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Abstract
We show that spectral Hausdorff dimensional properties of discrete Schrödinger operators with

(1) Sturmian potentials of bounded density and (2) a class of sparse potentials are preserved un-
der suitable polynomial decaying perturbations, when the spectrum of these perturbed operators
have some singular continuous component.

1. Introduction

1. Introduction
We present results about preservation of spectral Hausdorff dimensional properties for

some discrete Schrödinger operators H, with (real) potentials V = {V(n)}, on l2(Z) or l2(N),
of the form

(1) (Hψ)(n) = ψ(n + 1) + ψ(n − 1) + V(n)ψ(n),

under suitable power decaying (real) perturbations P = {P(n)}, that is, when V is replaced
with V + P. Here, the term spectral measure of (1) acting in l2(N) refers to the measure
associated with the cyclic vector δ1, where δ j = (δi j)i≥1; in case (1) acts in l2(Z), then the
terminology refers to the spectral measures associated with both δ0 and δ1. On the half-
line N, each self-adjoint realization of H in (1) is given by a phase boundary condition

(2) ψ(0) cosϕ + ψ(1) sinϕ = 0, ϕ ∈ (−π/2, π/2],

which will be denoted by Hϕ.
Denote by σ(T ) the spectrum of a self-adjoint operator T , and by σp(T ), σsc(T ) its pure

point and singular continuous spectra, respectively; if μ is a Borel measure on R, we say
that μ is supported on the Borelian S if μ(R \ S ) = 0.

We are particularly interested in the family {Hλ,θ,ρ} of the so-called Sturmian operators,
that is, the family of operators (1) with almost periodic Sturmian potentials

V(n) = Vλ,θ,ρ(n) = λχ[1−θ,1)(nθ + ρ mod 1), n ∈ Z,
where 0 � λ ∈ R is the coupling constant, θ ∈ [0, 1) is an irrational rotation number of
bounded density (in Section 4 this notion is recalled) and ρ ∈ [0, 1) is the phase. It is
well known [1, 3, 14] that each Hλ,θ,ρ has purely α-Hausdorff continuous spectrum (and
that σ(Hλ,θ,ρ) has zero Lebesgue measure) for some α ∈ (0, 1). Here, α = 2γ1

γ1+γ2
, where
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γ1(θ, λ), γ2(θ, λ) > 0 are such that

C1Lγ1 ≤ ‖u‖L ≤ C2Lγ2 ,

for positive constants C1,C2 and every solution u to the eigenvalue equation Hλ,θ,ρu = Eu
with normalized initial conditions

(3) |u(0)|2 + |u(1)|2 = 1;

‖u‖L is the truncated l2([1, L]) norm (see details ahead). It is precisely in the proof of such
inequalities that the bounded density hypothesis plays an important role.

Since the proof of this α-Hausdorff continuity property relies heavily on the particular
structure of Sturmian potentials, it is an interesting question whether it is preserved under
certain perturbations. However, since the spectra of the (bounded density) Sturmian oper-
ators are purely singular continuous of zero Lebesgue measure, by considering a rank one
perturbation aδ1 with intensity a ∈ R, it follows from Simon-Wolff’s criterion [20] that the
spectrum of the perturbed operator Hλ,θ,ρ + aδ1 is pure point for (Lebesgue) a.e. a, whereas
for a in a generic set (i.e., Baire typical) of intensities, the spectrum of the perturbed op-
erator has a singular continuous [6, 11] component. Thus, the following stability result
for suitable decaying perturbations, namely, a preservation of the α-Hausdorff continuity of
spectral measures, only applies when the perturbed Sturmian operator has a singular contin-
uous component.

Since there is a lack of results on preservation of (nontrivial, i.e., different form zero and
one) Hausdorff dimensional properties under perturbations, we underline that the results
below can be considered interesting even in cases they apply for parameters (Liouville-like,
say) in a set of zero Lebesgue measure.

Theorem 1.1. Let θ be a bounded density irrational number and γ1, γ2, α as above. Then,
for every ρ ∈ [0, 1) and λ � 0, any singular continuous component of the spectral measure
associated with the operator

(4) (HP
λ,θ,ρψ)(n) := (Hλ,θ,ρψ)(n) + P(n)ψ(n), ψ ∈ l2(Z),

with the perturbation satisfying |P(n)| ≤ C(1 + |n|)−p, for all n ∈ Z, for some C > 0 and p >
3γ2 − γ1, is also purely α-Hausdorff continuous.

