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Abstract
Let PU(2, 1) denote the holomorphic isometry group of the 2-dimensional complex hyperbolic

space H2
C

, and the group SU(2, 1) is a 3-fold covering of PU(2, 1): PU(2, 1) = SU(2, 1)/{ωI :
ω3 = 1}. We study how to decompose a given pair of isometries (A, B) ∈ SU(2, 1)2 under the
form A = I1I2 and B = I3I2, where the Ik’s are complex symmetries about complex lines. If
(A, B) can be written as above, we call it is C-decomposable. The main results are decompos-
ability criteria, which improve and supplement the result of [17].

1. Introduction

1. Introduction
Let H2

C
denote the 2-dimensional complex hyperbolic space, and Iso(H2

C
) denote the full

isometry group which consists of holomorphic, as well as anti-holomorphic isometries. The
projective unitary group PU(2, 1) = SU(2, 1)/{ωI : ω3 = 1} which is an index 2 subgroup
of Iso(H2

C
) denotes the holomorphic isometry group of H2

C
. There are two types of totally

geodesic 2-dimensional submanifolds in H2
C

: complex lines and the R-planes. These corre-
spond to two kinds of isometric involutions of H2

C
. A complex line C ⊂ H2

C
is fixed by a

unique involutive holomorphic isometry. We call this isometry the complex symmetry about
C, which is represented by an element IC ∈ SU(2, 1) that is given by

(1.1) IC(z) = −z + 2
〈z, c〉
〈c, c〉c,

where c is a polar vector of C. Any R-plane P is fixed pointwise by a unique anti-
holomorphic isometry of order 2: the Lagrangian reflection about P. There is another invo-
lution in Iso(H2

C
): the complex reflection about a point in H2

C
.

An element T in G is called reversible if T is conjugate to T−1. Furthermore, if T is a
product of two involutions, it is called strongly reversible. Reversible elements and strongly
reversible elements have been extensive studied in several contexts (see [2], [3], [10], [11],
[12], [15], [18]). In particular, when G = Iso(H2

C
) there are three kinds involutive elements

as mentioned above. In [4], Falbel and Zocca proved that every element in PU(2, 1) is
strongly reversible in Iso(H2

C
), since it can be expressed as a product of two Lagrangian re-

flections. Gongopadhyay and Parker [9] classified reversible and strongly reversible element
in PU(2, 1) and shown that T ∈ SU(2, 1) is reversible if and only if it is strongly reversible.
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For simplicity of presentation, we call an element A ∈ G C-strongly reversible, if A is
a product of two complex symmetries about complex lines. The C-strong reversibility of
loxodromic elements has been considered in [17] (Theorem 1). In this paper, we give the
C-strong reversibility criteria for parabolic and elliptic elements (Theorem 2 and Theorem
3).

Theorem 1 (Proposition 4 of [17]). Let A be a loxodromic element of PU(2, 1). A is
C-strongly reversible if and only if A admits a lift to SU(2, 1) with real trace greater than 3.

Theorem 2. Let A be a parabolic element of SU(2, 1). Then A is C-strongly reversible if
and only if A is a 3-step unipotent parabolic. In other words, A is C-strongly reversible if
and only if A is strongly reversible.

Theorem 3. Let A be an elliptic element of SU(2, 1). A is C-strongly reversible if and
only if A is strongly reversible and A is not a complex symmetry.

A pair of elements (A, B) ∈ SU(2, 1)2 or PU(2, 1)2 is said to be C-decomposable (resp. R-
decomposable) if there exist three complex symmetries (resp. three Lagrangian reflections)
I1, I2 and I3 such that A = I1I2 and B = I3I2 holds. Note that when writing the two elements
A and B as products of complex symmetries (or Lagrangian reflections), the order in which
the involutions appear is not important. C-decomposability (resp. R-decomposability) is
very closely related to triangle groups (groups generated by three involutions). In the setting
of H2

C
, many of the examples known of discrete groups are related to triangle groups, see

for instance [6] and [16]. It also turns out that since the group 〈A, B〉 has index two in
Γ = 〈I1, I2, I3〉, then 〈A, B〉 is discrete if and only if Γ is. This can lead to considerable
simplification in the study of the discreteness of 2-generator subgroups of PU(2, 1). For
example, Gilman has presented a new sufficient condition for a subgroup of PSL(2,C) to be
discrete by using this idea in [5]. For these reasons, we wish to decompose a pair of elements
(A, B) of SU(2, 1)2 or PU(2, 1)2 such that 〈A, B〉 contained with index 2 in a triangle group.

Will [17] gave C-decomposability criterion and R-decomposability criterion for a pair of
loxodromic isometries (A, B) of H2

C
, which are expressed in terms of traces of elements of

the group 〈A, B〉. Since an element of PU(2, 1) admits 3 lifts to SU(2, 1), the trace of an
isometry is well defined up to this indetermination. We will say that an isometry has real
trace if and only if it admits a lift to SU(2, 1) which has real trace.

Theorem 4 (Theorem 1 of [17]). Let A and B be two loxodromic isometries of H2
C

and
G = 〈A, B〉. Assume that G does not preserve a totally geodesic subspace. Then

(1). The following two propositions are equivalent:
(i) The isometry [A, B] has real trace.
(ii) The pair (A, B) is R-decomposable.
(2). The following two propositions are equivalent:
(i) The isometries A, B, AB and A−1B all have real trace.
(ii) Either the pair (A, B) is C-decomposable, or the pair (A2, B2) is C-decomposable.

