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Abstract
In this paper we show as main results two structure theorems of a compact homo-

geneous locally conformally Kähler (or shortly l.c.K.) manifold, a holomorphic struc-
ture theorem asserting that it has a structure of holomorphic principal fiber bundle
over a flag manifold with fiber a 1-dimensional complex torus,and a metric structure
theorem asserting that it is necessarily of Vaisman type. Wealso discuss and deter-
mine l.c.K. reductive Lie groups and compact locally homogeneous l.c.K. manifolds
of reductive Lie groups.

Introduction

A locally conformally Kähler structure(or shortly l.c.K. structure) on a differen-
tiable manifold M is a Hermitian structureh on M with its associated fundamental
form � satisfying d� D � ^ � for some closed 1-form� (which is so called Lee
form). A differentiable manifoldM is called alocally conformal Kähler manifold(or
shortly l.c.K. manifold) if M admits an l.c.K. structure. Note that l.c.K. structure� is
globally conformally Kähler (or Kähler) if and only if� is exact (or 0 respectively);
and a compact l.c.K. manifold of non-Kähler type (i.e. the Lee form is neither 0 nor
exact) never admits a Kähler structure (compatible with thecomplex structure).

There have been recently extensive studies on l.c.K. manifolds (cf. [18], [5], [12],
[2], [7]). In this paper we are concerned with l.c.K. structures on homogeneous and
locally homogeneous spaces of Lie groups. There exist many examples of compact
non-Kähler l.c.K. manifolds which are homogeneous or locally homogeneous spaces of
certain Lie groups, such as Hopf surfaces, Inoue surfaces, Kodaira surfaces, or some
class of elliptic surfaces (cf. [2], [8]). Their l.c.K. structures arehomogeneousor lo-
cally homogeneousin the sense we will explicitly define in this paper (Definitions 1
or 2 respectively). Note that homogeneous l.c.K. structures on Lie groups are nothing
but left-invariant l.c.K. structures, which can be considered as l.c.K. structures on their
Lie algebras.

In this paper we show as main results two structure theorems of a compact homo-
geneous l.c.K. manifold: a holomorphic structure theorem asserting that it is a holo-
morphic principal fiber bundle over a flag manifold with fiber a1-dimensional complex
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torus (Theorem 1), and a metric structure theorem assertingthat it is of Vaisman type,
that is, the Lee form is parallel with respect to the Hermitian metric (Theorem 2). It
should be noted that the same structure theorem was proved byVaisman ([17]) for
compact homogeneous l.c.K. manifolds of Vaisman type. As a simple application of
the theorem, we can show that only compact homogeneous l.c.K. manifolds of complex
dimension 2 are Hopf surfaces of homogeneous type (Theorem 3), and that there exist
no compact homogeneous complex l.c.K. manifolds; in particular, no complex paral-
lelizable manifolds admit their compatible l.c.K. structures (Corollary 4).

We will take the following key strategies to prove the main theorems. A compact
homogeneous l.c.K. manifoldM is expressed asM D G=H , whereG is a compact Lie
group andH is a closed subgroup ofG. Since the Lie algebrag of G is a reductive,
g can be written asgD tCs, wheret is the center ofg andsD [g,g] is a semi-simple
ideal of g. Our first observation is (1)g must satisfies 1� dimt � 2. As the second ob-
servation, applying a result of Hochschild and Serre, (2) wecan express an l.c.K. form
� as� D �� ^  C d , where� is the Lee form and is a 1-form. Let� 2 g be
the Lee field (the associated vector field to� with respect toh). We put � D t C s
(t 2 t, s 2 s). We define the vector field� D J� (Reeb field) for the complex structure
J, and the Reeb form� (the associated 1-form to� with respect toh). We will see
as the third observation (3) under the condition� is J t-invariant, we have D � and
g D p C k, wherep D ht, �i D ht, J ti D h� , �i, and k D ker� \ ker�. In particular
we can express� D �� ^ � C d� with � 2 ^

2k�. As the fourth observation, since
the closureK of the 1-parameter subgroup ofG generated byJ t is compact, (4) we
can use the averaging method to make� on M invariant by Ad(K )W N� D

R

K Ad(x)��
while preserving the complex structureJ.

Our fifth observation is (5) we can consider a compact homogeneous l.c.K. mani-
fold M up to holomorphic isometry asM D G=H with a homogeneous l.c.K. structure
(�, J), satisfyingg D tC s (dim t D 1); and up to biholomorphism, as such with aJ t-
invariant l.c.K. form N�. In particular we can expressM D S1

�

0

S=H0, where S is a
simply connected semi-simple Lie group,H0 is the connected component ofH and0
is a finite abelian group. These observations lead to Theorem1. As for the proof of
Theorem 2, we have the sixth observation (6) the Lee form� and the Reeb field� are
stable under the averaging byK . In order to show it we need the seventh observation
(7) we have a compact subgroupS1

� NS(H0)=H0 imbedded inG=H0 D S1
� S=H0 as

an l.c.K. manifold. We also need a classification of l.c.K. compact Lie algebras. We
will see as the eighth observation (8) a reductive Lie algebra admits an l.c.K. struc-
ture if and only if dimt D 1 and ranks D 1. In particular a compact Lie algebra
admits a homogeneous l.c.K. structure if and only if it isu(2); and any homogeneous
l.c.K. structure on a compact Lie group is of Vaisman type (Theorem 4).
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1. Preliminaries

In this section we review some terminologies and basic results in the field of homo-
geneous spaces and l.c.K. geometry, relevant to our arguments on homogeneous and
locally homogeneous l.c.K. structures in this paper.

DEFINITION 1. A homogeneous locally conformally Kähler (or shortlyhomo-
geneous l.c.K.) manifold M is a homogeneous Hermitian manifold with its homo-
geneous Hermitian structureh, defining a locally conformally Kähler structure� on M.

DEFINITION 2. If a simply connected homogeneous l.c.K. manifoldM D G=H ,
whereG is a connected Lie group andH a closed subgroup ofG, admits a free action
of a discrete subgroup0 of G on the left, then we call a double coset space0nG=H
a locally homogeneous l.c.K.manifold.