A particular instance of Sturmian operator is the Fibonacci operator, which corresponds
to the rotation number θ =

√
5−1
2 (the golden mean). In [2] it is observed that, in this case

with λ > 0,

γ1 <
ln

(
1 + 1

(2+2λ)2

)

16 ln
(√

5+1
2

) and γ2 > 1 +
ln[(5 + 2λ)1/2(3 + λ)cλ]

ln
(√

5+1
2

) ,

where cλ denotes the largest root of the polynomial x3 − (2 + λ)x − 1. As an illustration,
take λ = 1, so that, according to Theorem 1.1, one has α-Hausdorff stability of the singular
continuous spectrum (when it exists) under such perturbations if p ≥ 21.7.

The result in Theorem 1.1 (and in Theorem 1.2 below as well) should be contrasted with
SULE operators (see [5]), Anderson-model Hamiltonians in particular, for which rank one
perturbations always result in zero-dimensional Hausdorff spectrum (point or singular con-
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tinuous).
Another class of operators [13, 21] for which Hausdorff dimensional spectral properties

are known is given by sparse operators Hα
ϕ defined by the action (1) in l2(N), along with a

phase boundary condition (2) and, for each α ∈ (0, 1), sparse potentials

(5) V(n) =
⎧⎪⎨⎪⎩ x(1−α)/2α

j , n = x j ∈ 
0, n � 

,

where  = (x j) j =
(
2 j j

)
j
. Its essential spectrum is [−2, 2], and the restriction of its spectral

measure to the interval (−2, 2) has exact Hausdorff dimension α (see Definition 2.4) for all
boundary phase ϕ [13, 21].

Again, the proof of this interesting result relies decisively on the sparseness of the poten-
tial, and here we show that it is also stable under suitable power-law decaying perturbations
in case a singular continuous component is present. More precisely, we have the following

Theorem 1.2. Fix α ∈ (0, 1). Let Hα
ϕ be as above and

(6) (HP,α
ϕ ψ)(n) := (Hα

ϕψ)(n) + P(n)ψ(n), ψ ∈ l2(N),

with |P(n)| ≤ C(1 + n)−p for all n and some C > 0, p > (1 + 2α)/α if α ≤ 1/2, p >

(3+2α)/(2α) if α ≥ 1/2. Then, any possible singular continuous component of the perturbed
operator HP,α

ϕ has also exact Hausdorff dimension α for any boundary phase ϕ.

To illustrate Theorem 1.2, take α = 1/2 so that the α-Hausdorff continuity of the singular
continuous component of the spectrum of the perturbed operator is stable if p > 4.

The proofs of Theorems 1.1 and 1.2 make use of subordinacy theory (introduced by
Gilbert and Pearson in [8, 10]; see [15] for and adaptation to discrete operators); for this, it is
necessary to control the asymptotic behavior of the solutions to the (generalized) eigenvalue
equation

(7) (Hψ)(n) = Eψ(n).

A solution ψ to (7) is called subordinate (at +∞) if

lim inf
L→∞

‖ψ‖L
‖Φ‖L = 0

holds for any solution Φ to (7) such that {ψ,Φ} is a linearly independent set; ‖ · ‖L denotes
the l2(N) norm truncated at L > 0 ([L] is the integral part of L), that is,

‖ψ‖L =
⎡⎢⎢⎢⎢⎢⎢⎣

[L]∑
n=1

|ψ(n)|2 + (L − [L])|ψ([L] + 1)|2
⎤⎥⎥⎥⎥⎥⎥⎦

1
2

.

In case negative values of n are meaningful, the notion of a subordinate solution at −∞ is
similarly introduced. The standard decomposition of a spectral measure into its pure point,
singular continuous and absolutely continuous can be investigated by studying solutions
to (7).

Fix E ∈ R; in the following, we denote by u1,ϕ,E and u2,ϕ,E the solutions to (7) which
satisfy the orthogonal initial conditions
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(8)
{

u1,ϕ,E(0) = − sinϕ u2,ϕ,E(0) = cosϕ
u1,ϕ,E(1) = cosϕ u2,ϕ,E(1) = sinϕ

, ϕ ∈
(
−π

2
,
π

2

]
.

