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Abstract

In this paper we show as main results two structure theordrascompact homo-
geneous locally conformally Kahler (or shortly I.c.K.) nifatd, a holomorphic struc-
ture theorem asserting that it has a structure of holomorphincipal fiber bundle
over a flag manifold with fiber a 1-dimensional complex toraisgd a metric structure
theorem asserting that it is necessarily of Vaisman type.al#le discuss and deter-
mine |.c.K. reductive Lie groups and compact locally homumus I.c.K. manifolds
of reductive Lie groups.

Introduction

A locally conformally Kahler structurdor shortly I.c.K. structur@ on a differen-
tiable manifold M is a Hermitian structurdh on M with its associated fundamental
form Q satisfyingdQ = 60 A @ for some closed 1-forn® (which is so called Lee
form). A differentiable manifoldM is called alocally conformal Kéhler manifoldor
shortly I.c.K. manifold if M admits an |.c.K. structure. Note that l.c.K. structueeis
globally conformally Kahler (or Ké&hler) if and only i# is exact (or O respectively);
and a compact l.c.K. manifold of non-Kahler type (i.e. theslferm is neither O nor
exact) never admits a Kéhler structure (compatible with dbmplex structure).

There have been recently extensive studies on l.c.K. madsifgcf. [18], [5], [12],
[2], [7]). In this paper we are concerned with I.c.K. struetsi on homogeneous and
locally homogeneous spaces of Lie groups. There exist maayngles of compact
non-Kahler I.c.K. manifolds which are homogeneous or llgchbmogeneous spaces of
certain Lie groups, such as Hopf surfaces, Inoue surfacedaika surfaces, or some
class of elliptic surfaces (cf. [2], [8]). Their l.c.K. stiures arehomogeneousr lo-
cally homogeneou#n the sense we will explicitly define in this paper (Definits 1
or 2 respectively). Note that homogeneous I.c.K. strusture Lie groups are nothing
but left-invariant I.c.K. structures, which can be cons@dkas I.c.K. structures on their
Lie algebras.

In this paper we show as main results two structure theordnascompact homo-
geneous |.c.K. manifold: a holomorphic structure theoressedting that it is a holo-
morphic principal fiber bundle over a flag manifold with fibef-alimensional complex
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torus (Theorem 1), and a metric structure theorem assetttetgit is of Vaisman typge

that is, the Lee form is parallel with respect to the Hermitiaetric (Theorem 2). It
should be noted that the same structure theorem was provedaigynan ([17]) for

compact homogeneous I.c.K. manifolds of Vaisman type. Asnmgple application of

the theorem, we can show that only compact homogeneous htaifolds of complex
dimension 2 are Hopf surfaces of homogeneous type (Theojernd that there exist
no compact homogeneous complex Il.c.K. manifolds; in paldgic no complex paral-
lelizable manifolds admit their compatible I.c.K. strugs (Corollary 4).

We will take the following key strategies to prove the maiedtems. A compact
homogeneous I.c.K. manifol¥ is expressed aM = G/H, whereG is a compact Lie
group andH is a closed subgroup db. Since the Lie algebrg of G is a reductive,
g can be written ag = t+s, wheret is the center ofy ands = [g, g] is a semi-simple
ideal of g. Our first observation is (1 must satisfies ¥ dimt < 2. As the second ob-
servation, applying a result of Hochschild and Serre, (2)care express an l.c.K. form
Q asQ = -0 Ay + dy, whered is the Lee form and) is a 1-form. Leté € g be
the Lee field (the associated vector field @owith respect toh). We puté =t + s
(t e t, ses). We define the vector fielg = J& (Reeb field) for the complex structure
J, and the Reeb fornp (the associated 1-form tg with respect toh). We will see
as the third observation (3) under the conditi@nis Jt-invariant, we have) = ¢ and
g=1p+¢ wherep = (t,n) = (t, It) = (&, n), and & = ker® N kerg. In particular
we can expresf2 = —0 A ¢ + d¢ with ¢ € A%t*. As the fourth observation, since
the closureK of the 1l-parameter subgroup & generated byJt is compact, (4) we
can use the averaging method to makeon M invariant by AdK): Q = fK Ad(x)*Q
while preserving the complex structude

Our fifth observation is (5) we can consider a compact homeges |.c.K. mani-
fold M up to holomorphic isometry as! = G/H with a homogeneous I.c.K. structure
(2, J), satisfyingg = t+s (dimt = 1); and up to biholomorphism, as such withJ&
invariant l.c.K. formQ. In particular we can expressl = S' x;- S/Ho, whereSis a
simply connected semi-simple Lie groubp is the connected component bf and T’
is a finite abelian group. These observations lead to Thedres for the proof of
Theorem 2, we have the sixth observation (6) the Lee féramd the Reeb fieldy are
stable under the averaging B¢. In order to show it we need the seventh observation
(7) we have a compact subgro® x Ns(Ho)/Ho imbedded inG/Hy = S' x S/Hp as
an |.c.K. manifold. We also need a classification of |.c.Kmpact Lie algebras. We
will see as the eighth observation (8) a reductive Lie algedmimits an l.c.K. struc-
ture if and only if dimt = 1 and ranks = 1. In particular a compact Lie algebra
admits a homogeneous |.c.K. structure if and only if itu{®); and any homogeneous
l.c.K. structure on a compact Lie group is of Vaisman typee@ilem 4).
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1. Preliminaries

In this section we review some terminologies and basic tesulthe field of homo-
geneous spaces and |.c.K. geometry, relevant to our arganmenhomogeneous and
locally homogeneous I.c.K. structures in this paper.

