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Abstract
Let X0 be a complete hyperbolic surface of infinite type with geodesic boundary which ad-

mits a countable pair of pants decomposition. As an application of the Basmajian identity for
complete bordered hyperbolic surfaces of infinite type with limit sets of 1-dimensional mea-
sure zero, we define an asymmetric metric (which is called arc metric) on the quasiconformal
Teichmüller space  (X0) provided that X0 satisfies a geometric condition. Furthermore, we
construct several examples of hyperbolic surfaces of infinite type satisfying the geometric con-
dition and discuss the relation between the Shiga’s condition and the geometric condition.

1. Introduction

1. Introduction
The Thurston metric was originally defined by Thurston [33] as an asymmetric metric

to solve the extremal problem of finding the best Lipschitz map in the homotopy class of
homeomorphisms between two hyperbolic surfaces of finite type without boundary. For
surfaces of finite type with boundary, a modification of the Thurston metric, the so-called
arc metric (see more precisely below) was studied [1, 18, 19, 26].

It’s a natural problem whether the Thurston metric is well-defined in Teichmüller spaces
of surfaces of infinite type (see [29] for example). In this paper, we define the arc metric,
a modification of the Thurston metric, on the quasiconformal Teichmüller space  (X0) of
a complete hyperbolic surface X0 of infinite type with geodesic boundary provided that X0

satisfies the geometric condition (�) (see the definition below).
Let X0 be a complete hyperbolic surface of infinite type with geodesic boundary which

admits a countable pair of pants decomposition. The completeness for hyperbolic surfaces
or hyperbolic structures that we consider throughout this paper means that each boundary
component of this surface is a closed geodesic and each puncture of this surface has a neigh-
bourhood which is isometric to a cusp, that is, a surface isometric to the quotient of the
region {z = x+ iy : y > a} of the upper half-plane H2, for some a > 0, by the isometric group
generated by z→ z + 1.

Denote the boundary of X0 by ∂X0 and denote the set of boundary components of X0 by
(X0) = {β1, β2, ..., βk, ...}. Note that the number of boundary components of X0 and the
number of cusps of X0 can be countably infinite.

(X, f ) is said to be a marked hyperbolic surface if X is a complete hyperbolic surface
of infinite type and f : X0 → X is a quasiconformal mapping which leaves each puncture

2010 Mathematics Subject Classification. Primary 32G15; Secondary 30F30, 30F60.
The work is partially supported by NSFC, No: 11271378, 11771456.



2 Q. Chen and L. Liu

and each boundary component setwise fixed. Two marked hyperbolic surfaces (X1, f1) and
(X2, f2) are said to be equivalent if f2◦ f −1

1 is homotopic to an isometry from X1 to X2. Denote
the equivalence class of (X, f ) by [X, f ]. We denote by  (X0) the reduced quasiconformal
Teichmüller space of X0 (see [14, 17, 32]), which is the set of equivalence classes of marked
hyperbolic surfaces. It deserves to mention that all Teichmüller spaces that we consider here
are reduced, which means that homotopies do not necessarily fix ∂X0 pointwise.

For the sake of simplicity, we shall call  (X0) the Teichmüller space of X0 for short
and denote a marked hyperbolic surface (X, f ) or its equivalence class [X, f ] by X, without
explicit reference to the marking.

The Teichmüller space  (X0) has a complete distance dT called the Teichmüller distance
which is defined by

dT ([X1, f1], [X2, f2]) =
1
2

log inf
g� f2◦ f −1

1

K[g],

where the infimum is taken over all quasiconformal mappings g : X1 → X2 homotopic to
f2 ◦ f −1

1 and K[g] is the maximal dilatation of g.
Recall that a pair of pants is a surface whose interior is homeomorphic to a sphere with

three disjoint closed disks removed whose boundary is a (possibly empty) disjoint union of
circles. A generalized hyperbolic pair of pants is a pair of pants equipped with a convex
hyperbolic metric in which every topological hole corresponds to either a closed boundary
geodesic or a cusp. In particular, a hyperbolic pair of pants is a generalized hyperbolic pair
of pants with three closed geodesic boundary components.

A pair of pants decomposition of a hyperbolic surface X is a system of pairwise disjoint
simple closed geodesics  = {Ci}i∈I (for convenience, we ignore the degenerated ones which
are homotopic to punctures) such that X \ (∪i∈ICi) is a disjoint union of the interior of
generalized hyperbolic pairs of pants. Moreover, if  is countably infinite, we say that X
admits a countable pair of pants decomposition. Note that the hyperbolic surfaces of infinite
type in this paper are assumed to admit a countable pair of pants decomposition.

1.1. Related definitions and notations.
1.1. Related definitions and notations. Let S be a surface with negative Euler charac-

teristic. A simple closed curve on S is said to be interior if it is contained in the interior of
S . It is said to be peripheral if it is homotopic to a puncture. It is said to be essential if it
is neither peripheral nor isotopic to a point. Let (S ) denote the set of homotopy classes of
essential simple closed curves on S .

If S has non-empty boundary ∂S , we denote the set of boundary components of S by
(S ). An arc on S is the image of a compact interval, which is immersed in S , with its
interior (possibly with self-intersections) contained in the interior of S and its endpoints
lying on ∂S . In particular, a simple arc is an arc without self-intersections. An arc is said
to be essential if it is not isotopic (relative to ∂S ) to a subset of ∂S . Note that we do not
require the homotopies to fix ∂S pointwise. Denote by (S ) the set of homotopy classes
of essential arcs on S and by ′(S ) the subset of (S ) consisting of homotopy classes of
essential simple arcs on S .

For any α ∈ (S ) ∪(S ) and any hyperbolic structure X on S , we denote by �α(X) the
hyperbolic length of α on X, that is, the length of the (unique) geodesic representative of α
on the hyperbolic surface X.
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If S is a surface of finite type without boundary, the Thurston metric dTh (see [33]) is an
asymmetric metric on the Teichmüller space  (S ) defined by

dTh(X, Y) = log sup
α∈(S )

�α(Y)
�α(X)

,

for all X, Y ∈  (S ).
If S is a surface of finite type with boundary, the arc metric dA (see [18, 19]) on  (S ), as

a modification of the Thurston metric, is defined by

dA(X, Y) = log sup
α∈′(S )∪(S )

�α(Y)
�α(X)

,

for all X, Y ∈  (S ). It is essential to consider the union of closed curves and arcs in the
definition of dA for surfaces of finite type with boundary, since there exist two distinct hy-
perbolic structures X, Y (see [26, 27]) on S such that �Y(α) < �X(α) for all α ∈ (S ). This
implies that

log sup
α∈(S )

�α(Y)
�α(X)

≤ 0.

Moreover, it was shown in [18] that

log sup
α∈′(S )∪(S )

�α(Y)
�α(X)

= log sup
α∈′(S )∪(S )

�α(Y)
�α(X)

.

Therefore, the arc metric dA can be also defined by the following formula

dA(X, Y) = log sup
α∈′(S )∪(S )

�α(Y)
�α(X)

.

Recall that a Fuchsian group is a torsion-free discrete group of orientation-preserving
isometries on H2. Let R be a hyperbolic Riemann surface. Denote by ΓR the Fuchsian group
of R, which is the Fuchsian group such that R is the quotient of H2 by ΓR.

Denote by Λ(Γ) the limit set of a Fuchsian group Γ acting on the upper half-plane H2,
which is a set of points on R̂ = R ∪ {∞} where the orbit by Γ accumulates. Moreover, the
complement of Λ(Γ) in R̂ is said to be the set of discontinuity, which is denoted by Ω(Γ). Γ
is said to be of the first kind if Ω(Γ) is empty, otherwise it is said to be of the second kind.
Note that the Fuchsian group of a bordered Riemann surface is of the second kind. The
Fuchsian groups we consider in this paper are of the second kind and infinitely generated
unless otherwise indicated.

Let C(Λ(Γ)) be the convex hull in H2 of the limit set Λ(Γ) and let ∂C(Λ(Γ)) be the bound-
ary of C(Λ(Γ)) in H2. The convex core CR of a hyperbolic Riemann surface R is the quotient
of C(Λ(ΓR)) by ΓR, which is the smallest closed convex subregion of R such that its inclu-
sion map induces a homotopy equivalence. For a hyperbolic surface X, we denote by ΓX the
Fuchsian group of the Riemann surface with convex core X.

Definition 1.1. For a Fuchsian group Γ, we say that a disjoint union of regions A =
∪n∈NAn in H2 is removable for Γ (see [22]) if it satisfies the following conditions:
(1) Each An is a simply connected open set in H2 which is either a hyperbolic disk, a
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horodisk tangent to R̂ or an r-neighbourhood of a complete geodesic in H2 for some
r > 0 (note that the radius r depends on the choice of the complete geodesic and is not
necessarily uniformly bounded).

(2) The set A is invariant under the action of Γ.

Definition 1.2. We say that X0 satisfies the geometric condition (�) (see [22]) if there is
a positive constant L and a removable set A for ΓX0 such that all points of C(Λ(ΓX0 )) \ A lie
within a distance L of ∂C(Λ(ΓX0 )).

1.2. Main theorems.
1.2. Main theorems.

Theorem 4.8. Let X0 be a complete hyperbolic surface of infinite type with boundary
which satisfies the geometric condition (�). Then the following two functions d and d on
 (X0) ×  (X0) are asymmetric metrics, where

d(X, Y) = log sup
α∈(X0)∪(X0)

�α(Y)
�α(X)

,

d(X, Y) = log sup
α∈(X0)∪(X0)

�α(X)
�α(Y)

,

for all X, Y ∈  (X0).

The asymmetric metric d is an analogue, for surfaces of infinite type with boundary, of
the arc metrics defined for surfaces of finite type with boundary. We also call d the arc
metric on  (X0).

Theorem 4.11. Let X0 be a complete hyperbolic surface of infinite type with boundary,
then the following equality still holds for all X, Y ∈  (X0).

sup
α∈(X0)∪(X0)

�α(Y)
�α(X)

= sup
γ∈(X0)∪(X0)

�γ(Y)
�γ(X)

.

In particular, if X0 satisfies the geometric condition (�), then the following equality defines
the same asymmetric metric.

log sup
α∈(X0)∪(X0)

�α(Y)
�α(X)

= log sup
γ∈(X0)∪(X0)

�γ(Y)
�γ(X)

.

1.3. Outline of the paper.
1.3. Outline of the paper. In Section 2 we give the Basmajian identity and the general-

ized McShane identity for complete bordered hyperbolic surfaces of infinite type with limit
sets of 1-dimensional measure zero. In Section 3, we consider the geometric condition (�)
and discuss its properties. In Section 4, we define an asymmetric metric on  (X0) and give
the proofs of Theorem 4.8 and Theorem 4.11. In the last section, we construct several ex-
amples of hyperbolic surfaces of infinite type satisfying the geometric condition (�) and
discuss the relation between the Shiga’s condition and the geometric condition (�).

2. Basmajian identity and generalized McShane identity for complete bordered hy-
perbolic surfaces of infinite type

2. Basmajian identity and generalized McShane identity for complete bordered hy-
perbolic surfaces of infinite type

In this section we present the Basmajian identity and the generalized McShane identity
for a complete bordered hyperbolic surface X of infinite type with the limit set Λ(ΓX) of
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1-dimensional measure zero. The Basmajian identity is a direct result of the orthogonal
spectrum theorem given by Basmajian [3] if the limit set of the Fuchsian group ΓX has 1-
dimensional measure zero. We sketch the proof of the generalized McShane identity and
refer to [8] for details.