Note that u1,ϕ,E is the solution to (7) which satisfies the boundary condition (2).
Jitomirskaya and Last have proposed [13, 14] a generalization of subordinacy theory,

called power-law subordinacy, which provides information about Hausdorff dimensional
properties of spectral measures (see, in particular, Theorem 1.2 in [13]). Namely, given α ∈
(0, 1], a solution ψ to (7) is called α-Hausdorff subordinate (or just α-subordinate) at +∞ if

lim inf
L→∞

‖ψ‖L
‖Φ‖α/(2−α)

L

= 0

holds for any solution Φ to (7) such that {ψ,Φ} is a linearly independent set. In particular,
the α-Hausdorff continuous part of the spectral measure of Hϕ (recall that it denotes the self-
adjoint realization of H with boundary condition (2)) is supported on the set of energies E
for which (7) does not have α-subordinate solutions, and its α-Hausdorff singular part is
supported on the set of energies E for which u1,ϕ,E is an α-subordinate solution.

The proofs of Theorems 1.1 and 1.2 will follow from Theorem 1.3 below. In particular,
we are interested in energies in the set

S (H) :=
{
E | ∃ϕ s.t. u1,ϕ,E is a subordinate solution to (7) and u1,ϕ,E � l2(N)

}
.

In was found [17] that, for any ϕ, the singular continuous part of the spectral measure of Hϕ

is supported in S (H). In case of whole-line problems, the above S (H) should be replaced
by [8]{

E | ∃ a solution to (7) which is subordinate at both ends ±∞ and is not in l2(Z)
}
,

and the singular continuous parts of the spectral measures are supported in this set; note that
if no solution to (7) satisfies such condition on one end, then the corresponding energy E
does not belong to the singular continuous component.

Our general result is the following

Theorem 1.3. Let E ∈ S (H) and u1,ϕ,E, u2,ϕ,E be solutions to (7) satisfying the initial
conditions (8). Suppose that there exist positive constants γ1, γ2 such that every solution to
(H−E)u = 0 with normalized initial conditions, i.e., |u(0)|2+ |u(1)|2 = 1, obeys the estimates

(9) C1Lγ1 ≤ ‖u‖L ≤ C2Lγ2

for some C1(E),C2(E) and all L > 0 sufficiently large. Suppose also that, for some p >

3γ2 − γ1, there exists a positive constant C3 such that, for every n ∈ N,

(10) |P(n)| ≤ C3(1 + n)−p.

Then, E ∈ S (H + P), and for all κ ∈ [0, 1],

(11) lim inf
L→∞

‖u1,ϕ,E‖L
‖u2,ϕ,E‖κL

= lim inf
L→∞

‖v1,ϕ̃,E‖L
‖v2,ϕ̃,E‖κL

,

where v1,ϕ̃,E is the solution to (7) with operator H+P which satisfies the initial conditions (8)
with some phase ϕ̃, and v2,ϕ̃,E satisfying the orthogonal conditions (always for the operator
H + P).
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We emphasize that condition (9) in Theorem 1.3 is essential and it holds true for the
operators in Theorems 1.1 and 1.2; see details in Section 4.

Under the hypotheses of Theorem 1.3, we have a kind of stability between the sets S (H)
and S (H + P); note that since the perturbation P is compact (since p > 0), the essential
spectrum of any Hϕ is preserved under such perturbations, so in case the singular contin-
uous component of Hϕ coincides with its essential spectrum, then the singular continuous
spectrum of the corresponding perturbed operators (H + P)ϕ̃ will be in S (H) (in particular,
any α-Hausdorff continuous component). We again emphasize the subtlety that the spectral
measure of (H + P)ϕ of the set S (H + P) may be zero, and so Theorem 1.3 gives no relevant
spectral information in this case.

Note also that, by the definition of S (H), for the Sturmian model discussed in Theo-
rem 1.1, no possible eigenvalue of HP

λ,θ,ρ belongs to the spectrum of the unperturbed operator
(recall that σp(Hλ,θ,ρ) = ∅); however, by the preservation of the essential spectrum, σ(Hλ,θ,ρ)
is given by the accumulation points of the possible isolated eigenvalues of finite multiplicity
of HP

λ,θ,ρ. Due to the relation before (3), the operator Hλ,θ,ρ has no solution u to (7) in l2(Z),
so S (Hλ,θ,ρ) can not be a proper subset of σ(Hλ,θ,ρ). The next corollary highlights the latter
discussion.

