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Abstract
In this paper, we explore the similarity between normal homogeneity and δ-homogeneity in

Finsler geometry. They are both non-negatively curved Finsler spaces. We show that any con-
nected δ-homogeneous Finsler space is G-δ-homogeneous, for some suitably chosen connected
quasi-compact G. So δ-homogeneous Finsler metrics can be defined by a bi-invariant singular
metric on G and submersion, just as normal homogeneous metrics, using a bi-invariant Finsler
metric on G instead. More careful analysis shows, in the space of all Finsler metrics on G/H,
the subset of all G-δ-homogeneous ones is in fact the closure for the subset of all G-normal ones,
in the local C0-topology (Theorem 1.1). Using this approximation technique, the classification
work for positively curved normal homogeneous Finsler spaces can be applied to classify pos-
itively curved δ-homogeneous Finsler spaces, which provides the same classification list. As a
by-product, this argument tells more about δ-homogeneous Finsler metrics satisfying the (FP)
condition (a weaker version of positively curved condition).

1. Introduction

1. Introduction
The concept of δ-homogeneity is introduced by V. N. Berestovskii and C. P. Plaut [4], and

extensively studied in Riemannian geometry [5] [6] [7] [8]. Recall that a connected metric
space (M, d) is called G-δ-homogeneous, where G is a closed connected subgroup of the
isometry group I(M, d), if for any point x, y ∈ M, there exists an isometry g ∈ G satisfying
g(x) = y and the displacement function f (·) = d(·, g(·)) on M reaches its maximum at x
(such an isometry g ∈ G is called a δ(x)-translation).

In [20], L. Zhang and S. Deng defined and studied δ-homogeneity in Finsler geome-
try. They provided several equivalent descriptions for the G-δ-homogeneity. Instead of the
isometry g ∈ G which achieves the transitivity and maximal displacement, we can also
use δ(·)-Killing vector fields or δ-vectors from g = Lie(G) (see [20] or Section 2). Their
alternative description for a G-δ-homogeneous Finsler metric F on G/H, is the founda-
tion for defining the Chebyshev metric F̃, i.e. a bi-invariant singular metric on G induced
by F on M = G/H. Then F is canonically determined by the Chebyshev metric and the
Finsler submersion π : (G, F̃) → (G/H, F). This alternative description for δ-homogeneity
in Finsler geometry is very similar to that for normal homogeneity, which uses smooth bi-
invariant Finsler metrics on G instead. Though defining the Chebyshev metric, or any other
bi-invariant smooth or singular metric on G, will require G to be quasi-compact, i.e. g is

2010 Mathematics Subject Classification. 22E46, 53C30.
Supported by NSFC (no. 11771331).
*Corresponding author.



178 M. Xu and L. Zhang

compact, we prove this is not an essential obstacle, i.e. for any connected δ-homogeneous
Finsler space (M, F), we can choose a suitable connected quasi-compact Lie group G, such
that (M, F) is G-δ-homogeneous (see Theorem 3.6 below).

So both normal homogeneity and δ-homogeneity can be defined by submersion. This
explains the phenomenon that they share many geometric properties, for example, both have
0 S-curvature and non-negative flag curvature. This similarity in their defining patterns can
be formulated as the following approximation theorem, where we apply the fundamental
technique of approximating a singular metric (or a singular norm) by smooth ones in the
local C0-topology.

Theorem 1.1. Assume G is a connected quasi-compact Lie group which acts effectively
on the smooth coset space G/H. In the space of all smooth Finsler metric on G/H, the subset
of all G-δ-homogeneous ones coincides with the closure for all G-normal homogeneous ones
in the local C0-topology.

Here the local C0-topology means, on the fixed manifold M, the sequence of singular
or smooth Finsler metrics {Fn : T M → R} converge to F : T M → R, iff they uniformly
converge to F when restricted each compact subset of T M.

Theorem 1.1 brings a natural question: what geometric properties of G-normal homoge-
neous Finsler metrics can be passed to their local C0-limit metrics, i.e. those G-δ-homoge-
neous ones? Studying this question in the general context seems to be very intriguing. But
local C0-convergence is weak for studying most curvature properties, and there is no conve-
nient comparison theorems in Finsler geometry as in Riemannian geometry.

In this paper, we will use Theorem 1.1, and the method in [17] to study the classification
of positively curved δ-homogeneous Finsler spaces. The key observation in [17] is that a
flat splitting subalgebra (see [17] or Section 4) provides totally geodesic flat subspace with
a dimension bigger than 1 in a normal homogeneous Finsler space. So it is an obstacle for
positive flag curvature. It still works for δ-homogeneous Finsler spaces (see Lemma 4.1), so
we have the following theorem.

Theorem 1.2. Let G be a compact connected Lie group which acts effectively on the
smooth coset space G/H. Then G/H admits positively curved G-δ-homogeneous Finsler
metrics iff it admits positively curved G-normal homogeneous Riemannian metrics.

Notice a positively curved homogeneous Finsler space (M, F) is compact by Bonnet-
Myers Theorem, so does its isometry group I(M, F), through which G acts on G/H. The
classification for positively curved homogeneous spaces is only up to local isometries. We
can ”cancel” some local product factor of G contained in H without changing the metric,
and at the same time with the effectiveness of G satisfied. So Theorem 1.2 indicates the
classification list for positively curved δ-homogeneous Finsler spaces coincides with that in
[17], or that of M. Berger in [2] (plus B. Wilking’s space [15]). To be precise, it consists of

(1) Rank one compact symmetric spaces

S n−1 = SO(n)/SO(n − 1),CPn−1 = SU(n)/S (U(n − 1)U(1)),

HPn−1 = Sp(n)/Sp(n − 1)Sp(1), and F4/Spin(9).

(2) Other homogeneous spheres and complex projective spaces
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S 2n−1 = SU(n)/SU(n − 1) = U(n)/U(n − 1),

S 4n−1 = Sp(n)/Sp(n − 1) = Sp(n)U(1)/Sp(n − 1)U(1)

= Sp(n)Sp(1)/Sp(n − 1)Sp(1),

S 6 = G2/SU(3), S 7 = Spin(7)/G2,

S 15 = Spin(9)/Spin(7), and CP2n−1 = Sp(n)/Sp(n − 1)U(1).

(3) Berger’s spaces SU(5)/Sp(2)U(1) and Sp(2)/SU(2).
(4) Wilking’s space S 1,1 = SU(3) × SO(3)/U(2).