DEFINITION 1. A homogeneous locally conformally Kahler (or shortipmo-
geneous l.c.K. manifold M is a homogeneous Hermitian manifold with its homo-
geneous Hermitian structute defining a locally conformally K&hler structute on M.

DEerFINITION 2. If a simply connected homogeneous I.c.K. manifdld= G/H,
whereG is a connected Lie group arid a closed subgroup d&, admits a free action
of a discrete subgroup of G on the left, then we call a double coset spates/H
a locally homogeneous I.c.Knanifold.

A homogeneous manifold! can be written as$s/H, whereG is a connected Lie
group with closed Lie subgroupl. If we take the universal covering Lie gro@ of
G with the projectionp: G — G and the pull-backd = p~X(H) of H, then we have
the universal coverindl = G/H, of M, whereHy is the connected component of the
identity of H; andT = I:|/H0 is the fundamental group dfl acting on the right. In
caseG is compact,é is of the formR* x S (k > 0), whereS is a simply connected
compact semi-simple Lie group. It is also known tl@thas a finite normal covering
G of the form TK x S with the projectionp: G — G; and a compact homogeneous
manifold M = G/H can be expressed &/H = TX x S/Ho, where Hy is the con-
nected component of the identity f = p~'H andI" = H/Hjy is a finite group acting
on M = Tk x S/Hy on the right.

In caseM is a homogeneous I.c.K. manifolt] is also a homogeneous I.c.K. mani-
fold; and since the Lee formd = p~19 is exact the fundamental for2 = p~1Q is
globally conformal to a Kéahler structure. The Lie groupé acts holomorphically
and homothetically onNl, ») on the left; and the fundamental grotpacts likewise
on (M, ») on the right. Conversely, a Kahler structuzeon M = G/Hg with holo-
morphic and homothetic action @ on the left andl’ on the right defines a homo-
geneous l.c.K. structur on M = G/H, whereH = Hg x I" with ' N Hy = {0} and
I' € Ng(Ho). If T is a discrete subgroup b acting properly discontinuously and
freely on G/Hy on the left, then we can define a locally homogeneous |.cicstre
on I'\G/Ho. In particular, for a simply connected Lie group with a left invariant
l.c.K. structure2 and a discrete subgroup of G, @ induces a locally homogeneous
l.c.K. structureQ on I'\G.

Let M = G/H be a homogeneous space of a connected Lie gaupith closed
subgroupH. Then the tangent space &1 is given as aG-bundle G xy g/h over
M = G/H with fiber g/h, where the action oH on the fiber is given by Ad() (x €
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H). A vector field onM is a section of this bundle; and g:form on M is a section
of G-bundle G xy AP(g/h)*, where the action oH on the fiber is given by Ad)*
(x € H). An invariant vector field (respectivelp-form), the one which is invariant by
the left action ofG, is canonically identified with an element of/§)" (respectively
(/\"(g/h)*)H), which is the set of elements of/h (respectivelyA\P(g/h)*) invariant
by the adjoint action oH. A complex structureJ on M is likewise considered as an
elementJ of Aut(g/h) such thatJ? = —1 and Adk)J = J Ad(x) (x € H). Note that
we may also consider an invariaptform as an element of\P g* vanishing onh and
invariant by the action AdQ* (x € H).

We recall thatg is decomposablavith respect toH if there is a direct sum de-
composition ofg as

g=m+Dh,

for a subspacen of g and Adi)(m) C m for any x € H. This is the case, for instance,
when H is a reductive Lie group. In casg is decomposable, the tangent space of
M = G/H is given by theG-bundle G x; m over M = G/H, identifying g/b with m.
An invariant vector field (respectivelp-form) on M is identified with an element of
mH (respectively(/\p(m)*)H), which is the set of elements ef (respectively/\ "(m)*)
invariant by the adjoint action oH. A complex structureJ on M can be considered
as an elemend of Aut(m) such thatJ? = —1 onm and Adk)J = JAd(x) (x € H). It
is also convenient to consider a complex structdren M as an elemend of End(g)
such thatJ? = —1 onm, Jh = 0 and Adk)J = J Ad(x) (x € H) (cf. [11]).

An invariant vector fieldX € m" generates a global 1-parameter group of diffeo-
morphisms onM = G/H given by the right action of expX:

¢: RxG/H — G/H, ¢(t, gH) = g(expX)H.

Since the closur& of the 1-parameter subgroup &f generated byX is compact, we
can use the averaging method to make differential fowmsn M invariant by AdK):

/K Ad(X)* o.

For an l.c.K. formQ2 with its Lee from6, we can averag® to make a AdK)-invariant
l.c.K. form € under the condition that the action is compatible with thenplex struc-
ture J. Note that we have the Lee fors identical with ¢, but since the metrid is
in general different fromh its associated Lee fielé is in general different fromng.

For ag-module M, we can definep-cochains as the-linear alternating functions
on gP, which areg-modules defined by

(r F)(Xe, Xz, -+ ., Xp) = ¥ F (X1, X2, . - ., Xp)

P
_Z f(Xll ceen X1, [y! Xi]v Xit1y « -« Xp)a
i=1
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wherey € g and f is a p-cochain (cf. [10]). The coboundary operator is defined by

p
)Xo, X1, -, Xp) = D (=1 % F(Xor -+ Ky -+, Xp)
i=0

+ Y LA (X X Xou - K R Xp):
j<k

We are interested in the case wheg-aodule is defined by the representation of
g on R, assigningX € g to —6(X) for the Lee formp on an Il.c.K. Lie algebrg. The
corresponding coboundary operator is given by

dh: w— —0Aw+ dw,

and its cohomology groupi(,p(g, R) is called thep-th twisted cohomology groupith
respect to the Lee forrd. The condition of I.c.K. structur&2 on g is expressed by
dy2 = 0. We know ([10]) that for a reductive Lie algebga all of the cohomology
groups ng(g, R) (p = 0) vanish; and in particular we ha¥e = —6 Ay +dvy for some
1-form .