Corollary 1.4. Let θ be an irrational number of bounded density. Then, for every ρ ∈
[0, 1) and λ � 0, no perturbation of the form (10) has eigenvalues in σ(Hλ,θ,ρ).

Obviously, by Theorem 1.2, we have an analogous version of Corollary 1.4 to the class
of sparse operators HP,α

ϕ of type (6).
The organization of this paper is as follows. In Section 2, we recall definitions and prop-

erties of Hausdorff measures and dimensions, as well as their role in subordinacy theory.
In Section 3, we prove our main general result, that is, Theorem 1.3. In Section 4, we
prove Theorems 1.1 and 1.2 as direct consequences of Theorem 1.3 and known results in the
literature.

2. Hausdorff measures, dimensions and subordinacy theory

2. Hausdorff measures, dimensions and subordinacy theory
We recall in this section some concepts and results regarding Hausdorff measures and

subordinacy theory. Most of the material exposed here is based on [7, 13, 18, 19].

Definition 2.1. Given a set S ⊂ R and α ∈ [0, 1], consider the number

Qα,δ(S ) = inf

⎧⎪⎪⎨⎪⎪⎩
∞∑

k=1

|Ik|α
∣∣∣∣∣∣∣ |Ik| < δ, ∀k; S ⊂

∞⋃
k=1

Ik

⎫⎪⎪⎬⎪⎪⎭ ,
with the infimum taken over all covers of S by intervals {Ik}k of size at most δ. The limit

hα(S ) = lim
δ→0

Qα,δ(S )

is called the α-dimensional Hausdorff measure of S .

Remark 2.2. The counting measure (which assigns to each set S the number of points in
it), for α = 0, and the Lebesgue measure, for α = 1, are particular cases of hα.

The α-dimensional Hausdorff measure, hα, is an outer measure on subsets of R [19]. It is
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known that for every set S , there is a unique αS such that hα(S ) = 0 if α > αS and hα(S ) = ∞
if αS > α. The number αS is called the Hausdorff dimension of the set S , usually denoted
by dimH(S ).

Now we recall some notions of continuity and singularity of Borel measures with respect
to Hausdorff measures and dimensions.

Definition 2.3. Let μ be a Borel measure in R and α ∈ [0, 1].
(i) μ is called α-Hausdorff continuous if μ(S ) = 0 for every Borel set S with hα(S ) = 0.

(ii) μ is called α-Hausdorff singular if μ is supported on some Borel set S , i.e., μ(R\S ) =
0 with hα(S ) = 0.

Definition 2.4. A Borel measure μ in R is said to have exact Hausdorff dimension α, for
some α ∈ (0, 1), and denoted by dimH(μ), if two requirements hold:

(i) for every set S with dimH(S ) < α, one has μ(S ) = 0;
(ii) there is a Borel set, S 0, of Hausdorff dimension α which supports μ.

A Borel measure μ in R is said to be zero-Hausdorff dimensional if it is supported on a
set with dimH(S ) = 0, and, for μ � 0, one-Hausdorff dimensional if μ(S ) = 0 for any set S
with dimH(S ) < 1.

Remark 2.5. According to Definitions 2.3 and 2.4, a Borel measure μ in R is of exact
Hausdorff dimension α if, for every ε > 0, it is simultaneously (α − ε)-continuous and
(α + ε)-singular.

Given a finite Borel measure μ and α ∈ [0, 1], define

Dα
μ(E) := lim sup

ε→0

μ((E − ε, E + ε))
(2ε)α

and set Tα∞ = {E ∈ R | Dα
μ(E) = ∞} (which is a Borelian). The restriction μαs := μ(Tα∞ ∩ ·)

is α-Hausdorff singular, and μαc := μ((R\Tα∞) ∩ ·) is α-Hausdorff continuous. Thus, each
finite Borel measure decomposes uniquely into an α-Hausdorff continuous part and an α-
Hausdorff singular part: μ = μαs + μαc. Moreover, an α-Hausdorff singular measure is such
that Dα

μ(E) = ∞ a.e (with respect to it), while an α-Hausdorff continuous measure is such
that Dα

μ(E) < ∞ a.e (see Chapter 3 in [19]).
The result in [13] that connects Hausdorff singularity and continuity of the spectral mea-

sure of H with the scaling behavior of the solutions to (7) is the following:

Theorem 2.6 (Theorem 1.2 in [13]). Let Hϕ be defined by (1)-(2) in l2(N), and μ denote
the spectral measure of Hϕ associated with the cyclic vector δ1. Let E ∈ R and α ∈ (0, 1).
Then, for any ϕ ∈ (−π/2, π/2],

Dα
μ(E) = ∞

holds if, and only if, u1,ϕ,E is α-subordinate, that is,

lim inf
L→∞

‖u1,ϕ,E‖L
‖u2,ϕ,E‖α/(2−α)

L

= 0.