The flat splitting subalgebra and the totally geodesic technique can tell more when we
study δ-homogeneous Finsler spaces satisfying the (FP) condition (a weaker version of pos-
itive flag curvature condition, which is also called the flag-wise positively curved condition;
see [18] or Section 4). We prove a flag-wise positively curved δ-homogeneous Finsler space
G/H must be compact, and satisfy the rank inequality as positively curved homogeneous
spaces [19]. When dim G/H is even, it admits flag-wise positively curved δ-homogeneous
(or normal homogeneous) Finsler metrics iff it admits positively curved δ-homogeneous (or
normal homogeneous) Finsler metrics. But when dim G/H is odd, there are many more ex-
amples of flag-wise positively curved δ-homogeneous Finsler spaces than those positively
curved ones.

2. Preliminaries

2. Preliminaries
In this section, we collect some fundamental knowledge on Finsler geometry from [1]

and [13], and Finsler submersion from [12].

2.1. Minkowski norm and Finsler metric.
2.1. Minkowski norm and Finsler metric. A Minkowski norm on a real vector space V,

dim V = n, is a continuous function F : V→ [0,+∞) satisfying the following conditions:
(1) Positiveness and smoothness: F is a positive smooth function on V\{0}.
(2) Positively homogeneity of degree one: F(λy) = λF(y) when λ ≥ 0.
(3) Strong convexity: given any basis {e1, . . . , en} of V and correspondingly the linear

coordinates y = yiei, the Hessian matrix

(gi j(y)) =
(
1
2

[F2(y)]yiy j

)

is positive definite whenever y � 0.
We will call (V, F) a Minkowski space.

The Hessian matrix defines an inner product 〈·, ·〉Fy on V by

〈u, v〉Fy = gi j(y)uiv j =
1
2

d2

dtds
F2(y + tu + sv)|s=t=0,

from which we see it is independent of the choice for the linear basis.
A Finsler metric on a smooth manifold M is a continuous function F on T M such that

its restriction to the slit tangent bundle T M\0 is smooth, and its restriction to each tangent
space is a Minkowski norm. We will also call (M, F) a Finsler space. Given any smooth
tangent field Y on M which is non-vanishing everywhere in an open set  ⊂ M, the Hessian
matrices (gi j(x, Y(x))) or equivalently the inner products 〈·, ·〉FY(x) at each x ∈  define a
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smooth Riemannian metric on  . We will simply call this metric the localization of F at Y ,
and denote it as gF

Y .
Important examples of Finsler metrics include Riemannian metrics, Randers metrics,

(α, β)-metrics, etc. Riemannian metrics are a special class of Finsler metrics whose Hes-
sian matrices at each point only depends on x ∈ M rather than y ∈ TxM. A Riemannian
metric can also be defined as a global smooth section gi jdxidx j of Sym2(T ∗M). Randers
metrics are the most simple and important class of non-Riemannian metrics in Finsler ge-
ometry. They are defined by F = α+β, in which α is a Riemannian metric and β is a 1-form.
They can be naturally generalized as (α, β)-metrics which have the form F = αφ(β/α) with
a positive smooth function φ and similar α and β as Randers metrics. In recent years, there
have been a lot of research works for (α, β)-metrics as well as for Randers metrics.

2.2. Geodesic, Riemannian curvature, and totally geodesic subspace.
2.2. Geodesic, Riemannian curvature, and totally geodesic subspace. On a Finsler

space (M, F), we usually choose the standard local coordinates (xi, y j), where x = (xi) ∈ M
and y = y j∂x j ∈ TxM, to present the connections, curvatures, and other geometric quantities.

The geodesics are important geometric subjects in Finsler geometry. They are smooth
curves which satisfies the locally minimizing principle with respect to the distance function
dF(·, ·) induced by the Finsler metric F. Notice dF(·, ·) may not be reversible in general. We
will always parametrize a geodesic c(t) on (M, F) to have a nonzero constant speed, i.e. the
F-length of the tangent field ċ(t) = d

dt c(t) is a positive constant for all t. Then the geodesics
can be equivalently defined as following.

First, we have a globally defined smooth vector field G on T M\0, called the the geodesic
spray. For any standard local coordinates, it can be presented as

(2.1) G = yi∂xi − 2Gi∂yi ,

where

(2.2) Gi =
1
4
gil([F2]xkylyk − [F2]xl).

Then a curve c(t) on M is a geodesic of nonzero constant speed if and only if (c(t), ċ(t)) is
an integration curve of G. For standard local coordinates, a geodesic c(t) = (ci(t)) satisfies
the equations

(2.3) c̈i(t) + 2Gi(c(t), ċ(t)) = 0.

The coefficients Gi of the geodesic spray G are important for us to present curvatures in
Finsler geometry.

For example, we have a similar curvature as in the Riemannian case, which is called the
Riemann curvature. It can be defined either by the Jacobi field equation for the variation
of a constant speed geodesic, or by the structure equation for the curvature of the Chern
connection.

Using any standard local coordinates, the Riemannian curvature can be presented as RF
y =

Ri
k(y)∂xi ⊗ dxk : TxM → TxM, where

(2.4) Ri
k(y) = 2∂xkGi − y j∂2

x jykGi + 2G j∂2
y jykGi − ∂y jGi∂ykG j.

Using the Riemannian curvature, the sectional curvature can be generalized to Finsler
geometry, which is called the flag curvature. We call (x, y,P) a flag triple, if x is a point in
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M, P is a tangent plane in some TxM, and y is a nonzero vector in P. Assume P is linearly
spanned by y and v, then the flag curvature for (x, y,P) is

(2.5) KF(x, y,P) =
〈RF

y v, v〉Fy
〈y, y〉Fy 〈v, v〉Fy − (〈y, v〉Fy )2 .

When F is a Riemannian metric, it is just the sectional curvature for (x,P), which is inde-
pendent of the choice of y.

Using Riemann curvature or flag curvature, the Ricci curvature can also be generalized to
Finsler geometry, i.e. for any x ∈ M and nonzero tangent vector y ∈ TxM,

RicF(x, y) = tr(RF
y ) =

n∑
i=1

F(y)2KF(x, y, y ∧ vi),

where {v1, . . . , vn} is an orthogonal basis for the gF
y -orthogonal complement of y in TxM.

Z. Shen has an important observation that all these curvatures described above can be
closely related to Riemannian geometry (see Proposition 6.2.2 in [13]), so we may call
them Riemannian curvatures. In this work, we will need the following refinement of his
observation.