In 2013, Paupert and Will [14] provided a criterion to determine whether any two given
elements of PU(2, 1) is R-decomposable, which completed the R-decomposability criterion
of elements in PU(2, 1).
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Theorem 5 (Theorem 4.1 of [14]). Let A, B ∈ PU(2, 1) be two isometries not fixing a
common point in H2

C
. Then: the pair (A, B) is R-decomposable if and only if the commutator

[A, B] has a fixed point in H2
C

whose associated eigenvalue is real and positive.

It should be pointed out that a number of issues related to C-decomposability are still
unclear. For example, a C-decomposability criterion for a pair of parabolic or elliptic ele-
ments has never been considered. In this paper, we are concerned with how to decompose
a pair elements (A, B) ∈ SU(2, 1)2 under the form A = I1I2 and B = I3I2, where Ik’s are
complex symmetries, and we investigate criteria to determine whether two given elements
of SU(2, 1) can be C-decomposable. Moreover, we also obtain the necessary and sufficient
condition of C-decomposability when one is a loxodromic element and the other one is a
parabolic element. Our main results are the followings:

Theorem 6. Let A, B ∈ SU(2, 1) be two elements of the same type not fixing a common
point in H2

C
. Then, the pair (A, B) is C-decomposable if and only if A, B are both C-strongly

reversible, and tr(AB) ∈ R, tr(BA−1) ∈ R.

Proposition 1.1. If A, B ∈ SU(2, 1) have a common fixed point in H2
C

, then (A, B) is
C-decomposable if and only if A, B are both C-strongly reversible.

Proposition 1.2. Let A, B ∈ SU(2, 1) have a common fixed point on ∂H2
C

.
(i) If A and B are both loxodromic elements, then (A, B) is C-decomposable if and only if

A, B are both C-strongly reversible and fix(A) = fix(B).
(ii) If A or B is a loxodromic element and the other one is a 3-step unipotent parabolic

element, then (A, B) is not C-decomposable.
(iii) If A and B are both 3-step unipotent parabolic elements, then (A, B) is C-

decomposable if and only if A, B don’t commute or A, B have the same invariant fan.

Theorem 7. Let (A, B) be a pair of elements of SU(2, 1), where A is a loxodromic element
and B is a parabolic element. Then (A, B) is C-decomposable if and only if A, B are both
C-strongly reversible, tr(AB) ∈ R, tr(BA−1) ∈ R, and A, B have distinct fixed points.

Our Theorem 6 contains the result of Will’s Theorem 4 (2). Propositions 1.1 and 1.2 com-
plement the conclusion of Theorem 4. Theorem 7 shows the C-decomposability criterion
for one element is loxodromic and the other one is parabolic, which hasn’t been considered
in [17].

This paper is organized as follows. We start with some geometric preliminaries is Section
2. The definition of invariant fan of a parabolic element in Proposition 1.2 is also in Section
2. The proofs of Theorems 2 and 3 will be given in Section 3. Finally the proofs of our main
results are presented in Section 4.

2. Preliminaries

2. Preliminaries2.1. Complex hyperbolic space and isometries.
2.1. Complex hyperbolic space and isometries. We begin with some background ma-

terial on complex hyperbolic geometry. Much of this is found in Goldman’s book [7].
Let C2,1 be a complex vector space of dimension 3 with a Hermitian form of signature

(2, 1). Consider the subspaces

V− = {z ∈ C2,1 : 〈z, z〉 < 0},
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V0 = {z ∈ C2,1 : 〈z, z〉 = 0},
V+ = {z ∈ C2,1 : 〈z, z〉 > 0}.

where z is the column vector
[
z1 z2 z3

]T
. Let P : C2,1 \ {0} −→ CP2 be the canonical

projection onto complex projective space. The complex hyperbolic space is defined to be
H2
C
= P(V−), and ∂H2

C
= P(V0) is its boundary.

For the projective model the metric on H2
C

, called the Bergman metric is given by the
distance function ρ(·, ·) defined by the formula

(2.2) cosh2
(
ρ(P(z),P(w))

2

)
=
〈z,w〉〈w, z〉
〈z, z〉〈w,w〉 .

There are two standard models of H2
C

. The first one is called the ball model of H2
C

, when
the Hermitian form is given by 〈z, z〉 = −|z1|2+|z2|2+|z3|2. The second one is called the Siegel
domain model of H2

C
, when the Hermitian form is given by 〈z, z〉 = z1w3+z2w2+z3w1. From

(2.2) it is easy to show that the projective unitary group PU(2, 1) acts by isometries on H2
C

,
which we identify with the holomorphic isometry group of H2

C
. The group SU(2, 1) is a

3-fold covering of PU(2, 1):

PU(2, 1) = SU(2, 1)/{I, ωI, ω2I},
where ω = (−1 +

√
3i)/2 is a cube root of unity.