A homogeneous manifoldM can be written asG=H , whereG is a connected Lie
group with closed Lie subgroupH . If we take the universal covering Lie groupOG of
G with the projectionpW OG! G and the pull-back OH D p�1(H ) of H , then we have
the universal coveringOM D OG=H0 of M, where H0 is the connected component of the
identity of OH ; and0 D OH=H0 is the fundamental group ofM acting on the right. In
caseG is compact, OG is of the form Rk

� S (k � 0), whereS is a simply connected
compact semi-simple Lie group. It is also known thatG has a finite normal covering
QG of the form Tk

� S with the projection Qp W QG ! G; and a compact homogeneous
manifold M D G=H can be expressed asQG= QH D Tk

�

0

S= QH0, where QH0 is the con-
nected component of the identity ofQH D Qp�1H and0 D QH= QH0 is a finite group acting
on QM D Tk

� S= QH0 on the right.
In caseM is a homogeneous l.c.K. manifold,OM is also a homogeneous l.c.K. mani-

fold; and since the Lee formO� D p�1
� is exact the fundamental formO� D p�1

� is
globally conformal to a Kähler structure!. The Lie group OG acts holomorphically
and homothetically on (OM , !) on the left; and the fundamental group0 acts likewise
on ( OM , !) on the right. Conversely, a Kähler structure! on OM D OG=H0 with holo-
morphic and homothetic action ofOG on the left and0 on the right defines a homo-
geneous l.c.K. structure� on M D G=H , where H D H0 Ì 0 with 0 \ H0 D {0} and
0 � N

OG(H0). If 0 is a discrete subgroup ofOG acting properly discontinuously and

freely on OG=H0 on the left, then we can define a locally homogeneous l.c.K. structure
on 0n OG=H0. In particular, for a simply connected Lie groupG with a left invariant
l.c.K. structure� and a discrete subgroup0 of G, � induces a locally homogeneous
l.c.K. structure Q� on 0nG.

Let M D G=H be a homogeneous space of a connected Lie groupG with closed
subgroupH . Then the tangent space ofM is given as aG-bundle G �H g=h over
M D G=H with fiber g=h, where the action ofH on the fiber is given by Ad(x) (x 2
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H ). A vector field onM is a section of this bundle; and ap-form on M is a section
of G-bundle G �H

Vp(g=h)�, where the action ofH on the fiber is given by Ad(x)�

(x 2 H ). An invariant vector field (respectivelyp-form), the one which is invariant by
the left action ofG, is canonically identified with an element of (g=h)H (respectively
�

Vp(g=h)�
�H

), which is the set of elements ofg=h (respectively
Vp(g=h)�) invariant

by the adjoint action ofH . A complex structureJ on M is likewise considered as an
elementJ of Aut(g=h) such thatJ2

D �1 and Ad(x)J D J Ad(x) (x 2 H ). Note that
we may also consider an invariantp-form as an element of

Vp
g� vanishing onh and

invariant by the action Ad(x)� (x 2 H ).
We recall thatg is decomposablewith respect toH if there is a direct sum de-

composition ofg as

g D mC h,

for a subspacem of g and Ad(x)(m) � m for any x 2 H . This is the case, for instance,
when H is a reductive Lie group. In caseg is decomposable, the tangent space of
M D G=H is given by theG-bundleG�H m over M D G=H , identifying g=h with m.
An invariant vector field (respectivelyp-form) on M is identified with an element of

mH (respectively
�

Vp(m)�
�H

), which is the set of elements ofm (respectively
Vp(m)�)

invariant by the adjoint action ofH . A complex structureJ on M can be considered
as an elementJ of Aut(m) such thatJ2

D �1 onm and Ad(x)J D J Ad(x) (x 2 H ). It
is also convenient to consider a complex structureJ on M as an elementJ of End(g)
such thatJ2

D �1 on m, Jh D 0 and Ad(x)J D J Ad(x) (x 2 H ) (cf. [11]).
An invariant vector fieldX 2 mH generates a global 1-parameter group of diffeo-

morphisms onM D G=H given by the right action of expt X:

� W R � G=H ! G=H , �(t, gH) D g(expt X)H .

Since the closureK of the 1-parameter subgroup ofG generated byX is compact, we
can use the averaging method to make differential forms! on M invariant by Ad(K ):

Z

K
Ad(x)�!.

For an l.c.K. form� with its Lee from� , we can average� to make a Ad(K )-invariant
l.c.K. form N� under the condition that the action is compatible with the complex struc-
ture J. Note that we have the Lee formO� identical with � , but since the metricNh is
in general different fromh its associated Lee fieldN� is in general different from� .

For a g-module M, we can definep-cochains as thep-linear alternating functions
on gp, which areg-modules defined by

(
 f )(x1, x2, : : : , xp) D 
 f (x1, x2, : : : , xp)

�

p
X

iD1

f (x1, : : : , xi�1, [
 , xi ], xiC1, : : : , xp),
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where
 2 g and f is a p-cochain (cf. [10]). The coboundary operator is defined by

(d f )(x0, x1, : : : , xp) D
p
X

iD0

(�1)i xi f (x0, : : : , Oxi , : : : , xp)

C

X

j<k

(�1) jCk f ([x j , xk], x0, : : : , Ox j , : : : , Oxk, : : : , xp).

We are interested in the case when ag-module is defined by the representation of
g on R, assigningX 2 g to ��(X) for the Lee form� on an l.c.K. Lie algebrag. The
corresponding coboundary operator is given by

d
�

W w! �� ^ w C dw,

and its cohomology groupH p
�

(g, R) is called thep-th twisted cohomology groupwith
respect to the Lee form� . The condition of l.c.K. structure� on g is expressed by
d
�

� D 0. We know ([10]) that for a reductive Lie algebrag, all of the cohomology
groupsH p

�

(g,R) (p� 0) vanish; and in particular we have�D �� ^ Cd for some
1-form  .