2.1. Basmajian identity for complete bordered hyperbolic surfaces of infinite type.
2.1. Basmajian identity for complete bordered hyperbolic surfaces of infinite type.

For the convenience of the exposition of the orthogonal spectrum theorem given by Basma-
jian, we introduce the related notations and terminology (see [3]).

Let Mn be an orientable hyperbolic manifold of dimension n ≥ 2. A hypersurface S in
Mn is a codimension one complete submanifold endowed with the induced metric. S is said
to be totally geodesic if every geodesic on S is a geodesic in Mn.

Let S 1 be a totally geodesic hypersurface which is either disjoint from S or equal to S .
Two paths from S to S 1 are said to be freely homotopic relative to S and S 1 if there is a
homotopy in Mn between them which keeps the initial point in S and the terminal point in
S 1. The equivalence class of a path α is called the relative free homotopy class of α and it is
said to be trivial if S = S 1 and α is homotopic to a single point in S .

Hypersurfaces S and S 1 are called asymptotic if there exists a path from S to S 1 such
that its relative free homotopy class is nontrivial and contains paths of arbitrary short length.
In this case, the length of the homotopy class is defined to be zero. If S and S 1 are not
asymptotic, then each nontrivial relative free homotopy class of a path α from S to S 1

contains a shortest path which is the unique common orthogonal in the class [α]. The length
of this homotpy class [α] is defined to be the length of the common orthogonal in [α].

Let  be a (possibly infinite) set of mutually disjoint embedded totally geodesic hypersur-
faces in Mn. For each non-negative integer k, the k-th orthogonal spectrum of Mn related to
S and  is denoted by k(Mn; S ,), which is the ordered nondecreasing sequence of lengths
of nontrivial relative free homotopy classes of paths which start in S and go in the direction
of the normal to S , cross  along the way k times, and end in a hypersurface contained in
 perpendicularly. Note that the direction of the normal to S here is chosen appropriately
on one side, such that the lifts starting from S̃ of those paths lie to the same side of S̃ for a
fixed connected component S̃ of a lift of S .

Denote by mh the hyperbolic measure on S inherited from the volume element on Mn,
and by Vn(r) the hyperbolic volume of the n-dimensional ball of radius r.

Theorem 2.1. (Basmajian [3], The Orthogonal Spectrum Theorem) Let  be a disjoint
set of embedded totally geodesic hypersurfaces in the hyperbolic manifold Mn and let S
be an embedded oriented hypersurface which is totally geodesic. Suppose further that S is
either disjoint from  or one of the hypersurfaces in , and that no nontrivial relative free
homotopy class from S to  has length zero. Then the k-th orthogonal spectrum,

k(Mn; S ,) = {di},
satisfies:

(1) Voln−1(S ) = mh(Fk) +
∞∑

i=1

Vn−1(r(di)),

where Fk is the subset of S consisting of all points whose corresponding oriented normal
ray to S intersects  at most k times, and r(x) = log coth( x

2 ).
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Applying Theorem 2.1 and the method introduced by Basmajian for the proof of Corol-
lary 1.2 in [3], we have the following proposition.

Proposition 2.2. Let X be a complete bordered hyperbolic surface of infinite type with
the limit set Λ(ΓX) of 1-dimensional measure zero. Then for any β j ∈ (X), we have

(2) �β j(X) =
∞∑

i=1

2 log coth(
d j

i (X)
2

),

where {d j
i (X)}∞i=1 denotes the 0-th orthogonal spectrum 0(X; β j,(X)) of X related to β j

and (X).

Proof. As in Theorem 2.1, we let Mn = X,  = (X) = {β1, β2, ..., βk, ...}, S = β j.
Consider the orthogonal spectrum 0(X; β j,(X)) = {d j

i (X)}∞i=1 and it follows from Theorem
2.1 that

�β j(X) = mh(F j
0) +

∞∑
i=1

2 log coth(
d j

i (X)
2

),

where F j
0 is the subset of β j consisting of the points from which the oriented geodesics

starting perpendicularly never hit ∂X.
Denote by  j the set of all the complete geodesics which start perpendicularly from β j

and never hit ∂X. It is not hard to see that for any geodesic g ∈  j, the endpoint at infinity
of a lift of g must lie on the limit set of the Fuchsian group ΓX . Fix a connected component
β̃ j of a lift of β j and denote by Vj the set of the endpoints at infinity of the lifts starting from
β̃ j of all the geodesics in  j. It is clear that Vj ⊂ Λ(ΓX).

Observe that the endpoints of β̃ j divides the circle at infinity S 1∞ into two disjoint open
components. We endow S 1∞ with 1-dimensional Lebesgue measure and let + be the open
component for which the normal to β̃ j points. Consider the map p j : + → β j given by
orthogonal projection to β̃ j followed by the covering map into the quotient surface X. Then
F j

0 is exactly p j(Vj). By the assumption that the limit set Λ(ΓX) has 1-dimensional measure
zero and by the fact that p j preserves sets of measure zero (see Proposition 3.3 in [3]), we
derive that mh(F j

0) = mh(p j(Vj)) = 0. Hence,

�β j(X) =
∞∑

i=1

2 log coth(
d j

i (X)
2

).

�

2.2. Generalized McShane identity for complete bordered hyperbolic surfaces of in-
finite type.

2.2. Generalized McShane identity for complete bordered hyperbolic surfaces of in-
finite type. The generalized McShane identity for bordered hyperbolic surfaces of finite
type is given by Mirzakhani [23]. To generalize it to the case of a complete hyperbolic sur-
face X of infinite type with boundary, we apply the method given by Bridgeman and Tan [8].
The way is to consider the boundary flows on the surface X.

Indeed, let T1(X) be the unit tangent bundle of X and π : T1(X) → X be the projective
map. Fix a boundary component β1 of X and denote by W the subset of T1(X) consisting of
the vectors with basepoints on β1 which are perpendicular to β1 and point to the interior of
X. It is obvious that π is a bijection from W to β1. We identify W with β1 under π and define
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the measure μ on W to be the pull back of the 1-dimensional Lebesgue measure on β1 under
π. In particular, μ(W) = �β1 (X). Then we consider the geodesic gv starting at p = π(v) ∈ β1

obtained by exponentiating v, where gv is assumed to stop when it hits itself or the boundary
∂X.

Let Z ⊂ W be the set of vectors in which gv starts has infinite length. It is not hard to see
that for every v ∈ W\Z, gv is a geodesic arc contained in a unique generalized hyperbolic pair
of pants embedded in X bounded by β1 and a pair of simple closed curves γ1 and γ2 (where
either γ1, γ2 are both interior simple closed geodesics, or exactly one of them is an interior
simple closed geodesic while the other is a geodesic boundary component or a cusp distinct
from β1). Denote by  the set of all such pairs of pants embedded in X. For each P ∈  , let
XP = {v ∈ W \ Z : gv ⊂ P}, then W = Z ∪ (∪P∈XP). Hence, �β1 (X) =

∑
P∈
μ(XP) + μ(Z).

If γ1 and γ2 are both interior simple closed geodesics, it can be computed by elementary
hyperbolic geometry that μ(XP) = (�β1 (X), �γ1 (X), �γ2 (X)). Otherwise, assume that γ1 is a
geodesic boundary component (may be a cusp) and γ2 is an interior simple closed geodesic.
It can be computed that μ(XP) = (�β1 (X), �γ1 (X), �γ2 (X)). Here the functions  and  are
respectively defined by

(x1, x2, x3) = 2 log

⎛⎜⎜⎜⎜⎜⎝ e
x1
2 + e

x2+x3
2

e
−x1

2 + e
x2+x3

2

⎞⎟⎟⎟⎟⎟⎠ ,
(x1, x2, x3) = x1 − log

⎛⎜⎜⎜⎜⎝cosh x2
2 + cosh x1+x3

2

cosh x2
2 + cosh x1−x3

2

⎞⎟⎟⎟⎟⎠ .
The difficulty is how to ensure that μ(Z) = 0. However, if the limit set of the Fuchsian

group ΓX has 1-dimensional measure zero, it is true that μ(Z) = 0. This proof is similar to
the proof for mh(F j

0) = 0 in Proposition 2.2.
Therefore, the generalized McShance identity still holds for X if ΓX has 1-dimensional

measure zero. Then we have the following proposition.

Proposition 2.3. Let X be a complete bordered hyperbolic surface of infinite type with
the limit set Λ(ΓX) of 1-dimensional measure zero. Let β1 be a boundary component of X
with �β1 (X) > 0. Then we have∑

{γ1,γ2}∈1

(L1, �γ1 , �γ2 ) +
∞∑

i=2

∑
γ∈1,i

(L1, Li, �γ) = L1.(3)

Here Li = �βi(X), �γi = �γi(X) and (X) = {β1, β2, ..., βk, ...}. In particular, we include the
cusps as geodesic boundary components of length zero in (X). 1 denotes the set of all the
unordered pairs of isotopy classes of interior simple closed curves which bound a pair of
pants with β1. 1,i denotes the set of all the isotopy classes of interior simple closed curves
which bound a pair of pants with β1 and βi.

Recall that a class  of Fuchsian groups is quasiconformally invariant [21] if it satisfies
that for any Fuchsian group Γ ∈ , if there is a quasiconformal homeomorphism f of H2

such that Γ′ = fΓ f −1 is Fuchsian, then Γ′ belongs to .

Remark 2.4. It was remarked in [21] by Matsuzaki that the class of Fuchsian groups
whose limit set has vanishing 1-dimensional measure is not quasiconformally invariant (see
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Example 2 in [30] and Theorem 3 in [7]). Thus it’s possible that the Basmajian identity
and the generalized McShane identity fail to hold for the Teichmüller space of a hyperbolic
surface of infinite type with the limit set of 1-dimensional measure zero. To overcome this
difficulty, we consider the geometric condition (�) in the next section.

3. A geometric condition

3. A geometric condition
In this section, we aim to show that the Basmajian identity and the generalized McShane

identity hold for  (X0) provided that X0 satisfies the geometric condition (�). The key is to
show the 1-dimensional measure of the limit set Λ(ΓX) of each X ∈  (X0) is zero.

First we discuss some properties of the geometric condition (�). To state and verify the
related results, we fix some terminology and notations first.

We say that a map f : (X1, d1) → (X2, d2) between two metric spaces is bi-Lipschitz if
there exists a real number L ≥ 1 satisfying

1
L

d1(x, y) ≤ d2(x, y) ≤ Ld1(x, y)

for any x, y ∈ X1. The real number L is called a bi-Lipschitz constant of f. Two metric spaces
are said to be bi-Lipschitz equivalent if there exists a bi-Lipschitz homeomorphism between
them.

Let X0 be a complete hyperbolic surface of infinite type with geodesic boundary. We
denote by bL(X0) the bi-Lipschitz Teichmüller space of X0, which is the set of equivalence
classes of pairs (X, f ), where X is a complete hyperbolic surface of infinite type and f :
X0 → X is a bi-Lipschitz homeomorphism with respect to the hyperbolic metrics which
leaves each puncture and each boundary component setwise fixed. Here two pairs (X1, f1)
and (X2, f2) are said to be equivalent if f2 ◦ f −1

1 is homotopic to an isometry from X1 to X2.
Denote the equivalence class of (X, f ) by [X, f ]. It deserves to mention that the homotopies
do not necessarily fix ∂X0 pointwise.