The familiar trichotomy from real hyperbolic geometry applies in the complex hyperbolic
setting as well: A ∈ PU(2, 1) is said to be:

• loxodromic if it fixes exactly two points of ∂H2
C

;

• parabolic if it fixes exactly one point of ∂H2
C

;

• elliptic if it fixes at least one point of H2
C

.

It is clear that a fixed point of an isometry A lying in H2
C

or its boundary corresponds to
an eigenvector of the corresponding matrix lying in V− or V0 respectively. So we have the
following theorem.

Theorem 8 ([13]). Let A be a matrix in SU(2, 1). Then one of the following possibilities
occurs:

(i) A has two null eigenvectors with eigenvalues λ and λ
−1

where |λ| � 1, in which case A
is loxodromic;

(ii) A has a repeated eigenvalue of unit modulus whose eigenspace is spanned by a null
vector, in which case A is parabolic;

(iii) A has a negative eigenvector, in which case A is elliptic.

An eigenvalue λ of A ∈ SU(2, 1) is said to be of negative type, positive type or null if
every eigenvector of λ is in V−, V+ or V0 respectively. The eigenvalue λ is said to be of
indefinite type if there are some eigenvectors of λ in V− and some in V+.

A parabolic element in SU(2, 1) is called unipotent if it is a unipotent matrix. Unipotent
parabolic elements are either 2-step or 3-step, according to whether the minimal polynomial
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of the matrix is (x − 1)2 or (x − 1)3. If a parabolic element is not unipotent, we call it screw-
parabolic. It can be decomposed as A = PE = EP, where P is a unipotent parabolic element
and E is an elliptic element.

An elliptic element in SU(2, 1) is called regular if it has three distinct eigenvalues. A
non-regular elliptic element is called special. Special elliptic elements have two kinds: An
elliptic element is a complex reflection about complex line if it has 2 equal eigenvalues, and
one of which has eigenvectors in V−; An elliptic element is a complex reflection in a point if
it has 2 equal eigenvalues, and the remaining one has eigenvectors in V−. These reflections
may not have order 2, and not even finite order.

Also, we can use the trace of A ∈ SU(2, 1) to decide whether it is elliptic, parabolic or
loxodromic.

Lemma 9 ([7]). Let f be the polynomial f (z) = |z|4 − 8�(z3) + 18|z|2 − 27, where z ∈ C.
Denote by C3 is the set of cube roots of unity in C. Let A ∈ SU(2, 1). Then:

(1) A is regular elliptic⇔ f
(
tr(A)

)
< 0;

(2) A is loxodromic⇔ f
(
tr(A)

)
> 0;

(3) A is screw parabolic or special elliptic⇔ f
(
tr(A)

)
= 0 and tr(A) � 3C3;

(4) A is unipotent or the identity⇔ tr(A) ∈ 3C3.

2.2. The ball model of H2
C

.
2.2. The ball model of H2

C
. The ball model of H2

C
arises from the choice of Hermitian

form

(2.3) H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
The vector z =

[
1 z1 z2

]T
is the standard lift of z ∈ H2

C
to V−. Furthermore, we see that

z ∈ H2
C

provided

〈z, z〉 = −1 + |z1|2 + |z2|2 < 0.

It is obviously that any elliptic element of H2
C

is conjugate to one given by the diagonal
matrix

E(α,β) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
e−i(α+β)/3 0 0

0 ei(2α−β)/3 0
0 0 ei(2β−α)/3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .(2.4)

Projectively, the associated isometry is given by

(z1, z2) 
→ (eiαz1, eiβz2).

Sometimes it is more convenient to work with the lift to U(2, 1) given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 eiα 0
0 0 eiβ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .(2.5)
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2.3. The Siegel domain model of H2
C

.
2.3. The Siegel domain model of H2

C
. The Siegel domain model of complex hyperbolic

space H2
C

corresponds to the Hermitian form given by the matrix :

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1
0 1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
The Siegel domain model of H2

C
with horospherical coordinates is

H2
C
= {(z, t, u) : z ∈ C, t ∈ R, u ∈ R+}.

The boundary of the Siegel domain is

∂H2
C
= {(z, t, 0) : z ∈ C, t ∈ R} ∪ {∞}.

Points in H2
C

may be identified with negative vectors in C2,1 and points of ∂H2
C

may be

identified with null vectors in C2,1 by the map ψ : H
2
C
→ C2,1 given by

(2.6) ψ : (z, t, u) 
→
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(−|z|2 − u + it)/2

z
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , ψ : ∞ 
→
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
The boundary ∂H2

C
\{∞} is a copy of the Heisenberg group N of dimension 3, with group

law given in (z, t) coordinates by:

(z1, t1) ∗ (z2, t2) = (z1 + z2, t1 + t2 + 2�(z1z2)).

We conclude this subsection by considering the subgroup of PU(2, 1) stabilising the point
at infinity. Such maps will be called Heisenberg similarities. The corresponding elements in
SU(2, 1) are generated by the following 3 types: Heisenberg translations T(z,t) ((z, t) ∈ C×R),
Heisenberg rotations Rθ (θ ∈ R/2πZ) and Heisenberg dilations Dr (r > 1), where:

T(z,t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 −z −(|z|2 − it)/2
0 1 z
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , Rθ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
e−iθ/3 0 0

0 e2iθ/3 0
0 0 e−iθ/3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , Dr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r 0 0
0 1 0
0 0 1/r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .(2.7)

2.4. The invariant fan of a 3-step unipotent parabolic.
2.4. The invariant fan of a 3-step unipotent parabolic. The standard reference for the

invariant fan of a 3-unipotent parabolic element is [8] (see also Section 2.3 of [14]).
For any z ∈ C there exists a unique complex line which contains ∞ and the point (z, 0).