2. A holomorphic structure theorem of compact homogeneousd.K. manifolds

In this section we prove a structure theorem of compact hemegus |.c.K. mani-
folds, which asserts that such a compact complex manifoldhislomorphic to a holo-
morphic principal bundle over a flag manifold with fiber a Iréinsional complex torus.
This result may be compared with the well-known theorem (dudatsushima [13]) that
a compact homogeneous Ké&hler manifold is biholomorphic K#hlerian product of a
complex torus and a flag manifold.

Let M be a compact homogeneous |.c.K. manifold of dimensian{22), m> 1,
with its associated fundamental for@@ and Lee formd, satisfyingd2 =0 A Q. M
can be written asG/H, where G is a connected holomorphic isometry group of the
Hermitian manifold M, h) and H a compact subgroup @& which contains no normal
Lie subgroups ofG. Since G is a closed subgroup of the isometry group ™,(h),
it is a compact Lie group; in particuld®d is reductive that is, the Lie algebrg of G
can be written as

g=t+s

wheret is the center ofy ands is a semi-simple Lie algebra. Létbe the Lie algebra
of H. Theng also admits a decomposition:

g=m+h

satisfying Adk)(m) C m (x € H) for a subspacen of g. Note that we have alsonh =
0. Since the Lee forn® is invariant, its associated vector fiefd(which is calledLee
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field) with respect to the metrit is also invariant; and thu§ may be taken as an
element ofm invariant by Adk) for any x € H.

Any invariant form onM can be considered as an element/of g* vanishing on
h and invariant by the action Agf* (x € H). In particular, we considef2, ¢ as the
elements of/\ g* satisfying these conditions and

dQ =6 A Q.

From now on we assumd is of non-Kahler type; and thu8 is a non-zero,
closed but not exact form og. Note that sinces = [g, g] and 6 is a non-zero closed
form, ([ X,Y]) = —do(X,Y) =0 for all X,Y € g and thusp vanishes ors. In particular
we must have dimh> 1 andé e t*.

The Lee fields € m may be expressed gs=t+s,t et (t #0), s s, where¢ is
normalized, satisfyindi(&, £&) = 1 and thusf(§) = 6(t) = 1. We define the Reeb field
n € m asn = J& with its associated 1-forngp satisfying¢(n) = 1. We can express
g as

g=(&,n+¢

where (&, n) is the 2-dimensional subspace gfgenerated by and n over R, and
t = ker6 Nker¢ with € D h. Note thath(¢, n) = Q(n, n) = 0 and (¢, ) is orthogonal
to ¢ with respect toh.

It is known (due to Hochschild and Serre [10]) that there tex& 1-formy € g*
such that

Q=—0Ay+dy,

where ¢ defines an invariant 1-form oM: ¢ vanishes orj since we havey(h) =
Q(h,t) = 0; andy is Ad(x)-invariant forx € H since we haver([h,Y]) = —dy(h,Y) =
—Q(b, Y) = 0. We sety. = ¢ — cf for ¢ € R. Note that we havely. = dy; and

Q= —0 A Y+ die.
Lemma 1. There existsr € g and ce R such that
V(o) =1, Ye(t) =0, 0(t) =1, 6(0)=0,
and dy¢(o,Y) =0 for all Y € g.

Proof. As already seen we hagét) = 1. Sincef andy are linearly independent,
we can take an element such thaty(c’) = 1 andf(c’) = 0. If ¥ (t) # 0O, then take
Ye = ¢ — ¢ for ¢ = Y (t) satisfyingy(t) = 0. Then we have/.(c’) = 1, 6(t) = 1,
Ye(t) = 0(c’) = 0. Note that sincay.(t,o") = —v¢([t,o’]) = 0, we haveQ(c’,t) = 1;
in particulara’ ¢ b.
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Recall that for a skew-symmetric bilinear ford on a vector spac¥,
Rad® = {ue V | ®(u,v) =0 for anyv € V}.

Let p’ = (t,0’) andq = Ker6 NKery = Kerd N Kery with g D h. Then we have an
orthogonal direct sum with respect fo:

g=p"+q, p'Ng={0}.

We first note that2|q = dv/. is non-degenerate on(mod b). In fact, suppose that
there exists a non-zero element q such thatdy(q, v) = 0. Then forv = at + v
with a = —dy(o”/, v), we have

Qo’, V) = —(0 A Yo', V) + dye(o’, V) = a+ dye(o’, v) = 0.

Since we also hav&(t, v') = 0 and (g, v") = 0, we haveQ2(g, v') = 0, contradicting
the non-degeneracy a2 on g (mod b).

Let x be a 1-form defined on by x(X) = dy(o’, X). Sincedy is non-degenerate
on g, there existsr € g such thaty (X) = dy(r, X); and thusdy.(oc’ — t, X) = 0 for
all X €q. Lete =0’ — 1 andp = (t, o), then we have an orthogonal direct sum with
respect toQ:

g=p+aq pnqg={0.

and (o) =1, 6(c) =0 (o ¢ b). Sincedy(o,t) = —¥(o, t]) =0, we have
Raddy. =p (modbh).

This completes the proof of Lemma 1. ]

From now on we writey. simply as.

Corollary 1. We have § = o (mod b); and thusy = o (mod b).

