PARTIALLY ORDERED SETS OF NON-TRIVIAL NILPOTENT π-SUBGROUPS

Nobuo IIYORI and Masato SAWABE

(Received July 3, 2015)

Abstract

In this paper, we introduce a subposet $\mathcal{L}_{\pi}(G)$ of a poset $\mathcal{N}_{\pi}(G)$ of all non-trivial nilpotent π-subgroups of a finite group G. We examine basic properties of subgroups in $\mathcal{L}_{\pi}(G)$ which contain the notion of both radical p-subgroups and centric p-subgroups of G. It is shown that $\mathcal{L}_{\pi}(G)$ is homotopy equivalent to $\mathcal{N}_{\pi}(G)$. As examples, we investigate in detail the case where symmetric groups.

1. Introduction

Let G be a finite group, and $\operatorname{Sgp}(G)$ the totality of subgroups of G. We regard $\operatorname{Sgp}(G)$ as a partially ordered set (poset for short) with respect to the inclusion-relation \leq. Then any subset $\mathcal{X} \subseteq \operatorname{Sgp}(G)$ can be thought of a subposet of $(\operatorname{Sgp}(G), \leq)$ which is identified with the associated order complex. Let $p \in \pi(G)$. Denote by $\mathcal{S}_{p}(G)$ the totality of non-trivial p-subgroups of G. A p-subgroup complex $\mathcal{X} \subseteq \mathcal{S}_{p}(G)$ itself is studied well by many authors (see [9] and various references in it). On the other hand, for distinct $p, q \in \pi(G)$, it is also quite important to investigate $\mathcal{X} \subseteq \mathcal{S}_{p}(G)$ and $\mathcal{Y} \subseteq \mathcal{S}_{q}(G)$ simultaneously. In order to do so, we focus on nilpotent subgroups, and actually deal with a poset $\mathcal{N}_{\pi}(G)$ of all non-trivial nilpotent π-subgroups of G where $\pi \subseteq \pi(G)$. In particular, we introduce a subposet $\mathcal{L}_{\pi}(G)$ of $\mathcal{N}_{\pi}(G)$, and show that they are homotopy equivalent each other. It is worth mentioning that a subgroup in $\mathcal{L}_{\pi}(G)$ contains the notion of both radical p-subgroups and centric p-subgroups of G.

The paper is organized as follows: In Section 2, we establish some notations, and prepare a number of standard posets of subgroups like $\mathcal{N}_{\pi}(G)$. In Section 3, we introduce a new poset $\mathcal{L}_{\pi}(G)$ consisting of certain nilpotent π-subgroups of G. We give another description of $\mathcal{L}_{\pi}(G)$ which is different from the form of the definition. Furthermore some tools for determining $\mathcal{L}_{\pi}(G)$ are developed. Then by using those results, we classify subgroups in $\mathcal{L}_{\pi}(G)$ for some groups G as examples. In Section 4, we provide homotopy equivalences among $\mathcal{L}_{\pi}(G)$ and the other standard posets of subgroups. Relations with known p-subgroup posets are examined. In Section 5, we investigate in detail the case where the symmetric group \mathfrak{S}_{n} of degree n. In particular, we give a strategy to determine $\mathcal{L}_{\pi}\left(\mathfrak{S}_{n}\right)$ which is focused on irreducible subgroups (see Definition 5.5). Then, as

[^0]examples, we classify subgroups in $\mathcal{L}_{\pi}\left(\mathfrak{S}_{n}\right)$ for $n \leq 6$ by using our method.
Finally, this work is derived from a series of our papers $[5,6,7]$.

2. Preliminaries

In this section, we establish some notations which will be used in this paper. Let G be a finite group with the identity element e. Denote by $\pi(G)$ the set of all prime divisors of the order of G. Let π be a subset of $\pi(G)$. A subgroup H of G is called a π-subgroup if $\pi(H) \subseteq \pi$. The notation $\operatorname{Sgp}(G)$ stands for the totality of subgroups of G. Note that $\operatorname{Sgp}(G)$ is regarded as a poset together with the usual inclusion-relation \leq. We define the following subposets of $(\operatorname{Sgp}(G), \leq)$:

$$
\begin{aligned}
& \mathcal{N}_{\pi}(G):=\{U \in \operatorname{Sgp}(G) \mid U \text { is a non-trivial nilpotent } \pi \text {-subgroup of } G\}, \\
& \mathcal{A b}_{\pi}(G):=\{U \in \operatorname{Sgp}(G) \mid U \text { is a non-trivial abelian } \pi \text {-subgroup of } G\} .
\end{aligned}
$$

Furthermore let $\mathcal{A}_{\pi}(G)$ be a subposet consisting of all non-trivial direct products of elementary abelian p-subgroups of G where p runs over primes in π. Then we have three posets $\mathcal{A}_{\pi}(G) \subseteq \mathcal{A b}_{\pi}(G) \subseteq \mathcal{N}_{\pi}(G)$ on which the group G acts by conjugation. The set of all maximal elements in $\left(\mathcal{N}_{\pi}(G), \leq\right)$ is denoted by $\mathcal{N}_{\pi}(G)^{\max }$. For $\pi=$ $\left\{p_{1}, \ldots, p_{k}\right\} \subseteq \pi(G)$, we sometimes write $\mathcal{N}_{p_{1}, \ldots, p_{k}}(G)$ in place of $\mathcal{N}_{\pi}(G)$. The ways of writing $\mathcal{N}_{\pi}(G)^{\max }$ and $\mathcal{N}_{p_{1}, \ldots, p_{k}}(G)$ are applied to the other posets. Let $p \in \pi(G)$. Denote by $\mathcal{S}_{p}(G)$ the totality of non-trivial p-subgroups of G. Then we note that $\mathcal{N}_{p}(G)=\mathcal{S}_{p}(G)$.

Denote by $Z(G)$ and $O_{\pi}(G)$ respectively the center of G, and the largest normal π-subgroup of G. For $A \in \mathcal{A} b_{\pi}(G)$, suppose that $A=A_{1} \times \cdots \times A_{k}$ is the direct product of Sylow p_{i}-subgroups $A_{i}(1 \leq i \leq k)$ of A. Then denote by $\Omega_{1}(A):=\Omega_{1}\left(A_{1}\right) \times \cdots \times$ $\Omega_{1}\left(A_{k}\right) \in \mathcal{A}_{\pi}(G)$ where $\Omega\left(A_{i}\right) \in \mathcal{A}_{p_{i}}(G)$ is a subgroup generated by all elements in A_{i} of order p_{i}. For a subgroup $H \leq G$, if $O_{\pi}(Z(H)) \neq\{e\}$ then $O_{\pi}(Z(H)) \in \mathcal{A} \mathrm{b}_{\pi}(G)$ and $\Omega_{1}\left(O_{\pi}(Z(H))\right) \in \mathcal{A}_{\pi}(G)$. We express these subgroups as $O_{\pi} Z(H)$ and $\Omega_{1} O_{\pi} Z(H)$ for short. In this way, we frequently omit parentheses of the composition of group operators throughout this paper.

Let (\mathcal{P}, \leq) be a poset. For $z \in \mathcal{P}$, put $\mathcal{P}_{\leq z}:=\{x \in \mathcal{P} \mid x \leq z\}$. Similarly, we define $\mathcal{P}_{<z}, \mathcal{P}_{\geq z}$, and $\mathcal{P}_{>z}$.

3. Subposets of $\boldsymbol{\mathcal { N }}_{\boldsymbol{\pi}}(\boldsymbol{G})$

Let G be a finite group, and $\pi \subseteq \pi(G)$. We introduce subposets of $\left(\mathcal{N}_{\pi}(G), \leq\right)$ as follows:

$$
\begin{aligned}
& \mathcal{L}_{\pi}(G):=\left\{U \in \mathcal{N}_{\pi}(G) \mid U \geq O_{\pi} Z N_{G}(U)\right\}, \\
& \mathcal{L}_{\pi}^{*}(G):=\left\{U \in \mathcal{N}_{\pi}(G) \mid U \geq \Omega_{1} O_{\pi} Z N_{G}(U)\right\} .
\end{aligned}
$$

Both families are closed under G-conjugation. In this section, we study basic properties of $\mathcal{L}_{\pi}(G) \subseteq \mathcal{L}_{\pi}^{*}(G)$, and provide some examples. Note that, for a subgroup U of G,
$U \geq O_{\pi} Z N_{G}(U)$ if and only if $Z(U) \geq O_{\pi} Z N_{G}(U)$.
REMARK 3.1 (p-radicals and p-centrics). Let $p \in \pi(G)$.
(1) Denote by $\mathcal{B}_{p}(G)$ the totality of non-trivial p-subgroups U of G satisfying $O_{p} N_{G}(U)=U$. A subgroup in $\mathcal{B}_{p}(G)$ is called a radical p-subgroup (or just p-radical) of G. The poset $\mathcal{B}_{p}(G)$ is a generalized object of the Tits building, and it plays an important role in the area of group geometry. For a p-radical $U \in \mathcal{B}_{p}(G)$, we have that $U \geq Z(U)=Z O_{p} N_{G}(U) \geq O_{p} Z N_{G}(U)$. It follows that $\mathcal{B}_{p}(G) \subseteq \mathcal{L}_{p}(G)$, and thus, a subgroup in $\mathcal{L}_{\pi}(G)$ contains the notion of p-radicals. Furthermore, we see later in Remark 4.9 that $\mathcal{B}_{p}(G)$ is homotopy equivalent to $\mathcal{L}_{p}(G)$.
(2) A centric p-subgroup (or just p-centric) U of G is defined as a subgroup in $\mathcal{S}_{p}(G)$ such that any p-element in $C_{G}(U)$ is contained in U. This is also important in the area of group geometry or representation theory. Then it is now easy to check that a condition $U \geq O_{p} Z N_{G}(U)$ holds for a p-centric U. Thus $\mathcal{L}_{p}(G)$ includes all p-centrics.

Lemma 3.2. Suppose that $p \in \pi$. Then $\mathcal{L}_{\pi}(G) \cap \mathcal{N}_{p}(G) \subseteq \mathcal{L}_{p}(G)$, and $\mathcal{L}_{\pi}^{*}(G) \cap$ $\mathcal{N}_{p}(G) \subseteq \mathcal{L}_{p}^{*}(G)$.

Proof. For any $U \in \mathcal{L}_{\pi}(G) \cap \mathcal{N}_{p}(G)$, we have that $U \geq O_{\pi} Z N_{G}(U)$. But U is a p-subgroup, so that, $O_{\pi} Z N_{G}(U)=O_{p} Z N_{G}(U)$. Thus $U \in \mathcal{L}_{p}(G)$. The second assertion similarly holds.

Lemma 3.3. For $U \in \mathcal{N}_{\pi}(G)$, put $K_{U}:=O_{\pi} Z N_{G}(U)$. Then the product $U K_{U}$ is a member of $\mathcal{L}_{\pi}(G)$.

Proof. Since U and K_{U} are nilpotent π-subgroups such that [U, K_{U}] $=\{e\}$, so is the product $U K_{U}$. Set $H:=Z N_{G}\left(U K_{U}\right)$. Since $U \leq N_{G}(U) \leq N_{G}\left(U K_{U}\right)$, we have that $H \leq C_{G}(U) \leq N_{G}(U)$. It follows that H is contained in $Z N_{G}(U)$. Thus $O_{\pi}(H) \leq$ $O_{\pi} Z N_{G}(U)=K_{U} \leq U K_{U}$. This shows that $U K_{U} \in \mathcal{L}_{\pi}(G)$.

Below is a description of $\mathcal{L}_{\pi}(G)$ by using $U K_{U}$.

Proposition 3.4. Under the notation in Lemma 3.3, $\mathcal{L}_{\pi}(G)=\left\{U K_{U} \mid U \in \mathcal{N}_{\pi}(G)\right\}$.
Proof. By Lemma 3.3, it is enough to show that a map $f: \mathcal{N}_{\pi}(G) \rightarrow \mathcal{L}_{\pi}(G)$ defined by $f(U):=U K_{U}$ is surjective. Indeed, for any $X \in \mathcal{L}_{\pi}(G) \subseteq \mathcal{N}_{\pi}(G)$, we have that $X \geq O_{\pi} Z N_{G}(X)=: K_{X}$ by the definition of X. Thus $X=X K_{X}=f(X)$ as desired.