Proposition 2.1. Let Y be a smooth vector field on a Finsler space (M, F), such that
y = Y(x) � 0, and Y generates a geodesic of constant speed through x, then RF

y = RgF
Y
y ,

RicF(x, y) = Ricg
F
Y (x, y), and for any tangent plane P in TxM containing y, KF(x, y,P) =

KgF
Y (x,P).

The statements for RF
y and KF(x, y,P) are contained in Theorem 4.2 in [19]. The state-

ment for RicF(x, y) then follows easily.
A submanifold N of a smooth Finsler space (M, F) can be naturally endowed with a

smooth submanifold metric, denoted as F|N . At each x ∈ N, the Minkowski norm F|N(x, ·)
is just the restriction of the Minkowski norm F(x, ·) from TxM to TxN. We say that (N, F|N)
is a Finsler submanifold or a Finsler subspace.

For the study of Riemann curvature and flag curvature, the most important Finsler sub-
spaces are totally geodesic subspaces. A Finsler subspace (N, F|N) is totally geodesic iff, for
any standard local coordinate system (xi, y j) such that N is locally defined by xk+1 = · · · =
xn = 0 where n = dim M, we have

Gi(x, y) = 0, k < i ≤ n, y ∈ TxN.

A direct calculation shows that in this case, the Riemann curvature RF|N
y : TxN → TxN of

(N, F|N) is just the restriction of the Riemann curvature RF
y of (M, F), when y is a nonzero

tangent vector in TxN at x ∈ N. Therefore, we have [17]

Proposition 2.2. Let (N, F|N) be a totally geodesic submanifold of (M, F). Then for any
flag (x, y,P) in N (i.e. x ∈ N, y is nonzero tangent vector in TxN, and P is a tangent plane
containing y), we have

KF|N (x, y,P) = KF(x, y,P).

2.3. Finsler Submersion.
2.3. Finsler Submersion. A linear map π : (V1, F1)→ (V2, F2) between two Minkowski

spaces is called a Finsler submersion, if we have
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(2.6) π({w ∈ V with F1(w) ≤ 1}) = {u ∈ V with F2(u) ≤ 1}.
It is obvious that a submersion map π must be surjective, and that the Minkowski norm F2

on V2 is uniquely determined by the following equality,

F2(u) = inf{F1(w)|π(w) = u}.
Given the Minkowski space (V1, F1) and a surjective linear map π : V1 → V2, there exists
a unique Minkowski norm F2 on V2 such that π is a submersion. We usually say that F2 is
induced by F1 and submersion.

Given the submersion π : (V1, F1) → (V2, F2), the horizonal lift of a nonzero vector
u ∈ V2 is the unique w ∈ V1 satisfying the conditions

(2.7) π(w) = u and F1(w) = F2(u).

Then π : (V1, 〈·, ·〉F1
w )→ (V2, 〈·, ·〉F2

u ) is also a submersion between Euclidean spaces.
A smooth map π : (M1, F1) → (M2, F2) between two Finsler spaces is called a submer-

sion, if for any x ∈ M1 the induced tangent map π∗ : (TxM1, F1(x, ·))→ (Tρ(x)M2, F2(ρ(x), ·))
is a Finsler submersion between Minkowski spaces. Given the surjective smooth map
π : M1 → M2, and a Finsler metric F1 on M1, if there exists a metric F2 on M2 which
makes π a Finsler submersion, we will call F2 the induced metric by F1 and the submersion
π. The induced metric must be unique, even though it usually does not exist.

For a Finsler submersion π : (M1, F1)→ (M2, F2), we can define the horizonal lift for flag
triples. We call the flag triple (x1, y1,P1) on M1 the horizonal lift of the flag triple (x2, y2,P2)
on M2, iff π(x1) = x2, y2 is the horizonal lift of y1, and P1 is the horizonal lift of P2 with
respect to π∗ : (Tx1 M1, 〈·, ·〉F1

y1 )→ (Tx2 M2, 〈·, ·〉F2
y2 ).

The importance of Finsler submersion for the study of flag curvature is implied by the
following theorem in [12].

Theorem 2.3. Let π : (M1, F1) → (M2, F2) be a Finsler submersion, and the flag
(x1, y1,P1) on M1 is the horizonal lift for the flag (x2, y2,P2) on M2. Then we have

(2.8) KF1 (x1, y1, y1 ∧ v1) ≤ KF2 (x2, y2, y2 ∧ v2).

3. δ-homogeneous Finsler metrics

3. δ-homogeneous Finsler metrics3.1. Singular Minkowski norms and singular metrics.
3.1. Singular Minkowski norms and singular metrics. In this work, we also need to

consider singular norms and singular metrics. If not specified, Minkowski norms and Finsler
metrics are referred to the smooth ones defined in Subsection 2.1. Notice in some literatures,
for the notions of norms and metrics, people use ”continuous” instead of ”singular”, ”regu-
lar” instead of ”smooth”.

A non-negative continuous function F on a real vector space V is called a singular norm,
if it satisfies the following conditions:

(1) Positiveness: F is a positive function on V\{0}.
(2) Positive homogeneity of degree one: F(λy) = λF(y) when λ ≥ 0.
(3) Convexity: F(λy1 + (1 − λ)y2) ≤ λF(y1) + (1 − λ)F(y2) whenever λ ∈ [0, 1].

We will also call (V, F) a singular normed space.
A geometric way to describe the convexity condition for a singular norm F on V is pro-
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vided by its indicatrix F,V = {y ∈ V|F(y) = 1}. The indicatrix F,V for a singular norm F on
V is a sphere surrounding the origin o ∈ V, which bounds a convex region in V. The indi-
catrix F,V is a smooth sub-manifold iff F is smooth on V\{0}. Notice even in this situation,
F has not been guaranteed to be a Minkowski norm, because we only have the semi positive
definiteness for the Hessian (gi j(y)) = ( 1

2 [F2(y)]yiy j), rather than the positive definiteness for
the strong convexity condition.

Similarly, a singular metric F on a smooth manifold M is a continuous function F on T M,
such that it is positive on the slit tangent bundle T M\0, and its restriction to each tangent
space is a singular norm. We will call (M, F) a singular metric space. In practice, for the
homogeneous singular metrics we will consider in this work, the smoothness is broken in
the tangent direction (i.e. within TxM for each x ∈ M), but still kept in some sense along the
manifold directions.

Geodesics of singular metric spaces can still be defined using locally minimizing princi-
ple. But it is not hard to find examples that there exists more than one minimizing geodesic
from x to y within a neighborhood  of x, no matter how small  is. On the other hand,
most curvature concepts in Finsler geometry can not be easily generalized to the singular
situation.