Proof. By the definition, the Lee field satisfies thah(¢, X) = 6(X); and thus
Q(J&, X) = 6(X). By Lemma 1 we havgy = p + q wherep = (t, o) andq = Kero N
Ker . Hence we have2(J&, X) =0 for all X € q, Q(J&,t) =1 andQ(J&, o) = 0.
On the other hand, since we hate= ¢ A0 + dy, we getQ(o, X) = ¥ (0)0(X) —
Y (X)0(o) + dyr(o, X) = 0 for all X € q, and (o, t) = 1. Hence we havelé = o
(mod h); and thusy = o (mod b), wheren = J¢ is the Reeb field by definition. [J

Corollary 2. We havel,Q = 0.
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Proof. We writeQ = —6 Ay +dy. Since we have)(c) =1 anddy (o, X) =0
for all X € g, we getL,v = di, ¥ + 1,dy¥ = 0. Since we havel, (0 A ¥) = (L,0) A
Y =0 ALy =(LO)AY and L,0 = di,0 + 1,d6 = 0, we getL, Q2 = 0. L]

Corollary 3. We havel <dimt<2,tC (t,o) +b.

Proof. We have seen in Lemma 1 théhfr is non-degenerate o (mod b). For
any X € t written asX =at+bo + Z (a,beR, Z € q) and anyY € g, we have
do(Z,Y) = Q(Z,Y) = Q(X,Y) = 0; and thusZ € . In particular, we have N q =
tNh = {0}. Since dimg=n—2, we must have ¥ dimt < 2. ]

Lemma 2. Suppose that the |.c.K. for@ is Jt-invariant. Therp as inLemma 1
is generated byt, Jt} or {&, o}:

p={(to)=(t It)= (£ 0).

Proof. Letq be the orthogonal complement @f, Jt) with respect to2. We show
first thatq = q = Ker6 N Kery; and thusp = (t, Jt). For X € q, we have

dQ(X, Jt, t) = 0(X)Q(Jt, t) = 6(X)h(t, t).
On the other hand, we have
dQ(X, Jt, t) = Q([Jt, X], t) + (X, [It, t]) =0,

due to the invariance of2 by Ad(expJt). Hence we haveX € kerf. For X € q, we
also have G= Q(X,t) = ¥(X); and thusX € kerys. Sinceq C q and dimg = dimq, we
must haveq = q. Note that since is J-invariantq is also the orthogonal complement
with respect toh.

We show that =t + bo for b € R; and thusp = (¢, o). We have

h(, X) = 0(X) = Q(o, X) =0
for X € q; and thusg € p. If we write £ = at + bo, thena =0(§) = 1. ]
Lemma 3. If Q is Jt-invariant we haveQ = —0 A ¢ + d¢, d¢ € /\2 e,

Proof. We have shown that is generated by{&, o}; and q is the orthogonal
complement ofp with respect to both2 and h. Since dy is non-degenerate on
(mod ), there existX;,Y; €q,i,j =1,2,...,k (k< m) which are linearly independent
anddy = > pi AT, wherep;, 1 are the dual forms corresponding ¥q, Y;. Since
o € Raddy, we have

QX, o) = —(6 A Y)(X, o) = —0(X)
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for any X € g. Hence we have
QJo,0) =—-0(Jo) = —h(&, Jo) = —Q(§,0) = 1.

Sinceh(&, &) = Q(J&, &) = 1, we can see)é = o. In fact, we can setlé =0 + Z
andJo =—-£4+Z for Ze (£, X, Yj), Z' € (o, X, Yj), i, j =1,2,...,k; and thus
we haveZ’ = —JZ. Then we have

Q(E, JE) = Qo + Z, Jo + I2) = Q(o, Jo) + (Z, I 2),
Qo, Jo) = Q(-£ + Z/, -6 + 3Z) = Q(&, I§) + Q(Z, I Z),

from which we geth(Z, Z) + h(Z’, Z') = 0; and thusZ = Z’ = 0. Sincen = J&
by definition we must have = n; and thusq = £ and ¢ = ¢. We can also see that
IXi=Y,i,j=1,2,...,k O

We have seen, under the assumption fhas Jt-invariant, thatt can be written as
& =t+bn. We havet = (&£,7n) (mod h) for the case dimh= 2. For the case dith= 1,
we haveg =t + s with s = (n) + ¢, andt is a generator of. Note that the complex
structureJ may be expressed with respect to a bdsis;} as Jt = bt + (1 + b?)n,
Jn=—t—Dbn;, andd =t*, ¢ = n* — bt* (t*, n* € g*).

Lemma 4. Under the condition that2 is Jt-invariant we can reduce the case
dimt = 2 to the casedimt = 1.

Proof. In case dint =2 we have by Corollary 3 that= (&£, n) (mod b), n ¢ t.
It follows thats = [g,g] = [ €], andg = (¢, 1) + 5. We will show thatp € s (mod §),
n ¢ h. Sinced(&) = 1 andd vanishes on(n) + s, we haveh C (n) +s, h ¢ s. Hence
we getn € s (mod b).

Let g’ be the subalgebra gf generated by ands, and G’ the Lie subgroup of
G corresponding t@’. Note thatg’ is a proper subalgebra @fandg/h = g'/b’ where
b = g N is a proper subalgebra df. Then since we have € s (mod ), G’ acts
on M transitively; andM can be written ass’/H’ with its isotropy subgrougH’ =
H N G'. Itis clear that the centef of g’ is generated by, and thus dint’ = 1. The
canonical injectionG’ — G induces a holomorphic isometry fro@’/H’ to G/H. [

Since Jt is an invariant vector field compatible witll, satisfying ad{t)J =
J ad(Jt), we can apply the averaging method to make an l.c.K. f@nmvariant by
Ad(expJt); in particular, we have

QI X1, V) +Q(X, [It, Y]) =0

for all X,Y € g, whereQ defines an l.c.K. structure oM compatible with the orig-
inal complex structurel. By Lemma 4 we can expredd = G'/H’ with ¢ =+t + 5
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(dimt = 1). SinceG’ is a subgroup ofG, G’ preserves the original I.c.K. structure
(2, J) on M as well as the averaged |.c.K. structuf, §) on M. Therefore, we have
the following key observation.