2. A holomorphic structure theorem of compact homogeneous l.c.K. manifolds

In this section we prove a structure theorem of compact homogeneous l.c.K. mani-
folds, which asserts that such a compact complex manifold isbiholomorphic to a holo-
morphic principal bundle over a flag manifold with fiber a 1-dimensional complex torus.
This result may be compared with the well-known theorem (dueto Matsushima [13]) that
a compact homogeneous Kähler manifold is biholomorphic to aKählerian product of a
complex torus and a flag manifold.

Let M be a compact homogeneous l.c.K. manifold of dimension (2mC 2), m� 1,
with its associated fundamental form� and Lee form� , satisfyingd� D � ^ �. M
can be written asG=H , where G is a connected holomorphic isometry group of the
Hermitian manifold (M, h) and H a compact subgroup ofG which contains no normal
Lie subgroups ofG. Since G is a closed subgroup of the isometry group of (M, h),
it is a compact Lie group; in particularG is reductive, that is, the Lie algebrag of G
can be written as

g D tC s

wheret is the center ofg and s is a semi-simple Lie algebra. Leth be the Lie algebra
of H . Then g also admits a decomposition:

g D mC h

satisfying Ad(x)(m)�m (x 2 H ) for a subspacem of g. Note that we have alsot\hD
0. Since the Lee form� is invariant, its associated vector field� (which is calledLee
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field) with respect to the metrich is also invariant; and thus� may be taken as an
element ofm invariant by Ad(x) for any x 2 H .

Any invariant form onM can be considered as an element of
Vp

g� vanishing on
h and invariant by the action Ad(x)� (x 2 H ). In particular, we consider�, � as the
elements of

V

g� satisfying these conditions and

d� D � ^�.

From now on we assumeM is of non-Kähler type; and thus� is a non-zero,
closed but not exact form ong. Note that sinces D [g, g] and � is a non-zero closed
form, �([X,Y]) D�d�(X,Y)D 0 for all X,Y 2 g and thus� vanishes ons. In particular
we must have dimt � 1 and� 2 t�.

The Lee field� 2 m may be expressed as� D tCs, t 2 t (t ¤ 0), s2 s, where� is
normalized, satisfyingh(� , � ) D 1 and thus�(� ) D �(t) D 1. We define the Reeb field
� 2 m as � D J� with its associated 1-form� satisfying�(�) D 1. We can express
g as

g D h� , �i C k,

where h� , �i is the 2-dimensional subspace ofg generated by� and � over R, and
k D ker� \ ker� with k � h. Note thath(� , �) D �(�, �) D 0 andh� , �i is orthogonal
to k with respect toh.

It is known (due to Hochschild and Serre [10]) that there exists a 1-form 2 g�

such that

� D �� ^  C d ,

where defines an invariant 1-form onM:  vanishes onh since we have (h) D
�(h, t)D 0; and is Ad(x)-invariant forx 2 H since we have ([h,Y]) D �d (h,Y)D
��(h, Y) D 0. We set c D  � c� for c 2 R. Note that we haved c D d ; and

� D �� ^  cC d c.

Lemma 1. There exists� 2 g and c2 R such that

 c(� ) D 1,  c(t) D 0, �(t) D 1, �(� ) D 0,

and d c(� , Y) D 0 for all Y 2 g.

Proof. As already seen we have�(t)D 1. Since� and are linearly independent,
we can take an element� 0 such that (� 0) D 1 and�(� 0) D 0. If  (t) ¤ 0, then take
 c D  � c� for c D  (t) satisfying c(t) D 0. Then we have c(� 0) D 1, �(t) D 1,
 c(t)D �(� 0)D 0. Note that sinced c(t,� 0)D � c([t,� 0]) D 0, we have�(� 0, t)D 1;
in particular� 0 � h.
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Recall that for a skew-symmetric bilinear form8 on a vector spaceV ,

Rad8 D {u 2 V j 8(u, v) D 0 for any v 2 V}.

Let p0 D ht, � 0i and q D Ker� \Ker c D Ker� \Ker with q � h. Then we have an
orthogonal direct sum with respect to�:

g D p0 C q, p0 \ q D {0}.

We first note that�jqD d c is non-degenerate onq (mod h). In fact, suppose that
there exists a non-zero elementv 2 q such thatd c(q, v) D 0. Then forv0 D at C v
with a D �d c(� 0, v), we have

�(� 0, v0) D �(� ^  c)(�
0, v0)C d c(�

0, v0) D aC d c(�
0, v) D 0.

Since we also have�(t, v0) D 0 and�(q, v0) D 0, we have�(g, v0) D 0, contradicting
the non-degeneracy of� on g (mod h).

Let � be a 1-form defined onq by �(X)D d c(� 0, X). Sinced c is non-degenerate
on q, there exists� 2 q such that�(X) D d c(� , X); and thusd c(� 0 � � , X) D 0 for
all X 2 q. Let � D � 0 � � andp D ht, � i, then we have an orthogonal direct sum with
respect to�:

g D pC q, p \ q D {0}.

and c(� ) D 1, �(� ) D 0 (� � h). Sinced c(� , t) D � c([� , t ]) D 0, we have

Radd c D p (mod h).

This completes the proof of Lemma 1.

From now on we write c simply as .

Corollary 1. We have J� D � (mod h); and thus� D � (mod h).

Proof. By the definition, the Lee field� satisfies thath(� , X) D �(X); and thus
�(J� , X) D �(X). By Lemma 1 we haveg D pC q wherep D ht, � i and q D Ker� \
Ker . Hence we have�(J� , X) D 0 for all X 2 q, �(J� , t) D 1 and�(J� , � ) D 0.
On the other hand, since we have� D  ^ � C d , we get�(� , X) D  (� )�(X) �
 (X)�(� ) C d (� , X) D 0 for all X 2 q, and�(� , t) D 1. Hence we haveJ� D �

(mod h); and thus� D � (mod h), where� D J� is the Reeb field by definition.