Theorem 2.6 provides an effective tool for the analysis of Hausdorff dimensional prop-
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erties of spectral measures of Schrödinger operators. Namely, the α-Hausdorff continuous
part of μ is supported on the set of energies E for which (7) does not have α-subordinate
solutions, and the α-Hausdorff singular part of μ is supported on the set of energies E for
which u1,ϕ,E is α-subordinate.

Consequently, one may use Theorem 1.3 to obtain information about the Hausdorff di-
mension of spectral measure of the Schrödinger operator studied, and this is an essential tool
in the proof of Theorems 1.1 and 1.2.

3. A general result

3. A general result
We present in this section the proof of Theorem 1.3, which is based on results in [17].

Suppose that the behavior of the solutions to the eigenvalue equation (7) for V = V0 is
known; the idea is to use this knowledge to determine the behavior of the solutions to (7) for
the potential V = V0 + P, with the perturbation P decaying as in (10).

In order to avoid cumbersome notations, we set u1 := u1,ϕ,E , the subordinate solution
for V = V0, and u2 := u2,ϕ,E the corresponding solution satisfying the orthogonal initial
conditions (8). As usual [17], we apply the variation of parameters method in order to
obtain a linearly independent system of solutions to (7) for V = V0 + P; namely, we will
look for solutions v in the form

v(n) = w1(n)u1(n) + w2(n)u2(n)

and such that

v(n − 1) − v(n) = w1(n) [u1(n − 1) − u1(n)] + w2(n) [u2(n − 1) − u2(n)] .

By writing w(n) :=
(
w1(n)
w2(n)

)
, the eigenvalue equation (7) for V = V0 + P is equivalent to

(12) w(n + 1) − w(n) = A(n)w(n),

with

A(n) = −P(n)
(

u1(n)u2(n) u2(n)2

−u1(n)2 −u1(n)u2(n)

)
.

For a positive monotone increasing function f : {0, 1, 2, · · · } → (0,∞), let

G(n) := max
{
|P(n)|

(
|u1(n)u2(n)| + |u2(n)|2

)
; |P(n)|

(
f (n)|u1(n)|2 + |u1(n)u2(n)|

)}
.

Lemma 3.1. Let f be as above and suppose that
∞∑

n=1

G(n) < ∞.

Then, there exist solutions w± to (12) such that, as n→ ∞,

(i) w−1 (n)→ 1 and f (n)w−2 (n)→ 0,
(ii) w+1 (n)→ 0 and w+2 (n)→ 1.

Proof. The proof of Lemma 3.1 traces the same steps of the proof of Theorem 2.2 in [17],
with obvious adaptations for the discrete case. �
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In the proof of Theorem 1.3 we will need to choose a function f so that G ∈ l1(N) and
also to connect with ideas of Jitomirskaya and Last [13]. So, the following result will be
useful, which is a (not completely immediate) discrete version of Lemma 3.2 in [17].

Lemma 3.2. Let {ξ(n)} be a sequence of numbers such that, for some positive constant C1,

(13) |ξ(n)| ≤ C1(1 + n)−a,

and let ψ1, ψ2 be solutions to (7) satisfying

(14) ‖ψ1‖L‖ψ2‖L ≤ C2(1 + L)b,

for each L ∈ N. If a > b > 0, then
∞∑

n=1

|ξ(n)ψ1(n)ψ2(n)| < ∞.

Proof. Let g : {0, 1, . . .} → R be given by g(n) :=
∑n

j=1 |ψ1( j)ψ2( j)| for n ≥ 1 and g(0) = 0.
By Cauchy-Schwarz inequality and (14),

(15) g(n) ≤ C2(1 + n)b.