REMARK 1. We may consider a compact homogeneous |.c.K. manibldp to
holomorphic isometry aM = G/H with a homogeneous |.c.K. structur&,(J), sat-
isfying g =t+ s (dimt = 1); and up to biholomorphism, as such withJ&-invariant
l.c.K. form Q.

Proposition 1. A compact homogeneous l.c.K. manifold M admits a holomorphi
flow, which is a Lie group homomorphism fro@t to the holomorphic automorphism
group of M.

Proof. Let AutMM) be the holomorphic automorphism groupMf Then we know
that Aut(M) is a complex Lie group with its associated complex Lie afgelfM) consist-
ing of holomorphic vector fields oll. Let IsomM) be the (maximal connected) isometry
group ofM. Then we know that IsonM) is a compact real Lie group with its associated
Lie algebras(M) consisting of all Killing vector fields oM. Note thatG can be taken
as the intersection of Au() and IsomM) being a compact subgroup of Isokhj,

Since ¢ € (t, Jt) by Lemma 2, the Lee fiel¢ is an infinitesimal automorphism
on M; and thusé — +/—1J¢ is a holomorphic vector field oM. Hence the homo-
morphism¢ of Lie algebras mapping — +/—1J& to a(M) induces a homomorphism
¢ of complex Lie groups mapping to Aut(M). O

Theorem 1. A compact homogeneous l.c.K. manifold Mup to biholomorphism
isomorphic to a holomorphic principal fiber bundle over a flaganifold with fiber a
1-dimensional complex torusiT

To be more preciseM can be written as a homogeneous space forfHGwhere
G is a compact connected Lie group of holomorphic automarpkion M which is of
the form

G=8xS,

where S is a compact simply connected semi-simple Lie gimaluding the connected
component ki of H which is a closed subgroup of S/Ky is a compact simply con-
nected homogeneous Sasaki manifaldhich is a principal fiber bundle over a flag
manifold §Q with fiber S = Q/H, for some parabolic subgroup Q of S including
Ho. M = G/H can be expressed as

M = S' x S/Ho,

whereI" = H/Hg is a finite abelian group acting holomorphically on the fibq@= of
the fibration G’ Hy — G/Q on the right.
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Proof. We can assume thgt=t + s with dimt = 1; andn € s. Let q = (n) +
b, then since i, h] C b, q is a Lie subalgebra of; in fact we haveq = {X € s |
do(X, s) = 0}. Let S and Q be the corresponding Lie subgroup @f then Q is a
closed subgroup of since we haveQ = {x € S| Ad(x)*¢ = ¢}, which is clearly a
closed subset 0§; in particular, Hy is a normal subgroup o with Q/Hy = St, and
n generates arg' action onS. (cf. [4]). We have seen in Lemma 3 thdp defines
a homogeneous symplectic structure $Q compatible with the complex structurk
which is a Kahler structure o8/Q (due to Borel [3]); in particularQ is a parabolic
subgroup ofS.

We have seen that the abelian Lie subalge§ray) = (t, n) of g generates a 2-
dimensional torusTF§ action onM wheret is a generator of the center gfgenerating
an S' action onM; and ¢ — v/—11 generates a holomorphic 1-dimensional complex
torus action onM = G/H on the right. We haveM = S' x S/Hg, where S/Hy —
S/Q is a principal St-bundle over the flag manifol/Q; and M = S' x S/Hy —
S/Q is a holomorphic principal fiber bundle over the flag manif@dQ with fiber
Tcl. Since H ¢ Q and thus the holomorphic action &f = H/Hg is trivial on the
base spacé&/Q, it actually acts on the fibeF2, inducing a holomorphic principal fiber
bundle M — S/Q with fiber T2. O

Corollary 4. There exist no compact homogeneous complex |.c.K. mag)ifioid
particular, no complex parallelizable manifolds admit their compatibt.K. structures.

Proof. We know that only compact complex Lie groups are cemjpbri, which
can not act transitively on compact I.c.K. manifolds. O

3. A metric structure theorem of compact homogeneous I.c.Kmanifolds

DEFINITION 3. An l.c.K. manifold M, h) is of Vaisman typef the Lee field&
is parallel with respect to the Riemannian connectiontfor

For a homogeneous l.c.K. manifolel = G/H, the Lee field¢ is parallel with
respect to the Riemannian connection foif and only if

h(Vx§, Y) = h([X, £], Y) = h([&, Y], X) + h([Y, X], §) =0

for all X,Y € g. Since the Lee form is closedh([Y, X], &) = 0, this condition is
equivalent to

h(l&, X], Y) 4+ h(X, [£,Y]) =0

for all X, Y € g. And this is exactly the case when the Lee fi€lds Killing field. It
should be also noted that is Killing if and only if £;©2 = 0 and£:J = 0 for the
l.c.K. form © and its compatible complex structude
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Let o be an element of obtained in Lemma 1 for the original I.c.K. for2. We
have the following key lemma.

Lemma 5. We havel,J = 0.

Proof. We have seen (in Remark 1 and Theorem 1) Mat G/H can be ex-
pressed aM = S' xr S/Hp with the original l.c.K. formQ, whereT" = H/Ho is
a finite abelian group. We have a compact Lie grdslpx Ns(Ho)/Ho imbedded in
M = S! x S/Ho; and an I.c.K. structure$, J) on St x Ng(Ho)/Ho can be induced
from the l.c.K. structure ¢, J) on M by restriction, whereNs(Ho) denotes the nor-
malizer of Ho in S. In fact we can define an l.c.K. forr just as the restriction on
t+ng(h) of the l.c.K. form on g; and since we haveX)J = Jad(X) (X € b) with
Jh =0, we can also define a complex structuren t + ny(h)/h as the restriction of
J on t+ ny(h). Note that we have = (t) ando, Jt € ny(h).