Submersions for singular normed spaces and singular metric spaces can be similarly de-
fined as in Subsection 2.3. We can still use (2.7) to define the horizonal lift of a tangent
vector. But the horizonal lift may not be unique. Further more, we do not have a flag
curvature inequality for Finsler submersion as in Theorem 2.3.

3.2. Definition and Properties.
3.2. Definition and Properties. In [20], connected δ-homogeneous Finsler spaces (we

only consider connected Lie groups and connected Finsler spaces in this work) are defined
as following.

Let G be a connected Lie group and (G/H, F) a G-homogeneous Finsler space. We call
(G/H, F) a G-δ-homogeneous Finsler space, if for any x, y ∈ G/H, there exists an element
g ∈ G, such that g(x) = y and the displacement function f (·) = dF(·, g(·)) of g reaches its
maximum at x. More generally, a connected Finsler space (M, F) is called δ-homogeneous
if it is G-δ-homogeneous for G = I0(M, F).

We may always assume G is a closed connected subgroups of the connected isometry
group I0(G/H, F), i.e. G acts effectively on G/H. We apply the following fundamental
algebraic setup. Choose an Ad(H)-invariant decomposition g = h + m, where h = Lie(H)
and m can be identified with the tangent space To(G/H) at o = eH. We will denote prh and
prm the corresponding projections to h and m respectively. In this setup, a G-homogeneous
Finsler metric F on G/H is one-to-one determined by an Ad(H)-invariant Minkowski norm
on m, which for simplicity, will still be denoted as F [9]. This setup is also correct when F
is singular.

S. Deng and L. Zhang gave an equivalent description for δ-homogeneous Finsler spaces
in [20], i.e. the following theorem,

Theorem 3.1. Let G be a connected Lie group and (G/H, F) a G-homogeneous Finsler
space. Then (G/H, F) is G-δ-homogeneous iff one of two equivalent conditions is satisfied:

(1) For any u ∈ m, we can find a δ-vector ũ ∈ g for u, i.e. prm(ũ) = u, and the function
f (·) = F(prm(Ad(·)ũ)) achieves its maximum at e.

(2) For any x ∈ G/H and any tangent vector u ∈ Tx(G/H), we can find a δ(x)-Killing
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vector field X from g for the tangent vector u, i.e. X(x) = u, and the function
f (·) = F(X(·)) achieves its maximum at x.

The δ-vectors in (1) provides the δ(o)-Killing vectors in (2), and their Ad(G)-orbits pro-
vides the δ(·)-Killing vectors for all points and all tangent directions.

Here are some fundamental properties of δ-homogeneous Finsler spaces.

Theorem 3.2. A δ-homogeneous Finsler space (M, F) has non-negative flag curvature.

Proof. By Theorem 3.1, for any x ∈ M and any nonzero tangent vector u ∈ TxM, there is
a δ(x)-Killing vector field X of (M, F) for the tangent vector u. Denote gF

X the localization
of F at X defined by the Hessian matrices evaluated with the base vector X(·) at each point.
This Riemannian metric is well defined in a neighborhood  of x where X is non-vanishing
at each point. Because X is a Killing vector field of (M, F), it is also a Killing vector field of
( , gF

X). By Lemma 3.1 in [10], the integration curve of X passing x is a geodesic of (M, F).
Applying Proposition 2.1, we have KF(x, u, u∧ v) = KgF

X (x, u∧ v), where v ∈ TxM is linearly
independent of u. Because the length function of X for the metric F coincides with that for
the metric gF

X inside  , i.e.

F(X(·))2 ≡ 〈X(·), X(·)〉FX(·) in  .

So the length function of the Killing vector field X for ( , gF
X) also achieves its maximum

at x, by [3] or Lemma 2.2 in [14], we get KgF
X (x, u ∧ v) ≥ 0 for any v ∈ TxM which is linear

independent with u. So KF(x, u, u ∧ v) ≥ 0, i.e. (M, F) is non-negatively curved. �

Proposition 3.3. Assume (G/H, F) is a G-δ-homogeneous Finsler metric, in which G is
a connected Lie group and H is the compact isotropy subgroup at o = eH ∈ G/H. Then we
have the following:

(1) Denote H0 the identity component of H. Then the metric F naturally induces a G-δ-
homogeneous metric on G/H0, still denoted as F, such that the canonical projection
π : G/H0 → G/H is locally isometric.

(2) For any closed subgroup K of G containing H0, we have a G-δ-homogeneous Finsler
metric F′ on G/K induced by F on G/H0 such that the canonical projection map
π : G/H0 → G/K is a Finsler submersion.

Proof. The proof for (1) is very easy. We only need to prove (2) with H0 = H. We have
an Ad(K)-invariant decomposition g = k + p and Ad(H)-invariant decomposition k = h +m′

such that m = m′ + p, with projections prp and prm accordingly.
Denote  the union of all the Ad(G)-orbits of δ-vectors, for all vectors u inm with F(u) ≤

1. Then the G-δ-homogeneous Finsler metric F can be uniquely determined by

(3.9) prm() = {u ∈ m with F(u) ≤ 1}.
Let F′ be Minkowski norm on p induced by the Minkowski norm F on m and the Finsler
submersion prp|m : m→ p. Then we also have

(3.10) prp() = {u ∈ p with F′(u) ≤ 1}.
By similar arguments as Lemma 3.1 in [17], and all the essential conditions: the Ad(G)-
invariance of , and the similarity among (3.9), (3.10) and (2.6), we see  defines a G-
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homogeneous Finsler metric F′ on G/K, and using the translations of G, the canonical
projection map π : (G/H, F) → (G/K, F′) is a Finsler submersion. Finally, we can see that
for each nonzero v ∈ p, it has a horizonal lift ṽ ∈ m. Then the δ-vector for ṽ with respect
to G/H, is also a δ-vector for v with respect to G/K. Thus (G/K, F′) is G-δ-homogeneous.

�

Notice the closed subgroups H and K in Proposition 3.3 is not required to be compact, so
the G-action on G/K may not be effective. But it will not affect the δ-homogeneity here or
later discussions.

3.3. Quasi-compactness and the submersion construction.
3.3. Quasi-compactness and the submersion construction. When the connected Lie

group G is a quasi-compact Lie group, i.e. g is a compact Lie algebra, or equivalently, the
universal cover of G is a product of compact semisimple Lie group and an Abelian group
R

k, then a G-homogeneous Finsler space (G/H, F) is called G-normal homogeneous, when
F is induced by a bi-invariant Finsler metric F̄ on G such that the projection π : G → G/H
is a Finsler submersion [17]. It is not hard to see all G-normal homogeneous Finsler metrics
are G-δ-homogeneous as well.

