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Abstract
We show that for a sufficiently simple surfaceS, if a right-angled Artin group

A(0) embeds into Mod(S) then0 embeds into the curve graphC(S) as an induced
subgraph. WhenS is sufficiently complicated, there exists an embeddingA(0) !
Mod(S) such that0 is not contained inC(S) as an induced subgraph.

1. Introduction

1.1. Statement of the main results. Let SD Sg,n be a connected orientable sur-
face of genusg and n punctures, and let Mod(S) denote its mapping class group. As
is standard, we will write

� (S) D max(3g� 3C n, 0)

for the complexityof S. It is clear that� (S) is the number of components of a max-
imal multicurve onS. A celebrated result of Birman, Lubotzky and McCarthy is the
following.

Theorem 1 ([1, Theorem A]). The torsion free rank of an abelian group in
Mod(S) is at most� (S).

In this article, we study a generalization of Theorem 1 for right-angled Artin sub-
groups of Mod(S). Let 0 be a finite simplicial graph with vertex setV(0) and edge set
E(0). We will write A(0) for the right-angled Artin groupon 0, which is defined by

A(0) D hV(0) j [u, v] D 1 if and only if {u, v} 2 E(0)i.

We will use C(S) to denote thecurve graphof S, which is the 1-skeleton of the
curve complexof S. The vertices ofC(S) are isotopy classes of essential, non-peripheral,
simple closed curves onS. Two vertices are adjacent if the corresponding isotopy classes
admit disjoint representatives. Let us denote a complete graph on n vertices asKn.
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Equipped with this language, we can rephrase Theorem 1 as follows:

If A(Kn) embeds into Mod(S), then Kn is an induced subgraph
of C(S).

Our main results are the following:

Theorem 2. Let S be a surface with� (S)< 3. If A(0) embeds intoMod(S), then
0 is an induced subgraph ofC(S).

Theorem 3. Let S be a surface with� (S) > 3. Then there exists a finite graph
0 such that A(0) embeds intoMod(S) but 0 is not an induced subgraph ofC(S).

Note that the converse of Theorem 1 is easily seen to be true. More generally, the
second author proved the following theorem:

Theorem 4 ([12], Theorem 1.1 and Proposition 7.16). If 0 is an induced subgraph
of C(S) then A(0) embeds intoMod(S).

Theorems 2 and 3 characterizes the surfaces for which the converse of Theorem 4
is true, except for the case� (S) D 3. In this latter case, the methods developed in this
paper are ineffective. There are exactly three surfaces with � (S) D 3, though there are
only two different cases to consider among them (see Section5).

QUESTION 1. Let S be a surface of complexity 3. Do there exist subgroups
A(0) � Mod(S) such that0 is not an induced subgraph ofC(S)?

A clique is a subset of the vertex set which spans a complete subgraph.A facet
of a triangulation of a manifold means a top-dimensional simplex. For a positive inte-
ger N, we will say that0 has N-thick starsif each vertexv of 0 is contained in two
cliques K1 � K2 on N vertices of0 whose intersection is exactlyv. Equivalently, the
link Lk(v) of v in 0 contains two disjoint copies of complete graphs onN�1 vertices.
For example, aproper (namely, no two facets share more than one faces) triangulation
of a compact surface with no triangular links has 3-thick stars. The following general-
ization is immediate.

Proposition 5. A proper triangulation of a compact(N�1)-manifold has N-thick
stars if and only if the link of each vertex has at least NC 1 facets.

Having N-thick stars forces the converse of Theorem 4 to be true.

Theorem 6. Suppose S is a surface with� (S) D N and0 is a finite graph with
N-thick stars. If A(0) embeds intoMod(S), then0 is an induced subgraph ofC(S).
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1.2. Notes and references. Throughout this article, agraph will always mean a
simplicial 1-complex with vertex setV and edge setE. Let X be a graph. A subgraph
3 of X is called aninduced subgraphif 3 is the subgraph ofX spanned by the ver-
tices V(3) � V(X). Thus, a pair of vertices in3 are adjacent if and only if they are
adjacent inX. We write3 � X if 3 is an induced subgraph ofX. If X is a simpli-
cial graph, theclique graph Xk of X is the graph whose vertices{vK } are nonempty
complete subgraphsK � X, and two vertices{vK1, vK2} of Xk are adjacent if and only
if the corresponding complete subgraphsK1 and K2 span a complete subgraph ofX.
The extension graph0e of a finite simplicial graph0 is the graph whose vertices are
given by{gvg�1

j g 2 A(0), v 2 V(0)}, and whose edges are given by pairs of vertices
which commute as elements ofA(0). The complement