In bL(X0), we consider the bi-Lipschitz metric dbL (see [17]) which is defined by

dbL([X1, f1], [X2, f2]) =
1
2

log inf
g� f2◦ f −1

1

L(g),

where the infimum is taken over all bi-Lipschitz homeomorphisms g : X1 → X2 homotopic
to f2 ◦ f −1

1 and L(g) is the bi-Lipschitz constant of g.

Theorem 3.1. (Matsuzaki [22]) Let Γ be a Fuchsian group acting on the upper half-
plane H2. If there is a positive constant L and a removable set A for Γ such that all points of
C(Λ(Γ))\A lie within a distance L of ∂C(Λ(Γ)), then there is a constant α ∈ (0, 1) depending
only on L such that the Hausdorff dimension of the limit set of Γ satisfies dimΛ(Γ) ≤ α < 1.

Remark 3.2. The condition in Theorem 3.1 is exactly the geometric condition (�) in
Definition 1.1. In the estimate of the Hausdorff dimension dimΛ(Γ) in Theorem 3.1 (see [22,
Theorem 1]), the author aimed to show that only the depth of the convex core C(Λ(Γ))/Γ
without the removable set is important. For a removable set A for Γ, the components as
horodisks and neighbourhoods of complete geodesics in H2 are used to deal with the thin
parts of C(Λ(Γ))/Γ, while the components as hyperbolic disks are used to deal with the thick
parts of C(Λ(Γ))/Γ. We give the corresponding examples in Section 5, see Example 5.10,
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Example 5.11 and Example 5.12 respectively.

Definition 3.3. For a Fuchsian group Γ, we say that a disjoint union of regions A =
∪n∈NAn in H2 is weakly removable for Γ (see [22]) if it satisfies the following conditions:
(1) Each An is an open set in H2 whose euclidean closure intersects R̂ with the set of 1-

dimensional measure zero.
(2) The set A is invariant under the action of Γ.

Definition 3.4. We say that X0 satisfies the weak geometric condition (�) if there is a
positive constant L and a weakly removable set A for ΓX0 such that all points of C(Λ(ΓX0 ))\A
lie within a distance L of ∂C(Λ(ΓX0 )).

Remark 3.5. It was proved in [22, Theorem 5] that if X0 satisfies the weak geometric
condition (�), then the 1-dimensional measure of Λ(ΓX0 ) is zero. In other words, if the
conclusion in Theorem 3.1 is weaken to be that the 1-dimensional measure of Λ(Γ) is zero,
it suffices to consider a weakly removable set for Γ instead of a removable set for Γ.

Theorem 3.6. (Matsuzaki [22]) Let NΓ be a hyperbolic surface of infinite topological
type and let {cn}n=1,2,... be the components of the boundary of the convex core ∂CΓ ⊂ NΓ. If
the hyperbolic lengths �(cn) satisfy ∑

n

�(cn)
1
2 < ∞,

then the Hausdorff dimension of the limit set of Γ is equal to 1.

Theorem 3.7. (Liu, Papadopoulos [17]) For every complete hyperbolic surface X0 of
infinite type, we have the set-theoretic equality

 (X0) = bL(X0),

and there exists a constant C such that for every X and Y in  (X0), we have

(4) dT (X, Y) ≤ dbL(X, Y) ≤ CdT (X, Y).

It is an alternative statement of Theorem 4.3 in [17]. The idea was originally introduced
by Thurston (see [32] p. 268).

Lemma 3.8. Let X0 be a complete hyperbolic surface of infinite type with boundary. Let
X ∈  (X0) and let A = ∪n∈NAn be a removable set for ΓX. Then for any subsurface Σ of
X which contains an essential self-intersecting closed curve that is not γn for any simple
closed curve γ and n ∈ Z, the projection π(A) on X of A under ΓX fails to cover Σ.

Proof. Let Σ be such a subsurface of X and let α be such an essential self-intersecting
closed curve on Σ. Assume that π(A) covers Σ, then π(A) covers α. This implies that A
contains a connected component of a lift of α in H2, called α̃. Note that α is self-intersecting
and cannot be written as γn for any simple closed curve γ and n ∈ Z, then α̃ intersects the
boundary at infinity R̂ with at least four points. Moreover, since Ai and Aj are disjoint for
all i � j, then A has a component An which contains α̃ and intersects R̂ with at least four
points. By Definition 1.1, each component of a removable set intersects R̂ with at most two
points. This contradiction proves that A fails to cover Σ. �



10 Q. Chen and L. Liu

Lemma 3.9. Let X0 be a complete hyperbolic surface of infinite type with boundary. For
any X = [X, f1], Y = [Y, f2] in  (X0), let f = f2 ◦ f1−1 and let K = K[ f ] be the maximal
dilatation of f , then

1
K
≤ � f (α)(Y)
�α(X)

≤ K,

for all α ∈ (X0) ∪(X0).

Proof. We recall a result of Wolpert (see [34]), which says that given any K′-
quasiconformal map h between two hyperbolic surfaces X′ and Y ′ without boundary, we
have

1
K′
≤ �h(α)(Y ′)
�α(X′)

≤ K′,

for all isotopy classes of essential closed curves α on X′. Note that this result also holds
for isotopy classes of essential closed curves and essential arcs on hyperbolic surfaces with
boundary, by applying an argument of doubling (see e.g. Theorem 2.1 in [19]). Therefore,
for any X = [X, f1], Y = [Y, f2] in  (X0), since f = f2 ◦ f1−1 : X → Y is a K-quasiconformal
map, we have

1
K
≤ � f (α)(Y)
�α(X)

≤ K,

for all α ∈ (X0) ∪(X0). �

Now we give some properties of the geometric condition (�) as follows.

Proposition 3.10. Let X0 be a complete hyperbolic surface of infinite type with bound-
ary which satisfies the geometric condition (�). Then for any X ∈  (X0), the following
statements hold:

(1) The number of all boundary components of X is countably infinite.
(2) X satisfies the weak geometric condition (�).
(3) The limit set of the Fuchsian group ΓX has 1-dimensional measure zero.
(4) The sum of the lengths of all boundary components of X is infinite.

Proof. The proof of (1). Recall that the hyperbolic surfaces of infinite type in this paper
admit a countable pair of pants decomposition. This implies that if X has infinitely many
boundary components, then the number of its boundary components is countably infinite.
Note that X = [X, f ] for a quasiconformal map f : X0 → X which leaves each puncture and
each boundary component setwise fixed.

It suffices to prove that the number of all boundary components of X0 is infinite. Note
that X0 is complete and thus each boundary component of X0 is a simple closed geodesic,
which implies that X0 has no boundary component of infinite length.

We argue by contradiction. Assume that X0 has finitely many geodesic boundary compo-
nents and denote them by β1, β2, ..., βn. Then

n∑
i=1

�βi(X0)
1
2 < ∞.
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By Theorem 3.6, the Hausdorff dimension of the limit set Λ(ΓX0 ) is 1. However, note that X0

satisfies the geometric condition (�) and by Theorem 3.1, the Hausdorff dimension of the
limit set Λ(ΓX0 ) is less than 1. This leads to contradiction.

The proof of (2). By Theorem 3.7, there exists a constant C such that for every [X, f ] ∈
 (X0), we have dbL([X0, id], [X, f ]) ≤ CdT ([X0, id], [X, f ]). By the definition of dbL, there
exists a bi-Lipschitz homeomorphism g : X0 → X homotopic to f with the bi-Lipschitz
constant L(g) ≤ e2CdT (X0,X) + ε0 where ε0 is a sufficiently small positive number. Let M =
e2CdT (X0,X) + ε0. We obtain that

(5)
1
M
ρX0 (x, y) ≤ ρX(g(x), g(y)) ≤ MρX0 (x, y),

for any two points x, y on X0, where ρX0 (resp. ρX) denotes the hyperbolic distance on X0

(resp. X) induced by the hyperbolic structure of X0 (resp. X).
Since X0 satisfies the geometric condition (�), then there exists a positive constant L and

a removable set A = ∪n∈NAn ⊂ H2 for ΓX0 such that

ρX0 (x, ∂X0) ≤ L,

for any point x on X0 except the image of the removable set A ⊂ H2 under the universal
covering map π0 of X0, where ρX0 (x, ∂X0) = inf

y∈∂X0

ρX0 (x, y).

It follows directly from (5) that

(6) ρX(p, ∂X) ≤ ML,

for any point p on X except the set g(π0(A)) ⊂ X.
Let g̃ be a lift of the map g to the universal covering space of X. Set A′ = g̃(A). First

we claim that A′ = ∪n∈N g̃(An) is a weakly removable set for ΓX . Indeed, A′ is a disjoint
union of open sets in H2, since g̃ is a homeomorphism and A is a disjoint union of open sets
in H2. Note that A is ΓX0 -invariant, and g̃ is equivariant with respect to ΓX0 and ΓX , then
A′ is invariant under the action of ΓX . By Definition 1.1, for each n ∈ N, An is possibly a
hyperbolic disk, a horodisk tangent to R̂, or an r-neighbourhood of a complete geodesic in
H

2 for some r > 0.
Note that g̃ : H2 → H2 is a bi-Lipschitz homeomorphism with respect to the hyperbolic

metrics, then it induces a homeomorphism from R̂ to R̂. If An is a hyperbolic disk, then g̃(An)
is a topological disk in H2 whose euclidean closure does not intersect R̂. If An is a horodisk
tangent to R̂ at ξ ∈ R̂, then the euclidean clousre of g̃(An) intersects R̂ exactly at g̃(ξ) ∈ R̂.
If An is a neighbourhood of a complete geodesic with two distinct endpoints ξ1, ξ2 ∈ R̂, then
the euclidean clousre of g̃(An) intersects R̂ exactly at two distinct points g̃(ξ1), g̃(ξ2) ∈ R̂.
Therefore, the euclidean closure of each g̃(An) intersects R̂ with the set of 1-dimensional
measure zero. By Definition 3.3, A′ is a weakly removable set for ΓX .

By (6) and the fact that g(π0(A)) = π(A′), there exists a constant L′ = ML > 0 and a
removable set A′ = g̃(A) for ΓX such that

ρX(p, ∂X) ≤ L′,

for all p ∈ X \ π(A′). This implies that X satisfies the weak geometric condition (�).
The proof of (3). By Statement (2) and Remark 3.5, the 1-dimensional measure of the

limit set Λ(ΓX) is zero.
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The proof of (4). First we prove that it suffices to show this statement for the special case
X = X0. Indeed, by Lemma 3.9, for any X = [X, f ] ∈  (X0), let K be the maximal dilatation
of f , we have

(7)
1
K
≤ � f (α)(X)
�α(X0)

≤ K,

for all α ∈ (X0) ∪(X0).
By Statement (1), X0 has infinitely many boundary components and denote the set of

boundary components of X0 by (X0) = {β1, β2, ..., βk, ...}. By (7), we have
∞∑

i=1
�βi(X) < ∞ if

and only if
∞∑

i=1
�βi(X0) < ∞. Hence, we only need to consider X = X0.

Denote bi = �βi(X0). We argue by contradiction. Suppose
∞∑

i=1

bi < ∞.