This induces a projection Π̃ : H2
C
\ {∞} 
−→ C whose fibers are the complex lines through

∞. In restriction to the boundary, this projection is just the vertical projection Π : (z, t) 
−→
(z, 0), which is given in Heisenberg coordinates.

A fan through∞ is the preimage of any affine line in C under the projection Π̃. A general
fan is the image of a fan through∞ by an element of PU(2, 1). As stated in [8], fans enjoy a
double foliation, by R-planes and complex lines. In [14], the authors make the foliation of
fan explicit. See the following:

Lemma 10 (Lemma 2.2 of [14]). Let Lw,k be the affine line in C parameterized by Lw,k =
{w(s + ik), s ∈ R}, for some unit modulus w and k ≥ 0. Then the boundary foliation of
the fan above Lw,k is given by the lines parameterized in Heisenberg coordinates by Lt0 =
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{(w(s + ik), t0 + 2sk), s ∈ R}.
If T is a 3-step unipotent parabolic element of PU(2, 1), there exists a unique fan FT

through the fixed point of T such that it is stable under T and every leaf of the foliation of
FT by real planes is stable under T . We call this fan FT the invariant fan of T .

Remark 2.1. When T = T(z,t) with z � 0, the fan FT is the one above the affine line Lw,k ,
where w = z/|z| and k = t/(4|z|).

For future reference, let us state the following proposition.

Proposition 2.1 (Lemma 2.3 of [14]). Let T(z1,t1) and T(z2,t2) be two 3-step unipotent par-
abolic elements. Then these two translations commute if and only if z1z2 ∈ R, which is
equivalent to saying that their invariant fans are parallel.

2.5. C-strong reversibility and C-decomposability.
2.5. C-strong reversibility and C-decomposability. In [9], the authors described neces-

sary and sufficient conditions of reversibility or strong reversibility of A ∈ SU(2, 1), which
is written in terms of trace and eigenvalue of A. Since reversibility is equivalent to strong
reversibility for A ∈ SU(2, 1) (see Theorem 4.2 of [9]), we have the following theorem:

Theorem 11 (Corollary 4.10 of [9]). Let A be an element in SU(2, 1).
(1) A is a loxodromic element. A is strongly reversible in SU(2, 1) if and only if tr(A) ∈ R.
(2) A = PE is a parabolic element. A is strongly reversible in SU(2, 1) if and only if the

trace of A is real, the null eigenvalue of A is 1 or −1 and the minimum polynomial of P is
(x − 1)3 .

(3) A is an elliptic element. A is strongly reversible in SU(2, 1) if and only if the trace of
A is real and the eigenvalue of negative type or indefinite type of A is 1 or −1.

We define A ∈ SU(2, 1) is C-strongly reversible, if A = I1I2. A pair of elements (A, B) ∈
SU(2, 1)2, if A = I1I2 and B = I3I2, we call (A, B) is C-decomposable. The above I1, I2, I3

are both elements of SU(2, 1), which represent three complex symmetries about complex
lines as (1.1). It is apparent that if A is C-strongly reversible, then A is strongly reversible.
Generally speaking, the converse implication is not true.

Lemma 12. Let A ∈ SU(2, 1) be C-strongly reversible, then A has real trace.

Proof. If A is C-strongly reversible, then it may be written as A = I1I2, where I1, I2

are two matrices in SU(2, 1) corresponding two complex symmetries. Hence A−1 = I2I1 =

(I1)−1A(I1) = (I2)A(I2)−1. In particular, A is conjugate to A−1, so they have the same trace.
Since in SU(2, 1) we have tr(A−1) = tr(A), we see tr(A) = tr(A), so tr(A) is real. �

The following proposition will be needed in the Section 4.

Proposition 2.2 (Proposition 4 of [17]). A ∈ SU(2, 1) is a loxodromic element, if I1 and
I2 are two complex symmetries such that A = I1I2, both I1 and I2 permute the fixed points of
A.

If (A, B) ∈ SU(2, 1)2 is C-decomposable, that is A = I1I2 and B = I3I2, where I1, I2, I3 ∈
SU(2, 1) given by (1.1) which represent three complex symmetries. It follows that AB =
I1(I2I3I2) and BA−1 = I3I1 are both C-strongly reversible. According to Lemma 12, we
obtain the following proposition:
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Proposition 2.3. If (A, B) ∈ SU(2, 1)2 is C-decomposable. Then A, B, AB and BA−1 all
have real trace.

From the above we know that elements of SU(2, 1) with real trace are very important for
us.

Proposition 2.4 (Proposition 2.3 of [14]). Let A ∈ SU(2, 1) satisfy tr(A) ∈ R. Then A has
an eigenvalue equal to 1. More precisely:
• If A is loxodromic then A has eigenvalues {1, r, 1/r} for some r > 1 or r < −1.
• If A is elliptic then A has eigenvalues {1, eiθ, e−iθ} for some θ ∈ (0, π].
• If A is parabolic then A has eigenvalues {1, 1, 1} or {1,−1,−1}.