For the casew;(h) 2 q, sincet + ng(h)/h is a compact l.c.K. Lie algebra it must
be u(2) = R@su(2) by Theorem 4; in particula® is Jt-invariant. Applying Lemma 2
we haveo € (t, Jt). SinceL;;J =0 andLyJ =0 for all Y € h, we getL,J = 0.

For the casew(h) = q, since we haver € (Jt) + b, it follows that £,J = 0. [

Corollary 5. We have[o, Jt] = 0; in particular Ad(exp Jt).o = o.

Proof. We have £, )t = £,(Jt) — JL,t =0 by Lemma 5. Sinced[, t] =0, it
follows that [, Jt] = 0. ]

Theorem 2. A compact homogeneous l.c.K. maniféld, h) is necessarily of Vais-
man type that is the Lee field¢ is a Killing field with respect to any homogeneous
l.c.K. metric h on M.

Proof. We first consider the I.c.K. for2,v on M averaged by the closuré of
the 1-parameter subgroup & generated byJt. We havey (o) = [ Ad(X)* ¥ (o) =
fK ¥(o) =1 by Lemma 1 and Corollary 5. Here we have normalized the velwdn
K to 1. We also havely/(o, Z) = 0 for any Z € g. Hence we have), 0 =6, o, t
satisfying the condition of Lemma 1; and thus by Lemma 2 weehav

p =t o) =(t Jt).

Now we show thatC:Q = 0, £ J = 0 for the original l.c.K. formQ. Since Jt €
(t,o) as shown above, we havg;;©2 = 0 by Corollary 2. As¢ = —Jo (mod h) from
Corollary 1 ando € (t, Jt), we must have € (t,Jt)+bh. Thus,L:Q2 =0 andLsJ =0.
Henceé& is a holomorphic Killing field with respect tb. ]
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REMARK 2. We may prove Theorem 2 separately for the caset@in? without
reducing to the case ditn= 1. In fact, for the case dim= 2 we havet = (t, o)
(mod b) by Corollary 3; and thusr € t modh. Hence we getl,J =0, [0, Jt] =0
without applying Lemma 5 and Corollary 5.

4. Compact homogeneous l.c.K. manifolds of complex dimermsi 2

We know (due to Vaisman [16], Gauduchon—Ornea [7] and Bel@lnthat there
is a class of Hopf surfaces which admit homogeneous |.ciictires. We can show,
applying the above theorem, that the only compact homogenéo.K. manifolds of
complex dimension 2 are Hopf surfaces of homogeneous type Theorem 3). We
first determine, recalling a result of Sasaki ([14]), all hmganeous complex structures
on G = St x SU(2), or equivalently all complex structures on the Lie algep= u(2).

Proposition 2. Let g = u(2) = R & su(2) be a reductive Lie algebra with basis
{T, X,Y, Z} of g, where T is a generator of the cent& of g, and

= AT R R

such that non-vanishing bracket multiplications are giu®n
(X, Y]=2, [Y,Z]1=X, [Z,X]=Y.
Theng admits a family of complex structures, 3 = ¢ + +/—1d defined by
BT —dX) =cX, J(cX)=—(T-dX), KY==+Z, KZ==FY.

Converselythe above family of complex structures exhaust all homageneomplex
structures ong.

Proof. Letgc = gl(2,C) = C + sl(2, C) be the complexification of, which has
a basisbc = {T, U, V, W}, where

1/-1 0 1/0 0 1/0 1
U_E(o 1)’ V_E(l o)' W_E(o o)
with the bracket multiplication defined by

[U,V]=V, [UW]=-W, [V,W]= %U.

Here we have

U=+v-1X, V= %(z —J=1Y), w= —%(z + V/—1Y),
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and their conjugations given by
T=T, U=-U, V=-W, W=-V.

We know that there is a one to one correspondence betweenleorsipuctures
J and complex subalgebrds such thatgc = h + b andh N h = {0}. Let a be the
subalgebra ofyc generated byl and b the subalgebra ofi- generated byJ, V, W,
then we have

gc=adb

wherea = (T)c, b = (U, V,W)c. Let w be the projectiont: gc — b andc¢ the image
of h by =, then we have

b=C+E|

and dimcnNc=1. We can set a basisof h asn ={P+ Q,R} (P€a,Q, Reb)
such thatQ e cNc andy = {Q, R} is a basis ofc:

h = (P + Q! R)Cv ¢ = (Qv R)C

Furthermore, we can assume tl@t- Q = 0 so thatQ is of the formaU + bV + bW
(@aeR,beC).

We first consider the case whelRe= gV +rW (q,r € C). Since we haveg, g¢c] =
b, there is somer € C such that Q, R] = «R. We see by simple calculation that if
b # 0, thenq = sb, r = sh for some non zero constaste C. But thenR = —(5/9)R,
contradicting to the fact that = {Q, R, R} consists a basis df:

b=(Q, R, R)c.

Hence we havdo = 0, andq # 0,r = 0 withae =a orq =0, r # 0 with « = —a.
Therefore we can take, as a basishofp = {T + 68U, V} or {T + 8U, W} with § =
c++v-1ldeC:

b= (T +6U, V)c
or
(T +8U, W)c.

It should be noted that the latter defines a conjugate comgtiexcture of the former,
which are not equivalent but define biholomorphic complexdtires on its associated
Lie group G.