Then bi → 0, as i → ∞. By the collar lemma (see [9]), there exists a collar neighbourhood
 (βi) = {p ∈ X0 : ρX0 (p, βi) ≤ r(bi)} of βi such that  (βi) does not intersect any other
simple closed geodesics disjoint from βi, where ρX0 denotes the hyperbolic distance on X0

and r(bi) = arcsinh{1/ sinh( 1
2 bi)}.

Note that r(bi) → ∞, as i → ∞. For any L > 0 and any removable set A for ΓX0 , there
exists an integer n0 > 0 (depending on L) such that r(bi) > L for all i ≥ n0. Denote by
B(∂X0; L) the set consisting of the points on X0 lying within the distance L of ∂X0. Let
Ω = X0 \ B(∂X0; L).

Note that Ω has a connected component which contains at least two distinct isotopy
classes of simple closed curves, then it contains an essential self-intersecting curve α which
is not γn for any simple closed curve γ and n ∈ Z. By Lemma 3.8, π0(A) fails to cover
Ω, where π0 is the universal covering map of X0. This contradicts the assumption that X0

satisfies the geometric condition (�). �

Remark 3.11. The assumption that X0 is complete is necessary for Statement (1) of
Proposition 3.10. Otherwise, there exists a hyperbolic surface of infinite type called tight
flute surface by Basmajian (see [4, 5]) satisfying the geometric condition (�) but has only
one geodesic boundary component which is a simple open infinite geodesic (see Example
5.7).

Combining Proposition 2.2, Proposition 2.3 and Statement (3) of Proposition 3.10, we
have the following corollary.

Corollary 3.12. Let X0 be a complete hyperbolic surface of infinite type with bound-
ary which satisfies the geometric condition (�). Then both the Basmajian identity and the
generalized McShane identity hold for  (X0).

Question 3.13. Is the geometric condition (�) quasiconformally invariant? That is, if X0

satisfies the geometric condition (�), then for any X ∈  (X0), does X also satisfy the geo-
metric condition (�)? We can also ask the same question for the weak geometric condition
(�).



Teichmüller Space of Infinite Type 13

The construction of examples of hyperbolic surfaces of infinite type which satisfy the
geometric condition (�) will be given in Section 5.

4. An asymmetric metric on  (X0)

4. An asymmetric metric on  (X0)Definition 4.1. An asymmetric metric on a set M is a function δ : M × M → [0,+∞)
satisfying the following conditions.
(a) The separation axiom: for any x, y ∈ M, δ(x, y) = 0 if and only if x = y.
(b) The triangle inequality: δ(x, y) ≤ δ(x, z) + δ(z, y), for all x, y, z ∈ M.
(c) The asymmetric condition: there exists x, y ∈ M, such that δ(x, y) � δ(y, x).

The pair (M, δ) defined as above is said to be an asymmetric metric space (see [25, 33]).
In particular, a function f : M × M → [0,+∞] is said to be positive definite if it satisfies the
separation axiom (a).

For a Nielsen convex hyperbolic surface X (equivalently, X can be constructed by gluing
some generalized hyperbolic pairs of pants along their boundary components), the Fenchel-
Nielsen coordinates of X associated with a pair of pants decomposition  = {Ci}∞i=1 (see [2])
is defined to be {�Ci(X), tCi(X)}∞i=1 consisting of the hyperbolic lengths with respect to X of
all the simple closed curves in  and the twisting parameters used to glue the pairs of pants,
where the positive direction of twisting means turning left. It is understood that if αi is pe-
ripheral, then there is no associated twisting parameter, and instead of a pair (�Ci(X), tCi(X)),
we take a single parameter �Ci(X).

Now we recall some elementary knowledge about measured laminations (see [1, 31]) for
the completeness of exposition.

A geodesic lamination λ on a hyperbolic surface X is a closed subset of X that is the
disjoint union of simple complete geodesics (note that the geodesic with one end or both
ends transversely hitting the boundary ∂X is also considered to be complete) called the leaves
of λ. By the definition, a leaf L of λ on X ∈  (X0) may be a geodesic boundary component
of X, a geodesic ending at a cusp or a boundary component of X (L may transversely hit a
boundary component or spiral around it ), or even a geodesic with one or both of its ends
never stay in any compact subset of X if X is a surface of infinite type. Note that if L is a
geodesic that hits ∂X at a point p ∈ ∂X, we require that L is perpendicular to ∂X at p.

Let λ be a geodesic lamination on X. A transverse measure for λ is an assignment of
a finite positive Borel measure μ on each embedded arc k on X (transverse to λ and with
endpoints contained in the complement of λ), such that μ satisfies the following conditions:

(1) The support of μ is λ ∩ k.
(2) μ is invariant under homotopies relative to the leaves of λ, that is, μ(k) = μ(k′) for any

two transverse arcs k and k′ that are homotopic through embedded arcs which move their
endpoints within fixed complementary components of μ.

A measured geodesic lamination is a pair (λ, μ), where λ is a geodesic lamination and
μ is a transverse measure. For simplicity, we call a “measured lamination” instead of a
“measured geodesic lamination” and sometimes denote (λ, μ) by μ. Denote by (X) the
space of all measured laminations on X and denote by (X) the space of projective
classes of measured laminations on X.

Let X0 be a complete hyperbolic surface of infinite type with boundary. Let {μn}∞n=0 be a
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sequence of measured laminations in (X0). We say that μn converges to μ0 in (X0)
if i(μn, α)→ i(μ0, α) for all α ∈ ′(X0) ∪ (X0), where i(μn, α) = inf

α′∼α
∫
α′ dμn.

Let  int(X0) ⊂ (X0) be the set of homotopy classes of essential interior simple closed
curves on X0. Denote by ′(X0) the closure of R+ × ′(X0) in (X0). That is,
for any μ ∈ ′(X0), there exists a sequence {γn}∞n=1 in ′(X0) with a corresponding
sequence of positive weights {tn}∞n=1, such that {tnγn}∞n=1 converges to μ in (X0). The
hyperbolic length of μ is defined to be μ(X0) = lim

n→∞ tn�γn(X0) (see [24,32] for more details).
In particular, μ(X0) = �μ(X0) for all μ ∈ ′(X0) ∪ (X0). It is known that μ(X0) is
independent of the choice of the sequence which converges to it. Therefore,

log sup
γ∈′(X0)

�γ(Y)
�γ(X)

= log sup
μ∈′ (X0)

μ(Y)
μ(X)

.

In this section, we consider the following two functions on  (X0) ×  (X0):

d(X, Y) = log sup
α∈(X0)∪(X0)

�α(Y)
�α(X)

,

d(X, Y) = log sup
α∈(X0)∪(X0)

�α(X)
�α(Y)

,

for all X, Y ∈  (X0).

Lemma 4.2. (Thurston [33], Proposition 3.5) For any two complete hyperbolic structures
X, Y on a surface S of finite type without boundary, we have

sup
α∈(S )

�α(Y)
�α(X)

= sup
α∈π1(S )−{0}

�α(Y)
�α(X)

,

where π1(S ) − {0} is the set of homotopy classes of essential closed curves.

Indeed, the proof presented by Thurston [33] is independent of the topological types of
hyperbolic surfaces, thus this equality holds for hyperbolic surfaces of all topological types.

Lemma 4.3. (Proposition 2.8 in [18]) For any two complete hyperbolic structures X, Y
on a surface S of finite type with boundary, we have

sup
γ∈′(S )∪(S )

�γ(Y)
�γ(X)

= sup
γ∈(S d)

�γ(Yd)
�γ(Xd)

,

where S d denotes the double of S which carries a canonical involution such that the set of
fixed points is ∂S . Xd, Yd are respectively the doubled structure of X, Y on S d.

Proposition 4.4. For any two complete hyperbolic structures X, Y on a surface S of finite
type with boundary, we have

(8) sup
γ∈(S )∪(S )

�γ(Y)
�γ(X)

= sup
γ∈′(S )∪(S )

�γ(Y)
�γ(X)

.

Proof. Observe that ′(S ) ⊂ (S ). It suffices to verify that for any non-simple essential
arc γ0 ∈ (S ) −′(S ), the following inequality holds.

(9)
�γ0 (Y)
�γ0 (X)

≤ sup
γ∈′(S )∪(S )

�γ(Y)
�γ(X)

.
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By Lemma 4.3, we have

(10) sup
γ∈′(S )∪(S )

�γ(Y)
�γ(X)

= sup
γ∈(S d)

�γ(Yd)
�γ(Xd)

.

By Lemma 4.2, it follows that

(11) sup
γ∈(S d)

�γ(Yd)
�γ(Xd)

= sup
γ∈π1(S d)−{0}

�γ(Yd)
�γ(Xd)

.

Denote by γd
0 the double of γ0 with respect to ∂S . Combining (10) and (11), we derive that

�γ0 (Y)
�γ0 (X)

=
�γd

0
(Yd)

�γd
0
(Xd)

≤ sup
γ∈π1(S d)−{0}

�γ(Yd)
�γ(Xd)

= sup
γ∈′(S )∪(S )

�γ(Y)
�γ(X)

.

This implies (9). �

Remark 4.5. Proposition 4.4 shows that the essential simple arcs taken in the definition of
the arc metric dA for surfaces of finite type with boundary can be replaced by essential arcs.
However, the method for the proof of Proposition 2.8 in [18] is not valid if S is a surface of
infinite type with boundary. The reason is that the set  (S d) which is the closure of
(S d) in (S d) is not compact and it is possible that the value

sup
γ∈(S d)

�γ(Yd)
�γ(Xd)

cannot be realized by any measured lamination in  (S d). As a result, the method for the
proof of Proposition 4.4 also fails for the case of surfaces of infinite type with boundary.

Question 4.6. For any two complete hyperbolic structures X, Y on a surface S of infinite
type with boundary, does the following equality still hold?

sup
γ∈(S )∪(S )

�γ(Y)
�γ(X)

= sup
γ∈′(S )∪(S )

�γ(Y)
�γ(X)

.

Lemma 4.7. Let X0 be a complete hyperbolic surface with boundary which has at least
one interior simple closed curve. Then for any α ∈  int(X0), the length of α can be approxi-
mated by a sequence of lengths of weighted simple geodesic arcs γn ∈ ′(X0).

Proof. It is equivalent to show that  int(X0) ⊂ ′(X0). Note that X0 has at least
one geodesic boundary component, then for any α ∈  int(X0), we can find a geodesic arc
γ ∈ ′(X0) that essentially intersects α in one or two points. See Figure 1 (resp. Figure
2) for an example of γ corresponding to a separable (resp. non-separable) interior simple
closed curve α.

Let γn be the weighted geodesic arc obtained by taking a power n of a positive Dehn-twist
along α with the weight 1/(i(γ, α) n) on γ. It is obvious that { 1

i(γ,α) nγn}∞n=1 converges to α in
(X0), hence �α(X0) = lim

n→∞
1

i(γ,α) n�γn(X0) and we obtain that  int(X0) ⊂′(X0). �

Theorem 4.8. Let X0 be a complete hyperbolic surface of infinite type with boundary
which satisfies the geometric condition (�). Then the two functions d and d on  (X0)× (X0)
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Fig.1. An example of γ corresponding to α (separable), where the complement of
α in X0 is disconnected.

Fig.2. An example of γi corresponding to αi (non-separable).

are asymmetric metrics.

Proof. By Lemma 3.9, d and d̄ are valued in [0,+∞). Observe that d(X, Y) = d(Y, X), for
all X, Y ∈  (X0), it suffices to consider d. Note that the triangle inequality naturally holds
for d. Now we prove the separation axiom for d by showing that if X � Y ∈  (X0), then
d(X, Y) > 0.