The main purpose of this paper is to discuss the C-strong reversibility and C-
decomposability of elements in SU(2, 1). It is simple to show that the C-strong reversibility
for one element and the C-decomposability for a pair elements of SU(2, 1) are both invariant
under conjugation, which make things a little easier.

3. C-strong reversibility

3. C-strong reversibility
In this section, we study the C-strong reversibility of parabolic and elliptic elements. We

have known the results about strong reversibility of elements of SU(2, 1) from Theorem 11,
then to investigate C-strong reversibility one needs to rule out the case where at least one of
I1 and I2 fixes a point.

Lemma 13. (1) Suppose that A = I1I2 where I1 and I2 are complex involutions in SU(2, 1)
with unique fixed points p1 and p2 respectively. Then

tr(A) = 2 cosh
(
ρ(p1, p2)

)
+ 1.

In particular, if A is not the identity map then tr(A) > 3, so A is hyperbolic.
(2) Suppose that A = I1I2 where I1 and I2 are complex involutions in SU(2, 1), I1 has a

unique fixed points p1 and I2 fixes the complex line L2. Then

tr(A) = −2 cosh
(
ρ(p1, L2)

)
+ 1.

In particular, tr(A) ≤ −1. If p1 � L2 then tr(A) ≤ −1 and A is hyperbolic. If p1 ∈ L2 then A
is a complex symmetry fixing a complex line through p1 orthogonal to L2.

The above result is easy to verify, so the proof is omitted.

3.1. C-strong reversibility of parabolic elements.
3.1. C-strong reversibility of parabolic elements. Owing to Proposition 2.4, in the

Siegel domain model of H2
C

, any parabolic element of SU(2, 1) which has real trace is con-
jugate in SU(2, 1) to exactly one of the following:

• If it is 3-step unipotent parabolic:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 −1 −1/2
0 1 1
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ;

• If it is 2-step unipotent parabolic:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 i/2
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦;
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• If it is screw parabolic:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 −i/2
0 1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
From Theorem 11, any 2-step unipotent parabolic elements and screw parabolic elements

are not C-strongly reversible. Combined with Lemma 13, we can get the following result
immediately.

Theorem 14. Let A be a parabolic element of SU(2, 1). Then A is C-strongly reversible
if and only if A is a 3-step unipotent parabolic. In other words, A is C-strongly reversible if
and only if A is strongly reversible.

As stated above, if A is a 3-step unipotent parabolic, we can assume A = T(1,0) ∈ SU(2, 1),
and the null eigenvalue of A is 1. We can decompose A as following:

(3.8) A = T(1,0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 −1 1/2
0 1 −1
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0
0 1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
The first (resp. second) matrix in the right hand side product corresponds to the complex
symmetry about the complex line polar to

[
1/2 −1 0

]T
(resp.

[
0 1 0

]T
).

More generally,

(3.9) T(z,0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 −z |z|2/2
0 1 −z
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0
0 1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
where z � 0. The first (resp. second) matrix in the right hand side product corresponds to
the complex symmetry about the complex line polar to

[
z/2 −1 0

]T
(resp.

[
0 1 0

]T
).

Proposition 3.1. Let A ∈ SU(2, 1) be a 3-step unipotent parabolic element fixing p ∈
∂H2
C
, and A = I1I2, where I1 and I2 are both complex symmetries. Then I1, I2 both fix the

point p. Especially, the fixed lines of I1 and I2 lie in the invariant fan of A.

Proof. Normalise A = T(1,0), suppose I2(∞) = q � ∞, where q ∈ ∂H2
C
. Since A(∞) =

I1I2(∞) = ∞, then I1(q) = ∞. Because I2
1 = I2

2 = Id, we get A(q) = q which is a contradic-
tion. Thus, I2 fixes ∞. Similarly, I1 also fixes ∞. Let L1 and L2 be two complex lines fixed
pointwise by I1 and I2 respectively. Then L1 and L2 both through∞, we can obtain

Ik =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 −2zk 2|zk|2
0 1 −2zk

0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
where zk ∈ C, k = 1, 2. As A = I1I2, we have z1, z2 ∈ R. Thus, L1 and L2 both lie in the
invariant fan of A. �

3.2. C-strong reversibility of elliptic elements.
3.2. C-strong reversibility of elliptic elements. In this subsection, we use the unit ball

model of H2
C

with the Hermitian form H in (2.3). Let A be an elliptic element with real trace.
Combining Proposition 2.4 and Theorem 11, we know that if A is C-strongly reversible, A
may be conjugate in SU(2, 1) to exactly one of the following:
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• If it is regular elliptic: E(θ,−θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 eiθ 0
0 0 e−iθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, where θ ∈ (0, π);

• If it is a complex reflection about a complex line (or boundary elliptic): El =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0
0 −1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ;

• If it is a complex reflection in a point: E(π,−π) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 −1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
From the above analysis and Lemma 13, we obtain the following theorem, which states the
C-strong reversibility of elliptic elements in SU(2, 1).