Corollary 2. We haveL
�

� D 0.
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Proof. We write� D �� ^ Cd . Since we have (� ) D 1 andd (� , X) D 0
for all X 2 g, we getL

�

 D d�
�

 C �

�

d D 0. Since we haveL
�

(� ^ ) D (L
�

�)^
 � � ^ L

�

 D (L
�

�) ^  andL
�

� D d�
�

� C �

�

d� D 0, we getL
�

� D 0.

Corollary 3. We have1� dim t � 2, t � ht, � i C h.

Proof. We have seen in Lemma 1 thatd is non-degenerate onq (mod h). For
any X 2 t written as X D at C b� C Z (a, b 2 R, Z 2 q) and anyY 2 q, we have
d�(Z, Y) D �(Z, Y) D �(X, Y) D 0; and thusZ 2 h. In particular, we havet \ q D

t \ h D {0}. Since dimq D n� 2, we must have 1� dim t � 2.

Lemma 2. Suppose that the l.c.K. form� is J t-invariant. Thenp as in Lemma 1
is generated by{t, J t} or {� , � }:

p D ht, � i D ht, J ti D h� , � i.

Proof. Letq be the orthogonal complement ofht, J ti with respect to�. We show
first that q D q D Ker � \ Ker ; and thusp D ht, J ti. For X 2 q, we have

d�(X, J t, t) D �(X)�(J t, t) D �(X)h(t, t).

On the other hand, we have

d�(X, J t, t) D �([ J t, X], t)C�(X, [J t, t ]) D 0,

due to the invariance of� by Ad(expJ t). Hence we haveX 2 ker� . For X 2 q, we
also have 0D �(X, t)D  (X); and thusX 2 ker . Sinceq � q and dimqD dimq, we
must haveq D q. Note that sincep is J-invariant q is also the orthogonal complement
with respect toh.

We show that� D t C b� for b 2 R; and thusp D h� , � i. We have

h(� , X) D �(X) D �(� , X) D 0

for X 2 q; and thus� 2 p. If we write � D at C b� , then a D �(� ) D 1.

Lemma 3. If � is J t-invariant, we have� D �� ^ � C d�, d� 2
V2

k�.

Proof. We have shown thatp is generated by{� , � }; and q is the orthogonal
complement ofp with respect to both� and h. Since d is non-degenerate onq
(mod h), there existXi ,Yj 2 q, i , j D 1,2,: : : ,k (k �m) which are linearly independent
and d D

P

�i ^ �i , where�i , �i are the dual forms corresponding toXi , Yi . Since
� 2 Radd , we have

�(X, � ) D �(� ^  )(X, � ) D ��(X)
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for any X 2 g. Hence we have

�(J� , � ) D ��(J� ) D �h(� , J� ) D ��(� , � ) D 1.

Since h(� , � ) D �(J� , � ) D 1, we can seeJ� D � . In fact, we can setJ� D � C Z
and J� D �� C Z0 for Z 2 h� , Xi , Yj i, Z0

2 h� , Xi , Yj i, i , j D 1, 2, : : : , k; and thus
we haveZ0

D �J Z. Then we have

�(� , J� ) D �(� C Z, J� C J Z) D �(� , J� )C�(Z, J Z),

�(� , J� ) D �(�� C Z0, �J� C J Z0) D �(� , J� )C�(Z0, J Z0),

from which we geth(Z, Z) C h(Z0, Z0) D 0; and thusZ D Z0

D 0. Since� D J�
by definition we must have� D �; and thusq D k and D �. We can also see that
J Xi D Yi , i , j D 1, 2, : : : , k.

We have seen, under the assumption that� is J t-invariant, that� can be written as
� D tCb�. We havetD h� ,�i (mod h) for the case dimtD 2. For the case dimtD 1,
we haveg D tC s with s D h�i C k, and t is a generator oft. Note that the complex
structure J may be expressed with respect to a basis{t, �} as J t D bt C (1C b2)�,
J� D �t � b�; and � D t�, � D �� � bt� (t�, �� 2 g�).

Lemma 4. Under the condition that� is J t-invariant, we can reduce the case
dim t D 2 to the casedim t D 1.

Proof. In case dimt D 2 we have by Corollary 3 thatt D h� , �i (mod h), � � t.
It follows that s D [g, g] D [k, k], and g D h� , �iC s. We will show that� 2 s (mod h),
� � h. Since�(� ) D 1 and� vanishes onh�i C s, we haveh � h�i C s, h � s. Hence
we get� 2 s (mod h).

Let g0 be the subalgebra ofg generated by� and s, and G0 the Lie subgroup of
G corresponding tog0. Note thatg0 is a proper subalgebra ofg andg=h � g0=h0 where
h0 D g0 \ h is a proper subalgebra ofh. Then since we have� 2 s (mod h), G0 acts
on M transitively; andM can be written asG0

=H 0 with its isotropy subgroupH 0

D

H \ G0. It is clear that the centert0 of g0 is generated byt , and thus dimt0 D 1. The
canonical injectionG0

,! G induces a holomorphic isometry fromG0

=H 0 to G=H .

Since J t is an invariant vector field compatible withJ, satisfying ad(J t)J D
J ad(J t), we can apply the averaging method to make an l.c.K. formN� invariant by
Ad(expJ t); in particular, we have

N

�([ J t, X], Y)C N�(X, [J t, Y]) D 0

for all X, Y 2 g, where N� defines an l.c.K. structure onM compatible with the orig-
inal complex structureJ. By Lemma 4 we can expressM D G0

=H 0 with g0 D t0 C s
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(dim t0 D 1). SinceG0 is a subgroup ofG, G0 preserves the original l.c.K. structure
(�, J) on M as well as the averaged l.c.K. structure (N�, J) on M. Therefore, we have
the following key observation.

REMARK 1. We may consider a compact homogeneous l.c.K. manifoldM up to
holomorphic isometry asM D G=H with a homogeneous l.c.K. structure (�, J), sat-
isfying g D tC s (dim t D 1); and up to biholomorphism, as such with aJ t-invariant
l.c.K. form N

�.