Assume that d(X, Y) ≤ 0, then �α(Y) ≤ �α(X) for all α ∈ (X0)∪(X0). In particular, we
have that

(12) �β j(Y) ≤ �β j(X),

for all β j ∈ (X0).
Moreover, for each j ∈ N, we have that

(13) d j
i (Y) ≤ d j

i (X),

for all i ∈ N. Here {d j
i (X)}∞i=1 denotes the 0-th orthogonal spectrum of X related to β j(X) and

(X), and {d j
i (Y)}∞i=1 denotes the 0-th orthogonal spectrum of Y related to β j(Y) and (Y),

where β j(X) (resp. β j(Y)) is the corresponding geodesic boundary component on X (resp.
Y).
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By Corollary 3.12 and the Basmajian identity (2), it follows that for each j ∈ N and each
X′ ∈  (X0),

(14) �β j(X
′) =

∞∑
i=1

2 log coth(
d j

i (X′)
2

).

By (13), (14) and the monotonically decreasing of the function log coth( x
2 ),

(15) �β j(Y) =
∞∑

i=1

2 log coth(
d j

i (Y)
2

) ≥ �β j(X) =
∞∑

i=1

2 log coth(
d j

i (X)
2

).

Since the geodesic arc which minimizes the lengths of all the arcs in a given homotopy
class is unique and hits the boundary perpendicularly, then there is a bijection between
(X0) and the set of geodesic arcs (possibly with self-intersections) in X0 which are orthog-
onal to ∂X0 at their endpoints. Therefore,

∪ j{d j
i (X)} = {�α(X) : α ∈ (X0)},

∪ j{d j
i (Y)} = {�α(Y) : α ∈ (X0)}.(16)

Combining (12) (15) and (16), we have

(17) �α(Y) = �α(X),

for all α ∈ (X0) ∪(X0).
Note that X0 admits a countable pair of pants decomposition  = {Ci}∞i=1, then X0 can

be parameterized by the Fenchel-Nielsen coordinates with respect to  (see [2]). Moreover,
for each interior simple closed geodesic Ci in  , the twisting parameter can be uniquely
determined by the length of the shortest simple closed geodesic γi which intersects Ci and
the length of the geodesic TCi(γi) obtained by taking a positive Dehn-twist along Ci on γi.

By Lemma 4.7, the length of an interior simple closed geodesic can be approximated by
a sequence of lengths of weighted geodesic arcs γn ∈ (X0). From this and (17), we have
�α(Y) = �α(X) for all α ∈ (X0) ∪ (X0). Then X and Y have the same Fenchel-Nielsen
coordinates and hence X = Y , which implies the assumption is false.

The asymmetric condition of d can be deduced from the example constructed by Thurston
(see [33]). Let X be a complete hyperbolic surface of infinite type which satisfies the geo-
metric condition (�) and the following conditions:

(1) X contains an embedded hyperbolic X-piece S (that is, a hyperbolic surface whose
interior is homeomorphic to a sphere with four disjoint closed disks removed) with four
geodesic boundary components β1, β2, β3, β4 of the same length l satisfying sinh l

2 = 1.
(2) Let γ1 (resp. γ2) be the shortest geodesic arc connecting β1 and β2 (resp. β2 and

β3). Denote by α1 (resp. α2) the third boundary component of the hyperbolic pair of pants
determined by β1, β2 and γ1 (resp. β2, β3 and γ2). We choose X such that �α1 (X) is sufficiently
small and the twisting parameter of α1 is zero, as indicated in Figure 3.

Note that X satisfies the geometric condition (�). And such a surface X always exists.
Now we deform X by contracting the length of α1 appropriately on X, while keeping the
lengths of βi (i = 1, 2, 3, 4) and the hyperbolic structure of the complement of S in X un-
changed. Denote by Y the obtained surface, as presented in Figure 4. It is not hard to see
that d(X, Y) � d(Y, X) if we can choose Y with the contracted length �α1 (Y) satisfying
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Fig. 3. A hyperbolic surface X of infinite type which satisfies the geometric con-
dition (�) and the conditions (1) and (2).

Fig.4. A deformed surface Y of X.

(18)
�γ2 (Y)
�γ2 (X)

≤ �α2 (Y)
�α2 (X)

,
�γ1 (X)
�γ1 (Y)

≤ �α1 (X)
�α1 (Y)

.

Indeed, if Y satisfies the property (18), we have

d(X, Y) = log sup
α∈(X0)∪(X0)

�α(Y)
�α(X)

= log
�α2 (Y)
�α2 (X)

,

d(Y, X) = log sup
α∈(X0)∪(X0)

�α(X)
�α(Y)

= log
�α1 (X)
�α1 (Y)

≈ 1
2
(
�α2 (Y) − �α2 (X)

)
.

Choosing �α2 (Y) appropriately large (equivalently, contracting the length of α1 appropriately
on X), we have d(X, Y) � d(Y, X).

Now we show that such a surface Y with the property (18) always exists. For simplicity,
still denote the length of αi (resp. βi, γi) by αi (resp. βi, γi) for i = 1, 2. By the formulae for
right-angled pentagons and right-angled hexagons respectively (see [9]) and the assumption
that sinh βi

2 = sinh l
2 = 1 for i = 1, 2, 3, 4, we have

cosh
α2

4
= sinh

β2

2
sinh
γ2

2
= sinh

γ2

2
,

cosh γ1 =
cosh α1

2 + cosh β1
2 cosh β2

2

sinh β1
2 sinh β2

2

= cosh
α1

2
+ 2.

(19)

By (19) and the growth trends of the two functions y = cosh x and y = sinh x (resp.
y = cosh x and y = cosh x+ 2), as presented in Figure 5 (resp. Figure 6), we can always find
such a deformed surface Y with the property (18).

�
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Fig.5. Two functions: y = cosh x
(above) and y = sinh x (below),
where x ≥ 0.

Fig. 6. Two functions: y =

cosh x + 2 (above) and y = cosh x
(below), where x ≥ 0.

Remark 4.9. By Proposition 4.4, the asymmetric metric d can be viewed as an analogue,
for surfaces of infinite type with boundary, of the arc metric defined for surfaces of finite
type with boundary. That’s why we also call d the arc metric.

The problem that if the function d in Theorem 4.8 is positive definite can be viewed as
a particular version of the marked length spectrum rigidity problem (see e.g. [11, 13]). In
general, let (M, g) be a Riemannian manifold and let Σ be a set of homotopy classes of the
curves on M one wants to consider. The Σ-marked length spectrum of (M, g) is the length
vector (�γ(g))γ∈Σ indexed over Σ, where �γ(g) is the infinimum of the lengths under the metric
g of all the curves in the homotopy class [γ] ∈ Σ. The marked length spectrum rigidity
problem asks whether an inequality between the marked length spectra of two Riemannian
manifolds implies an isometry homotopic to the identity between them.

In our case, the rigidity problem is the marked (X0)∪(X0)-spectrum rigidity problem
in the special case of complete hyperbolic surfaces of infinite type with geodesic boundary.

It is necessary to take arcs into consideration in the definition of d, since for any complete
hyperbolic surface X0 of infinite type with geodesic boundary components whose lengths
are uniformly bounded above, we can find two distinct elements X, Y in  (X0) such that
�α(Y) ≤ �α(X) for all α ∈ (X0). To see this, let X = X0. Denote by X̄ the Riemann surface
such that its convex core is exactly the hyperbolic surface X. Let Ȳ be the Nielsen extension
of X̄. Note that there exists a quasiconformal homeomorphism from X̄ to Ȳ . Then we
obtain another hyperbolic surface Y ∈  (X0) which is the convex core of Ȳ . By generalized
Schwarz lemma, we have �α(Y) ≤ �α(X) for all α ∈ (X0). This implies that

log sup
α∈(X0)

�α(Y)
�α(X)

≤ 0.

Remark 4.10. Let X0 be a complete hyperbolic surface of infinite type with geodesic
boundary. Recall that the set of boundary components of X0 is (X0) = {β1, β2, ..., βk, ...}. Let
L = (Lα)α∈(X0) ∈ R|(X0)|

>0 , where |(X0)| denotes the number of the elements in (X0) which
is finite or countably infinite. Denote by  (X0, L) the subspace of  (X0) which consists of
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the equivalence classes of marked hyperbolic surfaces with geodesic boundary components
of fixed lengths, that is, the geodesic length �βi(X) of βi under each element X of  (X0, L) is
Lβi for each i ∈ N. For convenience, we denote Lβi by Li.

If X0 satisfies the geometric condition (�), as discussed in Theorem 4.8, by applying the
generalized McShane identity (3) and the Basmajian identity (2), the following two functions
are asymmetric metrics on  (X0, L).

d1(X, Y) = log sup
α∈(X0)

�α(Y)
�α(X)

,

d2(X, Y) = log sup
α∈(X0)

�α(Y)
�α(X)

,

for all X, Y ∈  (X0, L).

The following theorem shows that one can obtain the same asymmetric metric by taking
the supremum over (X0) ∪ (X0) instead of (X0) ∪ (X0) in the formula which defines
the arc metric d on  (X0) in Theorem 4.8.

Theorem 4.11. Let X0 be a complete hyperbolic surface of infinite type with boundary,
then the following equality still holds for all X, Y ∈  (X0).

(20) sup
α∈(X0)∪(X0)

�α(Y)
�α(X)

= sup
γ∈(X0)∪(X0)

�γ(Y)
�γ(X)

.

In particular, if X0 satisfies the geometric condition (�), then the following equality defines
the same asymmetric metric on  (X0).

(21) log sup
α∈(X0)∪(X0)

�α(Y)
�α(X)

= log sup
γ∈(X0)∪(X0)

�γ(Y)
�γ(X)

.

Proof. Obviously,

sup
α∈(X0)∪(X0)

�α(Y)
�α(X)

≤ sup
γ∈(X0)∪(X0)

�γ(Y)
�γ(X)

.

It suffices to verify that

(22) sup
α∈(X0)∪(X0)

�γ(Y)
�γ(X)

≤ sup
γ∈(X0)∪(X0)

�γ(Y)
�γ(X)

.

By Lemma 4.7, we have

 int(X0) ⊂(X0).

Observe that (X0) =  int(X0) ∪ (X0) and

sup
γ∈(X0)

�γ(Y)
�γ(X)

= sup
μ∈(X0)

μ(Y)
μ(X)

.

Therefore, the inequality (22) holds. If X0 satisfies the geometric condition (�), it follows
from Theorem 4.8 that the equality (21) defines the same asymmetric metric. This completes
the proof of this theorem. �
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Remark 4.12. Using the same method for the proof of the equality (20) in Theorem 4.11,
we give an affirmative answer to the following question (see Problem 5.5 in [20]): does the
equality (23) hold on Teichmüller spaces of surfaces of infinite type with boundary?

(23) log sup
α∈′(X0)∪(X0)

�α(Y)
�α(X)

= log sup
γ∈′(X0)∪(X0)

�γ(Y)
�γ(X)

.

Question 4.13. For a complete hyperbolic surface X0 of infinite type with geodesic
boundary, is the following function δ an asymmetric metric on  (X0)?

δ(X, Y) = log sup
γ∈(X0)

�γ(Y)
�γ(X)

,

for any X, Y ∈  (X0).