From here, we want to develop some tools for determining $\mathcal{L}_{\pi}(G)$.
Lemma 3.5. The followings hold.
(1) $\mathcal{N}_{\pi}(G)^{\max } \subseteq \mathcal{L}_{\pi}(G)$ and $\mathcal{A}_{\pi}(G)^{\max } \subseteq \mathcal{L}_{\pi}^{*}(G)$.
(2) For $U \in \mathcal{A b} \mathrm{~b}_{\pi}(G)^{\max }, \mathcal{N}_{\pi}(G)_{\geq U} \subseteq \mathcal{L}_{\pi}(G)$. In particular, $\mathcal{A b}_{\pi}(G)^{\max } \subseteq \mathcal{A b}_{\pi}(G) \cap$ $\mathcal{L}_{\pi}(G)$.
(3) $\mathcal{A b}_{\pi}(G)^{\max }=\left(\mathcal{A b _ { \pi }}(G) \cap \mathcal{L}_{\pi}(G)\right)^{\max }$.

Proof. (1) For $U \in \mathcal{N}_{\pi}(G)^{\max }$, put $K_{U}:=O_{\pi} Z N_{G}(U)$. Since $U \leq U K_{U} \in \mathcal{N}_{\pi}(G)$ and the maximality of U, we have that $U K_{U}=U$ and $U \geq K_{U}$. Thus $U \in \mathcal{L}_{\pi}(G)$. On the other hand, for $V \in \mathcal{A}_{\pi}(G)^{\text {max }}$, put $K_{V}^{*}:=\Omega_{1} O_{\pi} Z N_{G}(V) \in \mathcal{A}_{\pi}(G)$. Since $V \leq V K_{V}^{*} \in$ $\mathcal{A}_{\pi}(G)$, we have the second assertion by the same way.
(2) For $U \in \mathcal{A} \mathrm{~b}_{\pi}(G)^{\max }$, take $V \in \mathcal{N}_{\pi}(G)_{\geq U}$. Since $U \leq V \leq N_{G}(V)$, any element $t \in K_{V}:=O_{\pi} Z N_{G}(V)$ commutes with U. Thus $U \leq\langle t\rangle U \in \mathcal{A b}_{\pi}(G)$. By the maximality of U, we have that $t \in U \leq V$, and so $K_{V} \leq V$ as desired.
(3) Set $\mathcal{L}_{\pi}^{\mathrm{ab}}(G):=\mathcal{A} \mathrm{b}_{\pi}(G) \cap \mathcal{L}_{\pi}(G)$. For $U \in \mathcal{A} \mathrm{~b}_{\pi}(G)^{\mathrm{max}} \subseteq \mathcal{L}_{\pi}^{\mathrm{ab}}(G)$, there exists $R \in \mathcal{L}_{\pi}^{\mathrm{ab}}(G)^{\mathrm{max}} \subseteq \mathcal{A} \mathrm{b}_{\pi}(G)$ such that $U \leq R$. Then by the maximality of $U, U=R \in$ $\mathcal{L}_{\pi}^{\text {ab }}(G)^{\text {max }}$. The converse inclusion similarly holds.

Proposition 3.6. For $V \leq U \in \mathcal{L}_{\pi}(G)$, suppose that $Z(U) \leq V \leq U$ and $N_{G}(U) \leq$ $N_{G}(V)$. Then $V \in \mathcal{L}_{\pi}(G)$.

Proof. Take any $x \in Z N_{G}(V)$. Since $N_{G}(U) \leq N_{G}(V)$, we have that $\left[x, N_{G}(U)\right]=$ $\{e\}$. This yields that $x \in Z N_{G}(U)$ and $Z N_{G}(V) \leq Z N_{G}(U)$. Thus $O_{\pi} Z N_{G}(V) \leq$ $O_{\pi} Z N_{G}(U) \leq Z(U) \leq V$ as wanted.

DEFINITION 3.7. For subgroups $A \leq B \leq G, A$ is said to be weakly closed in B with respect to G if $A^{g} \leq B$ for some $g \in G$ implies $A^{g}=A$. In particular, $N_{G}(B) \leq$ $N_{G}(A)$ holds.

The next result is an immediate consequence of Proposition 3.6
Proposition 3.8. For $V \leq U \in \mathcal{L}_{\pi}(G)$, suppose that $Z(U) \leq V \leq U$.
(1) If V is weakly closed in U with respect to G then $V \in \mathcal{L}_{\pi}(G)$.
(2) If V is a characteristic subgroup of U then $V \in \mathcal{L}_{\pi}(G)$. In particular, $Z(U) \in$ $\mathcal{L}_{\pi}(G)$, and that $O_{\pi} Z N_{G} Z(U) \leq Z(U)$ holds.

Before giving examples, we recall some notations. For a subgroup $H \leq G$, we set $H^{G}:=\left\{g^{-1} H g \mid g \in G\right\}$. For an integer $n \geq 2$, the symmetric and alternating group of degree n are denoted by S_{n} and A_{n}. The notation C_{n} means the cyclic group of order n.

Example 3.9 (Solvable group S_{4}). Let $G=S_{4}$ of order $2^{3} \cdot 3$, and $\pi:=\pi(G)=$ $\{2,3\}$. We determine $\mathcal{L}_{\pi}(G)$. By Lemma 3.5 (1), $D_{8} \cong U \in \operatorname{Syl}_{2}(G) \subseteq \mathcal{N}_{\pi}(G)^{\max } \subseteq$ $\mathcal{L}_{\pi}(G)$. Since any subgroup V of U containing $Z(U)$ is weakly closed in U with respect to G, we have that $V \in \mathcal{L}_{\pi}(G)$ by Proposition 3.8 (1). Let $W:=\langle(12)\rangle$ be a remaining

2-subgroup of G. Since $N_{G}(W)=\langle(12),(34)\rangle$, we have that $O_{\pi} Z N_{G}(W)=\langle(12),(34)\rangle \notin$ W, so that, $W \notin \mathcal{L}_{\pi}(G)$. Finally, by Lemma 3.5 (1), $\operatorname{Syl}_{3}(G) \subseteq \mathcal{N}_{\pi}(G)^{\max } \subseteq \mathcal{L}_{\pi}(G)$. Therefore, we get

$$
\mathcal{L}_{2,3}^{*}(G)=\mathcal{L}_{2,3}(G)=\mathcal{N}_{2,3}(G) \backslash\langle(12)\rangle^{G}=\left(\mathcal{S}_{2}(G) \backslash\langle(12)\rangle^{G}\right) \cup \operatorname{Syl}_{3}(G) .
$$

Example 3.10 (Non-solvable group S_{5}). Let $G=S_{5}$ of order $2^{3} \cdot 3 \cdot 5$, and $\pi:=$ $\{2,3\} \subseteq \pi(G)$. We determine $\mathcal{L}_{\pi}(G)$. By the same way as in Example 3.9, we have that $\mathcal{S}_{2}(G) \backslash\langle(12)\rangle^{G} \subseteq \mathcal{L}_{\pi}(G)$. Let $W:=\langle(12)\rangle$ be a remaining 2-subgroup of G. Since $N_{G}(W)=\langle(12)\rangle \times L$ where L is the symmetric group on $\{3,4,5\}$, we have that $O_{\pi} Z N_{G}(W)=W$, so that, $W \in \mathcal{L}_{\pi}(G)$. Let $X:=\langle(123)\rangle \in \operatorname{Syl}_{3}(G) \subseteq \mathcal{N}_{\pi}(G)$. Since $N_{G}(X)=\langle(123),(12),(45)\rangle$, we have that $O_{\pi} Z N_{G}(X)=\langle(45)\rangle \notin X$. Thus $X \notin \mathcal{L}_{\pi}(G)$. Finally, by Lemma 3.5 (2), $C_{6} \cong\langle(123)(45)\rangle \in \mathcal{A} \mathrm{b}_{\pi}(G)^{\text {max }} \subseteq \mathcal{L}_{\pi}(G)$. Therefore, we get

$$
\mathcal{L}_{2,3}^{*}(G)=\mathcal{L}_{2,3}(G)=\mathcal{N}_{2,3}(G) \backslash\langle(123)\rangle^{G}=\mathcal{S}_{2}(G) \cup\langle(123)(45)\rangle^{G} .
$$

Example 3.11 (Simple group J_{1}). Let $G=J_{1}$ be the Janko simple group of order $2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$, and $\pi:=\{2,3,5\} \subseteq \pi(G)$. We determine $\mathcal{L}_{\pi}(G)$ referring [2, p. 36]. There is a unique class of involutions with a representative z. Set $U=\langle z\rangle$. Since $N_{G}(U) \cong U \times A_{5}$, we have that $O_{\pi} Z N_{G}(U)=U$, so that, $U \in \mathcal{L}_{\pi}(G)$. By Lemma 3.5 (1), $C_{2} \times C_{2} \times C_{2} \cong V \in \operatorname{Syl}_{2}(G) \subseteq \mathcal{N}_{\pi}(G)^{\max } \subseteq \mathcal{L}_{\pi}(G)$. Since $N_{G}(V) \cong$ $V \rtimes\left(C_{7} \rtimes C_{3}\right)$, all subgroups of order 2^{2} are G-conjugate each other. Take the four group $C_{2} \times C_{2} \cong W<A_{4}<A_{5}<U \times A_{5} \cong N_{G}(U)$. Then $N_{G}(W) \cong U \times A_{4}$ and $O_{\pi} Z N_{G}(W)=U \notin W$. Thus $W \notin \mathcal{L}_{\pi}(G)$. By looking at the normalizers, we see that $\mathrm{Syl}_{3}(G) \cup \operatorname{Syl}_{5}(G) \subseteq \mathcal{L}_{\pi}(G)$. Finally, by Lemma 3.5 (2), subgroups isomorphic to C_{6} or C_{10} are in $\mathcal{A b}_{\pi}(G)^{\text {max }} \subseteq \mathcal{L}_{\pi}(G)$. Therefore, we get

$$
\begin{aligned}
\mathcal{L}_{2,3,5}^{*}(G) & =\mathcal{L}_{2,3,5}(G)=\mathcal{N}_{2,3,5}(G) \backslash W^{G} \\
& =\left(\mathcal{S}_{2}(G) \backslash W^{G}\right) \cup \operatorname{Syl}_{3}(G) \cup \operatorname{Syl}_{5}(G) \cup\left(C_{6}\right)^{G} \cup\left(C_{10}\right)^{G} .
\end{aligned}
$$

4. Homotopy equivalences

Let (\mathcal{P}, \leq) be a poset. Denote by $\mathrm{O}(\mathcal{P})=\mathrm{O}(\mathcal{P}, \leq)$ the order complex of \mathcal{P}, which is a simplicial complex defined by all inclusion-chains ($x_{0}<\cdots<x_{k}$), where $x_{i} \in \mathcal{P}$, as simplices. We identify a poset \mathcal{P} with the associated order complex $\mathrm{O}(\mathcal{P})$. We write $\mathcal{P} \simeq \mathcal{Q}$ when posets \mathcal{P} and \mathcal{Q} (namely, complexes $\mathrm{O}(\mathcal{P})$ and $\mathrm{O}(\mathcal{Q})$) are homotopy equivalent. Now any subset $\mathcal{X} \subseteq \operatorname{Sgp}(G)$ is thought of a subposet of $(\operatorname{Sgp}(G), \leq)$. Thus we can consider homotopy properties of \mathcal{X}. In this section, we give homotopy equivalences among $\mathcal{L}_{\pi}(G)$ and the other standard posets of subgroups. Relations with known p-subgroup posets are also investigated. The next lemma is fundamental in the theory of subgroup complexes.