Theorem 15. Let A be an elliptic element of SU(2, 1). A is C-strongly reversible if and
only if A is a regular elliptic or a complex reflection in a point which is conjugate to one
given by the matrix E(θ,−θ) (θ ∈ (0, π]). In other words, A is C-strongly reversible if and only
if A is strongly reversible and A is not a complex symmetry.

We can decompose E(θ,−θ) as following:

E(θ,−θ) = I1I2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0
0 0 eiθ

0 e−iθ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , θ ∈ (0, π],

where I1 represents the complex symmetry about the complex line polar to[
0
√

2eiθ/2
√

2/2
]T
, I2 represents the complex symmetry about the complex line polar

to
[
0
√

2/2
√

2/2
]T

.

Remark 3.1. Any pair of elliptic elements which conjugates to (E(θ,−θ), E(α,−α)) (θ, α ∈
(0, π]) is C-decomposable.

We have known that if an elliptic element A is C-strongly reversible, either it is a regular
elliptic element which conjugates to E(θ,−θ) (θ ∈ (0, π)), or it is a complex reflection of order
2 about a point in H2

C
. Then the unique fixed point of A is in H2

C
. The following proposition

is well known.

Proposition 3.2. Let A ∈ SU(2, 1) be an elliptic element fixing p ∈ H2
C
, and A = I1I2,

where I1 and I2 are both complex symmetries. Then I1, I2 both fix the point p.

Let E be any C-strongly reversible regular elliptic element fixing the point 0 (or it is a
complex reflection in the point 0). As E is conjugate in SU(2, 1) to E(θ,−θ) (θ ∈ (0, π]), we
can represent such E by:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 cos θ ± i

√
1 − |b|2 sin θ ib sin θ

0 ib sin θ cos θ ∓ i
√

1 − |b|2 sin θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,(3.10)

where θ ∈ (0, π], b ∈ C and 0 ≤ |b| ≤ 1.
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4. C-decomposability

4. C-decomposability4.1. Main results.
4.1. Main results. In this section, we give the C-decomposability of two elements of the

same type of SU(2, 1) and get the necessary and sufficient condition of C-decomposability
when one is a loxodromic element and the other one is a parabolic element. Recall that a
pair of elements (A, B) ∈ SU(2, 1)2 is said to be C-decomposable if there exist three complex
symmetries I1, I2, I3 such that A = I1I2 and B = I3I2. Now we are ready to prove our main
result.

Theorem 16. Let A, B ∈ SU(2, 1) be two elements of the same type not fixing a common
point in H2

C
. Then, the pair (A, B) is C-decomposable if and only if A, B are both C-strongly

reversible, and tr(AB) ∈ R, tr(BA−1) ∈ R.

Proof. (1). Let (A, B) be a pair of loxodromic elements of SU(2, 1) and A, B have distinct
fixed points. From Theorems 1 and 4, we get the result.

(2). Let (A, B) ∈ SU(2, 1)2 be a pair of parabolic elements and fix(A) ∩ fix(B) = ∅.
(⇒) Assume (A, B) is C-decomposable, then A and B must be C-strongly reversible and

A, B are both 3-step unipotent parabolic by Theorem 14. Thus, tr(AB) ∈ R and tr(BA−1) ∈ R
by Proposition 2.3.

(⇐) Now that A and B are both C-strongly reversible, it follows that A, B are both 3-step
unipotent parabolic. For simplicity, we may take A = T(z,t), B is a 3-step unipotent parabolic
element fixing 0, where B has the form:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
ζ 1 0

−|ζ |2+iv
2 −ζ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (ζ, v) ∈ {C \ 0} × R.

Notice that AB and BA−1 both have real trace, we get:

tr(AB) = 3 − 2�(zζ) +
|z|2|ζ |2 − tv

4
− i(|z|2v + |ζ |2t)

4
∈ R

and

tr(BA−1) = 3 + 2�(zζ) +
|z|2|ζ |2 + tv

4
− i(|z|2v − |ζ |2t)

4
∈ R,

Due to z � 0 and ζ � 0, it follows that t = v = 0. Thus we derived that

(4.11) B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
ζ 1 0
−|ζ |2

2 −ζ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0
0 1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0
ζ 1 0
|ζ |2/2 ζ −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
The first(resp. second) matrix in the right hand side product corresponds to the complex
symmetry about the complex line polar to

[
0 1 0

]T
(resp.

[
0 1 ζ/2

]T
).

Consequently, (A, B) is C-decomposable from (3.9) and (4.11).
(3). Let A be a C-strongly reversible elliptic element in SU(2, 1) fixing the origin in the

ball model. Then the origin corresponds to a 1-eigenvector of A, and so A has the following
form:
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 λ1 −μ1

0 μ1 λ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
where λ1 + λ1 = 2 cos(θ1) for some θ1 ∈ (0, 2π). Without loss of generality, the fixed point
of B is p = (tanh(t), 0) ∈ B2. A map in SU(2, 1) sending the origin to p is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh(t) sinh(t) 0
sinh(t) cosh(t) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
Therefore we may suppose that B has the form

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosh(t) sinh(t) 0
sinh(t) cosh(t) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 λ2 −μ2

0 μ2 λ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh(t) − sinh(t) 0
− sinh(t) cosh(t) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 − (λ2 − 1) sinh2(t) (λ2 − 1) cosh(t) sinh(t) −μ2 sinh(t)
−(λ2 − 1) cosh(t) sinh(t) λ2 + (λ2 − 1) sinh2(t) −μ2 cosh(t)