Proposition 1. A compact homogeneous l.c.K. manifold M admits a holomorphic
flow, which is a Lie group homomorphism fromC1 to the holomorphic automorphism
group of M.

Proof. Let Aut(M) be the holomorphic automorphism group ofM. Then we know
that Aut(M) is a complex Lie group with its associated complex Lie algebraa(M) consist-
ing of holomorphic vector fields onM. Let Isom(M) be the (maximal connected) isometry
group ofM. Then we know that Isom(M) is a compact real Lie group with its associated
Lie algebrasi(M) consisting of all Killing vector fields onM. Note thatG can be taken
as the intersection of Aut(M) and Isom(M) being a compact subgroup of Isom(M),

Since � 2 ht, J ti by Lemma 2, the Lee field� is an infinitesimal automorphism
on M; and thus� �

p

�1J� is a holomorphic vector field onM. Hence the homo-
morphism N� of Lie algebras mapping� �

p

�1J� to a(M) induces a homomorphism
� of complex Lie groups mappingC to Aut(M).

Theorem 1. A compact homogeneous l.c.K. manifold M is, up to biholomorphism,
isomorphic to a holomorphic principal fiber bundle over a flagmanifold with fiber a
1-dimensional complex torus T1C .

To be more precise, M can be written as a homogeneous space form G=H , where
G is a compact connected Lie group of holomorphic automorphisms on M which is of
the form

G D S1
� S,

where S is a compact simply connected semi-simple Lie group, including the connected
component H0 of H which is a closed subgroup of S. S=H0 is a compact simply con-
nected homogeneous Sasaki manifold, which is a principal fiber bundle over a flag
manifold S=Q with fiber S1

D Q=H0 for some parabolic subgroup Q of S including
H0. M D G=H can be expressed as

M D S1
�

0

S=H0,

where0 D H=H0 is a finite abelian group acting holomorphically on the fiber T1
C of

the fibration G=H0! G=Q on the right.
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Proof. We can assume thatg D tC s with dim t D 1; and� 2 s. Let q D h�i C
h, then since [�, h] � h, q is a Lie subalgebra ofs; in fact we haveq D {X 2 s j

d�(X, s) D 0}. Let S and Q be the corresponding Lie subgroup ofG, then Q is a
closed subgroup ofS since we haveQ D {x 2 S j Ad(x)�� D �}, which is clearly a
closed subset ofS; in particular, H0 is a normal subgroup ofQ with Q=H0 D S1, and
� generates anS1 action on S. (cf. [4]). We have seen in Lemma 3 thatd� defines
a homogeneous symplectic structure onS=Q compatible with the complex structureJ,
which is a Kähler structure onS=Q (due to Borel [3]); in particularQ is a parabolic
subgroup ofS.

We have seen that the abelian Lie subalgebrah� , �i D ht, �i of g generates a 2-
dimensional torusT2

R action onM where t is a generator of the center ofg generating

an S1 action on M; and � �
p

�1� generates a holomorphic 1-dimensional complex
torus action onM D G=H on the right. We haveM D S1

�

0

S=H0, where S=H0 !

S=Q is a principal S1-bundle over the flag manifoldS=Q; and OM D S1
� S=H0 !

S=Q is a holomorphic principal fiber bundle over the flag manifoldS=Q with fiber
T1

C . Since H � Q and thus the holomorphic action of0 D H=H0 is trivial on the
base spaceS=Q, it actually acts on the fiberT1

C, inducing a holomorphic principal fiber
bundle M ! S=Q with fiber T1

C .

Corollary 4. There exist no compact homogeneous complex l.c.K. manifolds; in
particular, no complex parallelizable manifolds admit their compatible l.c.K. structures.

Proof. We know that only compact complex Lie groups are complex tori, which
can not act transitively on compact l.c.K. manifolds.

3. A metric structure theorem of compact homogeneous l.c.K.manifolds

DEFINITION 3. An l.c.K. manifold (M, h) is of Vaisman typeif the Lee field �
is parallel with respect to the Riemannian connection forh.

For a homogeneous l.c.K. manifoldM D G=H , the Lee field� is parallel with
respect to the Riemannian connection forh if and only if

h(OX� , Y) D h([X, � ], Y) � h([� , Y], X)C h([Y, X], � ) D 0

for all X, Y 2 g. Since the Lee form is closed:h([Y, X], � ) D 0, this condition is
equivalent to

h([� , X], Y)C h(X, [� , Y]) D 0

for all X, Y 2 g. And this is exactly the case when the Lee field� is Killing field. It
should be also noted that� is Killing if and only if L

�

� D 0 andL
�

J D 0 for the
l.c.K. form � and its compatible complex structureJ.
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Let � be an element ofg obtained in Lemma 1 for the original l.c.K. form�. We
have the following key lemma.

Lemma 5. We haveL
�

J D 0.

Proof. We have seen (in Remark 1 and Theorem 1) thatM D G=H can be ex-
pressed asM D S1

�

0

S=H0 with the original l.c.K. form�, where0 D H=H0 is
a finite abelian group. We have a compact Lie groupS1

� NS(H0)=H0 imbedded in
QM D S1

� S=H0; and an l.c.K. structure (O�, OJ) on S1
� NS(H0)=H0 can be induced

from the l.c.K. structure (Q�, QJ) on QM by restriction, whereNS(H0) denotes the nor-
malizer of H0 in S. In fact we can define an l.c.K. formO� just as the restriction on
tC ns(h) of the l.c.K. form� on g; and since we have (.X)J D J ad(X) (X 2 h) with

Jh D 0, we can also define a complex structureOJ on tC ns(h)=h as the restriction of
J on tC ns(h). Note that we havet D hti and � , J t 2 ns(h).

For the casens(h) © q, since tC ns(h)=h is a compact l.c.K. Lie algebra it must

be u(2)D R�su(2) by Theorem 4; in particularO� is J t-invariant. Applying Lemma 2
we have� 2 ht, J ti. SinceLJ t J D 0 andLY J D 0 for all Y 2 h, we getL

�

J D 0.
For the casens(h) D q, since we have� 2 hJ ti C h, it follows that L

�

J D 0.