�V(X)
2

�

n X of a simplicial graph
X is the graph with the same vertex set asX, but where a pair of vertices spans an
edge in

�V(X)
2

�

n X if and only if it does not span an edge inX. The join X � Y of
two graphsX and Y is the graph whose vertex set isV(X) [ V(Y), and where a pair
of vertices{v,w} is adjacent if and only if the vertices span an edge inX, an edge in
Y, or if one vertex lies inV(X) and the other lies inV(Y).

For background on mapping class groups, we refer the reader to [7]. We briefly
recall that every mapping class 1¤  2 Mod(S) is eitherfinite order, infinite order re-
ducible, or pseudo-Anosov, according to whether it has finite order in Mod(S), fixes the
homotopy class of a multicurve onS, or neither. This is called theNielsen–Thurston
classificationof surface diffeomorphisms.

The relationship between right-angled Artin groups and mapping class groups of
surfaces has been studied by many authors from various perspectives (see [5], [6], [4],
[12], [10] and the references therein, for instance). Our perspective stems from the
following theorem, which can be obtained by combining a result of the authors with a
result of the second author (see [12] and [9] or [10]):

Theorem 7 (See [11]). Let 0 be a finite graph and let S be a surface.
(1) Let i be an embedding of0 into C(S) as an induced subgraph. Then for all suf-
ficiently large N, the map

i
�,N W A(0)! Mod(S)

given by sendingv to the Nth power of a Dehn twist TNi (v) is injective.
(2) If A(0) embeds intoMod(S), then0 is an induced subgraph ofC(S)k.

Observe that the first part of Theorem 7 is a more precise version of Theorem 4.
As defined above, the graphC(S)k denotes the clique graph ofC(S). From a topological
perspective,C(S)k can be defined as the graph whose vertices are isotopy classesof
essential, non-peripheral multicurves onS, and where two vertices are adjacent if the
corresponding multicurves are component-wise parallel ordisjoint. Theorem 3 shows
that C(S)k in Theorem 7 cannot be replaced byC(S) for a general surface.
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In [10], in [9] and in [11], the authors develop an analogous theory of curve graphs
for right-angled Artin groups. In particular, a verbatim analogue of Theorem 7 holds
with Mod(S) replaced by a right-angled Artin groupA(3) and the curve graphC(S)
replaced by the extension graph3e of 3. For many classes of graphs, it is known that
A(0) embeds intoA(3) if and only if 0 is an induced subgraph of3e; for instance,
this statement holds when3 is triangle-free [9], or when3 is C4- and P3-free [2].
However Casals–Ruiz, Duncan and Kazachkov proved that thisis not always the case:

Theorem 8 ([2]). There exist finite graphs0 and3 such that A(0) embeds into
A(3) but 0 is not an induced subgraph of3e.

Thus, Theorem 3 can be viewed as an analogue of Theorem 8 for mapping class
groups. We note briefly that Theorem 8 does not imply Theorem 3, for even if a par-
ticular graph0 embeds inC(S)k, the graphC(S)k is vastly more complicated than0e

k.
However, our example in Section 3 gives another example ofA(3) embedded inA(0)
such that3 is not an induced subgraph of0e; see the remark following Lemma 14.

The concept ofN-thick stars used in Theorem 6 is related to the well-studied
graph-theoretic notion of aquasi-line (see [3], for instance). A graph is a quasi-line
if the star of each vertex is the union of two complete graphs.

2. Proof of Theorem 2

Let S be a surface with punctures. A mapping class� 2 Mod(S) is called amulti-
twist if � can be represented by a multiplication of powers of Dehn twists along dis-
joint pairwise-non-isotopic simple closed curves. We calla regular neighborhood of the
union of those simple closed curves as thesupport of �.

For two groupsG and H , we will write G � H if there is an embedding from
G into H . As defined above, we will write3 � 0 for two graphs3 and 0 if 3
is isomorphic to an induced subgraph of0. The following is a refinement of [10,
Lemma 2.3].

Lemma 9. Let X be a finite graph. If A(X) � Mod(S) then there exists an em-
bedding fW A(X)! Mod(S) satisfying the following:
(i) The map f maps each vertex of X to a multi-twist;
(ii) For two distinct vertices u andv of X, the support of f(u) is not contained in the
support of f(v).