It is clear that δ is positive definite for hyperbolic surfaces of finite type with boundary,
by an application of the Bridgeman identity [8].

Question 4.14. Let X0 be a complete hyperbolic surface X0 of infinite type with geodesic
boundary, are there two elements X, Y in  (X0) satisfying the following condition?

log sup
α∈(X0)

�α(Y)
�α(X)

< 0.

For a complete hyperbolic surface of finite type with geodesic boundary, it is true. We
can construct some examples by Nielsen extension (see [6, 10]) or strip deformation (see
[12, 26]). Does it still work for the case of surfaces of infinite type with boundary?

5. Several examples of hyperbolic surfaces of infinite type which satisfy the geomet-
ric condition (�)

5. Several examples of hyperbolic surfaces of infinite type which satisfy the geomet-
ric condition (�)

In this section, we construct several examples of hyperbolic surfaces of infinite type which
satisfy the geometric condition (�). We find that these hyperbolic surfaces may be incom-
plete. And we prove that there is no direct relation between the geometric condition (�) and
the Shiga’s condition.

5.1. The construction of examples.
5.1. The construction of examples. In order to construct the desired examples, we first

give the following two lemmas.

Lemma 5.1. Let Pn be a geodesically convex hyperbolic n-polygon inH2 with consecutive
edges α1, α2, ..., αn, where the endpoints of the edge αi are denoted by Qi and Qi−1, here
Q0 = Qn. Then ρ(x, α1) ≤ sup

2≤i≤n−1
{ρ(Qi, α1)} for any point x ∈ Pn, where ρ denotes the

hyperbolic distance on H2 and ρ(x, α1) = inf
y∈α1
ρ(x, y).

Proof. By the continuity of the hyperbolic distance on Pn, we only need to consider the
hyperbolic distance from each point of the piecewise geodesic boundary ∂Pn to α1. Note
that Pn is geodesically convex, the function f : ∂Pn\α1 → R≥0 which assigns ρ(x, α1) to
x restricted to each smooth edge except α1 attains its maximum only if x is one of the two
endpoints. Therefore,



22 Q. Chen and L. Liu

sup
x∈∂Pn\α1

ρ(x, α1) = sup
2≤i≤n−1

{ρ(Qi, α1)},

which implies the desired result. �

Lemma 5.2. Let Hn(n ≥ 1) be a right-angled hexagon in H2 with pairwise non-adjacent
edges αn, βn, γn whose lengths are respectively l0, ln, ln, where l0 > 0, {ln}∞n=1 is a strictly
increasing sequence of positive numbers and ln → ∞ as n → ∞. Then there exists a
constant M > 0, such that

sup
n
{sup

x∈Hn

ρ(x, βn)} = sup
n
{sup

x∈Hn

ρ(x, γn)} ≤ M,

where ρ denotes the hyperbolic distance on H2.

Proof. Denote the vertices of Hn which are not on the edge γn by An, Cn, Dn, Bn re-
spectively in the counter-clockwise order as presented in Figure 7. Denote ρ(An, γn) = an,
ρ(Bn, γn) = bn, ρ(Cn, γn) = cn, ρ(Dn, γn) = dn.

Fig.7. The right-angled hexagon Hn in Lemma 5.2.

Note that sup
x∈Hn

ρ(x, βn) = sup
x∈Hn

ρ(x, γn) for all n ≥ 1. By Lemma 5.1, it suffices to show that

sup
n
{an, bn, cn, dn} ≤ M for a constant M > 0.

By the formula for a right-angled hexagon and the formula for a trirectangle (that is, a
quadrilateral with three right angles) [9], we have

(24) cosh an =
cosh ln + cosh ln cosh l0

sinh ln sinh l0
≤ coth l1

sinh l0
+ coth l1 coth l0.

(25) cosh bn =
cosh l0 + cosh ln cosh ln

sinh ln sinh ln
≤ cosh l0

(sinh l1)2 + (coth l1)2.

(26) sinh cn = sinh an cosh l0 ≤ cosh an cosh l0.

(27) sinh dn = sinh bn cosh ln =
√

(cosh bn)2 − 1 cosh ln.
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Substitute (25) into (27), we have

sinh dn =

√
cosh2 l0 coth2 ln

sinh2 ln
+ 2 coth4 ln cosh l0 + cosh2 ln(coth4 ln − 1)

≤
√

cosh2 l0 coth2 l1
sinh2 l1

+ 2 coth4 l1 cosh l0 + cosh2 ln(coth4 ln − 1)

(28)

Note that coth x → 1, sech x → 0 as x → ∞ and (coth x)′ = − csch2 x, (sech x)′ =
− sech x tanh x, we have

lim
x→∞ cosh2 x(coth4 x − 1)

= lim
x→∞

coth4 x − 1
sech2 x

= lim
x→∞
−4 coth3 x csch2 x

−2 sech2 x tanh x
= lim

x→∞ 2 coth6 x

= 2

(29)

Combining (24), (25), (26), (28) and (29), we have the desired result. �

Example 5.3. Now we construct a complete hyperbolic surface X0 of infinite type which
satisfies the geometric condition (�).

Let {ln}∞n=1 be a strictly increasing divergent sequence of positive numbers. Let Pn be
a hyperbolic pair of pants with boundary lengths (2l0, 2ln, 2ln). Then we glue Pn with its
copy P′n along the geodesic boundary component of common length 2ln. Denote by Xn the
obtained X-piece for n ≥ 1. Let X0 be the surface obtained by gluing the sequence {Xn}∞n=1 in
succession along the geodesic boundary component αn of common length 2l0, as indicated
in Figure 8. Note that the amount of the twisting along the gluing curves can be taken
arbitrarily in the above process.

Fig.8. The hyperbolic surface X0 of infinite type in Example 5.3.

Since any closed ball of radius 1 on the surface X0 is contained in a finite number of
pairs of pants of the given decomposition as show in Figure 8, then it is compact. By the
Hopf-Rinow Theorem, X0 is complete.

We claim that X0 satisfies the geometric condition (�). Indeed, Pn can be constructed
by pasting two copies of the right-angled hexagon Hn with pairwise non-adjacent edges of
lengths l0, ln, ln along the remaining edges. Denote by βn (resp. β′n) the boundary component
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of Pn (resp. P′n) which is contained in ∂X0 and has length 2ln. For each x ∈ X0, there exists
an integer N ≥ 1, such that x lies in PN or P′N . Without lost of generality, we assume that
x ∈ PN . By Lemma 5.2, there exists a constant M > 0 independent of N such that

ρ(x, ∂X0) ≤ ρ(x, βN) ≤ M,

which implies the claim.

In order to construct more examples which satisfy the geometric condition (�), we intro-
duce the following notations and propositions given by Basmajian (see [4, 5]).

A flute surface is a hyperbolic surface of infinite type obtained by gluing a sequence of
generalized hyperbolic pairs of pants {Pi}∞i=0 in succession along the common length bound-
ary components, that is, any two adjacent pairs of pants Pi, Pi+1 have exactly one common
geodesic boundary component which is denoted by αi+1 for i ≥ 0. Note that P0 has at least
one geodesic boundary component α1 and Pi has at least two geodesic boundary compo-
nents αi, αi+1 for i ≥ 1. We say that a flute surface is tight if all the pants holes that have
not been glued along are in fact cusps. In this case, denote by α0 the image of a horocycle
under the universal covering of this surface, which is a simple closed curve of length one and
homotopic to a cusp of P0 (see Figure 9). We say a subsurface S is a spike if it is isometric
to the region {z = x + iy : 0 ≤ x ≤ 1, y > a} of H2, for some a > 0.

Let �i be the length of αi for i ≥ 0. Denote by di the hyperbolic distance from αi to αi+1

and denote by si the amount of the twisting along αi+1 for i ≥ 0. Here the amount of a
positive Dehn-twist along αi+1 is defined to be the hyperbolic length of αi+1.

Fig. 9. A tight flute surface Y0 (where α0 is the image of a horocycle under the
universal covering and has length one).

Let {Li}i≥0 be a sequence of geodesics in H2. We say that {Li} is a nested sequence of
geodesics if Li−1 and Li+1 lie in different components of H2 − Li for each i ≥ 1, and if the
Li are disjoint in H

2
. {Li} converges to the geodesic L if the endpoints of Li converge to the

endpoints of L on ∂H2. If the endpoints of Li converge to a single point of ∂H2, then we
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say that the sequence {Li} converges to a point on the boundary of the hyperbolic plane. It
is known that the limit of a nested sequence of geodesics in H2 is unique and is one of the
above two possibilities.

Introduce a positive direction for each Li by designating Li+1 to lie to the right of Li. Let
σi be the unique common perpendicular between the geodesics Li and Li+1. The distance
from σi to σi+1 is measured by traversing Li+1. Let si = ρ(σi, σi+1) if Li+1 is traversed in the
positive direction, and let si = −ρ(σi, σi+1) if Li+1 is traversed in the negative direction. Set
di = ρ(Li, Li+1). Here ρ is the hyperbolic distance on H2.

Proposition 5.4. (Basmajian [4]) Let the sequence {Li}i≥0 be a nested sequence of
geodesics in H2. Then Li converges to a geodesic if and only if

lim
i→∞ ρ(L1, Li) < ∞,

where ρ(L1, Li) is the hyperbolic distance between L1 and Li.

Proposition 5.5. (Basmajian [4], The Pair of Pants Theorem) Suppose γ and β are nonel-
liptic elements. Let d be the hyperbolic distance between the axes of γ and β (if γ is para-
bolic, the axis of γ is the horocycle based at the fixed point of γ whose projection to H2/〈γ〉
has length one). Then (γ, β) form standard generators for a tight pair of pants (that is, the
third boundary component of this pair of pants is a cusp) if and only if c(γ)+ c(β) = d. Here
c(γ) = log 2 if γ is parabolic, and c(γ) = log coth T (γ)

4 if γ is hyperbolic, where T (γ) is the
translation length of γ.

We first give an example of incomplete hyperbolic surfaces of infinite type which satisfy
the geometric condition (�) by the following proposition.

Proposition 5.6. Let Y0 be a tight flute surface with
∑

di < ∞ and
∑ |si| < ∞, where the

sum is taken over all i ≥ 0. If there exists a constant M > 0 such that

(30) sinh
( ∞∑

i=n−1

di
)

cosh
ln
2
≤ M,

for all n ≥ 1, then Y0 is incomplete and satisfies the geometric condition (�).

Proof. By the assumptions that
∑

di < ∞ and
∑ |si| < ∞, it follows from Proposition

5.4 that the nested sequence {αi} converges to a geodesic. We denote it by α. We claim that
the length of α must be infinity. Otherwise, assume that the length of α is a finite positive
number l. Then li ≤ l + 1 for all i ≥ N, where N is a sufficiently big integer. By the formula
for a pentagon with four right angles and an angle of zero (see [9]), we have

cosh di =
1 + cosh li

2 cosh li+1
2

sinh li
2 sinh li+1

2

≥ 1
sinh2 l+1

2

+ coth2 l + 1
2
,

for all i ≥ N, which contradicts the assumption that
∑

di < ∞. Therefore, �i → ∞, as i→ ∞
and Y0 is an incomplete hyperbolic surface with a simple open infinite geodesic boundary.

Now we prove that Y0 satisfies the geometric condition (�) if it satisfies the condition
(30).