Corollary 5. We have[� , J t] D 0; in particular Ad(exp J t)
�

� D � .

Proof. We have (L
�

J)t D L
�

(J t) � JL
�

t D 0 by Lemma 5. Since [� , t ] D 0, it
follows that [� , J t] D 0.

Theorem 2. A compact homogeneous l.c.K. manifold(M,h) is necessarily of Vais-
man type; that is, the Lee field� is a Killing field with respect to any homogeneous
l.c.K. metric h on M.

Proof. We first consider the l.c.K. formN�, N on M averaged by the closureK of
the 1-parameter subgroup ofG generated byJ t. We have N (� ) D

R

K Ad(x)� (� ) D
R

K  (� ) D 1 by Lemma 1 and Corollary 5. Here we have normalized the volume of

K to 1. We also haved N (� , Z) D 0 for any Z 2 g. Hence we haveN , N� D � , � , t
satisfying the condition of Lemma 1; and thus by Lemma 2 we have

Np D ht, � i D ht, J ti.

Now we show thatL
�

� D 0, L
�

J D 0 for the original l.c.K. form�. Since J t 2
ht, � i as shown above, we haveLJ t� D 0 by Corollary 2. As� D �J� (mod h) from
Corollary 1 and� 2 ht, J ti, we must have� 2 ht, J tiCh. Thus,L

�

�D 0 andL
�

J D 0.
Hence� is a holomorphic Killing field with respect toh.
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REMARK 2. We may prove Theorem 2 separately for the case dimt D 2 without
reducing to the case dimt D 1. In fact, for the case dimt D 2 we havet D ht, � i
(mod h) by Corollary 3; and thus� 2 t modh. Hence we getL

�

J D 0, [� , J t] D 0
without applying Lemma 5 and Corollary 5.

4. Compact homogeneous l.c.K. manifolds of complex dimension 2

We know (due to Vaisman [16], Gauduchon–Ornea [7] and Belgun[2]) that there
is a class of Hopf surfaces which admit homogeneous l.c.K. structures. We can show,
applying the above theorem, that the only compact homogeneous l.c.K. manifolds of
complex dimension 2 are Hopf surfaces of homogeneous type (see Theorem 3). We
first determine, recalling a result of Sasaki ([14]), all homogeneous complex structures
on G D S1

�SU(2), or equivalently all complex structures on the Lie algebra gD u(2).

Proposition 2. Let g D u(2) D R � su(2) be a reductive Lie algebra with basis
{T, X, Y, Z} of g, where T is a generator of the centerR of g, and

X D
1

2

�

p

�1 0
0 �

p

�1

�

, Y D
1

2

�

0
p

�1
p

�1 0

�

, Z D
1

2

�

0 �1
1 0

�

such that non-vanishing bracket multiplications are givenby

[X, Y] D Z, [Y, Z] D X, [Z, X] D Y.

Theng admits a family of complex structures J
Æ

, Æ D cC
p

�1d defined by

J
Æ

(T � d X) D cX, J
Æ

(cX) D �(T � d X), J
Æ

Y D �Z, J
Æ

Z D �Y.

Conversely, the above family of complex structures exhaust all homogeneous complex
structures ong.

Proof. LetgC D gl(2, C) D CC sl(2, C) be the complexification ofg, which has
a basisbC D {T, U, V, W}, where

U D
1

2

�

�1 0
0 1

�

, V D
1

2

�

0 0
1 0

�

, W D
1

2

�

0 1
0 0

�

with the bracket multiplication defined by

[U, V ] D V , [U, W] D �W, [V, W] D
1

2
U .

Here we have

U D
p

�1X, V D
1

2
(Z �

p

�1Y), W D �
1

2
(Z C

p

�1Y),
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and their conjugations given by

NT D T , NU D �U , NV D �W, NW D �V .

We know that there is a one to one correspondence between complex structures
J and complex subalgebrash such thatgC D h C Nh and h \ Nh D {0}. Let a be the
subalgebra ofgC generated byT and b the subalgebra ofgC generated byU , V , W,
then we have

gC D a� b

wherea D hTiC, b D hU, V, WiC. Let � be the projection� W gC! b and c the image
of h by � , then we have

b D cC Nc,

and dimc \ Nc D 1. We can set a basis� of h as � D {P C Q, R} (P 2 a, Q, R 2 b)
such thatQ 2 c \ Nc and 
 D {Q, R} is a basis ofc:

h D hPC Q, RiC, c D hQ, RiC.

Furthermore, we can assume thatQC NQ D 0 so thatQ is of the formaUCbVC NbW
(a 2 R, b 2 C).

We first consider the case whereRD qVC rW (q, r 2 C). Since we have [gC,gC] D
b, there is some� 2 C such that [Q, R] D �R. We see by simple calculation that if
b ¤ 0, thenq D sb, r D sNb for some non zero constants 2 C. But then NRD �(Ns=s)R,
contradicting to the fact that� D {Q, R, NR} consists a basis ofb:

b D hQ, R, NRiC.

Hence we haveb D 0, andq ¤ 0, r D 0 with � D a or q D 0, r ¤ 0 with � D �a.
Therefore we can take, as a basis ofh, � D {T C ÆU, V} or {T C ÆU, W} with Æ D

cC
p

�1d 2 C:

h D hT C ÆU, ViC

or

hT C ÆU, WiC.

It should be noted that the latter defines a conjugate complexstructure of the former,
which are not equivalent but define biholomorphic complex structures on its associated
Lie group G.

In the case whereR D pU C qV C rW, p, q, r 2 C with p ¤ 0, we show that
there exists an automorphismO� on gC which mapsh0 to h, preserving the conjugation,
whereh0 is a subalgebra ofgC of the first type with p D 0. As in the first case, we
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must have [Q, R] D �R for some non zero constant� 2 C. We may assume thatpD 1.
We see, by simple calculation thatb, q, r ¤ 0 and

(a� �)q D b, (aC �)r D Nb,

from which we get

a2
C jbj2 D �2 (� 2 R),

and

jqj2 � jr j2 D
4a�

jbj2
.