Proof. Let f0 be an embedding ofA(X) into Mod(S). By raising the generators
to powers if necessary, we may assume that the image of each vertex v is written as
�

v

1�
v

2 � � � �
v

n
v

where each�vi is either a Dehn twist or a pseudo-Anosov on a connected
subsurface and�vi ’s have disjoint supports. Choose a minimal collection{ 1,: : : , m} �

Mod(S) such that for everyi and v, the mapping class�vi is a power of some j . By
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[12] (see also [4]), there existsN > 0 and a graphY with V(Y)D {v1,:::,vm} such that
the mapg0 W A(Y)! Mod(S) defined byg0(v j ) D  N

j is an embedding. Moreover, we
can find simple closed curves1, : : : ,m such thati � supp i and supp i \supp j D

¿ if and only if i \  j D ¿ for every i and j . By raising N further if necessary, we
have an embeddingg W A(Y) ! Mod(S) defined byv j 7! T N

 j
. We may assume that

f D g Æ h for someh W A(X) ! A(Y), by further raising the image of eachf (v) for
v 2 X to some power. Theng Æ h is an embedding fromA(X) to Mod(S) such that
each vertex maps to a multi-twist. Note that ifu and v are adjacent vertices inX then
the multi-curves corresponding tof (u) and f (v) also form a multi-curve.

Now among the embeddingsf W A(X)! Mod(S) that map each vertex to a multi-
twist, we choosef so that

X

w

# supp f (w)

is minimal. Here, # of a support of a multi-twist denotes the number of components. Sup-
pose that suppf (u)� suppf (v) for two distinct verticesu, v of X. Since [f (u), f (v)] D 1,
we have [u, v] D 1. If w 2 LkX(v), then each curve in suppf (w) is equal to or disjoint
from each curve in suppf (v). This implies that [w, u] D 1 for eachw 2 LkX(v) and
hence, LkX(v) � StX(u). For each non-zeroP, Q, we have a map� W A(X)! A(X) de-
fined� (w) D w for w ¤ v and� (v) D uP

v

Q. If Q D 1, such a map is called atransvec-
tion automorphism; see [14]. For a generalQ, the map� is a monomorphism, since it
is obtained from a transvection by pre-composing with the monomorphismv 7! v

Q and
w 7! w for w ¤ v. We claim that there existP, Q such that #suppf (uP

v

Q)< #suppf (v).
Once the claim is proved, we have that

P

w

# suppf Æ � (w) <
P

w

# suppf (w) and a con-
tradiction to the minimality.

The argument for the claim is similar to [10, Lemma 2.3], and we recall the details
for the convenience of the reader. Writef (u) D T Q

�

g1 and f (v) D T�P
�

g2 so thatg1,
g2 are multi-twists whose supports are disjoint from� and suppg1 � suppg2. Then
supp f (uP

v

Q) � suppg2 D supp f (v) n {�} and this proves the claim.

REMARK . In the above lemma, if suppf (v) is a maximal clique inC(S) then the
condition (ii) implies thatv is an isolated vertex.

DEFINITION 10. An embedding of a right-angled Artin group into a mapping
class group is calledstandard if conditions (i) and (ii) in Lemma 9 are satisfied.

The lowest complexity surfaces with nontrivial mapping class groups areS0,4 and
S1,1 (so that� (S) D 1). Both of these surfaces admit simple closed curves, but neither
admits a pair of disjoint isotopy classes of simple closed curves. Because of this fact,
most authors define edges inC(S) to lie between curves with minimal intersection (two
or one intersection point, respectively). This definition is not suitable for our purposes
and we will keep the standard definition of curve graphs, so that C(S) is an infinite
union of isolated vertices in both of these cases.
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(a) 00 (b) 01

Fig. 1. Two graphs00 and01.

Proof of Theorem 2. Suppose first that� (S) D 1. We have thatC(S) is discrete,
since there are no pairs of disjoint simple closed curves onS. The conclusion follows
from that Mod(S) is virtually free; see [7], Sections 2.2.4 and 2.2.5. Now let us assume
� (S) D 2, so thatSD S1,2 or SD S0,5. We note thatC(S) contains no triangles.