Lemma 4.1. Let \mathcal{P} and \mathcal{Q} be posets. Let $\varphi: \mathcal{P} \rightarrow \mathcal{P}$ and $\psi: \mathcal{P} \rightarrow \mathcal{Q}$ be poset maps.
(1) (cf. Lemma 3.3.3 in [9]) If there exists $x_{0} \in \mathcal{P}$ such that $\varphi(x) \geq x$ and $\varphi(x) \geq x_{0}$ for any $x \in \mathcal{P}$ (that is, \mathcal{P} is conically contractible) then \mathcal{P} is contractible.
(2) (cf. Proposition 3.1.12 (2) in [9]) Suppose that $\varphi(x) \leq x$ for any $x \in \mathcal{P}$. Then for any subset $\operatorname{Im} \varphi \subseteq \mathcal{R} \subseteq \mathcal{P}$, we have that $\mathcal{P} \simeq \mathcal{R}$. (And dually for $\varphi(x) \geq x$.)
(3) (Quillen's fiber theorem; cf. Theorem 4.2.1 in [9]) Suppose that $\psi^{-1}\left(\mathcal{Q}_{\leq z}\right)$ is contractible for any $z \in \mathcal{Q}$. Then $\mathcal{P} \simeq \mathcal{Q}$. (And dually for $\mathcal{Q}_{\geq z}$.)
(4) (cf. Theorem 4.3.2 in [9]) Suppose that \mathcal{P} is finite. Let

$$
\begin{aligned}
& \mathcal{P}^{<}:=\left\{z \in \mathcal{P} \mid \mathcal{P}_{<z} \text { is not contractible }\right\}, \\
& \mathcal{P}^{>}:=\left\{z \in \mathcal{P} \mid \mathcal{P}_{>z} \text { is not contractible }\right\} .
\end{aligned}
$$

Then for any subset $\mathcal{P}^{<} \subseteq \mathcal{R} \subseteq \mathcal{P}$, we have that $\mathcal{P} \simeq \mathcal{R}$. (And dually for $\mathcal{P}^{>}$.)
Proposition 4.2. The inclusions $\mathcal{A}_{\pi}(G) \hookrightarrow \mathcal{N}_{\pi}(G)$ and $\mathcal{A b}_{\pi}(G) \hookrightarrow \mathcal{N}_{\pi}(G)$ induce homotopy equivalences.

Proof. Let $f: \mathcal{A}_{\pi}(G) \hookrightarrow \mathcal{N}_{\pi}(G)$ be the inclusion map. Then by Lemma 4.1 (3), it is enough to show that $f^{-1}\left(\mathcal{N}_{\pi}(G)_{\leq U}\right)=\left\{E \in \mathcal{A}_{\pi}(G) \mid E \leq U\right\}=\mathcal{A}_{\pi}(U)$ is contractible for any $U \in \mathcal{N}_{\pi}(G)$. Express $U=U_{1} \times \cdots \times U_{m}$ as the direct product of Sylow subgroups $U_{i}(1 \leq i \leq m)$ of U. Then $A:=\Omega_{1} Z(U)=\Omega_{1} Z\left(U_{1}\right) \times \cdots \times \Omega_{1} Z\left(U_{m}\right) \neq\{e\}$ is a member of $\mathcal{A}_{\pi}(U)$. Let $\varphi: \mathcal{A}_{\pi}(U) \rightarrow \mathcal{A}_{\pi}(U)$ be a poset map defined by $\varphi(E):=$ $A E$ for $E \in \mathcal{A}_{\pi}(U)$, which satisfies $\varphi(E) \geq E$ and $\varphi(E) \geq A$. This yields that $\mathcal{A}_{\pi}(U)$ is contractible by Lemma 4.1 (1).

By the same way, we obtain $\mathcal{A} b_{\pi}(G) \simeq \mathcal{N}_{\pi}(G)$ although we may replace $A:=$ $\Omega_{1} Z(U)$ with just $Z(U)$ in the above discussion.

Proposition 4.3. $\mathcal{N}_{\pi}(G)^{>} \subseteq \mathcal{L}_{\pi}(G) \subseteq \mathcal{L}_{\pi}^{*}(G) \subseteq \mathcal{N}_{\pi}(G)$ holds. In particular, $\mathcal{N}_{\pi}(G), \mathcal{L}_{\pi}(G)$, and $\mathcal{L}_{\pi}^{*}(G)$ are homotopy equivalent each other by Lemma 4.1 (4).

Proof. It is enough to show that $\mathcal{N}_{\pi}(G)^{>} \subseteq \mathcal{L}_{\pi}(G)$. For $U \in \mathcal{N}_{\pi}(G)$, we have that $\mathcal{N}_{\pi}(G)_{>U} \simeq \mathcal{N}_{\pi}\left(N_{G}(U)\right)_{>U}$. Indeed, for any $V \in \mathcal{N}_{\pi}(G)_{>U}, N_{V}(U)>U$ as V is nilpotent. Then a poset map

$$
f: \mathcal{N}_{\pi}(G)_{>U} \rightarrow \mathcal{N}_{\pi}(G)_{>U}
$$

defined by $V \mapsto N_{V}(U) \leq V$ provides us $\mathcal{N}_{\pi}(G)_{>U} \simeq \operatorname{Im} f=\mathcal{N}_{\pi}\left(N_{G}(U)\right)_{>U}$ by Lemma 4.1 (2).

Set $K_{U}:=O_{\pi} Z N_{G}(U)$. Since U and K_{U} are normal nilpotent π-subgroups of $N_{G}(U)$, we have that $U K_{U} \in \mathcal{N}_{\pi}\left(N_{G}(U)\right)$. Suppose that $U \nsucceq K_{U}$, that is, $U \notin \mathcal{L}_{\pi}(G)$.

Then $U K_{U} \in \mathcal{N}_{\pi}\left(N_{G}(U)\right)_{>U}$. Furthermore, for $X \in \mathcal{N}_{\pi}\left(N_{G}(U)\right)_{>U}$, we have that $\left[X, K_{U}\right]=\{e\}$. This yields that $\mathcal{N}_{\pi}\left(N_{G}(U)\right)_{>U} \ni X K_{U}=X\left(U K_{U}\right)$, and that a poset map

$$
\varphi: \mathcal{N}_{\pi}\left(N_{G}(U)\right)_{>U} \rightarrow \mathcal{N}_{\pi}\left(N_{G}(U)\right)_{>U}
$$

defined by $X \mapsto X\left(U K_{U}\right)$ induces contractibility of $\mathcal{N}_{\pi}\left(N_{G}(U)\right)_{>U}$ by Lemma 4.1 (1). It follows that $\mathcal{N}_{\pi}(G)^{>} \subseteq \mathcal{L}_{\pi}(G)$.

REMARK 4.4. The converse inclusion $\mathcal{N}_{\pi}(G)^{>} \supseteq \mathcal{L}_{\pi}(G)$ is not necessarily established. For example, let $G=M_{12}$ be the Mathieu group of degree 12 of order $2^{6} \cdot 3^{3} \cdot 5 \cdot 11$, and $\pi:=\{2\} \subseteq \pi(G)$. Referring [2, p.33], there exists a subgroup $U \cong$ $C_{4} \times C_{4}$ of G with $N_{G}(U) \cong U \rtimes D_{12}$ and $O_{2} Z N_{G}(U)=\{e\} \leq U$. Thus $U \in \mathcal{L}_{2}(G)$. However, $\mathcal{N}_{2}\left(N_{G}(U)\right)_{>U} \cong \mathcal{N}_{2}\left(D_{12}\right)=\mathcal{S}_{2}\left(D_{12}\right)$ is contractible since $O_{2}\left(D_{12}\right) \cong C_{2}$. This shows that $U \notin \mathcal{N}_{2}(G)^{>}$.

Proposition 4.5. The followings hold.
(1) $\mathcal{A} \mathrm{b}_{\pi}(G)^{>} \subseteq \mathcal{A} \mathrm{b}_{\pi}(G) \cap \mathcal{L}_{\pi}(G) \subseteq \mathcal{A} \mathrm{b}_{\pi}(G)$.
(2) $\mathcal{A}_{\pi}(G)^{>} \subseteq \mathcal{A}_{\pi}(G) \cap \mathcal{L}_{\pi}^{*}(G) \subseteq \mathcal{A}_{\pi}(G)$.

In particular, we have homotopy equivalences $\mathcal{A b}_{\pi}(G) \simeq \mathcal{A b}_{\pi}(G) \cap \mathcal{L}_{\pi}(G)$ and $\mathcal{A}_{\pi}(G) \simeq \mathcal{A}_{\pi}(G) \cap \mathcal{L}_{\pi}^{*}(G)$ by Lemma 4.1 (4).

Proof. For $U \in \mathcal{A b}_{\pi}(G)$, set $K_{U}:=O_{\pi} Z N_{G}(U)$. Since $\left[U, K_{U}\right]=\{e\}$, we have that $U K_{U} \in \mathcal{A b}(G)$. Suppose that $U \nexists K_{U}$, that is, $U \notin \mathcal{A b}(G) \cap \mathcal{L}_{\pi}(G)$. Then $U K_{U} \in \mathcal{A b}_{\pi}(G)_{>U}$. Furthermore, for $X \in \mathcal{A b}_{\pi}(G)_{>U}$, we have that $X \leq C_{G}(U) \leq$ $N_{G}(U)$, and thus $\left[X, K_{U}\right]=\{e\}$. This yields that $\mathcal{A} b_{\pi}(G)_{>U} \ni X K_{U}=X\left(U K_{U}\right)$, and that a poset map

$$
\varphi: \mathcal{A b}_{\pi}(G)_{>U} \rightarrow \mathcal{A b _ { \pi }}(G)_{>U}
$$

defined by $X \mapsto X\left(U K_{U}\right)$ induces contractibility of $\mathcal{A b}_{\pi}(G)_{>U}$ by Lemma 4.1 (1). It follows that $\mathcal{A b} \mathrm{b}_{\pi}(G)^{>} \subseteq \mathcal{A} \mathrm{b}_{\pi}(G) \cap \mathcal{L}_{\pi}(G)$.

By the same way, we obtain $\mathcal{A}_{\pi}(G)^{>} \subseteq \mathcal{A}_{\pi}(G) \cap \mathcal{L}_{\pi}^{*}(G) \subseteq \mathcal{A}_{\pi}(G)$ by using $K_{U}^{*}:=$ $\Omega_{1} O_{\pi} Z N_{G}(U)$ in place of $K_{U}:=O_{\pi} Z N_{G}(U)$ in the above discussion.

Summarizing Propositions 4.2, 4.3, and 4.5, we obtain the next.
Proposition 4.6. The following homotopy equivalences hold.
$(\alpha) \mathcal{N}_{\pi}(G) \simeq \mathcal{L}_{\pi}(G) \simeq \mathcal{L}_{\pi}^{*}(G) \simeq \mathcal{A b}_{\pi}(G) \simeq \mathcal{A}_{\pi}(G)$.
(β) $\mathcal{A b}_{\pi}(G) \simeq \mathcal{A} \mathrm{b}_{\pi}(G) \cap \mathcal{L}_{\pi}(G)$.
$(\gamma) \mathcal{A}_{\pi}(G) \simeq \mathcal{A}_{\pi}(G) \cap \mathcal{L}_{\pi}^{*}(G)$.
Note that equivalences in Proposition 4.6 can be extended to G-homotopy equivalences (see [9, Section 3.5] or [11]).

REmARK 4.7 (The whole $\pi(G)$ case). In the case of $\pi=\pi(G)$, our equivalence (α) in Proposition 4.6 gives $\mathcal{N}(G) \simeq \mathcal{A b}(G) \simeq \mathcal{A}(G)$ where these three posets are respectively the totality of non-trivial nilpotent subgroups, abelian subgroups, and direct products of elementary abelian subgroups of G. This result coincides with a part of [8, Proposition 1.2].

Like Lemma 4.1, posets $\mathcal{S}_{p}(G), \mathcal{A}_{p}(G)$, and $\mathcal{B}_{p}(G)$ (see Remark 3.1) are also fundamental in the theory of subgroup complexes. In particular, those three posets are homotopy equivalent each other (cf. [9, p. 165]). Below is an immediate consequence of Proposition 4.6 with $\pi=\{p\}$. In particular, equivalences related to $\mathcal{L}_{p}(G)$ should be new.