Without loss, we simplify by taking C1 = C2 = 1. By (13), for each L ∈ N,

L∑
n=1

|ξ(n)ψ1(n)ψ2(n)| ≤
L∑

n=1

(1 + n)−a|ψ1(n)ψ2(n)|

=

L∑
n=1

(1 + n)−a[g(n) − g(n − 1)]

= (2 + L)−ag(L) +
L∑

n=1

[(1 + n)−a − (2 + n)−a]g(n)

≤ (2 + L)−ag(L) +
L∑

n=1

a(1 + n)−a−1g(n);

the second inequality is a consequence of the Mean Value Theorem applied to the function
h(x) = (1 + x)−a, x ≥ 0, and the inequality

max
n≤x≤n+1

|h′(x)| ≤ a(1 + n)−a−1.

Therefore, by (15), one has

L∑
n=1

|ξ(n)ψ1(n)ψ2(n)| ≤ (2 + L)−aLb + a
L∑

n=1

(1 + n)b−a−1.

Now, since a > b, it follows that

lim
L→∞

L∑
n=1

|ξ(n)ψ1(n)ψ2(n)| ≤ a
∞∑

n=1

(1 + n)b−a−1 < ∞.

�

By the definition of G(n), in order to show that
∑∞

n=1 G(n) < ∞, it is sufficient to show
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that each of the series
∞∑

n=1

|P(n)u1(n)u2(n)|,
∞∑

n=1

|P(n)||u2(n)|2,
∞∑

n=1

f (n)|P(n)||u1(n)|2

is finite.
In what follows we set, for each γ > 0, f (n) = (1 + n)γ. Hence, by Lemma 3.2 and the

hypotheses (9) and (10), the above series are finite if

(16) p > 2γ2 and p − γ > 2γ2;

namely, we can choose γ > 0 so that γ2 − γ1 < γ < p − 2γ2 (recall p > 3γ2 − γ1), and
consequently (16) holds true, implying that G ∈ l1(N).

Proof. (Theorem 1.3) By the above considerations, there exist solutions w± to (12), given
in Lemma 3.1, so that

v1(n) = w−1 (n)u1(n) + w−2 (n)u2(n)

v2(n) = w+1 (n)u1(n) + w+2 (n)u2(n)

are linearly independent solutions to (H + P)v = Ev. Thus, it suffices to prove that

(17)
‖v1‖L
‖u1‖L −→ 1 and

‖v2‖L
‖u2‖L −→ 1,

as L→ ∞. Namely, by (17), one has, for each κ ∈ [0, 1],[‖v1‖L
‖v2‖κL

][‖u1‖L
‖u2‖κL

]−1

−→
L→∞ 1,

which proves assertion (11). Note that (17) also ensures that v1 is not square summable.
In order to prove (17), we begin observing that

|‖v1‖L − ‖u1‖L|
‖u1‖L ≤ ‖v1 − u1‖L

‖u1‖L
≤ ‖v1 − w−1 u1‖L

‖u1‖L +
‖(w−1 − 1)u1‖L
‖u1‖L

=
‖w−2 u2‖L
‖u1‖L +

‖(w−1 − 1)u1‖L
‖u1‖L .

Since w−1 (n) → 1, then for every ε > 0, there exists an integer n0 such that |w−1 (n) − 1| < ε,
for every n ≥ n0. Hence, for each integer L > n0,

‖(w−1 − 1)u1‖2L
‖u1‖2L

≤
∑n0

n=1 |(w−1 (n) − 1)u1(n)|2
‖u1‖2L

+ ε2,

and consequently,

‖(w−1 − 1)u1‖L
‖u1‖L −→

L→∞ 0.

One also has that f (L)w−2 (L) → 0 and f (L) = (1 + L)γ, with γ > γ2 − γ1. Thus, there exists
a positive constant C such that
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‖w−2 u2‖2L
‖u1‖2L

≤ C
∑L

n=1(1 + n)−2γ|u2(n)|2
‖u1‖2L

.

As in Lemma 3.2, one can write (again with C1 = C2 = 1)

L∑
n=1

(1 + n)−2γ|u2(n)|2 ≤ (2 + L)2γ2−2γ + 2γ
L∑

n=1

(1 + n)2γ2−2γ−1,

and since ‖u1‖2L ≥ L2γ1 , one has

‖w−2 u2‖L
‖u1‖L −→

L→∞ 0;

therefore,

‖v1‖L
‖u1‖L −→L→∞ 1.