The conclusion of the theorem holds for0 if and only if it holds for each compo-
nent of0. This is an easy consequence of the fact thatC(S) has infinite diameter and
that a pseudo-Anosov mapping class onS exists. So, we may suppose that0 is con-
nected and contains at least one edge. By Lemma 9, we can further assume to have a
standard embeddingf W A(0)! Mod(S). Since0 has no isolated vertices andC(S) is
triangle-free, the remark following Lemma 9 implies that each vertex maps to a power
of a single Dehn twist. This gives a desired embedding0 ! C(S).

3. High complexity surfaces

The strategy for dealing with high complexity surfaces (surfaces S for which
� (S) > 3) is to build an example which works for surfaces with� (S) D 4 and then
bootstrapping to obtain examples in all higher complexities. In particular, we will
take the three surfaces with� (S) D 4 and build graphs00 and 01 such thatA(00) <
A(01) < Mod(S) but such that00 � C(S). We will then use00 and 01 to build cor-
responding graphs for surfaces of complexity greater than four.

The source of our examples in this section will be the graphs00 and01 shown in
Fig. 1. Observe that the graph00 is obtained from the graph01 by collapsinge and
f to a single vertexq and retaining all common adjacency relations. We will denote
by C4 the 4-cycle spanned by{a, b, c, d}.

3.1. An algebraic lemma. Let us consider the map� W A(00)! A(01) defined
by � W q 7! ef and which is the identity on the remaining vertices.

Lemma 11. The map� W A(00)! A(01) is injective.

Proof. We first claim that the restriction W hC4, q, hi ! hC4, ef, hi of � is an
isomorphism. Here, we meanhC4, q, hi D ha, b, c, d, q, hi � A(00) and hC4, ef, hi D
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(a) S0,7 (b) S1,4 (c) S2,1

Fig. 2. Complexity four surfaces.

ha,b,c,d,ef,hi � A(01). To see this, consider the projectionpW hC4,e, f,hi ! hC4,e,hi
defined byp( f ) D 1. The claim follows from thatp Æ  is an isomorphism.

Now supposew is a reduced word in ker� n{1}. Since is an isomorphism,g or
g�1 appears inw. From the assumption that�(w) D 1, the occurrences ofg or g�1 in
�(w) can be paired, so that each pair consists ofg and g�1 and thatg commutes with
the subword of�(w) between the pair. This is due to the solution to the word problem
in right-angled Artin groups; see [6, 8] for more details. There must exist a pair ofg
and g�1 in �(w) so that there does not exist any moreg or g�1 between the pair; such
a pair is called aninnermost{g, g�1}-pair in the cancellation diagram[6, 8]. In other
words, we can writew D w0g�1

w1g�1
w2 so thatw1 2 hV(00) n {g}i D hC4, q, hi and

�(w1) 2 Z(g) \ hV(01) n {g}i D ha, b, c, ei.
It follows that

�(w1) 2 �hC4, q, hi \ ha, b, c, ei D hC4, ef, hi \ (ha, ci � hbi � hei).

Since �(w1) 2 ha, b, c, ei, the exponent sum off in �(w1) is zero. From�(w1) 2
hC4, ef, hi, it follows that the exponent sum ofe in �(w1) is also zero. Sincehei is a
direct factor ofha, b, c, ei, we see�(w1) 2 ha, b, ci. Combined with the claim in the
first paragraph, we have

w1 2 �
�1
ha, b, ci \ hC4, q, hi D  �1

ha, b, ci D ha, b, ci.

This contradicts the fact thatw is reduced.

3.2. The case� (S) D 4. Let S be a connected surface with complexity four.
This meansS is one of S0,7, S1,4 and S2,1.

Lemma 12. The graph01 embeds intoC(S) as an induced subgraph.

Proof. The corresponding surfaces are shown in Fig. 2. In (a)and (c), the curves
for the verticesa, c, e and h are given by the mirror images of those forb, d, f
and g, respectively. One can verify that the curves with the shownconfiguration have
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the minimal intersections by observing that the intersection numbers are either 0, 1
or 2.

Now suppose{a, b, c, d} are simple closed curves onS (here we still have� (S) D
4) which form a four-cycle inC(S) with this cyclic order. LetS1 be a closed regular
neighborhood of the curvesa andc along with disks glued to null-homotopic boundary
components. Similarly we defineS2 for b andd so thatS1 \ S2 D ¿. Define S0 as the
closure ofSn (S1[S2). By isotopically enlargingS1 andS2 if necessary, we may assume
that wheneverA is an annulus component ofS0 then both components of�A intersect
S1 [ S2 (i.e. no component ofS0 is a punctured disk). Note that� (S1), � (S2) � 1, since
they both contain a pair of non-isotopic simple closed curves. SinceS is connected and
at least one component ofS0 intersects each ofS1 and S2, we have thatS0 has at least
two boundary components.