On the other hand, consider a G-δ-homogeneous Finsler space (G/H, F) with a connected
quasi-compact G. We may choose an Ad(G)-invariant inner product on g, with respect to
which the decomposition g = h + m is orthogonal. In this context, we have the following
lemma.

Lemma 3.4. Assume (G/H, F) is a G-δ-homogeneous Finsler space with the connected
quasi-compact Lie group G acting effectively on G/H. Then

(3.11) F̃(w) = max
g∈G

F(prm(Ad(g)w))

defines an Ad(G)-invariant singular norm on g and correspondingly a bi-invariant singular
metric on G, such that the canonical projection π : (G, F̃)→ (G/H, F) is a submersion.

Proof. Firstly we observe F̃ is well defined when G is quasi-compact, because only the
compact semisimple factor is relevant for defining F̃. Secondly, we need to prove F̃ satisfies
all the conditions for singular norms. The argument is standard and easy. Thirdly, it is
obvious to see the singular norm F̃ on g is Ad(G)-invariant, thus it defines a bi-invariant
singular metric on G. Finally, we prove the canonical projection π : (G, F̃) → (G/H, F)
is a Finsler submersion. The tangent map π∗ : (g, F̃) → (m, F) coincides with prm. It is
a Finsler submersion by Theorem 3.1. By the bi-invariance of F̃, the G-homogeneity of
F, and the argument for proving Lemma 3.1 in [17], the tangent map for the projection
π : (G, F̃)→ (G/H, F) is a submersion everywhere. �

According to [6], we call the singular norm F̃ defined by (3.11) the Chebyshev norm, and
the corresponding bi-invariant singular metric the Chebyshev metric. To summarize, when
G is quasi-compact, a G-δ-homogeneous Finsler metrics can be induced by a bi-invariant
singular metric and the submersion. It is easy to check any Finsler metric produced in this
process on G/H, whenever it is smooth, must be a G-δ-homogeneous Finsler metric. The
horizonal lifts may not be unique, but they provides the δ(x)-Killing vector fields for all
x ∈ G/H and all tangent vectors in Tx(G/H). V. N. Berestovskii and Yu. G. Nikonorov
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have already made these observations when G is compact or G/H is compact [6]. Now the
problem is

Question 3.5. Do we still have this construction when the connected δ-homogeneous
Finsler space (M, F) is not compact?

The answer is positive. We just need to choose a suitable closed connected quasi-compact
subgroup G ⊂ I0(M, F) which acts transitively and effectively on M.

Theorem 3.6. Assume (M, F) is a connected δ-homogeneous Finsler space. Let G be the
smallest closed connected subgroup of I0(M, F) which Lie algebra g contains all the δ(o)-
Killing vector fields in Lie(I0(M, F)) for a fixed o ∈ M and all tangent vectors u ∈ ToM,
then G is quasi-compact and (M, F) is G-δ-homogeneous.

The group G in Theorem 3.6 can be constructed as following. First, we fix o ∈ M and use
all the δ(o)-Killing vectors (or all the δ-vectors) in Lie(I0(M, F)) to generate a subalgebra g′,
which corresponds to a connected subgroup G′ ⊂ I0(M, F). Then G is the closure of G′ in
I0(M, F). To prove Theorem 3.6, we will need the following lemma.

Lemma 3.7. Let G′ ⊂ I0(M, F) be the connected Lie group generated by all δ-vectors for
a δ-homogeneous Finsler space (M, F), and G be the closure of G′ in I0(M, F). Denote their
Lie algebras as g′ and g respectively. Then we have the following:

(1) If g′′ ⊂ g is a real linear subspace satisfying [g′′, ũ] ⊂ g′′ for all δ-vectors ũ ∈ g′,
then g′′ is an ideal of g.

(2) If g′′ ⊂ g is a real linear subspace satisfying [g′′, ũ] = 0 for all δ-vectors ũ ∈ g′, then
g′′ is contained in the center of g.

Proof. Because [g′′, ũ] ⊂ g′′ for all δ-vectors ũ which generate g′, we have Ad(G′)g′′ ⊂ g′′.
It is still valid when we replace G′ with its closure G in I0(M, F), i.e. Ad(G)g′′ ⊂ g′′. So g′′

is an ideal of g. The proof for (1) is done. The proof for (2) is similar. �

Proof of Theorem 3.6. Because g = Lie(G) contains all δ(o)-Killing vector fields, G acts
transitively around a neighborhood of o, and thus transitively everywhere. By Theorem 3.1,
(M, F) is G-δ-homogeneous. Denote M = G/H with an Ad(H)-invariant decomposition
g = h +m.

We only need to prove g is compact. We take Levi decomposition g = g1 + g2 where g1 is
a semisimple subalgebra, and g2 is a solvable ideal. If we can prove g1 is compact, and g2 is
the center of g, then the compactness of g is done.

First we prove g2 is the center of g. Consider any δ-vector ũ in g and v ∈ [g2, g2]. Because
[g2, g2] is a nilpotent ideal of g, the right side of

prm(Ad(exp tv)ũ) = prm(ũ) + tprm([v, ũ]) +
1
2

t2prm([v, [v, ũ]]) + · · · ,(3.12)

is a finite sum. Because ũ is a δ-vector, the function f (t) = F(prm(Ad(exp tv)ũ)) is bounded
for t ∈ R. So the vector coefficient in (3.12) for each positive power of t must vanish. In
particular, prm([v, ũ]) = 0, i.e. [v, ũ] ∈ h for any v ∈ [g2, g2] and δ-vector ũ. In fact, we have

[[g2, g2], ũ] ⊂ h ∩ [g2, g2]
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because [g2, g2] is an ideal of g. By (1) of Lemma 3.7, h ∩ [g2, g2] is an ideal of g contained
in h. It must be 0 because G ⊂ I0(M, F) acts effectively on M. By (2) of Lemma 3.7, [g2, g2]
is contained in the center of g.

Now we consider (3.12) for any v ∈ g2 and δ-vector ũ. Because [g2, g2] is contained in the
center of g, the right side of (3.12) is a finite sum. Similar arguments as above proves g2 is
contained in the center of g. Because g1 is semi-simple, this proves g2 is the center of g.

