefore, g(∇̃v jv j, vi) = −g(∇̃v jvi, v j) = 0.
Combining with g(∇̃v jv j, v j) = 0, we get ∇̃v jv j = 0.

By the definition of the curvature tensor field and g(∇̃viv j, vk) = sλi jk/(λ j − λk), we obtain

g(R̃(vi, v j)v j, vi) = g(∇̃vi∇̃v jv j − ∇̃v j∇̃viv j − ∇̃[vi,v j]v j, vi)

(8.2)

= −v j[g(∇̃viv j, vi)] + g(∇̃viv j, ∇̃v jvi) − g(∇̃∇̃vi v j−∇̃v j vi
v j, vi) (by ∇̃v jv j = 0)

=
∑

kg(∇̃viv j, vk)g(∇̃v jvi, vk) −∑
k

{
g(∇̃viv j, vk) − g(∇̃v jvi, vk)

}
g(∇̃vkv j, vi) (by g(∇̃viv j, vi) = 0)

=
∑
k�i, j

sλi jk

λ j − λk
·

sλjik
λi − λk

−
∑
k�i, j

⎛⎜⎜⎜⎜⎜⎝ sλi jk

λ j − λk
−

sλjik
λi − λk

⎞⎟⎟⎟⎟⎟⎠ · sλk ji

λ j − λi

=
∑
k�i, j

2(sλi jk)2

(λi − λk)(λ j − λk)
.
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Therefore, the scalar curvature s̃ of F is expressed as

(8.3) s̃ =
∑
i� j

g(R̃(vi, v j)v j, vi) = 2
∑

i< j, k�i, j

2(sλi jk)2

(λi − λk)(λ j − λk)
.

Note that the terms of the right hand side of (8.3) having the same sλi1i2i3
(i1 < i2 < i3) are

(i, j, k) = (i1, i2, i3), (i1, i3, i2), (i2, i3, i1), and by a simple computation, their sum vanishes as
follows:

2(sλi1i2i3
)2

(λi1 − λi3 )(λi2 − λi3 )
+

2(sλi1i2i3
)2

(λi1 − λi2 )(λi3 − λi2 )
+

2(sλi1i2i3
)2

(λi2 − λi1 )(λi3 − λi1 )
= 0.(8.4)

Thus, we have the following

Lemma 8.1. Every F has zero scalar curvature.

On the other hand, applying Gauss equation to F regarding as a submanifold of En1+2, we
have, for every i � j,

g(R̃(vi, v j)v j, vi) = g(α̃(vi, vi), α̃(v j, v j)) − g(α̃(vi, v j), α̃(vi, v j))(8.5)

= λiλ j + μiμ j.

Thus, we have

0 =
∑

i� j g(R̃(vi, v j)v j, vi) =
∑

i< j (2λiλ j + 2μiμ j)(8.6)

=
(∑

iλi
)2 −∑

iλi
2 +

(∑
iμi

)2 −∑
iμi

2

= (n1 − 1)ψ(n1ψ + 3τϕ) +
1
4

(1 + ϕ2)(9τ2 − 4Λ2).

We rewrite (8.6) as follows.

4(n1 − 1)ψ(n1ψ + 3τϕ) + (1 + ϕ2)(9τ2 − 4Λ2) = 0.(8.7)

By substituting μi = ϕλi + ψ into (5.1) of Lemma 5.1, we have

4
(
n1

2 − 9
)
τψ2 + 2ϕψ{(6n1 − 9)τ2 + 4(n1 − 6)Λ2}(8.8)

+ 3{3τ3(1 + ϕ2) + 8τΛ2 − 8ϕ2Λ3}
= 0

Together with (8.7) and (8.8), and differentiating twice (8.7) and (8.8), and eliminating
Λ3,Λ2, and τ, we obtain our main theorem.

Theorem 8.2. Every biharmonic hypersurface M in the Euclidean space is minimal if we
assume that all the principal curvatures are simple, and the frame {vi} of a characteristic
submanifold F = {τ = c} for a constant c, is irreducible.

Proof. In the following, we will proceed to eliminate Λ3,Λ2, and τ exactly. By differen-
tiating (8.7) in t, we have
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9(n1 − 1)τϕψ2 + 2n1(n1 − 1)ψ3 +
1
2
ψ{9τ2(1 + 2ϕ2) + 4Λ2(−1 + (n1 − 3)ϕ2)}(8.9)

+ ϕ(1 + ϕ2)(3τΛ2 − 2Λ3) = 0.