−μ2 sinh(t) μ2 cosh(t) λ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
Note that if (A, B) is C-decomposable as A = I1I2 and B = I3I2, then I2 must fix the complex
line passing through the fixed points of A and B from Proposition 3.2. In the case above,

I2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0
0 −1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
Thus, (A, B) is C-decomposable if and only if tr(AI2) = tr(BI2) = −1.

tr(AI2) = −1 + λ1 − λ1, tr(BI2) = −1 + λ2 − λ2,

so (A, B) is C-decomposable if and only if λ1 and λ2 are both real.
The necessity is obvious. Now if tr(AB) and tr(BA−1) are both real. A simple calculation

shows that

tr(AB) = 1 + λ1λ2 + λ1λ2 + (λ1 − 1)(λ2 − 1) sinh2(t) − (μ1μ2 + μ1μ2) cosh(t),

tr(BA−1) = 1 + λ1λ2 + λ1λ2 + (λ1 − 1)(λ2 − 1) sinh2(t) + (μ1μ2 + μ1μ2) cosh(t).

Therefore

2i�(tr(AB) + tr(BA−1)
)
= (λ1 + λ1 − 2)(λ2 − λ2) sinh2(t),

2i�(tr(AB) − tr(BA−1)
)
= (λ1 − λ1)(λ2 + λ2 − 2) sinh2(t).

Since λ j+λ j = 2 cos(θ j) < 2 ( j = 1, 2), we see that λ1 and λ2 must be real as required. Thus,
(A, B) is C-decomposable. �

4.2. Groups fixing a point.
4.2. Groups fixing a point. In this subsection, we think about the case when A and B

have a common fixed point in H2
C

.
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Proposition 4.1. If A, B ∈ SU(2, 1) have a common fixed point in H2
C

, then (A, B) is
C-decomposable if and only if A, B are both C-strongly reversible.

Proof. Let (A, B) ∈ SU(2, 1)2 be a pair of elliptic elements and have a common point
p ∈ H2

C
. The necessity is trivial.

Now suppose A and B are bothC-strongly reversible, thus A and B are both regular elliptic
elements, or both complex symmetries in a point, or one of them is regular elliptic and the
other one is complex reflection in a point by Theorem 15.

(i). If A and B are both complex symmetries in a point p, then A = B and (A, B) is
C-decomposable.

(ii). If A and B are both regular elliptic elements, because A(p) = B(p) = p, we may
assume A = E(θ,−θ) (θ ∈ (0, π)), and B has the form (3.10) with parameters α, b, where
α ∈ (0, π), b ∈ C and 0 ≤ |b| ≤ 1.

When b � 0, we put z1 = −ibeiθ, z2 = i/b and z3 = b(±√1 − |b|2 sinα + i cosα).
Therefore,

A = I1I2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0
0 0 z1

0 z1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0
0 0 z2

0 z2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
and

B = I3I2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0
0 −√1 − |z3|2 z3

0 z3
√

1 − |z3|2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0 0
0 0 z2

0 z2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
The polar vectors to the complex lines corresponding to Ik are nk, where

n1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
b√
2

ie−iθ√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , n2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
−i√

2
1

b
√

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , n3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0√

1−|b| sinα
2

b(±
√

1−|b|2 sinα+i cosα)√
2(1−|b| sinα)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
It is clear that (A, B) is C-decomposable.

When b = 0, it is apparent from Remark 3.1 that (A, B) is C-decomposable.
(iii). If one is a regular elliptic element and the other one is a complex reflection in a point,

without loss of generality, we suppose A is a regular elliptic and B is a complex reflection in
a point. Since A, B have the same fix point in H2

C
, we set A = E(θ,−θ) (θ ∈ (0, π)), B = E(π,−π).

From Remark 3.1, then (A, B) is C-decomposable. �

Proposition 4.2. Let A, B ∈ SU(2, 1) have a common fixed point on ∂H2
C

.
(i) If A and B are both loxodromic elements, then (A, B) is C-decomposable if and only if

A, B are both C-strongly reversible and fix(A) = fix(B).
(ii) If A or B is a loxodromic element and the other one is a 3-step unipotent parabolic

element, then (A, B) is not C-decomposable.
(iii) If A and B are both 3-step unipotent parabolic elements, then (A, B) is C-

decomposable if and only if A, B don’t commute or A, B have the same invariant fan.

Note that the 3 parts of Proposition 4.2 cover all cases where A and B have a common
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fixed point on ∂H2
C

, because an elliptic element which has a fixed point on ∂H2
C

is not C-
strongly reversible and a parabolic element which is not 3-step unipotent is not C-strongly
reversible too.

We are now turning to the proof of Proposition 4.2.
Proof. (i) (⇒) A and B are both loxodromic elements and (A, B) is C-decomposable.

Then A = I1I2, B = I3I2, where Ik(k = 1, 2, 3) is complex symmetry. Suppose A fixes the
points p, q and B fixes the points p, q′. From Proposition 2.2, we get I2(p) = q = q′. Thus
fix(A) = fix(B).