Similarly to what has been presented above, one has

|‖v2‖L − ‖u2‖L|
‖u2‖L ≤ ‖v2 − u2‖L

‖u2‖L
≤ ‖v2 − w+2 u2‖L

‖u2‖L +
‖(w+2 − 1)u2‖L
‖u2‖L

=
‖w+1 u1‖L
‖u2‖L +

‖(w+2 − 1)u2‖L
‖u2‖L .

Now, since w+2 (n) → 1 and w+1 (n) → 0, as n → ∞, and since u1 is a subordinate solution, it
follows that both terms on the right-hand side of the above inequality tend to zero as L→ ∞;
hence,

‖v2‖L
‖u2‖L −→L→∞ 1,

as required. �

4. Applications: Proofs of Theorems 1.1 and 1.2

4. Applications: Proofs of Theorems 1.1 and 1.2
In this section we use Theorem 1.3 to conclude Theorems 1.1 and 1.2, whose proofs are

now rather easy. We begin with HP
λ,θ,ρ given by (4). Recall that given an irrational θ ∈ [0, 1),

it has an infinite continued fraction expansion [16]

θ =
1

a1 +
1

a2 +
1

a3 + · · ·
with uniquely determined an ∈ N. The number θ is said to have bounded density if

lim sup
n→∞

1
n

n∑
i=1

ai < ∞.

Proof. (Theorem 1.1) It is known [12, 1, 3] that, for Schrödinger operators with Sturmian
potentials whose rotation number is of bounded density, there exist power-law bounds of the
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form

C1Lγ1 ≤ ‖u‖L ≤ C2Lγ2

for every solution u to (7) (with normalized initial conditions (3)); with these estimates,
it is possible to prove the nonexistence of α-subordinate solutions for α = 2γ1

γ1+γ2
. More

specifically, it was proven [1, 3, 14] that if θ has bounded density, then for every λ � 0, there
exists α = α(λ, θ) > 0 such that for every ρ ∈ [0, 1), the spectral measure of Hλ,θ,ρ is purely
α-Hausdorff continuous.

We note [1, 3] that if one is able to establish uniform power-law bounds on the restriction
of the operator to the right half-line, then the resulting α-continuity is independent of the
potential on the left half-line. In this sense, the more continuous half-line dominates and
bounds the dimensionality of the whole-line problem from below.

Suppose that σ(HP
λ,θ,ρ) has some singular continuous component; now, since the pertur-

bation decays as |P(n)| ≤ C(1 + |n|)−p, with p > 3γ2 − γ1, it is a compact perturbation
and the essential spectrum is preserved. Thus, S (Hλ,θ,ρ) ⊃ σsc(HP

λ,θ,ρ), and by Theorem 1.3,
we obtain that the asymptotic behavior of generalized eigenfunctions of the operators HP

λ,θ,ρ

(that is, the solutions to (7)) in (4) is analogous to the behavior of eigenfunctions of the op-
erators Hλ,θ,ρ; and again by the α-subordinacy theory, such component is still α-Hausdorff
continuous for these perturbed operators, with α = 2γ1

γ1+γ2
. �

Proof. (Theorem 1.2) In Theorem 1.3 in [13], it was shown that the spectral measure of
the operator Hα

ϕ restricted to (−2, 2), with potential V0 = V given by (5), has exact Hausdorff
dimension α for (Lebesgue) a.e. boundary phase ϕ ∈ (−π/2, π/2]. However, Tcheremchant-
sev presented in [21] (item 2 of Corollary 4.5) an improvement of this result, showing that
this spectral measure restricted to (−2, 2) has, in fact, exact Hausdorff dimension α for any
boundary phase ϕ ∈ (−π/2, π/2].

It follows from inequalities (5.6) and (5.7) in [13] that, for sufficiently large L, the esti-
mate (9) is satisfied with γ2 > (1 + α)/(2α) for each α ∈ (0, 1), and

γ1 <

{
(1 − α)/α if α ≤ 1/2,
1/2 otherwise.

Therefore, as in the proof of Theorem 1.1, by a direct consequence of Theorem 1.3, we ob-
tain that the asymptotic behavior of generalized eigenfunctions of the operators HP,α

ϕ in (4) is
similar to the behavior of eigenfunctions of the operators Hα

ϕ ; and again by power-law subor-
dinacy theory, it follows that any possible singular continuous component of the restriction
of the spectral measure of the operator HP,α

ϕ to (−2, 2) has also exact Hausdorff dimension α
for any boundary phase ϕ ∈ (−π/2, π/2]. �
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