First we consider the special case that si = 0 for all i ≥ 0. In this case, Y0 can be
constructed by pasting two copies of the geodesically convex ideal region R with infinitely
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many geodesic edges along all the edges of common lengths except α′, which is half of the
geodesic α.

Fig.10. The geodesically convex ideal region R (where each spike S n is an open
subset of R, the dashed lines are geodesics γn between Gn and E′n and the angle at
E′n between the finite edge GnE′n of the spike S n and the common perpendicular α′n
is zero. In this figure, E′1 = E′2 = E1, E′3 = E3).

Now we consider the geodesically convex ideal region R with ideal vertices {Ai}∞i=0 corre-
sponding to the cusps of Y0, as shown in Figure 10. Denote by A, A′ the two endpoints of α′

(where A′ is an ideal vertex). Let α′0 be half of the simple closed curve α0 and let α′i be the
common perpendicular between the infinite geodesic edge AiAi+1 and the infinite geodesic
edge A0A for i ≥ 1.

It suffices to find a constant M′ > 0 and a disjoint union S of spikes in R such that any
point in R \ S is within the distance M′ of α′.

To see this, we denote by Ei, Fi the two endpoints of α′i (where Fi lies in the edge A0A).
Since the length of αi is li, then the hyperbolic length of α′i is 1

2�i. For the ideal vertex A0,
we take a spike S 0 which has a finite edge α′0 of length 1

2 l0 = 1
2 . For each ideal vertex Ai

(i ≥ 1), we take a spike S i such that it goes through the point E′i , where E′i = Ei if li ≥ li−1,
and E′i = Ei−1 if li < li−1. Denote by Gi the third vertex of S i except the two vertices Ai and
E′i (note that each spike S i is an open subset of R and the finite edge E′iGi is not a geodesic).
Draw a geodesic segment which starts at Gi and intersects the edge A0A perpendicularly at
the point Hi for i ≥ 1.

We claim that each spike S i is disjoint from any other spikes. Indeed, we represent the
geodesically convex ideal region R in the upper half-plane model of H2 (see Figure 11). It
suffices to consider the position of S i+1 in the special case that li = li+1. In this case, the
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vertex Gi+1 of S i+1 coincides with the point Ei (see Figure 12). By the construction of S i,
we have that S i and S j are disjoint for all i � j.

Fig.11. The geodesically convex ideal region R in H2, where the boundary of R is
drawn in bold lines, and Oi is the Euclidean center of the semi-circle corresponding
to the infinite geodesic edge AiAi+1 of R (in this figure, E′1 = E′2 = E1, E′3 = E3).

Fig.12. The position of the spike S i+1 when li = li+1 (in this figure, E′i+1 = Ei+1).

Let ci be the hyperbolic distance between Hi and Fi for i ≥ 1. Let d be the hyperbolic
distance between α′0 and α′. Then

∑
ci <
∑

di = d < ∞.
Let S = ∪i≥0S i. We need to show that there exists a constant M′ > 0 such that any point

in R \ S is within the distance M′ of α′.
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Note that Lemma 5.1 can be generalized to the case of a geodesically convex simply
connected region in H2 with infinitely many geodesic edges, and each geodesic arc γn con-
necting En and Gn is contained in S n, it suffices to consider ρ(En, α

′) for n ≥ 0 and ρ(Gn, α
′)

for n ≥ 1, where ρ is the hyperbolic distance on R.
Now we compute ρ(En, α

′). Draw a geodesic from En to α′ such that it intersects α′

at the point In perpendicularly. Then ρ(En, α
′) = ρ(En, In). The geodesic segment EnIn

is an edge of the trirectangle with consecutive vertices A, In, En, Fn (see the trirectangle
with consecutive vertices A, I0, E0, F0 in Figure 10 as an example). By the formula for
trirectangles (see [9]), for each n ≥ 1, we have

(31) sinh ρ(En, α
′) = sinh (

∞∑
i=n

di) cosh
�n
2
.

To estimate ρ(Gn, α
′), we need to estimate the length bn of the geodesic segment GnHn.

Note that bn ≤ ln
2 if E′n = En and bn ≤ ln−1

2 if E′n = En−1. Then bn ≤ max{ ln2 , ln−1
2 } for all n ≥ 1.

Similarly, we compute ρ(Gn, α
′) in a trirectangle. For each n ≥ 2,

sinh ρ(Gn, α
′) = sinh (

∞∑
i=n

di + cn) cosh bn

=
(

sinh(
∞∑

i=n

di) cosh cn + cosh(
∞∑

i=n

di) sinh cn
)

cosh bn

(32)

≤ 2 cosh d sinh(
∞∑

i=n−1

di) max{cosh
ln
2
, cosh

ln−1

2
}

≤ 2 cosh d max{sinh(
∞∑

i=n−1

di) cosh
ln
2
, sinh(

∞∑
i=n−2

di) cosh
ln−1

2
}.

By (31), (32) and the given condition (30), for all n ≥ 1, we get

sinh ρ(En, α
′) ≤ M,

and for all n ≥ 2, we have

sinh ρ(Gn, α
′) ≤ 2M cosh d.

Besides,

sinh ρ(E0, α
′) ≤ sinh d cosh

1
2
≤ cosh d cosh

1
2
,

sinh ρ(G1, α
′) = sinh(c1 +

∞∑
i=1

di) cosh
l1
2
≤ cosh d cosh

l1
2
.

Note that x < sinh x for all x > 0. Let M′ = 2 cosh d(M + cosh 1
2 + cosh l1

2 ). Then any
point in R \ S is within the distance M′ of α′.

Now we consider the general case that
∑ |si| < ∞. Denote by ρ̄(En, α

′) (resp. ρ̄(Gn, α
′))

the hyperbolic distance between En (resp. Gn) and α′. Then
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ρ̄(En, α
′) ≤ ρ(En, α

′) +
∞∑

i=n

|si|,

ρ̄(Gn, α
′) ≤ ρ(Gn, α

′) +
∞∑

i=n

|si|.

Note that
∑ |si| < ∞, the statement is also true for the general case. This completes the proof

of this proposition. �

Example 5.7. Now we construct an incomplete hyperbolic surface Y0 of infinite type
which satisfies the geometric condition (�).

Consider a tight flute surface with the sequence {Pi}i≥0 of glued generalized hyperbolic
pairs of pants. Since each pair of pants Pi is tight for i ≥ 0, it follows from Proposition 5.5
that c(αi) + c(αi+1) = di for i ≥ 0. For each n ≥ 2, we obtain that

sinh
( ∞∑

i=n−1

di
)

cosh
ln
2
= sinh {

∞∑
i=n−1

(
c(αi) + c(αi+1)

)} cosh
ln
2

= sinh {log coth
ln−1

4
+ 2

∞∑
i=n

log coth
li
4
} cosh

ln
2

≤ sinh (2
∞∑

i=n−1

log coth
li
4

) cosh
ln
2
.

Note that the sequence {d0, d1, d2, ...} is completely determined by the sequences
{l0, l1, l2, ...}. Let Y0 be a tight flute surface with

∑ |si| < ∞ and the sequence {l0, l1, l2, ...}
satisfying log coth li

4 =
1
2i for each i ≥ 0. Then

d =
∞∑

i=0

di = log 2 + 2
∞∑

i=1

log coth
li
4
= log 2 + 2

∞∑
i=1

1
2i = log 2 + 2 < ∞.

For n = 1, sinh
( ∞∑

i=n−1
di
)

cosh ln
2 = sinh d cosh l1

2 < ∞. For n ≥ 2, we get

sinh (2
∞∑

i=n−1

log coth
li
4

) cosh
ln
2
= sinh (2

∞∑
i=n−1

1
2i ) cosh

ln
2

= sinh
8
2n cosh

ln
2

= sinh (8 log coth
ln
4

) cosh
ln
2
.

Observe that li = 4 arcoth e
1
2i → ∞ as i → ∞, coth x → 1, sech x → 0 as x → ∞ and

(coth x)′ = − csch2 x, (sech x)′ = − sech x tanh x, we have
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lim
x→∞ sinh(8 log coth

x
4

) cosh
x
2
= lim

x→∞
sinh(8log coth x

4 )
sech x

2

= lim
x→∞

4 cosh (8 log coth x
4 ) csch2 x

4

coth x
4 sech x

2 tanh x
2

= lim
x→∞ 8(coth

x
2

)2

= 8.

Hence, the surface Y0 constructed above satisfies the condition (30). By Proposition 5.6,
it is incomplete and satisfies the geometric condition (�).

To construct some other examples of complete hyperbolic surfaces of infinite type which
satisfy the geometric condition (�), we prove the following proposition.

Proposition 5.8. Let X0 be a flute surface of which all the pants holes that have not been
glued are boundary components and the series

∑
di is divergent. If there exists a positive

constant L such that

sup
n∈N
{an, bn, cn, dn} ≤ L,

then X0 is complete and satisfies the geometric condition (�). Here an, bn, cn, dn satisfy that

cosh an =
coshα′n+1 + coshα′n cosh β′n

sinhα′n sinh β′n
,

cosh bn =
coshα′n + coshα′n+1 cosh β′n

sinhα′n+1 sinh β′n
,

sinh cn = sinh an coshα′n,

sinh dn = sinh bn coshα′n+1,

where α′n =
1
2�αn(X0), β′n =

1
2�βn(X0), α0 ∪ β0 = ∂P0 ∩ ∂X0, βn = ∂Pn ∩ ∂X0 for n ≥ 1, as

shown in Figure 13.

Proof. Since
∑

di diverges, it follows from Proposition 5.4 that {α̃n}∞n=0 converges to a
point of ∂H2, where α̃n is a lift of αn in H2. Hence, each geodesic boundary component of
X0 is a simple closed geodesic and X0 is complete.

Fig.13. A flute surface with geodesic boundary components α0, βn for n ≥ 0 and
the series

∑
di divergent (this figure is a special case that the lengths of all αn are

equal).

Note that Pn can be constructed by pasting two copies of the right-angled geodesic
hexagon Hn with pairwise non-adjacent edges 1

2βn, 1
2αn, 1

2αn+1 along the remaining three
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edges. Denote the vertices of Hn not on the edge 1
2βn by An, Cn, Dn, Bn respectively in the

anticlockwise order, as indicated in Figure 14.

Fig.14. A right-angled hexagon Hn.

By Lemma 5.1, for any y ∈ Hn,

ρ(y,
1
2
βn) = max {ρ(An,

1
2
βn), ρ(Bn,

1
2
βn), ρ(Cn,

1
2
βn), ρ(Dn,

1
2
βn}.

For simplicity, denote 1
2�αn(X0) = α′n, 1

2�βn(X0) = β′n, ρ(An,
1
2βn) = an, ρ(Bn,

1
2βn) = bn,

ρ(Cn,
1
2βn) = cn, ρ(Dn,

1
2βn) = dn.

Then we have

cosh an =
coshα′n+1 + coshα′n cosh β′n

sinhα′n sinh β′n
,

cosh bn =
coshα′n + coshα′n+1 cosh β′n

sinhα′n+1 sinh β′n
,

sinh cn = sinh an coshα′n,

sinh dn = sinh bn coshα′n+1.

For any point x ∈ X0, there exists an integer N ≥ 0 such that x ∈ PN . In particular,
x ∈ HN . By assumption, we obtain that

ρ(x, βN) ≤ max{aN , bN , cN , dN} ≤ L.