(⇐) A, B are both C-strongly reversible and fix(A) = fix(B). Without loss of generality,
we set the two fixed points are 0 and∞. By Theorem 1, A, B are conjugate to⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 0
0 1 0
0 0 1/λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1
0 −1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1/λ
0 −1 0
λ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (λ > 1).

Therefore (A, B) is C-decomposable.
(ii) Assume that A is a loxodromic element and B is a 3-step unipotent parabolic element.

The fixed points of A are p, q, the fixed point of B is p. If there exist three complex symme-
tries I1, I2, I3 such that A = I1I2 and B = I3I2. Then from Proposition 2.2 and 3.1, we get
p = q. This is a contradiction to p � q. So (A, B) is not C-decomposable.

(iii) Let (A, B) be a pair of 3-step unipotent parabolic elements of SU(2, 1) and A, B have
the same fixed point.

(⇒) If (A, B) is C-decomposable, we can assume A = I1I2 and B = I3I2. From Proposition
3.1, we know that I2 must fix a complex line in the invariant fan of A and one in the invariant
fan of B. Hence, these two fans must intersect in (at least) a complex line. Therefore they
are either the same or non-parallel.

(⇐) If A and B either do not commute or have the same invariant fan, there exists a
complex line L contained in both of their invariant fans. Writing I2 for the complex sym-
metry fixing L, it is easy to check AI2 and BI2 are both complex symmetries. Thus (A, B) is
C-decomposable.

This completes the proof of Proposition 4.2. �

4.3. The C-decomposability of one loxodromic and one parabolic.
4.3. The C-decomposability of one loxodromic and one parabolic. In this subsection,

we consider the case that A is a loxodromic element and B is a parabolic element. Now we
prove the following theorem.

Theorem 17. Let (A, B) be a pair of elements of SU(2, 1), where A is a loxodromic ele-
ment and B is a parabolic element. Then (A, B) is C-decomposable if and only if A, B are
both C-strongly reversible, tr(AB) ∈ R, tr(BA−1) ∈ R, and A, B have distinct fixed points.

Proof. (⇒) If the pair (A, B) is C-decomposable, we can normalise the parabolic element
B = T(1,0) and have the decomposition given in equation (3.8). Then⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0
0 1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
should conjugate A to its inverse. Hence A has the form
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a b c
d e −b
g −d a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where a, b, d ∈ C, c, e, g ∈ R. This immediately implies

tr(AB) = 2�(a) − 2�(d) + e − g/2, tr(B−1A) = 2�(a) + 2�(d) + e − g/2
are real. Moreover, to show A and B have distinct fixed points, it suffices to show g � 0.
If g = 0, since 2�(a)g + |d|2 = 0, then d = 0 and so a2 − bd + cg = 1 implies a2 = 1;
det(A) = |a|2e = 1 implies e = 1. Thus tr(A) = 3 or −1, which contradicts the assumption A
is loxodromic.

(⇐) If A, B are both C-strongly reversible and fix(A)∩fix(B) = ∅, we may assume A = Dr

(r > 1) by Theorem 1. Without loss of generality, the fixed point of B is q = (x, t, 0) � 0,∞
(x, t ∈ R). The standard lift of q is q =

[
(−x2 + it)/2 x 1

]T
. B is conjugate to T(1,0) by

Theorem 14, then we can denote B by

(4.12)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
where λ11 = 1+ fg−(−x2+it

2 )(dg+ 1
2 |g|2), λ12 = fgx−(−x2+it

2 )(eg+ 1
2 |g|2x), λ13 = i�[(x2+it) fg]−

x4+t2

8 |g|2, λ21 = eg−gdx− 1
2 |g|2x, λ22 = 1− 1

2 |g|2x2+2xi�(eg), λ23 = (−x2−it
2 )(eg− 1

2 |g|2x)−g f x,
λ31 = 2i�(dg)− 1

2 |g|2, λ32 = dgx−eg− 1
2 |g|2x, λ33 = 1− fg+(−x2−it

2 )(dg− 1
2 |g|2), d, e, f , g ∈ C,

g � 0 and 2�(d f ) + |e|2 = 1, egx = x2−it
2 dg − fg.

As tr(AB) ∈ R and tr(BA−1) ∈ R, a simple manipulation yields

(4.13) r fg − r(
−x2 + it

2
)(dg +

1
2
|g|2) + 2xi�(eg) − 1

r
fg − 1

r
(
x2 + it

2
)(dg − |g|

2

2
) ∈ R,

and

(4.14)
1
r

fg − 1
r

(
−x2 + it

2
)(dg +

1
2
|g|2) + 2xi�(eg) − r fg − r(

x2 + it
2

)(dg − |g|
2

2
) ∈ R.

(4.13) minus (4.14), we assert t = 0, then x � 0. Substitute t = 0 into formula (4.13), we
find

2xi�(eg) + r fg − fg
r
+

x2

2
(rdg − dg

r
) ∈ R,

then �(eg) = 0.
Set L be a complex line spanned by 0 and∞. Let L2 be a complex line through q orthog-

onal to L, and I2 is the complex symmetry fixing L2. In the case above,

I2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 x2

2
0 −1 0
2
x2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
By a simple calculation, we can derive that AI2 and BI2 are both complex symmetries.
Therefore, we claim that (A, B) is C-decomposable. �
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