Then an automorphism� on b defined by

�(U ) D
1

�

Q, �(V) D
jbj

2�
R, �(W) D �

jbj

2�
NR,

extends to the automorphismO� on gC which satisfies the required condition.

Proposition 3. Let GD S1
� SU(2) (which is, as is well known, diffeomorphic

to S1
� S3). Then all homogeneous complex structures on G admit their compatible

homogeneous l.c.K. structures, defining a primary Hopf surfaces S
�

which are compact
quotient spaces of the form W=0

�

, where WD C2
n{0} and 0

�

is a cyclic group of
holomorphic automorphisms on W generated by a contraction fW (z1, z2)! (�z1, �z2)
with j�j ¤ 0, 1. Furthermore, all of those l.c.K. structures are of Vaisman type.

Proof. We consider the following canonical diffeomorphism8
Æ

, which turns out
to be biholomorphic for each homogeneous complex structureJ

Æ

on g and �
Æ

:

8

Æ

W R � SU(2)! W

defined by

(t, z1, z2)! (�t
Æ

z1, �t
Æ

z2),

where SU(2) is identified with S3
D {(z1, z2) 2 C j jz1j

2
C jz2j

2
D 1} by the corres-

pondence:
�

z1 �Nz2

z2 Nz1

�

$ (z1, z2),

and �
Æ

D ecC
p

�1d. Then we see that8
Æ

is a biholomorphic map. It is now clear that
8

Æ

induces a biholomorphism betweenG D S1
� SU(2) with homogeneous complex

structureJ
Æ

and a primary Hopf surfaceS
�

Æ

D W=0

�

Æ

.



698 K. HASEGAWA AND Y. K AMISHIMA

Let t, x, y, z 2 g� be the Maurer–Cartan forms corresponding toT, X, Y, Z 2 g in
Proposition 2. Then we have

dzD �x ^ y, dx D �y ^ z, dyD �z^ x,

and

� D �� ^ � C d�,

where � D t , � D x=c, defines an l.c.K. form ong for the complex structureJ
Æ

in
Proposition 2. Note that we have the Lee field� D T �d�=c, which is irregular for an
irrational d=c, while the Reeb field� D cX, which is always regular. The Lee field�
is a Killing field, since we have

h([� , U ], V)C h(U, [� , V ]) D �d(h([X, U ], V)C h(U, [X, V ])) D 0

for all U, V 2 g. Hence (GI�, J
Æ

) is of Vaisman type.
A secondary Hopf surface with homogeneous l.c.K. structurecan be obtained as a

quotient space of a primary Hopf surfaceS
�

Æ

by some finite subgroup ofG. For instance,
U (2) is a quotient Lie group ofG by the central subgroupZ2 D {(1, I ), (�1, �I )}. In
general we have a secondary Hopf surfaceG=Zm D S1

�Zm SU(2), whereZm is a finite
cyclic subgroup ofG generated byc:

cD (� , � ), � D

�

�

�1 0
0 �

�

, �

m
D 1,

with homogeneous l.c.K. structures induced from those onG by the averaging method
(cf. [8]). A (primary or secondary) Hopf surface defined as above is called aHopf sur-
face of homogeneous type, which is a holomorphic principal bundle over a 1-dimensional
projective spaceCP1 with fiber a 1-dimensional complex torusT1

C .

Theorem 3. Only compact homogeneous l.c.K. manifolds of complex dimension
2 are Hopf surfaces of homogeneous type(up to biholomorphism).

Proof. It is sufficient to show that any compact homogeneous l.c.K. manifold M
of complex dimension 2 is a Hopf surface of homogeneous type as defined in Propos-
ition 3. As we have seen in Theorem 1, a compact homogeneous l.c.K. manifold M
of complex dimension 2 can be expressed asS1

�

0

S, where S is a compact homo-
geneous contact manifold of real dimension 3 which admits a Hopf fibration overCP1

with fiber S1, and 0 is a finite abelian group acting on the fiberT1
C of the fibration

M ! CP1. These are exactly Hopf surfaces with homogeneous l.c.K. structures as
defined in Proposition 3. Conversely a Hopf surface of homogeneous type admits a
homogeneous l.c.K. structure as defined in Proposition 3.
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5. Homogeneous l.c.K. structures on reductive Lie groups

A homogeneous l.c.K. structure on a Lie groupG is nothing but a left invariant
l.c.K. structure onG. Since G can be expressed asOG=1, where1 is a finite sub-
group of the center ofOG, G admits an l.c.K. structure� if and only if OG admits an
l.c.K. structure O�, or equivalently the Lie algebrag of G admits an l.c.K. structureQ�
in
V

g�.

Theorem 4. Let g be a reductive Lie algebra of dimension2m; that is, gD tCs,
where t is an abelian ands a semi-simple Lie subalgebra ofg with s D [g, g]. Then
g admits an l.c.K. structure if and only ifdim t D 1 and ranks D 1. In particular
a compact Lie group admits a homogeneous l.c.K. structure ifand only if it is U(2),
S1
� SU(2)� S1

� Sp(1), or S1
� SO(3); and any homogeneous l.c.K. structure on a

compact Lie group is of Vaisman type.

Proof. Suppose thatg admits an l.c.K. structure�. Since we havehD {0}, � 2 s
and thus dimt D 1. If we apply the proof of Theorem 1 for the caseh D {0}, we see
that q D h�i D {V 2 s j [�, V ] D 0}; and thus ranks D 1 (cf. [4]). We know all of
the reductive Lie algebrasg D tC s with dim t D 1 and ranks D 1: R� sl(2, R) and
u(2) D R � su(2) D R � so(3). We show that all homogeneous l.c.K. structures on
u(2) are the ones we obtained in Proposition 3:� D �� ^ �C d�; and they are all of
Vaisman type. In fact, any l.c.K. form�0 is of the form

�

0

D �� ^  C d ,

where we can set� D t and D axC byC cz (a, b, c 2 R); and thusd D �(ay^
zC bz^ x C cx^ y). For the complex structureJ

Æ

in Proposition 2, we denote byA
the (4� 4)-matrix determined byh0(U, V) D �0(J

Æ

U, V) for U , V D T , X, Y, Z. By
the condition thatA is a positive-definite symmetric matrix, we can see by calculation
that bD cD 0; and thusAD aI4. Hence�0 is equal to the original� up to constant
multiplication.