Corollary 4.8. The following homotopy equivalences hold.

$$
\begin{aligned}
& \mathcal{S}_{p}(G)=\mathcal{N}_{p}(G) \simeq \mathcal{A b}_{p}(G) \simeq \mathcal{A}_{p}(G) \simeq \mathcal{L}_{p}(G) \simeq \mathcal{L}_{p}^{*}(G), \\
& \mathcal{A b}_{p}(G) \simeq\left\{U \in \mathcal{A b}_{p}(G) \mid U \geq O_{p} Z N_{G}(U)\right\} \\
& \mathcal{A}_{p}(G) \simeq\left\{U \in \mathcal{A}_{p}(G) \mid U \geq \Omega_{1} O_{p} Z N_{G}(U)\right\}
\end{aligned}
$$

Remark 4.9. (1) Recall that a poset $\mathcal{Z}_{p}(G):=\left\{U \in \mathcal{A}_{p}(G) \mid \Omega_{1} O_{p} Z C_{G}(U)=\right.$ $U\}$ is introduced by Benson (see [1, p. 226]). It is known that $\mathcal{A}_{p}(G)^{>} \subseteq \mathcal{Z}_{p}(G)$ (cf. [9, Remark 4.3.5]), so that, $\mathcal{A}_{p}(G) \simeq \mathcal{Z}_{p}(G)$. But this equivalence of $\mathcal{A}_{p}(G)$ is different from $\mathcal{A}_{p}(G) \simeq \mathcal{A}_{p}(G) \cap \mathcal{L}_{p}(G)$ in Corollary 4.8.
(2) As mentioned in Remark 3.1, $\mathcal{B}_{p}(G)$ is included in $\mathcal{L}_{p}(G)$. Thus a relation $\mathcal{B}_{p}(G)=$ $\mathcal{B}_{p}(G) \cap \mathcal{L}_{p}(G)$ holds. Furthermore, we have that $\mathcal{B}_{p}(G) \simeq \mathcal{S}_{p}(G) \simeq \mathcal{L}_{p}(G)$ by Corollary 4.8.

Remark 4.10. We investigated $\mathcal{N}_{\pi}(G)^{>}$in Proposition 4.3, and also $\mathcal{A b}_{\pi}(G)^{>}$ and $\mathcal{A}_{\pi}(G)^{>}$in Proposition 4.5. On the other hand, it is known (cf. [9, p. 152]) that $\mathcal{S}_{p}(G)^{<}=\mathcal{A}_{p}(G)$ and $\mathcal{S}_{p}(G)^{>} \subseteq \mathcal{B}_{p}(G)$ in general. Furthermore the equality $\mathcal{S}_{p}(G)^{>}=$ $\mathcal{B}_{p}(G)$ holds assuming Quillen conjecture which is saying that if $\mathcal{S}_{p}(G)$ is contractible then $O_{p}(G)$ is non-trivial. From this viewpoint, a subgroup in $\mathcal{N}_{\pi}(G)^{>} \subseteq \mathcal{L}_{\pi}(G)$ might be a candidate of " π-radicals". In addition, we already saw in Remark 3.1 that a subgroup in $\mathcal{L}_{\pi}(G)$ contains the notion of p-radicals.

Remark 4.11. Suppose that $O_{p}(G) \neq\{e\}$. Then a relation $U \leq U O_{p}(G) \geq$ $O_{p}(G)$ for any $U \in \mathcal{S}_{p}(G)$ gives us (conical) contractibility of $\mathcal{S}_{p}(G)$. The converse is Quillen conjecture. How about $\mathcal{N}_{\pi}(G)$? Let G be the symmetric group S_{4} of degree 4, and $\pi:=\pi(G)=\{2,3\}$. Then $\mathcal{N}_{\pi}(G)=\mathcal{S}_{2}(G) \cup \mathcal{S}_{3}(G)$ is disconnected (i.e. noncontractible) even if $O_{\pi}(G)=G \neq\{e\}$ or $O_{\pi} F(G)=F(G) \cong C_{2} \times C_{2} \neq\{e\}$ where $F(G)$ is the Fitting subgroup of G.

5. Investigations on $\mathcal{L}_{\pi}\left(\mathfrak{S}_{\boldsymbol{n}}\right)$

For a positive integer n, denote by $\mathfrak{S}(\Omega)=\mathfrak{S}_{n}$ the symmetric group on a set $\Omega:=$ $\{1,2, \ldots, n\}$. In this section, we investigate subgroups in $\mathcal{L}_{\pi}(\mathfrak{S}(\Omega))$. It is shown that the determination of $H \in \mathcal{L}_{\pi}(\mathfrak{S}(\Omega))$ can be reduced to the case where H is irreducible (see Definition 5.5) such that there is no fixed point of H on Ω. Then focusing on the irreducibility of subgroups, we provide a strategy to determine $\mathcal{L}_{\pi}\left(\mathfrak{S}_{n}\right)$. As examples, we classify subgroups in $\mathcal{L}_{\pi}\left(\mathfrak{S}_{n}\right)$ for $n \leq 6$ by using our method.

For a family $\mathcal{H} \subseteq \operatorname{Sgp}\left(\mathfrak{S}_{n}\right)$ of subgroups closed under \mathfrak{S}_{n}-conjugation, denote by $\mathcal{H} / \sim_{\mathfrak{S}_{n}}$ a set of \mathfrak{S}_{n}-conjugate representatives of \mathcal{H}.
5.1. The symmetric group. We establish some notations on $\mathfrak{S}(\Omega)$. For $x, y \in$ $\mathfrak{S}(\Omega)$, the composition $x y \in \mathfrak{S}(\Omega)$ is read from left to right, and denote by $\alpha^{x} \in \Omega$ the image of $\alpha \in \Omega$ under x. Let $e \in \mathfrak{S}(\Omega)$ be the identity element. The notation $E:=\{e\}$ stands for the trivial subgroup of $\mathfrak{S}(\Omega)$. For a subgroup $H \leq \mathfrak{S}(\Omega)$, as in [3, p. 19], the set of fixed points and support of H are defined by

$$
\begin{aligned}
& \operatorname{fix}(H):=\left\{\alpha \in \Omega \mid \alpha^{h}=\alpha \text { for all } h \in H\right\} \\
& \operatorname{supp}(H):=\Omega \backslash \operatorname{fix}(H)=\left\{\alpha \in \Omega \mid \alpha^{h} \neq \alpha \text { for some } h \in H\right\}
\end{aligned}
$$

It is clear that $H=E$ if and only if $\operatorname{supp}(H)=\emptyset$.

Notation 5.1. For an H-invariant subset $\Gamma \subseteq \Omega$, denote by $\left.H\right|_{\Gamma} \leq \mathfrak{S}(\Omega)$ the group of permutations which agree with an element of H on Γ and are the identity on $\Omega \backslash \Gamma$. In other words, for an element $h \in H$, we identify a bijective restriction map $\left.h\right|_{\Gamma}: \Gamma \rightarrow \Gamma$ with a permutation on Ω which is the identity on $\Omega \backslash \Gamma$. Then the group $\left.H\right|_{\Gamma}$ is defined by $\left\{\left.h\right|_{\Gamma} \mid h \in H\right\} \leq \mathfrak{S}(\Gamma) \hookrightarrow \mathfrak{S}(\Omega)$.

A subset $\operatorname{supp}(H) \subseteq \Omega$ is $N_{\mathfrak{S}(\Omega)}(H)$-invariant, and H is identified with $\left.H\right|_{\operatorname{supp}(H)} \leq$ $\mathfrak{S}(\operatorname{supp}(H))$. For any H-invariant subset $\Gamma \subseteq \Omega$, it is clear that $\operatorname{supp}\left(\left.H\right|_{\Gamma}\right)=$ $\operatorname{supp}(H) \cap \Gamma$.
5.2. Reduction to the fixed point free case. In this section, we show that the determination of $H \in \mathcal{L}_{\pi}(S(\Omega))$ can be reduced to the case where H has no fixed points in Ω. Put

$$
\mathcal{L}_{\pi}(\mathfrak{S}(\Omega))^{0}:=\left\{H \in \mathcal{L}_{\pi}(\mathfrak{S}(\Omega)) \mid \operatorname{fix}(H)=\emptyset\right\}
$$

Lemma 5.2. Let $H \leq \mathfrak{S}(\Omega)$ be a non-trivial subgroup.
(1) Suppose $2 \notin \pi$. Then $H \in \mathcal{L}_{\pi}(\mathfrak{S}(\Omega))$ if and only if $H \in \mathcal{L}_{\pi}(\mathfrak{S}(\Omega \backslash \operatorname{fix}(H)))^{0}$.
(2) Suppose $2 \in \pi$. Then $H \in \mathcal{L}_{\pi}(\mathfrak{S}(\Omega))$ if and only if $H \in \mathcal{L}_{\pi}(\mathfrak{S}(\Omega \backslash \operatorname{fix}(H)))^{0}$ and $|\operatorname{fix}(H)| \neq 2$.

Proof. Set $G:=\mathfrak{S}(\Omega), \Omega_{+}:=\operatorname{supp}(H)$, and $\Omega_{0}:=\operatorname{fix}(H)$. Recall that H is identified with $H_{+}:=\left.H\right|_{\operatorname{supp}(H)}$. In order to prove this lemma, it is enough to show that $H \in \mathcal{L}_{\pi}(\mathfrak{S}(\Omega))$ if and only if $H_{+} \in \mathcal{L}_{\pi}\left(\mathfrak{S}\left(\Omega_{+}\right)\right)^{0}$, and $\left|\Omega_{0}\right| \neq 2$ or $2 \notin \pi$. Now since $N_{G}(H)$ acts on both Ω_{0} and Ω_{+}, we have that $N_{G}(H) \leq \mathfrak{S}\left(\Omega_{0}\right) \times \mathfrak{S}\left(\Omega_{+}\right)$. Hence

$$
\begin{aligned}
& N_{G}(H)=N_{\mathfrak{G}\left(\Omega_{0}\right) \times \mathfrak{G}\left(\Omega_{+}\right)}\left(H_{+}\right)=\mathfrak{S}\left(\Omega_{0}\right) \times N_{\mathfrak{S}\left(\Omega_{+}\right)}\left(H_{+}\right), \\
& O_{\pi} Z N_{G}(H)=O_{\pi} Z\left(\mathfrak{S}\left(\Omega_{0}\right)\right) \times O_{\pi} Z\left(N_{\mathfrak{S}\left(\Omega_{+}\right)}\left(H_{+}\right)\right) .
\end{aligned}
$$

Suppose that $H \in \mathcal{L}_{\pi}(G)$, that is, $H_{+}=H \geq O_{\pi} Z N_{G}(H)$. Then $O_{\pi} Z\left(\mathfrak{S}\left(\Omega_{0}\right)\right)=$ E and $H_{+} \geq O_{\pi} Z\left(N_{\mathfrak{S}\left(\Omega_{+}\right)}\left(H_{+}\right)\right)$. Thus $H_{+} \in \mathcal{L}_{\pi}\left(\mathfrak{S}\left(\Omega_{+}\right)\right)^{0}$. Furthermore $Z\left(\mathfrak{S}\left(\Omega_{0}\right)\right)$ is non-trivial if and only if $\left|\Omega_{0}\right|=2$. This yields that $O_{\pi} Z\left(\mathfrak{S}\left(\Omega_{0}\right)\right)=E$ if and only if $\left|\Omega_{0}\right| \neq 2$ or $2 \notin \pi$. The converse is now clear. The proof is complete.

The following result is a consequence of Lemma 5.2.
Proposition 5.3. For positive integers $n \geq 3$ and $2 \leq k \leq n-1$, set $[k]:=\{1, \ldots$, $k\} \subseteq \Omega$. Then we have that

$$
\mathcal{L}_{\pi}(\mathfrak{S}(\Omega)) / \sim_{\mathfrak{S}(\Omega)}= \begin{cases}\left(\bigcup_{k=2}^{n-1} \mathcal{L}_{\pi}(\mathfrak{S}([k]))^{0} / \sim_{\mathfrak{G}(k])}\right) \cup \mathcal{L}_{\pi}(\mathfrak{S}(\Omega))^{0} / \sim_{\mathfrak{G}(\Omega)} & \text { if } 2 \notin \pi \\ \left(\bigcup_{\substack{k=2 \\ k \neq n-2}}^{n-1} \mathcal{L}_{\pi}(\mathfrak{S}([k]))^{0} / \sim_{\mathfrak{S}(k])}\right) \cup \mathcal{L}_{\pi}(\mathfrak{S}(\Omega))^{0} / \sim_{\mathfrak{S}(\Omega)} & \text { if } 2 \in \pi\end{cases}
$$

By Proposition 5.3 together with the inductive argument, the determination of $\mathcal{L}_{\pi}(\mathfrak{S}(\Omega))$ can be reduced to that of $\mathcal{L}_{\pi}(\mathfrak{S}(\Omega))^{0}$.
5.3. Reduction to components. In this section, we introduce the irreducibility of a subgroup of $\mathfrak{S}(\Omega)$, and show that any non-trivial subgroup H of $\mathfrak{S}(\Omega)$ can be uniquely decomposed into irreducible subgroups of H. Using such a decomposition of H, the notion of components of H comes out. Then we show that the determination of $H \in \mathcal{L}_{\pi}(\mathfrak{S}(\Omega))^{0}$ can be reduced to the case where H itself is a component of H.