Eliminating Λ3 from (8.8) and (8.9), we have

− 9τ3(1 + ϕ2)2 − 6τ2ϕψ{2(n1 − 6) + (2n1 − 21)ϕ2}(8.10)

− 4τψ2{n1
2 − 9 + (n1

2 − 27n1 + 18)ϕ2}
+ 24n1(n1 − 1)ϕψ3

+ 4Λ2{3τ(−2 + ϕ2 + 3ϕ4) + 2ϕ(−n1 + 3 + (2n1 − 3)ϕ2)ψ} = 0.

Eliminating Λ2 from (8.7) and (8.10), we have

9τ3(1 + ϕ2)2(−7 + 8ϕ2)(8.11)

+ 6τ2ϕψ(1 + ϕ2)(−17n1 + 33 + 2(11n1 − 3)ϕ2)

+ 4τψ2{−7n1
2 + 6n1 + 9 − (n1 − 9)(5n1 − 3)ϕ2 + 4n1(5n1 − 3)ϕ4}

+ 8n1(n1 − 1)ϕψ3(−n1 + 6 + 2n1ϕ
2) = 0.

To eliminate τ, differentiate (8.11) in t, and apply Lemma 7.3 to τ′, and eliminate Λ2 by
using (8.7). Then, we obtain the following four equations:

By differentiating the first term of (8.11), we have

{9τ3(1 + ϕ2)2(−7 + 8ϕ2)}′(8.12)

= 9τ2(1 + ϕ2)(−7 + 8ϕ2)

× {6τ2ϕ(1 + ϕ2) + τψ(n1 + 3 + (7n1 − 3)ϕ2) + 2n1(n1 − 1)ϕψ2}
− 54τ3ϕ(1 + ϕ2)(−1 + 4ϕ2)(τ(1 + ϕ2) − 2ϕψ).

By differentiating the second term of (8.11), we have

{6τ2ϕψ(1 + ϕ2)
(−17n1 + 33 + 2(11n1 − 3)ϕ2)}′(8.13)

= τϕψ{−17n1 + 33 + 2(11n1 − 3)ϕ2}
× {21τ2ϕ(1 + ϕ2) + 2τψ(2n1 + 9 + (14n1 − 3)ϕ2) + 8n1(n1 − 1)ϕψ2}

− 3τ2ψ(τ(1 + ϕ2) − 2ϕψ){−17n1 + 33 + 3(5n1 + 27)ϕ2 + 10(11n1 − 3)ϕ4}.
By differentiating the third term of (8.11), we have

(4τψ2 p)′ = 4τ2ϕψ2 p +
8n1(n1 − 1)ϕψ4 p

3(1 + ϕ2)
+ 4τp

{
2ψ3 +

1
3

(n1 + 3)ψ3 +
2(n1 − 1)ϕ2ψ3

1 + ϕ2

}(8.14)

− 4(5n1 − 3)τϕψ2(−n1 + 9 + 8n1ϕ
2)(τ(1 + ϕ2) − 2ϕψ),

where p = −7n1
2 + 6n1 + 9 − (n1 − 9)(5n1 − 3)ϕ2 + 4n1(5n1 − 3)ϕ4.

And finally differentiating the fourth term of (8.11), we have

{8n1(n1 − 1)ϕψ3(−n1 + 6 + 2n1ϕ
2)}′(8.15)

= −4n1(n1 − 1)ψ3(−n1 + 6 + 2n1ϕ
2)(τ(1 + 4ϕ2) − 8ϕψ)
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− 16n1
2(n1 − 1)ϕ2ψ3(τ(1 + ϕ2) − 2ϕψ).

Together (8.12), (8.13), (8.14) and (8.15), by multiplying the denominator, and setting all
the terms of the resulting equation in order of τ, we obtain the following equation:

324τ4ϕ(1 + ϕ2)3(−3 + 2ϕ2)(8.16)

+ 9τ3ψ(1 + ϕ2)2{−4(n1 + 24) − (257n1 − 249)ϕ2 + 4(53n1 + 15)ϕ4}
+ 6τ2ϕψ2(1 + ϕ2)

{−101n1
2 − 159n1 + 468

− (265n1
2 − 783n1 − 90)ϕ2 + 4(85n1

2 + 33n1 − 18)ϕ4}
+ 4τψ3{−4n1

3 − 78n1
2 + 81n1 + 81

− 3(53n1
3 − 69n1

2 − 222n1 + 126)ϕ2

− 9(3n1
3 − 89n1

2 + 11n1 + 27)ϕ4

+ 4n1(59n1
2 + 21n1 − 36)ϕ6}

+ 8n1(n1 − 1)ϕψ4{−(n1 − 3)(7n1 + 27) − (n1 − 15)(5n1 + 3)ϕ2 + 4n1(5n1 + 6)ϕ4}
= 0.