Then we prove g1 must be compact. Assume conversely it is not. Let G1 be the semisim-
ple Lie group corresponding to g1. We can find a maximal compact subalgebra k ⊂ g1 such
that h ⊂ h′ = k+g2. Denote H′ the closed subgroup of G corresponding to h′. By Proposition
3.3 and Theorem 3.2, G/H′ admits a G-δ-homogeneous Finsler metric F′′, which is a non-
negatively curved. By the Iwasawa decomposition G1 = NAK, where A is Abelian and N is
nilpotent, the metric F′ on G/H′ is a left invariant Finsler metric on the solvable Lie group
G′′ = NA. Because we have assumed that g1 is not compact, both N and A has positive
dimensions, i.e. dim G′′ ≥ 2. Denote g′′ = a + n, then [g′′, g′′] = n. We can find a nonzero
vector u ∈ g′′\n, such that 〈u, n〉F′′u = 0. By Lemma 4.3 in [11], RicF′′(u) ≤ 0 with equality
only happens when ad(u) is skew symmetric with respect to gF′′

u . Because (G/K, F′′) has
non-negative flag curvature, so RicF′′(u) = 0, and ad(u) is skew symmetric with respect to
gF′′

u . It implies the nonzero eigenvalues of adu : g′′ → g′′ are pure imaginary numbers. On
the other hand ad(u) only has real eigenvalues, so u must be a nilpotent element in n. This
is a contradiction to our choice of u from g′′\n. �

All above discussions can be summarized as the following theorem.

Theorem 3.8. Let (M, F) be a connected δ-homogeneous Finsler metric, either compact
or noncompact. Then we can find a closed connected quasi-compact subgroup G ∈ I0(M, F)
such that (M, F) is G-δ-homogeneous, and F can be induced by the Chebyshev metric on
G (i.e. the singular bi-invariant Finsler metric F̃ on G determined by F and (3.11)) and
submersion.

3.4. Normal homogeneity and δ-homogeneity.
3.4. Normal homogeneity and δ-homogeneity. Theorem 3.8 implies all connected δ-

homogeneous Finsler metrics, no matter compact or noncompact, can be constructed by
the same process as normal homogeneous Finsler metrics. The only difference is that for
the suitably chosen connected quasi-compact group G, we use (smooth) bi-invariant Finsler
metrics for G-normal homogeneity, but singular bi-invariant Finsler metrics (i.e. the Cheby-
shev metrics) for G-δ-homogeneity.

Notice for any connected G-δ-homogeneous Finsler space (G/H, F) where G is connected
and quasi-compact, we may have many different bi-invariant singular metrics on G which
defines the same F, among which the Chebyshev metric F̃ is the smallest one. In particular,
when (G/H, F) is G-normal homogeneous, there exists a smooth one, i.e. a bi-invariant
Finsler metric F̄, which meets our purpose. But generally speaking, these smooth F̄ may
not exist, i.e. G-normal-homogeneity and G-δ-homogeneity are essentially different.

Here is an example. Let M be coset space S 3 = U(2)/U(1) where U(1) corresponds the
right down corner. We denote each matrix( √−1(a + d) b +

√−1c
−b +

√−1c
√−1(−a + d)

)
∈ u(2)
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as (a, b, c, d). Then h = R(1, 0, 0,−1) and m = {(a, b, c, a) for all a, b, c ∈ R}. We have a
family of U(2)-homogeneous Riemannian metrics Fε , defined by

Fε(a, b, c, a) = (4 − ε)a2 + b2 + c2

on m. When ε is a positive number, sufficiently close to 0, Fε is an U(2)-normal homoge-
neous Riemannian metric. Their limit when ε approaches 0, i.e. F0, is U(2)-δ homogeneous
(see Lemma 3.10 below).

Now we show F0 can not be induced by a bi-invariant Finsler metric F̄ on U(2) and
submersion. Assume conversely such a smooth metric exists. Then the indicatrix F̄,g in g
must be contained in the region

{(a, b, c, d)|(a + d)2 + b2 + c2 ≤ 1} ⊂ g.
Because it is invariant under right SU(2)-translations, F̄ must be an (α, β)-metric correspond-
ing to the Lie algebra decomposition u = su(2) ⊕ R. So F̄,g is contained in the region

{(a, b, c, d)|
√

a2 + b2 + c2 ≤ 1 − |d|}.
On the other hand, F̄,g must contain the round sphere

{(a, b, c, 0)|a2 + b2 + c2 = 1} ⊂ su(2),

where F̄,g lost its smoothness. This provides the contradiction.

3.5. Proof of Theorem 1.1.
3.5. Proof of Theorem 1.1. It is a fundamental observation that singular norms and sin-

gular metrics can be approximated by smooth ones. For proving Theorem 1.1, we will only
use the following lemma for singular norms.

Lemma 3.9. For any singular norm F on an n-dimensional real vector space V, we
can find a sequence of smooth Minkowski norm Fn on V which converge to F in the local
C0-topology.

Proof. Denote | · | and dvolx the standard Euclidean norm and volume form on V re-
spectively. We can find a family of smooth non-negative functions ψε(x) on Rn, with the
parameter ε > 0, such that each ψε(x) is supported in ε = {x ∈ V with |x| ≤ ε}, and∫

x∈V ψε(x)dx = 1. the convolution between F and each ψε defines a family of smooth func-
tions

F1;ε(x) =
∫
y∈V

F(x − y)ψε(y)dvoly

on Rn. When the positive parameter ε approaches 0, F1;ε is locally C0-convergent to F.
Because F is convex, i.e. for any x1, x2 ∈ V and λ ∈ [0, 1], F(λx1 + (1 − λ)x2) ≤ λF(x1) +
(1 − λ)F(x2), we also have

F1;ε(λx1 + (1 − λ)x2) =
∫
y∈V

F(λx1 + (1 − λ)x2 − y)ψε(y)dvoly

≤
∫
y∈V

(λF(x1 − y) + (1 − λ)F(x2 − y))ψε(y)dvoly

= λF1;ε(x1) + (1 − λ)F1;ε(x2).

So for each ε > 0, F1;ε is convex as well.
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Now the problem is F1;ε is not positively homogeneous in general. Suppose the positive ε
is sufficiently closed to 0, then the derivative of F1;ε in the radius direction is non-vanishing
everywhere in the region {x ∈ Rn with 1/2 ≤ |x| ≤ 2}. The pre-image ε = F−1

1;ε(1) is a
smooth n− 1-dimensional sphere surrounding the origin. Because F1;ε is convex, ε bounds
a convex region in V. We define the second family of perturbation functions F2;ε on V,
such that each F2;ε is positively homogeneous of degree one, and F2;ε(x) = 1 iff x ∈ ε .
Then F2;ε is a positive smooth function on Rn\{0}. The convexity of ε implies the Hessian
(gi j(y)) = ( 1

2 [F2
2;ε(y)]yiy j) is semi positive definite at least.