Notation 5.4. If a direct product subgroup $H=H_{1} \times H_{2} \leq \mathfrak{S}(\Omega)$ satisfies $\operatorname{supp}\left(H_{1}\right) \cap \operatorname{supp}\left(H_{2}\right)=\emptyset$, then we denote it by $H=H_{1} \perp H_{2}$. In this case, we have a disjoint union $\operatorname{supp}(H)=\operatorname{supp}\left(H_{1}\right) \uplus \operatorname{supp}\left(H_{2}\right)$. Furthermore, we recursively define $H_{1} \perp H_{2} \perp \cdots \perp H_{l}$ for any finite number of subgroups $H_{i} \leq \mathfrak{S}(\Omega)$ by $\left(H_{1} \perp \cdots \perp\right.$ $\left.H_{l-1}\right) \perp H_{l}$.

DEFINITION 5.5. Let $H \leq \mathfrak{S}(\Omega)$ be a subgroup. H is said to be reducible if there exist non-trivial subgroups $H_{1}, H_{2} \leq H$ such that $H=H_{1} \perp H_{2}$. On the other
hand, we call H irreducible if $H \neq E$ and H is not reducible, that is, whenever $H=$ $K \perp L$ for subgroups $K, L \leq H$ then $K=E$ or $L=E$.

Lemma 5.6. (1) For a subgroup $H=H_{1} \perp H_{2} \leq \mathfrak{S}(\Omega)$ and an H-invariant subset $\Gamma \subseteq \Omega$, we have that $\left.H\right|_{\Gamma}=\left.\left.H_{1}\right|_{\Gamma} \perp H_{2}\right|_{\Gamma}$.
(2) Suppose that $A \perp B=A \perp C \leq \mathfrak{S}(\Omega)$. Then $B=C$.

Proof. (1) Straightforward.
(2) Set $D:=A \perp B$. Then $\Gamma_{B}:=\operatorname{supp}(B)=\operatorname{supp}(D) \backslash \operatorname{supp}(A)=\operatorname{supp}(C)=: \Gamma_{C}$. For a D-invariant subset $\Gamma_{B}=\Gamma_{C}$, we have by (1) that

$$
\begin{aligned}
& \left.D\right|_{\Gamma_{B}}=\left.(A \perp B)\right|_{\Gamma_{B}}=\left.\left.A\right|_{\Gamma_{B}} \perp B\right|_{\Gamma_{B}}=E \perp B=B, \\
& \left.D\right|_{\Gamma_{C}}=\left.(A \perp C)\right|_{\Gamma_{C}}=\left.\left.A\right|_{\Gamma_{C}} \perp C\right|_{\Gamma_{C}}=E \perp C=C .
\end{aligned}
$$

Thus $B=C$ as wanted.

Proposition 5.7. Let $H \leq \mathfrak{S}(\Omega)$ be a non-trivial subgroup. Then H is decomposed as

$$
H=H_{1} \perp \cdots \perp H_{l}
$$

where the $H_{i} \leq H$ are irreducible and unique up to order.
Proof. We proceed by induction on $|\operatorname{supp}(H)|>0$. For the existence, we may assume that H is reducible. Then there exist non-trivial subgroups $H_{1}, H_{2} \leq H$ such that $H=H_{1} \perp H_{2}$. Since the supports of H_{1} and H_{2} are strictly contained in $\operatorname{supp}(H)$, we have that each H_{i} can be decomposed into irreducible subgroups by induction. This shows the existence of the decomposition.

Suppose next that $H=H_{1} \perp \cdots \perp H_{l}=K_{1} \perp \cdots \perp K_{m}$ for some irreducible subgroups $H_{i}, K_{j} \leq \mathfrak{S}(\Omega)$. Since $\Gamma:=\operatorname{supp}\left(H_{1}\right) \subseteq \operatorname{supp}(H)=\bigcup_{j=1}^{m} \operatorname{supp}\left(K_{j}\right)$, we may assume that $\Gamma \cap \Lambda \neq \emptyset$ for $\Lambda:=\operatorname{supp}\left(K_{1}\right)$. Then $\operatorname{supp}\left(\left.K_{1}\right|_{\Gamma}\right)=\operatorname{supp}\left(K_{1}\right) \cap \Gamma=$ $\Lambda \cap \Gamma \neq \emptyset$ and $\left.K_{1}\right|_{\Gamma} \neq E$. Now

$$
H_{1}=\left.H\right|_{\Gamma}=\left.\left(K_{1} \perp \cdots \perp K_{m}\right)\right|_{\Gamma}=\left.\left.K_{1}\right|_{\Gamma} \perp \cdots \perp K_{m}\right|_{\Gamma} .
$$

By the irreducibility of $H_{1}, H_{1}=\left.K_{1}\right|_{\Gamma}$ and $\Gamma=\operatorname{supp}\left(H_{1}\right)=\operatorname{supp}\left(\left.K_{1}\right|_{\Gamma}\right) \subseteq \Lambda$. Exchanging roles of Γ and Λ, we can obtain that $\Lambda \subseteq \Gamma$, so that, $\Gamma=\Lambda$. This yields that $H_{1}=\left.K_{1}\right|_{\Gamma}=\left.K_{1}\right|_{\Lambda}=K_{1}$. Then by Lemma 5.6, $H^{\prime}:=H_{2} \perp \cdots \perp H_{l}=K_{2} \perp$ $\cdots \perp K_{m}$. Since the support of H^{\prime} is strictly contained in $\operatorname{supp}(H)$, the uniqueness also holds by induction.

Corollary 5.8. Let $H \leq \mathfrak{S}(\Omega)$ be a non-trivial subgroup, and let $H=H_{1} \perp \cdots \perp$ H_{l} be a decomposition of H as in Proposition 5.7. Set $\Gamma_{i}:=\operatorname{supp}\left(H_{i}\right)$ for $1 \leq i \leq l$.

Suppose that $\operatorname{supp}(H)=\Omega$. Then we have that if $H_{i} \in \mathcal{L}_{\pi}\left(\mathfrak{S}\left(\Gamma_{i}\right)\right)^{0}$ for all $1 \leq i \leq l$ then $H \in \mathcal{L}_{\pi}(\mathfrak{S}(\Omega))^{0}$.

Proof. Any element $g \in O_{\pi} Z N_{\mathfrak{S}(\Omega)}(H)$ commutes with H_{i} for all $1 \leq i \leq l$. So Γ_{i} is $\langle g\rangle$-invariant. Since $\operatorname{supp}(H)=\Omega$, we have that $g=\left.\prod_{i=1}^{l} g\right|_{\Gamma_{i}}$ which is contained in $\prod_{i=1}^{l} O_{\pi} Z N_{\mathfrak{G}\left(\Gamma_{i}\right)}\left(H_{i}\right)$. Thus

$$
O_{\pi} Z N_{\mathfrak{G}(\Omega)}(H) \leq \prod_{i=1}^{l} O_{\pi} Z N_{\mathfrak{S}\left(\Gamma_{i}\right)}\left(H_{i}\right),
$$

and this completes the proof.
We establish the situation once more here. Set $G:=\mathfrak{S}(\Omega)$, and let $H \leq \mathfrak{S}(\Omega)$ be a non-trivial subgroup. Suppose that $H=H_{1} \perp \cdots \perp H_{l}$ be a decomposition of H into irreducible subgroups $H_{i}(1 \leq i \leq l)$ as in Proposition 5.7. Then a set $\mathcal{X}_{H}:=$ $\left\{H_{1}, \ldots, H_{l}\right\}$ is uniquely determined by H. Let $\left\{K_{1}, \ldots, K_{t}\right\} \subseteq \mathcal{X}_{H}$ be a set of representatives of G-conjugate classes in \mathcal{X}_{H}. For each K_{i}, denote by $\left[K_{i}\right]:=\left\{H_{j} \in \mathcal{X}_{H} \mid\right.$ $\left.H_{j} \sim_{G} K_{i}\right\}$ the class containing K_{i}. We set $\left[K_{i}\right]=\left\{K_{i}^{(1)}, K_{i}^{(2)}, \ldots, K_{i}^{\left(m_{i}\right)}\right\}$, and define a subgroup

$$
M\left(K_{i}\right):=\left\langle K \mid K \in\left[K_{i}\right]\right\rangle=K_{i}^{(1)} \perp K_{i}^{(2)} \perp \cdots \perp K_{i}^{\left(m_{i}\right)} \leq H .
$$

Then $H=M\left(K_{1}\right) \perp M\left(K_{2}\right) \perp \cdots \perp M\left(K_{t}\right)$. We call each subgroup $M\left(K_{i}\right)$ a "component" of H. Put

$$
X_{i}:=\operatorname{supp}\left(M\left(K_{i}\right)\right)=\bigcup_{j=1}^{m_{i}} \operatorname{supp}\left(K_{i}^{(j)}\right), \quad G_{i}:=\mathfrak{S}\left(X_{i}\right) \leq G
$$

Proposition 5.9. With the above notations, suppose that $\operatorname{supp}(H)=\Omega$. Then we have that
(1) $N_{G}(H)=N_{G_{1}}\left(M\left(K_{1}\right)\right) \perp N_{G_{2}}\left(M\left(K_{2}\right)\right) \perp \cdots \perp N_{G_{t}}\left(M\left(K_{t}\right)\right)$.
(2) $H \in \mathcal{L}_{\pi}(G)^{0}$ if and only if $M\left(K_{i}\right) \in \mathcal{L}_{\pi}\left(G_{i}\right)^{0}$ for all $1 \leq i \leq t$.

Proof. (1) For any $g \in N_{G}(H), H=H^{g}=H_{1}^{g} \perp \cdots \perp H_{l}^{g}$. Since \mathcal{X}_{H} is uniquely determined by H by Proposition 5.7, we have that $\langle g\rangle$ acts on \mathcal{X}_{H} and [K_{i}] for any $1 \leq i \leq t$. This yields that X_{i} is $\langle g\rangle$-invariant, and thus $\left.g\right|_{X_{i}} \in N_{G_{i}}\left(M\left(K_{i}\right)\right)$. Since $\operatorname{supp}(H)=\Omega$, we have that $g=\left.\prod_{i=1}^{t} g\right|_{X_{i}}$ which is contained in $N_{G_{1}}\left(M\left(K_{1}\right)\right) \perp$ $\cdots \perp N_{G_{t}}\left(M\left(K_{t}\right)\right)$. The converse inclusion is trivial.
(2) Straightforward from (1).

By Proposition 5.9 (2), the determination of $H \in \mathcal{L}_{\pi}(\mathfrak{S}(\Omega))^{0}$ can be reduced to the case where H itself is a component of H, that is, all subgroups in \mathcal{X}_{H} are $\mathfrak{S}(\Omega)$-conjugate each other.
5.4. Reduction to irreducible subgroups. In this section, we show that the determination of $H \in \mathcal{L}_{\pi}(\mathfrak{S}(\Omega))^{0}$ can be reduced to the case where H is irreducible. Set $G:=\mathfrak{S}(\Omega)$. By reason of Proposition 5.9 (2), we assume the following Hypothesis 5.10

Hypothesis 5.10. Let $H \leq \mathfrak{S}(\Omega)$ be a non-trivial subgroup. Suppose that $H=$ $H_{1} \perp \cdots \perp H_{l}$ be a decomposition of H into irreducible subgroups $H_{i}(1 \leq i \leq l)$ as in Proposition 5.7. Then $H_{i} \sim_{G} H_{j}$ for any $1 \leq i, j \leq l$.