Therefore, ρ(x, ∂X0) ≤ ρ(x, βN) ≤ L, which implies that X0 satisfies the geometric condition
(�). �

Example 5.9. Let X′0 be a flute surface. Let α′n, β′n denote the lengths of the corresponding
simple geodesic segments in Proposition 5.8. Suppose that α′n, β′n satisfy the following
conditions:

(1) α′n = l0 for all n ≥ 0;
(2) {β′n}∞n=0 is a strictly increasing sequence of positive numbers such that

β′n → ∞ as n→ ∞.
We claim that X′0 is complete and satisfies the geometric condition (�). Indeed, using the

same notations an, bn, cn, dn as in Proposition 5.8, by direct computation, we obtain that
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cosh an = cosh bn =
cosh l0 + cosh β′n cosh l0

sinh β′n sinh l0
= csch β′n coth l0 + coth β′n coth l0
≤ 2 coth β′n coth l0,

sinh cn = sinh dn = sinh an cosh l0 ≤ cosh an cosh l0.

Note that the sequence {coth β′n} strictly decreases, we have that

sup
n∈N
{an, bn, cn, dn} ≤ L,

for a constant L > 0. Moreover, it is easy to see that
∑

di = ∞. By Proposition 5.8, X′0 is
complete and satisfies the geometric condition (�), as indicated in Figure 15.

Fig.15. The flute surface X′0 in Example 5.9.

Example 5.10. We construct a hyperbolic surface X1 of infinite type, which satisfies the
geometric condition (�) with a removable set A for ΓX1 consisting of horodisks.

Let Z0 be a flute surface with αn = βn = 1 for n ≥ 0, where αn and βn denote the
same simple closed geodesics as in Proposition 5.8. Then we construct X1 by inserting a
generalized hyperbolic pair of pants with one cusp and two boundary components αl

n, α
r
n of

lengths 1 along both sides of αn for n ≥ 1, as shown in Figure 16. Let A be the removable
set for ΓX1 , whose projection π(A) on X1 under ΓX1 is a disjoint union of open cusps with the
boundary γ′n of length 1. Note that the geodesics αl

n, αr
n, βn and γ′n have the same length 1

for all n ≥ 1. It is not hard to see that X1 \ π(A) is contained in a bounded distance of ∂X1.
This implies that X1 satisfies the geometric condition (�).

Fig.16. The flute surface X1 in Example 5.10 for the case that the removable set
for ΓX1 is a disjoint union of horodisks.
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Example 5.11. We construct a hyperbolic surface X2 of infinite type, which satisfies the
geometric condition (�) with a removable set A for ΓX2 consisting of neighbourhoods of
complete geodesics in H2 whose radii tend to infinity.

Let Z0 be a flute surface with αn = βn = 1 for n ≥ 0, where αn and βn denote the
same simple closed geodesics as in Proposition 5.8. Then we construct X2 by inserting a
hyperbolic pair of pants with two boundary components αl

n, α
r
n of lengths 1 and the other

boundary component γn of length 1
2n along both sides of αn for n ≥ 1, as indicated in

Figure 17. Let A be a removable set for ΓX2 , whose projection π(A) on X2 under ΓX2 is a
disjoint union of relatively open annuli with two boundary components γn and γ′n, where γ′n
is an equidistant curve of the geodesic γn for a distance rn = arcsinh{1/ sinh ( 1

2�γn(X2))} =
arcsinh{1/ sinh ( 1

4n )} (this is ensured by the collar lemma, see [9]). Note that γ′n is not a
geodesic and the relation between �γ′n(X2) and �γn(X2) is given by the following formula
(see [9, Example 1.3.2]):

�γ′n(X2) = �γn(X2) cosh dX2 (γn, γ
′
n),

where dX2 (γn, γ
′
n) is the distance between γn and γ′n on X2. By computation,

�γ′n(X2) =
1

2n
cosh rn =

√
1

4n2 +
4

(4n sinh( 1
4n ))2

→ 2,

as n→ ∞. Hence, there exists n0 ∈ N and ε0 > 0 such that

2 − ε0 < �X2 (γ
′
n) ≤ 2 + ε0,

for all n ≥ n0. Combined with the fact that the geodesics αl
n, αr

n and βn have the same length
1 for all n ≥ 1, it follows that X2 \ π(A) is contained in a bounded distance of ∂X2. This
implies that X2 satisfies the geometric condition (�). We obtain the desired surface X2.

Fig.17. The flute surface X2 in Example 5.11 for the case that the removable set
for ΓX2 is a disjoint union of neighbourhoods of complete geodesics in H2.

Example 5.12. We construct a hyperbolic surface X3 of infinite type, which satisfies the
geometric condition (�) with a removable set A for ΓX3 consisting of hyperbolic disks whose
radii tend to infinity.
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For each integer n ≥ 3, let Tn be a trirectangle with one angle θn = π/n and three right
angles. Denote the four consecutive edges of Tn by αn, bn, an and βn. Let θn be the angle
bounded by αn and βn (see Figure 18). For convenience, we also denote the lengths of αn,
bn, an, βn by αn, bn, an, βn, respectively. Note that Tn can be uniquely (up to isometries)
determined by θn and αn. We choose αn such that sin θn coshαn = 2 for all n ≥ 3. By the
formula cosh an = coshαn sin θn for a trirectangle Tn (see [9]), cosh an = 2 for all n ≥ 3.

We claim that in each Tn we have

(33) βn < αn.

Indeed, by the formulae for a trirectangle Tn (see [9]), we get

cos θn = sinh an sinh bn,

cosh an

cosh bn
=

coshαn

cosh βn
.

(34)

Hence,

sinh bn =
cos θn
sinh an

=
cos θn√

cosh2 an − 1
=

cos θn√
3
< 1 <

√
3 = sinh an.

Combined with (34), we have βn < αn for all n ≥ 3.

Fig.18. The trirectangle Tn in the right-angled 2n-polygon Pn for n = 4.

Denote by Ln the length of the geodesic perpendicular to αn through the intersection
point of βn and an, as shown in Figure 18. By (33) and a formula for a right-angled triangle
(see [9]), we obtain that

sinh Ln = sin θn sinh βn < sin θn sinhαn < sin θn coshαn = cosh an = 2,

for all n ≥ 3. Therefore,

(35) Ln < arcsinh 2,

for all n ≥ 3.
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Now we construct a right-angled 2n-polygon Pn by gluing 2n copies of Tn along the edges
of the common lengths αn and βn alternately (see Figure 18). Then Pn has n sides of lengths
2an and the other n sides of lengths 2bn. Denote the 2bn-length sides of Pn by e1, e2, ..., en

in the anti-clockwise order. Let Bn be the maximal embedding open hyperbolic disk in Pn

whose center is the center of Pn.
By the inequality (33) and the construction of Pn, the radius of Bn is βn. Note that θn =

π/n, cosh an = coshαn sin θn ≡ 2, it follows that αn → ∞ as n → ∞. Combined with the
formula for a trirectangle Tn (see [9]) that cosh βn sinh an = sinhαn, the radius βn of Bn tends
to infinity as n→ ∞.

Take another copy P′n of Pn and denote by e′1, e′2, ..., e′n the 2bn-length sides corresponding
to the sides e1, e2, ..., en of Pn. Let B′n be the maximal embedded open hyperbolic disk in
P′n. Denote by S n the surface obtained by gluing Pn and P′n along ei and e′i for i = 1, 2, ..., n.
Then S n is a hyperbolic surface with n consecutive boundary components γ(n)

1 , γ(n)
2 , ..., γ(n)

n

of the same length 4an = 4 arccosh 2 > 0 for all n ≥ 3. The hyperbolic disks Bn and B′n are
disjoint from each other and tangent to γ(n)

i for i = 1, 2, ..., n. Moreover, they have the same
radius βn, which tends to infinity as n→ ∞.

It is not hard to see that S n \ (Bn ∪ B′n) is within the distance Ln of the boundary ∂S n of
S n. By (35), we have

(36) d(p, ∂S n) < arcsinh 2,

for all p ∈ S n \ (Bn ∪ B′n) and all n ≥ 3.
We construct X3 by pasting the boundary component γ(n)

1 of S n and the boundary com-
ponent γ(n+1)

n of S n+1 one by one for n ≥ 3 (see Figure 19). Let A be a removable set for
ΓX3 whose projection π(A) on X3 under ΓX3 is a disjoint union of hyperbolic disks Bn and B′n
over n ≥ 3. By inequality (36) and the construction of X3, it is not hard to see that X3 \ π(A)
is within the distance L = 2 arcsinh 2 of ∂X3. This implies that X3 satisfies the geometric
condition (�) and we obtain the desired surface X3.

Fig.19. The hyperbolic surface X3 in Example 5.12 for the case that the removable
set for ΓX3 is a disjoint union of hyperbolic disks.

5.2. The relation between the Shiga’s condition and the geometric condition (�).
5.2. The relation between the Shiga’s condition and the geometric condition (�). To

investigate the relation between the two conditions, we first recall some terminology as
follows.

We say that  = {Ci}∞i=1 is an upper-bounded pants decomposition of X0 if there exists a
constant M > 0 such that �Ci(X0) ≤ M for each i ∈ N. Similarly, we say that  = {Ci}∞i=1
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is a lower-bounded pants decomposition of X0 if there exists a constant m > 0 such that
�Ci(X0) ≥ m for each i ∈ N. Furthermore,  = {Ci}∞i=1 is said to be a bounded pants de-
composition of X0 if it is both an upper-bounded pants decomposition and a lower-bounded
pants decomposition of X0. Recall that a hyperbolic surface X of infinite type satisfies the
Shiga’s condition (see [28]) if it admits a bounded pants decomposition.

We claim that there is no direct relation between the Shiga’s condition and the geometric
condition (�).

Indeed, consider the surface X0 in Example 5.3 and the flute surface X′0 in Example 5.9.
The length of the boundary component βn of X0 (resp. X′0) tends to infinity, as n → ∞. In
Example 5.11, the surface X2 has a subsequence of boundary components {γn}whose lengths
tend to zero. Therefore, these surfaces X0, X′0 and X2 do not satisfy the Shiga’s condition
while they satisfy the geometric condition (�).

On the other hand, we can find a complete hyperbolic surface Y0 of infinite type which
has infinitely many geodesic boundary components and satisfies the Shiga’s condition but
does not satisfy the geometric condition (�). The surface Y0 is constructed as follows:

Fig.20. An example Y0 which satisfies Shiga’s condition but does not satisfy the
geometric condition (�).

Let Z0 be a flute surface with αn = βn = 1 for n ≥ 0, where αn and βn denote the
same simple closed geodesics as in Proposition 5.8. Then we construct Y0 by inserting
a hyperbolic surface of genus n with two geodesic boundary components αl

n, α
r
n (which

admits a pair of pants decomposition with all decomposing curves of length 1) along both
sides of αn for n ≥ 1, as indicated in Figure 20. It follows easily that Y0 satisfies the Shiga’s
condition. However, it follows from the construction of Y0 and Lemma 3.8 that for any
L > 0 and any removable set A for ΓY0 , the projection π(A) fails to cover Y0 \ B(∂Y0; L),
where B(∂Y0; L) consists of the points on Y0 lying within the distance L of ∂Y0. This implies
that Y0 does not satisfy the geometric condition (�).

In particular, there exist complete hyperbolic surfaces of infinite type which satisfy both
the Shiga’s condition and the geometric condition (�). The surface Z0 mentioned above is
such an example.
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