In the case wherdR = pU +qV +rW, p,q,r € C with p # 0, we show that
there exists an automorphisqﬁwon gc Which mapsh, to h, preserving the conjugation,
where b, is a subalgebra ofic of the first type withp = 0. As in the first case, we
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must have Q, R] = nR for some non zero constante C. We may assume that = 1.
We see, by simple calculation thbfq, r # 0 and

@-ng=b, (@+nr=nh,

from which we get
a®+ b =n" (neR),

and
4an
2_ 1 2 —
9P = Ir* = oz
Then an automorphisrp on b defined by
1 b bl -
n 2n 2n

extends to the automorphisth on gc Which satisfies the required condition. ]

Proposition 3. Let G = S' x SU(2) (which is as is well known diffeomorphic
to St x S%). Then all homogeneous complex structures on G admit thefpedible
homogeneous I.c.K. structuredefining a primary Hopf surfaces, Svhich are compact
quotient spaces of the form MW,, where W= C?\{0} and I, is a cyclic group of
holomorphic automorphisms on W generated by a contractiolfzf, z,) — (Az1, A2)
with |A| # 0, L Furthermore all of those l.c.K. structures are of Vaisman type.

Proof. We consider the following canonical diffeomorphigg, which turns out
to be biholomorphic for each homogeneous complex struciyren g and A;:

®;: Rx SU2) > W
defined by

(t! 7, 22) - ()\.5321, )\.}SZZ),

where SU(2) is identified withS® = {(z1, z5) € C | |z|? + |z2|?> = 1} by the corres-

pondence:
1 -2
- <> (Zl, Zz),
L I

and As = V=14 Then we see tha®;s is a biholomorphic map. It is now clear that
®; induces a biholomorphism betwedh = S' x SU(2) with homogeneous complex
structureJ; and a primary Hopf surfac&,, = W/T;,.
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Lett, x,y, ze g* be the Maurer—Cartan forms correspondingTtoX, Y, Z € g in
Proposition 2. Then we have

dz=—-xAy, dx=-yAz dy=-zZAX,
and
Q=—-0An¢+dg,

whered =t, ¢ = x/c, defines an l.c.K. form ory for the complex structurels in

Proposition 2. Note that we have the Lee fiéld= T —dn/c, which is irregular for an
irrational d/c, while the Reeb field) = ¢X, which is always regular. The Lee field
is a Killing field, since we have

h([¢, U], V) +h(U, [§, V]) = —d(h([X, U], V) + h(U, [X, V])) =0

for all U, V € g. Hence G; 2, J;) is of Vaisman type.

A secondary Hopf surface with homogeneous Il.c.K. structane be obtained as a
quotient space of a primary Hopf surfaBg by some finite subgroup d@&. For instance,
U(2) is a quotient Lie group o6 by the central subgroug, = {(1, 1), (-1, —1)}. In
general we have a secondary Hopf surf@&&,, = S' xz, SU(2), whereZ, is a finite
cyclic subgroup ofG generated by:

_ (€1 0) i
c=n r=(% 7) =1,

with homogeneous I.c.K. structures induced from thoseéohy the averaging method
(cf. [8]). A (primary or secondary) Hopf surface defined aswabis called aHopf sur-
face of homogeneous typehich is a holomorphic principal bundle over a 1-dimension
projective spac€ P with fiber a 1-dimensional complex tordg. O

Theorem 3. Only compact homogeneous |.c.K. manifolds of complex diioen
2 are Hopf surfaces of homogeneous type to biholomorphism

Proof. It is sufficient to show that any compact homogeneau&.l manifold M
of complex dimension 2 is a Hopf surface of homogeneous typdedfined in Propos-
ition 3. As we have seen in Theorem 1, a compact homogeneols manifold M
of complex dimension 2 can be expressedSis<r S, where S is a compact homo-
geneous contact manifold of real dimension 3 which admitsopfHibration overC P*
with fiber St, andT is a finite abelian group acting on the fib§é of the fibration
M — CPL. These are exactly Hopf surfaces with homogeneous |.ciKictsires as
defined in Proposition 3. Conversely a Hopf surface of homegas type admits a
homogeneous I.c.K. structure as defined in Proposition 3. ]
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5. Homogeneous l.c.K. structures on reductive Lie groups

A homogeneous |.c.K. structure on a Lie gro@is nothing but a left invariant
l.c.K. structure onG. Since G can be expressed &/A, where A is a finite sub-
group of the center of3, G admits an |.c.K. structur® if and only if G admits an
l.c.K. structureQ, or equivalently the Lie algebra of G admits an l.c.K. structur&

in A g*.

Theorem 4. Let g be a reductive Lie algebra of dimensi@m; that is g = t+s,
wheret is an abelian ands a semi-simple Lie subalgebra @fwith s = [g, g]. Then
g admits an l.c.K. structure if and only dlimt = 1 and ranks = 1. In particular
a compact Lie group admits a homogeneous l.c.K. structusnd only if it is U(2),
St x SU(2) == S* x Sp(1), or St x SO3); and any homogeneous |.c.K. structure on a
compact Lie group is of Vaisman type.