We examine the structure of $N_{G}(H)$. Set $\Gamma_{i}:=\operatorname{supp}\left(H_{i}\right)$ and $G_{i}:=\mathfrak{S}\left(\Gamma_{i}\right)$ for $1 \leq i \leq l$. By Hypothesis 5.10 , for each $2 \leq i \leq l$, there exists $g_{i} \in G$ such that $H_{i}=H_{1}^{g_{i}}:=g_{i}^{-1} H_{1} g_{i}$ which induces a permutation equivalence $\left(H_{1}, \Gamma_{1}\right) \simeq\left(H_{i}, \Gamma_{i}\right)$. In other words, there exist bijections $f_{i}: H_{1} \rightarrow H_{i}$ defined by $x \mapsto x^{g_{i}}:=g_{i}^{-1} x g_{i}$ for $x \in H_{1}$, and $\varphi_{i}: \Gamma_{1} \rightarrow \Gamma_{i}$ defined by $\alpha \mapsto \alpha^{g_{i}}$ for $\alpha \in \Gamma_{1}$ satisfying $\left(\alpha^{\varphi_{i}}\right)^{x_{i}}=\left(\alpha^{x}\right)^{\varphi_{i}}$ for any $x \in H_{1}$ and $\alpha \in \Gamma_{1}$. Now we define an involution

$$
\sigma_{i}:=\prod_{\alpha \in \Gamma_{1}}\left(\alpha, \alpha^{\phi_{i}}\right) \in \mathfrak{S}\left(\Gamma_{1} \cup \Gamma_{i}\right) \leq \mathfrak{S}(\Omega) \quad(2 \leq i \leq l)
$$

which acts on $\mathcal{X}_{H}=\left\{H_{1}, \ldots, H_{l}\right\}$ as a transposition $\left(H_{1}, H_{i}\right)$. Then $S:=\left\langle\sigma_{2}, \ldots, \sigma_{l}\right\rangle \cong$ \mathfrak{S}_{l} acts on both \mathcal{X}_{H} and $\left\{N_{G_{1}}\left(H_{1}\right), \ldots, N_{G_{l}}\left(H_{l}\right)\right\}$ as \mathfrak{S}_{l} respectively, and a subgroup $N_{G_{1}}\left(H_{1}\right) 乙 S \cong B \rtimes S \leq N_{G}(H)$ is defined where $B:=N_{G_{1}}\left(H_{1}\right) \times \cdots \times N_{G_{l}}\left(H_{l}\right)$.

Proposition 5.11. Assume Hypothesis 5.10. With the above notations, suppose that $\operatorname{supp}(H)=\Omega$. Then we have that
(1) $N_{G}(H)=B \rtimes S$.
(2) $H \in \mathcal{L}_{\pi}(G)^{0}$ if and only if $H_{1} \in \mathcal{L}_{\pi}\left(G_{1}\right)^{0}$.

Proof. (1) For any element $g \in N_{G}(H),\langle g\rangle$ acts on \mathcal{X}_{H} as in the proof of Proposition 5.9. Then there exists $\sigma \in S$ such that σ is equal to g as elements of $\mathfrak{S}\left(\mathcal{X}_{H}\right)$. Thus $g \sigma^{-1}$ fixes H_{i} for all $1 \leq i \leq l$, so that, $\left.\left(g \sigma^{-1}\right)\right|_{\Gamma_{i}} \in N_{G_{i}}\left(H_{i}\right)$. Since $\operatorname{supp}(H)=\Omega$, we have that $g \sigma^{-1}=\left.\prod_{i=1}^{l}\left(g \sigma^{-1}\right)\right|_{\Gamma_{i}}$ which is contained in B. So $g \in B \sigma \subseteq B \rtimes S$.
(2) Suppose that $H_{1} \notin \mathcal{L}_{\pi}\left(G_{1}\right)^{0}$, and then we will show that $H \notin \mathcal{L}_{\pi}(G)^{0}$. We may assume that $l \geq 2$. Now there exists $z_{1} \in O_{\pi} Z N_{G_{1}}\left(H_{1}\right) \backslash H_{1}$. For $2 \leq i \leq l$, put

$$
z_{i}:=\sigma_{i}^{-1} z_{1} \sigma_{i} \in O_{\pi} Z N_{G_{i}}\left(H_{i}\right) \backslash H_{i}, \quad z_{0}:=\prod_{i=1}^{l} z_{i} \in N_{G}(H) \backslash H .
$$

Then $\left[z_{0}, B\right]=E$. Furthermore, for each $\sigma_{j} \in S(2 \leq j \leq l)$, we have that

$$
z_{0}^{\sigma_{j}}=z_{1}^{\sigma_{j}} \times \prod_{\substack{i=2 \\ i \neq j}}^{l} z_{1}^{\sigma_{i} \sigma_{j}} \times z_{1}^{\sigma_{j} \sigma_{j}}=z_{1}^{\sigma_{j}} \times \prod_{\substack{i=2 \\ i \neq j}}^{l} z_{1}^{\sigma_{i}} \times z_{1}=z_{0}
$$

This implies that $\left[z_{0}, S\right]=E$ and $z_{0} \in Z N_{G}(H)$ by Proposition 5.11 (1). Thus z_{0} is in $O_{\pi} Z N_{G}(H) \backslash H$, and $H \notin \mathcal{L}_{\pi}(G)^{0}$ as desired. The converse follows from Corollary 5.8.

Summarizing Propositions 5.9 and 5.11, we have the following.
Theorem 5.12. Let $H \leq \mathfrak{S}(\Omega)$ be a non-trivial subgroup, and let

$$
H=\left(H_{1}^{(1)} \perp \cdots \perp H_{1}^{\left(m_{1}\right)}\right) \perp\left(H_{2}^{(1)} \perp \cdots \perp H_{2}^{\left(m_{2}\right)}\right) \perp \cdots \perp\left(H_{t}^{(1)} \perp \cdots \perp H_{t}^{\left(m_{t}\right)}\right)
$$

be a decomposition of H as in Proposition 5.7 where each $H_{i}^{(1)} \perp \cdots \perp H_{i}^{\left(m_{i}\right)}$ is a component of H. Set $\Gamma_{i}:=\operatorname{supp}\left(H_{i}^{(1)}\right)$ for $1 \leq i \leq t$. Suppose that $\operatorname{supp}(H)=\Omega$. Then we have that $H \in \mathcal{L}_{\pi}(\mathfrak{S}(\Omega))^{0}$ if and only if $H_{i}^{(1)} \in \mathcal{L}_{\pi}\left(\mathfrak{S}\left(\Gamma_{i}\right)\right)^{0}$ for all $1 \leq i \leq t$.

By Theorem 5.12, the determination of $H \in \mathcal{L}_{\pi}(\mathfrak{S}(\Omega))^{0}$ can be reduced to the case where H is irreducible.
5.5. On intransitive subgroups. In this section, we show that intransitive subgroups of $\mathfrak{S}(\Omega)$ can be described inductively in terms of smaller irreducible subgroups. This idea will be used in Section 5.6. First we recall pullbacks.

REmark 5.13. (1) Let G and H be groups, and let $\theta: G / N \rightarrow H / K$ be a group isomorphism between quotient groups. Then the pullback $G \times{ }^{\theta} H$ of G and H via θ is a subgroup $\left\{(g, h) \in G \times H \mid(g N)^{\theta}=h K\right\}$ of $G \times H$ (cf. [4, Definition 13.11]]). Note that if θ is trivial, that is, G / N is the trivial group, then $G \times{ }^{\theta} H=G \times H$.
(2) Let $G=K \times L$ be a direct product. Then any subgroup H of G can be realized as the pullback of certain subgroups in K and L. More precisely, there exist subgroups $K \geq K_{1} \unrhd K_{2}$ and $L \geq L_{1} \unrhd L_{2}$, and also a group isomorphism $\theta: K_{1} / K_{2} \rightarrow L_{1} / L_{2}$ such that $H=K_{1} \times{ }^{\theta} L_{1}$ (cf. [10, (4.19)]).

Let $H \leq \mathfrak{S}(\Omega)$ be a non-trivial subgroup. Suppose that $\operatorname{supp}(H)=\Omega$, and that H acts intransitively on Ω. Let

$$
\Omega=\mathcal{O}_{1} \cup \cdots \cup \mathcal{O}_{m-1} \cup \mathcal{O}_{m} \quad(m \geq 2)
$$

be a decomposition of Ω into H-orbits. Set $\Lambda_{1}:=\mathcal{O}_{1} \cup \cdots \cup \mathcal{O}_{m-1}$ and $\Lambda_{2}:=\mathcal{O}_{m}$. Then a subgroup $B:=\left.H\right|_{\Lambda_{2}} \leq \mathfrak{S}\left(\Lambda_{2}\right)$ is transitive on Λ_{2}, that is, irreducible. On the other hand, a subgroup $\left.H\right|_{\Lambda_{1}} \leq \mathfrak{S}\left(\Lambda_{1}\right)$ is decomposed as $\left.H\right|_{\Lambda_{1}}=A_{1} \perp \cdots \perp A_{l}$ into irreducible subgroups $A_{i}(1 \leq i \leq l)$ by Proposition 5.7. It follows that

$$
H \leq\left. H\right|_{\Lambda_{1}} \times\left. H\right|_{\Lambda_{2}}=\left(A_{1} \perp \cdots \perp A_{l}\right) \perp B .
$$

Since the supports of A_{i} and B are strictly contained in $\operatorname{supp}(H)=\Omega$, we may assume that a list of irreducible subgroups A_{i} and B is already known by induction. Thus H can be concretely described as the pullback $H_{1} \times{ }^{\theta} H_{2}$ of certain subgroups $H_{1} \leq A_{1} \perp \cdots \perp A_{l}$ and $H_{2} \leq B$ where θ is a group isomorphism between quotients (see Remark 5.13). Note that, if H is irreducible then θ must not be trivial. In the next, we give a result on irreducible pullbacks under the above situation.

Proposition 5.14. Let $B \leq \mathfrak{S}(\Omega)$ be an irreducible subgroup, and let $A:=A_{1} \perp$ $\cdots \perp A_{l} \leq \mathfrak{S}(\Omega)$ where A_{i} is irreducible for all $1 \leq i \leq l$. Suppose that $\operatorname{supp}(A) \cap$ $\operatorname{supp}(B)=\emptyset$ and $\operatorname{supp}(A \perp B)=\Omega$. Suppose further that there exists a group isomorphism $\theta: A / N_{1} \rightarrow B / N_{2}(\neq \bar{E})$ for some $N_{1} \unlhd A$ and $N_{2} \unlhd B$ such that $A_{i} \not \leq N_{1}$ for all $1 \leq i \leq l$. Then the pullback $P:=A \times{ }^{\theta} B=\left\{(a, b) \in A \times B \mid\left(a N_{1}\right)^{\theta}=b N_{2}\right\}$ is irreducible.

Proof. Set $\Gamma_{i}:=\operatorname{supp}\left(A_{i}\right)(1 \leq i \leq l)$ and $\Gamma:=\operatorname{supp}(B)$. Suppose that P is reducible. Then there exist non-trivial subgroups $K, L \leq P$ such that $P=K \perp L$. Let $\pi_{A}: P \rightarrow A$ and $\pi_{B}: P \rightarrow B$ be the projections of P on A and B respectively. Both π_{A} and π_{B} are surjective. This implies that $\left.P\right|_{\Gamma_{i}}=A_{i}(1 \leq i \leq l)$ and $\left.P\right|_{\Gamma}=B$. Since $B=\left.P\right|_{\Gamma}=\left.\left.K\right|_{\Gamma} \perp L\right|_{\Gamma}$ is irreducible, we may assume that

$$
\begin{array}{lll}
\left.K\right|_{\Gamma}=B & \text { i.e. } & \Gamma=\operatorname{supp}(B) \subseteq \operatorname{supp}(K), \\
\left.L\right|_{\Gamma}=E & \text { i.e. } & L \leq A=A_{1} \perp \cdots \perp A_{l} .
\end{array}
$$

Suppose that $\Gamma \subset \operatorname{supp}(K) \subseteq \Omega=\Gamma_{1} \cup \cdots \cup \Gamma_{l} \cup \Gamma$. Then we may assume that $\emptyset \neq \operatorname{supp}(K) \cap \Gamma_{1}=\operatorname{supp}\left(\left.K\right|_{\Gamma_{1}}\right)$, so that, $\left.K\right|_{\Gamma_{1}} \neq E$. Since $A_{1}=\left.P\right|_{\Gamma_{1}}=\left.\left.K\right|_{\Gamma_{1}} \perp L\right|_{\Gamma_{1}}$ is irreducible, we have that

$$
\begin{aligned}
& \left.K\right|_{\Gamma_{1}}=A_{1} \quad \text { i.e. } \quad \Gamma_{1}=\operatorname{supp}\left(A_{1}\right) \subseteq \operatorname{supp}(K) \quad \text { and } \quad \Gamma \cup \Gamma_{1} \subseteq \operatorname{supp}(K), \\
& \left.L\right|_{\Gamma_{1}}=E \quad \text { i.e. } \quad L \leq A_{2} \perp \cdots \perp A_{l} .
\end{aligned}
$$