Lemma 13. The triple (S0,S1,S2) satisfies exactly one of the following conditions,
possibly after switching the roles of S1 and S2.
(i) S1 2 {S1,2, S0,5}, S2 2 {S1,1, S0,4}, S0 � S0,2, and S0 intersects both S1 and S2.
(ii) S1, S2 2 {S0,4, S1,1}, S0 � S0,3, and S0 intersects each of S1 and S2 at only one
boundary component.
(iii) S1, S2 2 {S0,4}, S0 � S0,2

`

S0,2, and each component of S0 intersects both S1
and S2.
(iv) (S1, S2) 2 {(S0,4, S0,4), (S0,4, S1,1)}, S0 approx S0,2

`

S0,2, and one component of S0

intersects each of S1 and S2 at only one boundary component, while the other compo-
nent of S0 intersects S1 at two boundary components.
(v) (S1, S2) 2 {(S0,4, S0,4), (S0,4, S1,1)} and S0 � S0,2

`

S0,3 such that the S0,2 component
intersects both S1 and S2 and the S0,3 component is disjoint from S2, and moreover,
S0,3\ S1 � S1.

Proof. Let � be the number of free isotopy classes of boundary componentsof
S0 that are contained inS1 [ S2. We have� > 0 sinceS is connected andS1 \ S2 D

¿. Then � (S) D � (S1) C � (S2) C � (S0) C �; here, � (S0) is defined as the sum of the
complexities of the components ofS0 [1]. It follows that 2� � (S1)C � (S2) � 3.

Let us first assume� (S1)C � (S2) D 3. From � (S0)C � D 1, we see thatS0 is an
annulus joiningS1 and S2. Case (i) is immediate.

Now we assume� (S1) D � (S2) D 1. If � D 1, then S0 is forced to be an annulus
and we have a contradiction of the fact that� (S0)C � D 2. So we have� (S0) D 0 and
� D 2. If S0 is connected, then� D 2 implies thatS0 cannot be an annulus, and hence,
Case (ii) follows. So we may assumeS0 is disconnected.

SupposeS0 � S0,2
`

S0,2. If each component ofS0 intersects both ofS1 and S2,
then eachSi has at least two boundary components fori D 1, 2. In particular,Si ¤ S1,1

and Case (iii) follows. Without loss of generality, let us assume that one component of
S0 intersects onlyS1. Then S1 ¤ S1,1 and we have Case (iv).
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Let us finally assumeS0 � S0,2
`

S0,3. This is the only remaining case, for� D 2.
The subsurfaceS0,3 can contribute only one to�. In particular,S0,3 is glued to say,S1

but not S2. The annulus component ofS0 joins S1 and S2 and therefore,S1 ¤ S1,1 and
Case (v) follows.

The following special case of Theorem 3 will be central to ourdiscussion of sur-
faces with� (S) � 4:

Lemma 14. Let S be a surface with� (S) D 4. There exists an embedding from
A(00) into Mod(S), but 00 does not embed intoC(S) as an induced subgraph.

Proof. The first half of the conclusion follows from Lemmas 11and 12, com-
bined with Theorem 7 (1). For the second half, let us assume00 � C(S) and regard
the verticesa, b, c, : : : as simple closed curves onS. From C4 � 00, we have one
of the five cases in Lemma 13. From the adjacency relations in00, we observe that
q \ g, q \ h, g \ S2, h \ S1 and g \ h are all non-empty, and also thatq � S0 and
g\ S1 D h\ S2 D ¿.

In Case (i), the annulusS0 connectsS1 and S2. This implies thatg � S2, h � S1

and so,g\ h D ¿. This is a contradiction. In Case (iii) and (iv), we similarly obtain
a contradiction fromg\ h D ¿.

In Case (ii), the curveq must be boundary parallel inS0. Hence, it must be either
S0 \ S1 or S0 \ S2. By symmetry, we may assumeq D S0 \ S1. Then q separatesS1

from S, and so,g\q � g\ S0 D ¿. This is a contradiction. The proof for Case (v) is
similar and goes as follows. The subsurfaceS1 separatesS2 and S0,3� S0. This forces
g � S2, so thatg\ q � g\ S0 D ¿.