EXAMPLE 1. We can also considerM D S1
� S3 as a compact homogeneous

space QG=H , where QG D S1
� U (2) with its Lie algebraQg D R� u(2) and H D U (1)

with its Lie algebrah. Then, we have a decompositionQg D mC h for the subspacem
of Qg generated byS, T , Y, Z and h generated byW, where

SD
1

2

�

p

�1 0
0

p

�1

�

, W D
1

2

�

0 0
0
p

�1

�

.

Since we haveSD X C 2W, we can takem0 generated byT , X, Y, Z for m; and
homogeneous l.c.K. structures onQG=H are the same as those onG. In other words
any homogeneous l.c.K. structures onG can be extended as those onQG=H .
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Furthermore, we can construct locally homogeneous l.c.K. manifolds 0n OG=H for
some discrete subgroups0 of OG, where OGD R�U (2). For instance, let0p,q (p,q ¤ 0)

be a discrete subgroup ofOG:

0p,q D

( 

k,

 

e
p

�1pk 0

0 e
p

�1qk

!!

2 R �U (2) k 2 Z

)

.

Then0p,qn OG=H is biholomorphic to a Hopf surfaceSp,q D W=0

�1,�2, where0
�1,�2 is

the cyclic group of automorphisms onW generated by

� W (z1, z2)! (�1z1, �2z2)

with �1 D erC
p

�1p, �2 D erC
p

�1q, r ¤ 0. In fact, if we take a homogeneous complex
structure Jr on OG=H induced from the diffeomorphism8r W OG=H ! W defined by
(t, z1, z2)! (er t z1, er t z2), 8r induces a biholomorphism between0p,qn OG=H and Sp,q.

Note that in casep D q, Sp,q is biholomorphic toS
�

with � D r C
p

�1q.

We have an example of a compact locally homogeneous l.c.K. manifold of non-
compact reductive Lie group which is not of Vaisman type ([1]).

EXAMPLE 2. There exists a homogeneous l.c.K. structure ong D R � sl(2, R)
which is not of Vaisman type. Take a basis{X, Y, Z} for sl(2, R) with bracket multi-
plication defined by

[X, Y] D �Z, [Z, X] D Y, [Z, Y] D �X,

and W as a generator of the centerR of g, where we set

W D
1

2

�

1 0
0 1

�

, X D
1

2

�

0 1
1 0

�

, Y D
1

2

�

1 0
0 �1

�

, Z D
1

2

�

0 1
�1 0

�

.

Let w, x, y, z, be the Maurer–Cartan forms corresponding toW, X, Y, Z respect-
ively; then we have

dw D 0, dx D z^ y, dyD x ^ z, dzD x ^ y,

and a locally conformally Kähler structure� D z ^ w C x ^ y compatible with an
integrable homogeneous complex structureJ on g defined by

JY D X, J X D �Y, J WD Z, J Z D �W.

This locally conformally Kähler structure� is of Vaisman type.
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We can generalize� to a locally conformally Kähler structure of the form

�

 

D  ^ w C d 

compatible with the above complex structureJ on g, where D axC byC cz with
a, b, c 2 R.

We see that the symmetric bilinear formh
 

(U, V) D �

 

(JU, V) is represented,
with respect to the basis{W, X, Y, Z}, by the matrix

AD

0

B

B

�

c �b a 0
�b c 0 a
a 0 c b
0 a b c

1

C

C

A

,

which has the characteristic polynomial8A D {(t � c)2
� (a2

C b2)}2, and has only
positive eigenvalues if and only ifc > 0, c2

> a2
C b2. The Lee form is� D w and

the Lee field is

� D

1

D
(cWC bX� aY)

with D D c2
� a2

� b2. We also have

h
 

(� , � ) D
c

D
.

We see thath
 

([� ,U ], V )Ch
 

(U, [� ,V ]) ¥ 0 unlessaD bD 0. In fact forU D V D Z,

h
 

([� , Z], Z)C h
 

(Z, [� , Z]) D 2h
 

([� , Z], Z) D �
2

D
(a2
C b2),

which is 0 if and only if a D b D 0. Conversely fora D b D 0, it is easy to check
that h

 

([� , U ], V)C h
 

(U, [� , V ]) � 0. Therefore we have shown
For J and�

 

defined above, h
 

defines a(positive definite) l.c.K. metric if and
only if c> 0, c2

> a2
C b2. It is of Vaisman type if and only if c> 0, a D bD 0. And

it is of non-Vaisman type if and only if c> 0, c2
> a2

C b2
> 0.

Note that for the complex structureJ on g and any lattice0 of GD R�fSL(2), we
get a complex surfaceSD 0nG (a properly elliptic surface withb1 D 1); andS admits
locally homogeneous l.c.K. structures�

 

of both Vaisman type and non-Vaisman type,
according to the above condition.

NOTE. There appeared recently a paper [6] on which the authors give a proof for
Theorem 2. However, it should be noted that its preprint version [arXiv:1312.6266]
was uploaded shortly after the original preprint version ofthe current paper
[arXiv:1312.2202] was uploaded to Mathematics arXiv in December 2013. While
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their paper is focusing only on the proof of Theorem 2 (and thus naturally shorter than
the proof of ours), the current paper discusses other related results and technical aspects
of the topics such as the holomorphic structure theorem (Theorem 1), the twisted co-
homology groups, the averaging methods of l.c.K. forms, l.c.K. structures on reductive
Lie algebras before and after Theorem 2. There also appeareda paper [9] for the detail
discussion and a complete classification of l.c.K. structures on four-dimensional com-
pact homogeneous and locally homogeneous manifolds.
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