Repeating this process, we may assume that there exists $t<l$ such that

$$
\operatorname{supp}(K)=\Gamma \cup \Gamma_{1} \cup \cdots \cup \Gamma_{t},
$$

$$
\begin{equation*}
L \leq A_{t+1} \perp \cdots \perp A_{l} . \tag{*}
\end{equation*}
$$

Note that if $t=l$ then $L=E$, a contradiction. Now $\pi_{A}: P=K \perp L \rightarrow A$ is surjective. Thus for any $a \in A_{l}$, there exist $\left(a_{K}, b_{K}\right) \in K \leq A \times B$ and $\left(a_{L}, e\right) \in L \leq A$ such that

$$
a=\pi_{A}\left(\left(a_{K}, b_{K}\right) \times\left(a_{L}, e\right)\right)=a_{K} a_{L} .
$$

But by the above condition (*), $a_{K} \in A_{1} \perp \cdots \perp A_{t}$ and $a_{L} \in A_{t+1} \perp \cdots \perp A_{l}$. Thus $a_{K}=e$ and $a=a_{L} \in L \leq P$. This implies $(a, e) \in P$ and $\left(a N_{1}\right)^{\theta}=e N_{2}=N_{2}$ by
the definition of P. Therefore $A_{l} \leq N_{1}$ which contradicts our assumption. The proof is complete.
5.6. A strategy to determine $\mathcal{L}_{\pi}\left(\mathfrak{S}_{n}\right)^{0}$. In this section, we provide a method of determining $\mathcal{L}_{\pi}\left(\mathfrak{S}_{n}\right)^{0}$ which is focused on irreducible subgroups. So we introduce the notations

$$
\begin{aligned}
& \operatorname{IRR}(n)^{0}:=\{E \neq H \leq \mathfrak{S}(\Omega) \mid H \text { is irreducible such that fix }(H)=\emptyset\}, \\
& \mathrm{T}(n):=\{E \neq H \leq \mathfrak{S}(\Omega) \mid H \text { is transitive on } \Omega\} \subseteq \operatorname{IRR}(n)^{0} .
\end{aligned}
$$

Then, as in the following, we divide our work of determining $H \in \mathcal{L}_{\pi}\left(\mathfrak{S}_{n}\right)^{0}$ into two cases where H is irreducible or not.
A: Determine $H \in \mathcal{L}_{\pi}\left(\mathfrak{S}_{n}\right)^{0}$ such that H is not irreducible (see Theorem 5.12).
(Step A1) Give a non-trivial partition $n=\left(n_{1}+\cdots+n_{1}\right)+\cdots+\left(n_{t}+\cdots+n_{t}\right)$ of n such that $n_{i} \geq 2$ and $n_{i}>n_{i+1}$.
(Step B2) H is \mathfrak{S}_{n}-conjugate to one of subgroups of the form $\left(H_{1} \perp \cdots \perp H_{1}\right) \perp$ $\cdots \perp\left(H_{t} \perp \cdots \perp H_{t}\right)$ where $H_{i} \in \mathcal{L}_{\pi}\left(\mathfrak{S}_{n_{i}}\right)^{0}$ for $1 \leq i \leq t$.
B: Determine $H \in \mathcal{L}_{\pi}\left(\mathfrak{S}_{n}\right)^{0}$ such that H is irreducible.
(Step B1) Make a list of \mathfrak{S}_{n}-conjugate classes in $\mathrm{T}(n)$.
(Step B2) Describe subgroups in $\operatorname{IRR}(n)^{0} \backslash \mathrm{~T}(n)$, namely intransitive irreducible subgroups H having no fixed points (see Section 5.5). Indeed, we first give a non-trivial partition $n=n_{1}+\cdots+n_{r-1}+n_{r}$ of n such that $n_{i} \geq 2$. Let $A \leq \mathfrak{S}_{n-n_{r}}$ and $B \in \mathrm{~T}\left(n_{r}\right)$ such that A has $r-1$ orbits of lengths n_{i} for $1 \leq i \leq r-1$. Calculate an irreducible pullback $H=A_{1} \times{ }^{\theta} B_{1}$ via a group isomorphism $\theta: A_{1} / A_{2} \rightarrow B_{1} / B_{2}$ $(\neq \bar{E})$ where $A \geq A_{1} \unrhd A_{2}$ and $B \geq B_{1} \unrhd B_{2}$.
(Step B3) By the previous two Steps B1-B2, the set $\operatorname{IRR}(n)^{0}$ is complete. Then, from $\operatorname{IRR}(n)^{0}$, pick up subgroups belonging to $\mathcal{L}_{\pi}\left(\mathfrak{S}_{n}\right)$.
5.7. Examples $\mathcal{L}_{\pi}\left(\mathfrak{S}_{n}\right)^{0}(n \leq 6)$. According to a strategy introduced in Section 5.6, we determine $\mathcal{L}_{\pi}\left(\mathfrak{S}_{n}\right)$ for $4 \leq n \leq 6$. Let $\mathfrak{A}(\Omega)=\mathfrak{A}_{n}$ be the alternating group on $\Omega=\{1, \ldots, n\}$. For a prime number p and a positive integer m, denote by p^{m}, C_{m}, $D_{2 m}$ respectively the elementary abelian p-group of order p^{m}, cyclic group of order m, dihedral group of order $2 m$. Set $\pi:=\pi\left(\mathfrak{S}_{n}\right)$.

The cases of \mathfrak{S}_{2} and \mathfrak{S}_{3} are trivial as follows:

- $\quad \operatorname{IRR}(2)^{0}=\mathrm{T}(2)=\mathcal{L}_{\pi}\left(\mathfrak{S}_{2}\right)^{0}=\left\{\mathfrak{S}_{2} \cong C_{2}\right\}$,
- $\quad \operatorname{IRR}(3)^{0}=\mathrm{T}(3)=\left\{\mathfrak{S}_{3}, \mathfrak{A}_{3}\right\}$, and $\mathcal{L}_{\pi}\left(\mathfrak{S}_{3}\right)^{0}=\left\{\mathfrak{A}_{3} \cong C_{3}\right\}$.

The case of \mathfrak{S}_{4} :
(Steps A1-A2) A non-trivial partition of 4 not containing 1 as summands is only $4=2+2$. Then any non-irreducible subgroup H in $\mathcal{L}_{\pi}\left(\mathfrak{S}_{4}\right)^{0}$ is conjugate to $H_{1} \perp H_{2}$ where $H_{i} \in \mathcal{L}_{\pi}\left(\mathfrak{S}_{2}\right)^{0}$. Thus $H \sim_{\mathfrak{S}_{2}}\langle(1,2)\rangle \perp\langle(3,4)\rangle$.
(Step B1) It is easy to see that $\mathrm{T}(4) / \sim_{\mathfrak{S}_{4}}=\left\{\mathfrak{S}_{4}, \mathfrak{A}_{4},\langle(1,2,3,4),(2,4)\rangle \cong D_{8}, V\right.$, $\left.\langle(1,2,3,4)\rangle \cong C_{4}\right\}$ where $V:=\langle(1,2)(3,4),(1,3)(2,4)\rangle$ is the four group. In particular, $\mathrm{T}(4) / \sim_{\mathfrak{S}_{4}} \cap \mathcal{L}_{\pi}\left(\mathfrak{S}_{4}\right)=\left\{D_{8}, V, C_{4}\right\}$.
(Step B2) A non-trivial partition of 4 not containing 1 as summands is $4=2+2$. There is the unique transitive subgroup $B:=\langle(3,4)\rangle \in \mathrm{T}(2)$ on $\{3,4\}$. Then we choose a transitive subgroup $A \in \mathrm{~T}(2)$ on $\{1,2\}$ having a quotient A / N of order 2 , namely $(A, N)=(\langle(1,2)\rangle, E)$. Define a group isomorphism $\theta: A / N \rightarrow B$. The pullback $A \times^{\theta}$ $B=\langle(1,2)(3,4)\rangle \cong C_{2}$ is irreducible.
(Step B3) By Steps B1-B2, we have that

$$
\operatorname{IRR}(4)^{0} / \sim_{\mathfrak{G}_{4}}=\mathrm{T}(4) / \sim_{\mathfrak{G}_{4}} \cup\{\langle(1,2)(3,4)\rangle\} .
$$

Then $\mathcal{L}_{\pi}\left(\mathfrak{S}_{4}\right)^{0}$ consists of 5 -classes whose representatives are as follows:

$H \in \mathcal{L}_{\pi}\left(\mathfrak{S}_{4}\right)^{0} / \sim_{\mathfrak{S}_{4}}$	\cong	
$\langle(1,2)\rangle \perp\langle(3,4)\rangle$	2^{2}	non-irreducible
$\langle(1,2,3,4),(2,4)\rangle$	D_{8}	irreducible and transitive
V	2^{2}	
$\langle(1,2,3,4)\rangle$	C_{4}	
$\langle(1,2)(3,4)\rangle$	2	irreducible and intransitive

The case of \mathfrak{S}_{5} :
(Steps A1-A2) A non-trivial partition of 5 not containing 1 as summands is only $5=3+2$. Then any non-irreducible subgroup H in $\mathcal{L}_{\pi}\left(\mathfrak{S}_{5}\right)^{0}$ is conjugate to $H_{1} \perp H_{2}$ where $H_{1} \in \mathcal{L}_{\pi}\left(\mathfrak{S}_{3}\right)^{0}$ and $H_{2} \in \mathcal{L}_{\pi}\left(\mathfrak{S}_{2}\right)^{0}$. Thus $H \sim_{\mathfrak{S}_{5}}\langle(1,2,3)\rangle \perp\langle(4,5)\rangle$.
(Step B1) Since the order of a transitive group of degree 5 is divisible by 5 , it is easy to see that $\mathrm{T}(5) / \sim_{\mathfrak{G}_{5}}=\left\{\mathfrak{S}_{5}, \mathfrak{A}_{5}, C_{5} \rtimes C_{4}, C_{5} \rtimes C_{2}, C_{5}\right\}$. In particular, $\mathrm{T}(5) / \sim_{\mathfrak{G}_{5}} \cap$ $\mathcal{L}_{\pi}\left(\mathfrak{S}_{5}\right)=\left\{\langle(1,2,3,4,5)\rangle \cong C_{5}\right\}$.
(Step B2) A non-trivial partition of 5 not containing 1 as summands is $5=3+2$. There is the unique transitive subgroup $B:=\langle(4,5)\rangle \in \mathrm{T}(2)$ on $\{4,5\}$. Then we choose a transitive subgroup $A \in \mathrm{~T}(3)$ on $\{1,2,3\}$ having a quotient A / N of order 2, namely $(A, N)=\left(\mathfrak{S}_{3}, \mathfrak{A}_{3}\right)$. Define a group isomorphism $\theta: A / N \rightarrow B$. The pullback $A \times{ }^{\theta} B=$ $\langle(1,2,3),(1,2)(4,5)\rangle \cong \mathfrak{S}_{3}$ is irreducible.
(Step B3) By Steps B1-B2, we have that

$$
\operatorname{IRR}(5)^{0} / \sim_{\mathfrak{S}_{5}}=\mathrm{T}(5) / \sim_{\mathfrak{G}_{5}} \cup\{\langle(1,2,3),(1,2)(4,5)\rangle\}
$$

Then $\mathcal{L}_{\pi}\left(\mathfrak{S}_{5}\right)^{0}$ consists of 2-classes whose representatives are as follows:

$H \in \mathcal{L}_{\pi}\left(\mathfrak{S}_{5}\right)^{0} / \sim_{\mathfrak{S}_{5}}$	\cong	
$\langle(1,2,3)\rangle \perp\langle(4,5)\rangle$	$C_{3} \times C_{2}$	non-irreducible
$\langle(1,2,3,4,5)\rangle$	C_{5}	irreducible and transitive

The case of \mathfrak{S}_{6} :
(Steps A1-A2) Non-irreducible subgroups H in $\mathcal{L}_{\pi}\left(\mathfrak{S}_{6}\right)^{0}$ correspond to non-trivial partitions of 6 not containing 1 as summands. Thus those subgroups are determined as follows:
(i) $6=4+2: H \sim_{\mathfrak{S}_{6}} H_{1} \perp H_{2}$ where $H_{1} \in \mathcal{L}_{\pi}\left(\mathfrak{S}_{4}\right)^{0}$ and $H_{2} \in \mathcal{L}_{\pi}\left(\mathfrak{S}_{2}\right)^{0}$, and thus

$$
H \sim_{\mathfrak{S}_{6}} D_{8} \perp\langle(5,6)\rangle, \quad V \perp\langle(5,6)\rangle, \quad C_{4} \perp\langle(5,6)\rangle, \quad\langle(1,2)(3,4)\rangle \perp\langle(5,6)\rangle
$$