REMARK . Since01 � C(S), we have0e
1 � C(S) by [10]. Hence we have another

example of graphs00 � 0
e
1 but A(00) � A(01); see [9, 2].

3.3. Surfaces with complexity larger than four. For a graphX, let us define
�(X) to be the minimum of� (S) among connected surfacesS satisfying X � C(S).
Note that �(X) is at least the size of a maximal clique inX. Lemma 14 implies
�(00) > 4, and we see from Fig. 3 that�(00) D 5.

A graph is anti-connectedif its complement graph
�V(X)

2

�

n X is connected. Note
that the graphs00 and01 are both anti-connected.

Lemma 15. If X is a finite anti-connected graph and n� 0, then �(X � Kn) �
�(X)C n.

Proof. Choose a surfaceS such that� (S)D �(X�Kn) and X�Kn � C(S). Let N
denote a regular neighborhood of curves inKn. Since the graphX is anti-connected,
the curves inV(X) must fill a connected subsurface ofS. Indeed, otherwise there
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Fig. 3. Realizing00 in C(S2,2). The curvesa, c, h are the mirror
images ofd, b, g.

would be a nontrivial partitionV(X) D J1[ J2, where every vertex ofJ1 is adjacent to
every vertex ofJ2, which violates the assumption thatX is anti-connected. It follows
that the curves inV(X) are contained in a componentS1 of Sn N. Since X � C(S1),
we have� (S) D � (Sn N)C n � � (S1)C n � �(X)C n.

Put 3n D 00 � Kn�4 for n � 4. Theorem 3 is an immediate consequence of the
following.

Proposition 16. If S is a surface with� (S)D n, then A(3n) embeds intoMod(S)
but 3n is not an induced subgraph ofC(S).

Proof. Choose a multicurveX on S with n � 4 components such thatSn X has
a connected componentS0 of complexity at least four. We have thatC(S0) contains a
copy of 01, so that A(01) � Zn�4 embeds in Mod(S). It follows that A(00) � Zn�4

�

A(3n) embeds in Mod(S). On the other hand, Lemma 15 implies that�(3n) � �(00)C
n� 4> n.

4. Proof of Theorem 6

In this section, we give a proof of Theorem 6. For a multi-curve A on a surface
S, we denote byhAi the subgroup of Mod(S) generated by the Dehn twist about the
curves in A.

Proof of Theorem 6. By Lemma 9, there exists a standard embedding �W A(0)!
Mod(S). Let v be an arbitrary vertex of0. Write K and L for two disjoint cliques
of 0 such thatK

`

{v} and L
`

{v} are cliques onN vertices. The support of�hK i
is a multi-curve, sayA. Similarly we write B D supp�hLi and C D supp�hvi. Since
� (S)D N, the multi-curvesA[C and B[C are maximal. Note thathCi is a subgroup
of hA [ Ci \ hB [ Ci. In the diagram below, we see that�hvi is of finite-index in
hCi � ZjCj and hence,jCj D 1. It follows that the support of�hvi consists of exactly
one curve onS. Thus, the map0 ! C(S) given by sending a vertexv to the unique
curve in the support of�hvi is a well-defined map of graphs. This map realizes0 as
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an induced subgraph ofC(S), since� is an injective map of groups and must therefore
send nonadjacent vertices to Dehn twists which do not commute in Mod(S).

�(A(0)) � Mod(S)

hA[ Ci � ZN
hB [ Ci � ZN

�hK , vi � ZN
hCi �hL , vi � ZN

�hK , vi \ �hL , vi D �hvi � Z
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5. Remarks on intermediate complexity surfaces

There are only three surfaces of complexity three:S2,0, S1,3 and S0,6. From the
perspective of Theorem 3, these three surfaces collapse into at most two cases:

Lemma 17. Either conclusion ofTheorem 2or 3 holds for S� S0,6 if and only
if it holds for S� S2,0.

Proof. It is well-known that Mod(S2,0) and Mod(S0,6) are commensurable (see [7],
Theorem 9.2, for instance). It follows thatA(0) < Mod(S2,0) if and only if A(0) <
Mod(S0,6). It is also well-known (see [13], for instance) that the curve complexesC(S2,0)
andC(S0,6) are isomorphic (in fact, the fact that the mapping class groups are commen-
surable implies that the curve graphs are isomorphic; see [11], Lemma 3 and Propos-
ition 4). In particular, the two curve graphs have the same finite subgraphs. The lemma
follows immediately.
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