Proof. Suppose that admits an I.c.K. structur&. Since we have)y = {0}, n e s
and thus dint = 1. If we apply the proof of Theorem 1 for the case= {0}, we see
thatq = (n) = {V € s | [n, V] = 0}; and thus rank = 1 (cf. [4]). We know all of
the reductive Lie algebrag =t + s with dimt =1 and ranks = 1: R & sl(2, R) and
u2) = R @ su(2) = R @ s0(3). We show that all homogeneous I.c.K. structures on
u(2) are the ones we obtained in Propositions8= —60 A ¢ + d¢; and they are all of
Vaisman type. In fact, any l.c.K. forr’ is of the form

Q =0 Ay +dy,

where we can se? =t andy = ax+ by+ cz (a, b, c € R); and thusdy = —(ay A
Z+ bzA X+ cxAYy). For the complex structurds in Proposition 2, we denote bj
the (4x 4)-matrix determined by/'(U, V) = Q'(JU, V) for U, V=T, X, Y, Z. By
the condition thatA is a positive-definite symmetric matrix, we can see by calomh
thatb = ¢ = 0; and thusA = als. HenceQ' is equal to the originaf2 up to constant
multiplication. ]

EXAMPLE 1. We can also consideM = S' x S* as a compact homogeneous
spaceG/H, whereG = S' x U(2) with its Lie algebraj = R @ u(2) andH = U(1)
with its Lie algebrah. Then, we have a decompositign= m + § for the subspacen
of g generated byS, T, Y, Z andh generated byW, where

35 ) w3 )

Since we haveS = X 4+ 2W, we can takem’ generated byT, X, Y, Z for m; and
homogeneous I.c.K. structures @y H are the same as those @ In other words
any homogeneous |.c.K. structures Gncan be extended as those Gy H.
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Furthermore, we can construct locally homogeneous |.c.Knifolds T\G/H for
some discrete subgroufsof G, whereG = RxU(2). For instance, lelpq (P,g #0)
be a discrete subgroup @:

ke Z}.

ek 0
Ta=1lk (% o )] €RXU@

Then Fp,q\G/H is biholomorphic to a Hopf surfac&, ¢ = W/T', 5,, whereT, ;, is
the cyclic group of automorphisms AW generated by

¢: (21, 22) = (M121, A222)

with Ay = € +V=1P ), = &+V=19 £ 0. In fact, if we take a homogeneous complex
structure J, on G/H induced from the diffeomorphisnd; : G/H — W defined by
(t, 21, 22) — (€21, €'25), ®, induces a biholomorphism betwedh, ;\G/H and S, .
Note that in casep = q, S, q is biholomorphic toS, with A =r + V-1q.

We have an example of a compact locally homogeneous |.c.Kifald of non-
compact reductive Lie group which is not of Vaisman type )([1]

EXAMPLE 2. There exists a homogeneous |.c.K. structuregog R & sl(2, R)
which is not of Vaisman type. Take a bagiX, Y, Z} for s((2, R) with bracket multi-
plication defined by

[Xy Y] = _Zl [Z! X] = Y’ [Z’ Y] = _X’

and W as a generator of the centBr of g, where we set

1/1 0 1/0 1 1/1 0 1/0 1
W= E(o 1)’ X= 5(1 o)’ V= E(o —1)' z= E(—l o)'
Let w, X, VY, z, be the Maurer—Cartan forms correspondinghto X, Y, Z respect-
ively; then we have

dw =0, dx=zAy, dy=xAz, dz=XxAY,

and a locally conformally Kahler structur@ = z A w + X A y compatible with an
integrable homogeneous complex structdren g defined by

JY=X, IX==-Y, IW=Z, JZ=-W.

This locally conformally Kéhler structur® is of Vaisman type.
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We can generaliz& to a locally conformally Kéhler structure of the form
Qy =y Aw+dy
compatible with the above complex structuleon g, wherey = ax + by + cz with
a,b,ceR.

We see that the symmetric bilinear forim, (U, V) = @, (JU, V) is represented,
with respect to the basi8W, X, Y, Z}, by the matrix

c -b a o

-b ¢ 0 a
A= a 0 c bl

0 a b c

which has the characteristic polynomids = {(t — ¢)?> — (a? + b?)}?, and has only
positive eigenvalues if and only i > 0, ¢ > a? + b?. The Lee form is# = w and
the Lee field is

£= %(cw+ bX — aY)

with D = ¢ — a2 — b2. We also have
c
hy(€,8) = —.
v(&, &) D

We see thahy ([£,U],V)+hy(U,[£,V]) Z0 unlessa=b=0. In fact forU =V = Z,

o (€. 20, 2) + Ny (2, 16, Z0) = 20, (£, 2], 2) = — = & + ),

which is 0 if and only ifa=b = 0. Conversely fora =b = 0, it is easy to check
that hy ([£, U], V) + h, (U, [§, V]) = 0. Therefore we have shown

For J and , defined aboveh, defines a(positive definitg l.c.K. metric if and
only if c> 0, ¢? > a> + b2 It is of Vaisman type if and only if s 0, a=b = 0. And
it is of non-Vaisman type if and only ifx€ 0, ¢ > a® + b? > 0.

Note that for the complex structutk on g and any lattice™ of G = Rx SL(2), we
get a complex surfac& = I'\G (a properly elliptic surface witlp; = 1); and S admits
locally homogeneous |.c.K. structur€y, of both Vaisman type and non-Vaisman type,
according to the above condition.

NoTE. There appeared recently a paper [6] on which the authoes ajiproof for
Theorem 2. However, it should be noted that its preprintigargarXiv:1312. 6266]
was uploaded shortly after the original preprint version thie current paper
[arXiv:1312. 2202] was uploaded to Mathematics arXiv in December 2013. While
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their paper is focusing only on the proof of Theorem 2 (andsthaturally shorter than
the proof of ours), the current paper discusses other tetagults and technical aspects
of the topics such as the holomorphic structure theoremdiime 1), the twisted co-
homology groups, the averaging methods of I.c.K. formsKl.structures on reductive
Lie algebras before and after Theorem 2. There also app@apager [9] for the detalil
discussion and a complete classification of I.c.K. strieguon four-dimensional com-
pact homogeneous and locally homogeneous manifolds.
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