At last we define Fε =
√

F2
2;ε + ε |x|2, then Fε satisfies all the conditions for smooth

Minkowski norms, when the positive parameter ε is sufficiently close to 0. When ε ap-
proaches 0, Fε uniformly converges to F in each compact subset in V, i.e. in the local
C0-topology. �

We will also need the following simple technical facts.

Lemma 3.10. Assume G is a connected quasi-compact Lie group which acts transitively
on the smooth coset space G/H. Let Fn be a sequence of G-δ-homogeneous Finsler metrics
on G/H induced by submersion and the bi-invariant singular metrics F̄ respectively. Denote
F̃n the Chebyshev metric defined Fn respectively. Then we have the following.

(1) If F̄n converges to a singular metric F̄ on G in the local C0-topology, then Fn con-
verges to a singular metric F on G/H in the local C0-topology. Further more, F̄
is bi-invariant, F is G-homogeneous, and the canonical projection π : (G, F̄) →
(G/H, F) is a submersion.

(2) If Fn converges to a singular metric F on G/H in the local C0-topology, then F can
be induced by its Chebyshev metric on G and submersion. If F is Finsler metric,
then it must be a G-δ-homogeneous Finsler metric.

Proof. (1) Assume F̄n converges to the singular metric F̄ on G in the local C0-topology.
Then F̄ is bi-invariant because each F̃n is. Similar arguments as for Lemma 3.1 in [17], F̄
defines a G-homogeneous singular metric F on G/H. To show Fn locally C0-converges to
F, we only need to prove it in m, viewing all F̃n, Fn, F̃, and F as singular norms. For each
sufficiently small ε > 0, we can find N > 0, whenever n > N, |F̄n(w̃) − F̄(w̃)| < ε when
F̄(w̃) ≤ 1. It implies the following inclusions among subsets of g for each n > N,

{w̃ ∈ g with F̄n(w̃) ≤ 1
1 + ε

} ⊂ {w̃ ∈ g with F̄(w̃) ≤ 1}

⊂ {w̃ ∈ g with F̄n(w̃) ≤ 1
1 − ε }.

Because of submersion, prm maps these subsets onto the following subsets in m with corre-
sponding inclusions,

{w ∈ m with Fn(w) ≤ 1
1 + ε

} ⊂ {w ∈ m with F(w) ≤ 1}

⊂ {w ∈ m with Fn(w) ≤ 1
1 − ε }.

So we also have |Fn(w) − F(w)| ≤ ε when n > N and F(w) = 1. So as singular norms on
m, Fn converges to F in the local C0-topology. Using the G-translations, this convergence
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is still valid when all Fn and F are viewed as singular metrics.
(2) Viewed as singular norms on m, Fn converges to F in the local C0-topology. Then

the Chebyshev norms F̃n also converge to the Chebyshev norm F̃ defined by F. Because
prm : (g, F̃n)→ (m, Fn) is a submersion for each n, i.e.

prm({ũ ∈ g with F̃n(ũ) ≤ 1}) = {u ∈ m with Fn(u) ≤ 1},
passing to their limits, we also have

prm({ũ ∈ g with F̃(ũ) ≤ 1}) = {u ∈ m with F(u) ≤ 1}.
That proves F can be induced by its Chebyshev metric on G and submersion. The last
assertion is an obvious observation we have made. �

Now we prove Theorem 1.1.
We only need to prove two assertions for this theorem. The first one is that, inside the

space of all smooth Finsler metrics on G/H, the subset of all G-δ-homogeneous Finsler
metrics is closed in the local C0-topology. This is already done by (2) of Lemma 3.10.

The second one is that for any G-δ-homogeneous Finsler metric F, we can find a sequence
of G-normal homogeneous metrics Fn, such that Fn converges to F in the C0-topology.

Now we prove the second claim. Consider a G-δ-homogeneous Finsler metric F on G/H,
which is defined by submersion from the Chebyshev metric F̃ on G. By Lemma 3.9, we can
find a sequence of Minkowski norms {F̃′n} on G which converge to F̃ in the C0-topology.
Average each F̃′n with all Ad(G)-actions as following,

F̃n(w) =

√√√√∫
g∈G F̃′n(Ad(g)w)2dvolg∫

g∈G dvolg
,

where volg is a bi-invariant volume form of G, we get a sequence of Ad(G)-invariant
Minkowski norms {F̃n} on g, such that the bi-invariant Finsler metrics F̃n converge to the
bi-invariant singular metric F̃. Each bi-invariant smooth Finsler metric F̃n on G defines a
G-normal homogeneous metric Fn. By (1) of Lemma 3.10, Fn converges to F in the local
C0-topology.

This ends the proof of Theorem 1.1.

4. The positive curvature problem for δ-homogeneous Finsler spaces

4. The positive curvature problem for δ-homogeneous Finsler spaces
Let (G/H, F) be a G-δ-homogeneous Finsler space, where G is a connected quasi-compact

Lie group which acts effectively on G/H. We choose an Ad(G)-invariant inner product, and
denote g = h + m the corresponding orthogonal decomposition. Then according to [17], a
subalgebra s ⊂ g is called a flat splitting subalgebra (FSS in short), when it satisfies the
following conditions:

(1) s is the intersection of a family of Cartan subalgebras of g.
(2) s = s ∩ h + s ∩m.
(3) dim s ∩m ≥ 2.

Because of Condition (1) for a FSS, s generates a closed connected abelian subgroup
exp s of G. The orbit exp s · o = exp(s ∩ m) · o can be viewed as the connected abelian Lie
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group S = exp(s ∩ m). The subspace metric F|S ·o is a left invariant Finsler metric on S ,
which is obviously flat. The crucial observation here is that (S · o, F|S ·o) is totally geodesic.

Lemma 4.1. Keep all above notations and assumptions. Then (S · o, F|S ·o) is a totally
geodesic subspace of (G/H, F).