(ii) $6=3+3: H \sim_{\mathfrak{S}_{6}} H_{1} \perp H_{2}$ where $H_{i} \in \mathcal{L}_{\pi}\left(\mathfrak{S}_{3}\right)^{0}$, and thus

$$
H \sim_{\mathfrak{S}_{6}}\langle(1,2,3)\rangle \perp\langle(4,5,6)\rangle .
$$

(iii) $6=2+2+2: H \sim_{\mathfrak{S}_{6}} H_{1} \perp H_{2} \perp H_{3}$ where $H_{i} \in \mathcal{L}_{\pi}\left(\mathfrak{S}_{2}\right)^{0}$, and thus

$$
H \sim_{\mathfrak{S}_{6}}\langle(1,2)\rangle \perp\langle(3,4)\rangle \perp\langle(5,6)\rangle .
$$

(Step B1) We can find that there are 16 -classes of transitive subgroups of \mathfrak{S}_{6}, and representatives are as follows:

$$
\begin{aligned}
\mathrm{T}(6) / \sim_{\mathfrak{S}_{6}}= & \left\{\mathfrak{S}_{6}, \mathfrak{A}_{6},\right. \\
& P G L(2,5) \cong \mathfrak{S}_{5}, \mathfrak{A}_{5}, \mathfrak{S}_{4}, \\
& \mathfrak{S}_{3} \prec \mathfrak{S}_{2} \cong 3^{2} \rtimes D_{8}, 3^{2} \rtimes C_{4}, 3^{2} \rtimes 2^{2}, 3^{2} \rtimes C_{2}, C_{3} \times C_{2}, D_{12}, \mathfrak{S}_{3}, \\
& \left.\mathfrak{S}_{2} \prec \mathfrak{S}_{3} \cong 2^{3} \rtimes S_{3}, 2^{3} \rtimes C_{3}, 2^{2} \rtimes C_{3}, \mathfrak{S}_{4}\right\} .
\end{aligned}
$$

In particular, $\mathrm{T}(6) / \sim_{\mathfrak{S}_{6}} \cap \mathcal{L}_{\pi}\left(\mathfrak{S}_{6}\right)=\left\{\langle(1,2,3,4,5,6)\rangle \cong C_{6}\right\}$.
(Step B2) In order to examine intransitive subgroups H in $\operatorname{IRR}(6)^{0}$, we consider pullbacks associated to non-trivial partitions of 6 not containing 1 as summands as follows:
(i) $6=4+2$: There is the unique transitive subgroup $B:=\langle(5,6)\rangle \in \mathrm{T}(2)$ on $\{5,6\}$. Then we choose a transitive subgroup $A \in \mathrm{~T}(4)$ on $\{1,2,3,4\}$ having a quotient A / N of order 2 , so that, a group isomorphism $\theta: A / N \rightarrow B$ is defined.

$\theta: A / N \rightarrow B$	$H=A \times{ }^{\theta} B$	nilp.	$N_{\mathfrak{S}_{6}}(H)$
$\mathfrak{S}_{4} / \mathfrak{A}_{4} \rightarrow B$	$\left\langle\mathfrak{A}_{4},(1,2)(5,6)\right\rangle \cong \mathfrak{S}_{4}$	no	
$D_{8} / C_{4} \rightarrow B$	$\langle(1,2,3,4),(2,4)(5,6)\rangle \cong D_{8}$	yes	$D^{(1)} \times\langle(5,6)\rangle$
$D_{8} / V \rightarrow B$	$\langle(1,2)(3,4),(1,3)(2,4),(2,4)(5,6)\rangle$ $=\langle(1,2,3,4)(5,6),(2,4)(5,6)\rangle \cong D_{8}$	yes	$D^{(1)} \times\langle(5,6)\rangle$
$D_{8} /\langle(1,3),(2,4)\rangle \rightarrow B$	$\langle(1,3),(2,4),(1,2)(3,4)(5,6)\rangle$ $=\langle(1,2,3,4)(5,6),(2,4)\rangle \cong D_{8}$	yes	$D^{(1)} \times\langle(5,6)\rangle$
$V /\langle(1,2)(3,4)\rangle \rightarrow B$	$\langle(1,2)(3,4),(1,3)(2,4)(5,6)\rangle \cong 2^{2}$	yes	$D^{(2) \times\langle(5,6)\rangle}$
$C_{4} / C_{2} \rightarrow B$	$\langle(1,3)(2,4),(1,2,3,4)(5,6)\rangle \cong C_{4}$	yes	$D^{(1)} \times\langle(5,6)\rangle$

where $D^{(1)}:=\langle(1,2,3,4),(2,4)\rangle$ and $D^{(2)}:=\langle(1,3,2,4),(1,2)\rangle$.
(ii) $6=3+3$: There are three non-trivial quotients A / N of transitive subgroups $A \in$ $\mathrm{T}(3)$, namely $(A, N)=\left(\mathfrak{S}_{3}, \mathfrak{A}_{3}\right),\left(\mathfrak{S}_{3}, E\right)$, and $\left(\mathfrak{A}_{3}, E\right)$.

$\theta: A / N \rightarrow A / N$	$H=A \times^{\theta} A$	nilp.	$N_{\mathfrak{S}_{6}}(H)$
$\mathfrak{S}_{3} / \mathfrak{A}_{3} \rightarrow \mathfrak{S}_{3} / \mathfrak{A}_{3}$	$\langle(1,2,3),(4,5,6),(1,2)(4,5)\rangle \cong 3^{2} \rtimes C_{2}$	no	
$\mathfrak{S}_{3} / E \rightarrow \mathfrak{S}_{3} / E$	$\langle(1,2,3)(4,5,6),(1,2)(4,5)\rangle \cong \mathfrak{S}_{3}$	no	
$\mathfrak{A}_{3} / E \rightarrow \mathfrak{A}_{3} / E$	$\langle(1,2,3)(4,5,6)\rangle \cong C_{3}$	yes	$3^{2} \rtimes C_{2} \rtimes C_{2}$

(iii) $6=(2+2)+2$: There is the unique transitive subgroup $B:=\langle(5,6)\rangle \in \mathrm{T}(2)$ on $\{5,6\}$. Then we choose an intransitive subgroup $A \leq \mathfrak{S}_{4}$ on $\{1,2,3,4\}$ which has two orbits of length 2. Namely A is an irreducible subgroup $A_{1}=\langle(1,2)(3,4)\rangle$ or non-irreducible subgroup $A_{2}=\langle(1,2)\rangle \perp\langle(3,4)\rangle$. Each A_{i} has a quotient of order 2 .

$\theta: A / N \rightarrow B$	$H=A \times{ }^{\theta} B$	nilp.	$N_{\mathfrak{S}_{6}}(H)$
$A_{1} / E \rightarrow B$	$\langle(1,2)(3,4)(5,6)\rangle \cong C_{2}$	yes	$\mathfrak{S}_{2}\left\langle\mathfrak{S}_{3}\right.$
$A_{2} /\langle(1,2)(3,4)\rangle \rightarrow B$	$\langle(1,2)(3,4),(1,2)(5,6)\rangle \cong 2^{2}$	yes	$\mathfrak{S}_{2}\left\langle\mathfrak{S}_{3}\right.$
$A_{2} /\langle(1,2)\rangle \rightarrow B$	$\langle(1,2)\rangle \perp\langle(3,4)(5,6)\rangle \cong 2^{2}$	yes	

Note that the last $\langle(1,2)\rangle \perp\langle(3,4)(5,6)\rangle$ is the only non-irreducible subgroup among the above twelve subgroups in Step B2 (compare with Proposition 5.14). Thus there are 11 -classes of intransitive subgroups in $\operatorname{IRR}(6)^{0}$.
(Step B3) By Steps B1-B2, there are $(16+11)$-classes of subgroups in $\operatorname{IRR}(6)^{0}$, and then $\mathcal{L}_{\pi}\left(\mathfrak{S}_{6}\right)^{0}$ consists of 9 -classes whose representatives are as follows:

$H \in \mathcal{L}_{\pi}\left(\mathfrak{S}_{6}\right)^{0} / \sim_{\mathfrak{S}_{6}}$	\cong	
$\langle(1,2,3,4),(2,4)\rangle \perp\langle(5,6)\rangle$	$D_{8} \times C_{2}$	non-irreducible
$V \perp\langle(5,6)\rangle$	2^{3}	
$\langle(1,2,3,4)\rangle \perp\langle(5,6)\rangle$	$C_{4} \times C_{2}$	
$\langle(1,2)(3,4)\rangle \perp\langle(5,6)\rangle$	2^{2}	
$\langle(1,2,3)\rangle \perp\langle(4,5,6)\rangle$	3^{2}	
$\langle(1,2)\rangle \perp\langle(3,4)\rangle \perp\langle(5,6)\rangle$	2^{3}	
$\langle(1,2,3,4,5,6)\rangle$	$C_{2} \times C_{3}$	irreducible and transitive
$\langle(1,2,3)(4,5,6)\rangle$	C_{3}	irreducible and intransitive
$\langle(1,2)(3,4)(5,6)\rangle$	C_{2}	

Furthermore, Proposition 5.3 tells us that, since $2 \in \pi$, the whole $\mathcal{L}_{\pi}\left(\mathfrak{S}_{6}\right)$ is constructed by four parts $\mathcal{L}_{\pi}\left(\mathfrak{S}_{2}\right)^{0}, \mathcal{L}_{\pi}\left(\mathfrak{S}_{3}\right)^{0}, \mathcal{L}_{\pi}\left(\mathfrak{S}_{5}\right)^{0}$, and $\mathcal{L}_{\pi}\left(\mathfrak{S}_{6}\right)^{0}$. Therefore there are $(1+1+2+9)$-classes of subgroups in $\mathcal{L}_{\pi}\left(\mathfrak{S}_{6}\right)$.

AcKnowledgments. The second author was supported by JSPS KAKENHI Grant Number 25400006.

References

[1] D.J. Benson: Representations and Cohomology, II, second edition, Cambridge Studies in Advanced Mathematics 31, Cambridge Univ. Press, Cambridge, 1998.
[2] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson: Atlas of Finite Groups, Oxford Univ. Press, Eynsham, 1985.
[3] J.D. Dixon and B. Mortimer: Permutation Groups, Graduate Texts in Mathematics 163, Springer, New York, 1996.
[4] J.F. Humphreys: A Course in Group Theory, Oxford Science Publications, Oxford Univ. Press, New York, 1996.
[5] N. Iiyori and M. Sawabe: Representations of path algebras with applications to subgroup lattices and group characters, Tokyo J. Math. 37 (2014), 37-59.
[6] N. Iiyori and M. Sawabe: Simplical complexes associated to quivers arising from finite groups, Osaka J. Math. 52 (2015), 161-204.
[7] N. Iiyori and M. Sawabe: Homology of a certain associative algebra, accepted in Hokkaido Math. J.
[8] M.S. Lucido: On the partially ordered set of nilpotent subgroups of a finite group, Comm. Algebra 23 (1995), 1825-1836.
[9] S.D. Smith: Subgroup Complexes, Mathematical Surveys and Monographs 179, Amer. Math. Soc., Providence, RI, 2011.
[10] M. Suzuki: Group theory, I, Grundlehren der Mathematischen Wissenschaften 247, Springer, Berlin, 1982.
[11] J. Thévenaz and P.J. Webb: Homotopy equivalence of posets with a group action, J. Combin. Theory Ser. A 56 (1991), 173-181.

Nobuo Iiyori
Department of Mathematics
Faculty of Education
Yamaguchi University
Yamaguchi 753-8511
Japan
e-mail: iiyori@yamaguchi-u.ac.jp
Masato Sawabe
Department of Mathematics
Faculty of Education
Chiba University
Inage-ku Yayoi-cho 1-33, Chiba 263-8522
Japan
e-mail: sawabe@faculty.chiba-u.jp

[^0]: 2010 Mathematics Subject Classification. Primary 20E15; Secondary 20D15.