The equation (8.11) is of third order in τ, and (8.16) is of fourth order in τ. Therefore,
we use Euclid’s algorithm to eliminate τ. Namely, dividing (8.16) by (8.11), the remainder,
denoted by f2, is of order two in τ. And dividing (8.11) by f2, we denote the remainder by
f1, and finally dividing f2 by f1, we denote the remainder by f0, then f0 does not include τ.
Note that the remainder is of the form of rational function r/q (where q, r are polynomials).
But, if we multiply by q in advance, we may ignore q, and may use r in the next step.
Finally the obtained numerator is of the form which is the multiplication of the following
three polynomials:

(8.17) 72n1(n1 − 1)ϕ3ψ4(1 + ϕ2)2,

{−105(3n1
2 + n1 + 12) + (1026n1

2 + 875n1 − 5901)ϕ2(8.18)

− 2(567n1
2 + 1264n1 − 351)ϕ4 + 8(45n1

2 + 34n1 − 159)ϕ6}2,

−7(17n1 − 33)2(5n1
4 − 6n1

3 − 13n1
2 + 3n1 + 27)(8.19)

− {
100964n1

6 − 269159n1
5 − 362329n1

4 + 1289439n1
3

+ 839475n1
2 − 4210164n1 + 2755134

}
ϕ2

+ 3
{
167725n1

6 − 789504n1
5 + 904142n1

4 + 651168n1
3

− 3766311n1
2 + 5957928n1 − 3211164

}
ϕ4

− {
825166n1

6 − 5345493n1
5 + 11702488n1

4 + 1018458n1
3

− 21744558n1
2 + 11059011n1 + 2628288

}
ϕ6

+
{
576422n1

6 − 5693096n1
5 + 13627127n1

4 − 9103320n1
3

− 22777452n1
2 + 44245224n1 − 20731545

}
ϕ8

− 12
{
13322n1

6 − 199503n1
5 + 758200n1

4 − 367722n1
3
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− 1262466n1
2 + 1720305n1 − 683640

}
ϕ10

− 4
{
1094n1

6 + 56460n1
5 − 446779n1

4 + 834336n1
3

+ 731808n1
2 − 2056212n1 + 843453

}
ϕ12

+ 16(7n1 − 9)2(2n1
2 − 9)(5n1

2 − 26n1 − 43)ϕ14.

The multiplication f0 of three equations (8.17), (8.18) and (8.19) should be zero identi-
cally. This implies that one of the factors of f0 should be zero identically. Note that each
factor of f0 is a polynomial only in ϕ or ψ, and its coefficient of the highest term is non-zero
for every natural number n1. Therefore, if f0 vanishes identically, then ϕ or ψ must be a
constant. Thus, by Lemmas 7.6 and 7.8, we obtain that τ ≡ 0.

We have done. �

Since Euclid’s algorithm for polynomials is a tedious calculation, we will give examples
of calculation using a computer in Appendix.

9. Appendix: Euclid’s algorithm using a computer

9. Appendix: Euclid’s algorithm using a computer
We give two examples of calculations using formula manipulation systems, mathemat-

ica1 and Maple2. Both are commercial softwares, but free softwares probably have similar
functions.

With mathematica, we calculate as follows.

f3 = 〈the left hand side of (8.11)〉;
f4 = 〈the left hand side of (8.16)〉;
f2 = Numerator[Factor[PolynomialRemainder[f4, f3, tau]]];

f1 = Numerator[Factor[PolynomialRemainder[f3, f2, tau]]];

f0 = Numerator[Factor[PolynomialRemainder[f2, f1, tau]]]

For Maple, we prepare a function which calculates remainder of multivariable polynomi-
als.
with(PolynomialTools);

polynomialremainder := proc(poly1, poly2, var)

local cf1, cf2, deg11, deg12, top2, ratio, i, j, poly;

cf1 := CoefficientList(poly1, var);

deg11 := numelems(cf1);

cf2 := CoefficientList(poly2, var);

deg12 := numelems(cf2);

top2 := cf2[deg12];

for j from deg11 by -1 to deg12 do

ratio := cf1[j]/top2;

for i from 0 to deg12-1 do

cf1[j-i] := cf1[j-i]-cf2[deg12-i]*ratio

end do

1Mathematica is a registered trademark of Wolfram Research Inc.
2Maple is a registered trademark of Waterloo Maple Inc.
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end do;

poly := 0;

for i to deg11 do

poly := poly+cf1[i]*varˆ(i-1)

end do;

return poly

end proc;

Using this, we calculate as follows.
f3 := 〈the left hand side of (8.11)〉;
f4 := 〈the left hand side of (8.16)〉;
f2 := numer(factor(polynomialremainder(f4, f3, tau)));

f1 := numer(factor(polynomialremainder(f3, f2, tau)));

f0 := numer(factor(polynomialremainder(f2, f1, tau)));
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