Proof. By Theorem 1.1, we assume F is the limit of a sequence Fn of G-normal homo-
geneous metrics on G/H in the local C0-topology. Denote F̃ and F̃n their Chebyshev norms
on g respectively. For each n, we have another bi-invariant Minkowski norm F̄n defining the
G-normal homogeneity of Fn. Consider any nonzero vector u ∈ s ∩ m. By Lemma 3.4 in
[17], there exists a unique vector ũn ∈ s such that prm(ũn) = u and F̄n(ũn) = F̃n(ũn) = 1.
Because F̃n converges to F̃ in the local C0-topology, F̃(ũn) is bounded. We can find a con-
vergent subsequence converging to some ũ ∈ s with prm(ũ) = u and F̃(ũ) = 1. So ũ defines
a δ(o)-Killing vector field X of (G/H, F) for the tangent vector u ∈ m. The integration
curve of X passing o is then a geodesic of (G/H, F). On the other hand, it coincides with
exp(tũ) ·o = exp(tu) ·o which is a geodesic of (S ·o, F|S ·o). By left S -translations, this proves
(S · o, F|S ·o) is totally geodesic. �

The observation that a FSS is a totally geodesic flat subspace for a normal homogeneous
Finsler space is the key technique that we reduce the classification for positively curved
normal homogeneous Finsler spaces to a totally algebraic problem.

To be precise, in [17], Theorem 3.3, the preparation lemmas, and the case by case discus-
sion from Section 4 to Section 6, proves the following.

If G/H does not admit positively curved G-normal homogeneous Riemannian metrics,
i.e. there exists a linearly independent commuting pair of vectors in m, then we can find a
closed subgroup K in G with h ⊂ k ⊂ g, with the corresponding orthogonal decomposition
g = k + p, such that there exists a FSS for G/K. Then we see G/H does not admit positively
curved G-normal homogeneous Finsler metrics either. In particular, when G/H is even
dimensional, we can choose K = H. In most cases, the FSS can be found among Cartan
subalgebras, which will be called a flat splitting Cartan subalgebra or FSCS in short.

Because of Theorem 1.1 and Lemma 4.1, this theory can be applied to prove Theorem
1.2, which implies the classification for positively curved δ-homogeneous Finsler spaces
coincides with that for positively curved normal homogeneous Riemannian spaces.

Proof of Theorem 1.2. Let (G/H, F) be a positively curved G-δ-homogeneous Finsler
spaces. Assume conversely G/H does not admit a positively curved G-normal homogeneous
Riemannian metric, then we can find a closed subgroup K of G with h ⊂ k ⊂ g, such that there
exists a FSS for G/K. By Theorem 2.3 and Proposition 3.3, G/K also admits a positively
curved G-δ-homogeneous Finsler metric. But by Lemma 4.1 implies the FSS provides a
totally geodesic flat subspace of dimension bigger than 1. This is the contradiction. �

Lemma 4.1 can tell us more when we turn to the (FP) condition [18].
A Finsler space (M, F) is called flag-wise positively curved or satisfying the (FP) condi-

tion, if for any x ∈ M, any tangent plane P ⊂ TxM, we can find a y ∈ P such that the flag
curvature KF(x, y,P) > 0.

The (FP) condition itself is very weak [16]. But its combination with the non-negatively
curved condition seems much stronger, very like the positively curved condition. We guess
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a flag-wise positively curved and non-negatively curved homogeneous Finsler space G/H
must be compact. Further more, when G is compact, we guess rankG ≤ rankH + 1.

By Theorem 3.2, a flag-wise positively curved δ-homogeneous Finsler space belongs to
this special category. We can prove

Theorem 4.2. Let (M, F) be a connected flag-wise positively curved δ-homogeneous
Finsler space which dimension is bigger than 1, then M is compact. If M = G/H where
G is a compact connected Lie group acting effectively on M, then rankG ≤ rankH + 1.

Proof. By Theorem 3.6, we can assume the flag-wise positively curved δ-homogeneous
Finsler space (M, F) is G-δ-homogeneous, where G is a connected and quasi-compact. We
can present G = G1 × Rk where G1 is a maximal compact subgroup of G, M = G/H where
H is a closed subgroup of G1. First we prove then rankG ≤ rankH+1. If this is not true, any
Cartan subalgebra of h can be enlarged to a FSCS in g. By Lemma 4.1, (M, F) can not satisfy
the (FP) condition because of the totally geodesic flat subspace. This argument proves the
second statement in the theorem. Now we prove the first statement, i.e. the compactness
of M. Assume conversely M is not compact, then k = 1 and rankG1 = rankH. Let t be a
Cartan subalgebra of h, with respect to which g1 = Lie(G1) and h can be decomposed as the
sum of t and root planes g±α. Because rankG1 = rankH, Each root plane g±α is contained
in either h or m. Because dim G/H > 1, we can find a root plane g±α in m. Let u be any
nonzero vector in g±α, v any nonzero vector in the R-factor, and kerα the codimension one
subspace of t where α takes zero values. Then u, v and kerα ⊂ t span a FSCS, which will be
a contradiction to the (FP) condition. �

As the end, we remark that, FSS can be viewed as an obstacle for normal or δ-
homogeneous Finsler metric either positively curved or satisfying the (FP) condition. For the
positively curved condition, this obstacle can be passed downward by submersion, i.e. when
G/H admits a positively curved G-normal or G-δ-homogeneous Finsler metric, then for any
closed subgroup K ⊂ G containing H, the naturally induced G-normal or G-δ-homogeneous
Finsler metric is also positively curved. But this observation is not true for the (FP) condi-
tion, i.e. this obstacle can not be passed downward for the (FP) condition. When dim G/H
is even, H itself can be taken as K, so the classification work in [17] proves

Corollary 4.3. The following conditions are equivalent for an even dimensional smooth
coset space G/H:

(1) It admits positively curved G-normal homogeneous Finsler metrics.
(2) It admits positively curved G-δ-homogeneous Finsler metrics.
(3) It admits flag-wise positively curved G-normal homogeneous Finsler metrics.
(4) It admits flag-wise positively curved G-δ-homogeneous Finsler metrics.

Notice when dim G/H is odd, Corollary 4.3 is not true. Theorem 1.2 in [18] provides
many examples of smooth coset spaces admitting flag-wise positively curved and non-
negatively curved homogeneous Finsler metrics. By Corollary 1.4 in [18], most of them
do not admit positively curved homogeneous Finsler metrics. In each example (G/H, F) in
Theorem 1.2 of [18], F is defined by the navigation with respect to a normal homogeneous
Riemannian metric F′ and a nonzero Killing vector field V with F′(V(·)) ≡ const < 1. Then
for any x ∈ G/H and any F′-unit tangent vector u′ ∈ Tx(G/H), we have a δ(x)-Killing vector
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field X of (G/H, F′) from g, for the tangent vector u′. Then X + V is a δ(x)-Killing vector
field of (G/H, F) from g⊕R, for the F-unit tangent vector u = u′ +V(x), which can exhaust
all the tangent directions. So F is (G × S 1)-δ-homogeneous.
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