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Abstract
We study a nonlinear elliptic equation with a singular term and a continuous

perturbation. We look for positive solutions. We prove three multiplicity theorems
producing at least two positive solutions. The first multiplicity theorem concerns
equations driven by a nonhomogeneous in general differential operator. Also, two of
the theorems have a superlinear perturbation (but without the Ambrosetti–Rabinowitz
condition), while the third has a sublinear perturbation. Our approach is variational
together with suitable truncation and comparison techniques.

1. Introduction

Let �� RN be a bounded domain with aC2-boundary��. In this paper, we study
the following nonlinear, nonhomogeneous Dirichlet problem with a singular term:

(1)

(

� div a(Du(z)) D �(z)u(z)� C f (z, u(z)) in �,

uj
��

D 0, u � 0,  2 (0, 1).

In (1) the mapa W RN
! R

N involved in the definition of the differential operator
is strictly monotone and satisfies certain other regularityconditions. The precise hy-
potheses ona( � ) are gathered inH (a) below. They are general enough to incorporate
as special cases important differential operators such as the p-Laplacian (1< p <1),
the (p, q)-differential operator (1< q < p < 1, p � 2) and the generalizedp-mean
curvature differential operator (2� p <1). In general the differential operator is not
homogeneous (in contrast to the special case of thep-Laplacian). The perturbation
f (z, x) is a continuous function on� � R which exhibits (p � 1)-superlinear growth
nearC1. However, to express the (p�1)-superlinearity of f (z, � ), we do not employ
the usual in such cases Ambrosetti–Rabinowitz condition (the AR-condition for short).
Here instead, we use a more general “superlinearity” condition which incorporates in
our framework perturbations with “slower” growth nearC1. We prove three multi-
plicity theorems producing at least two positive solutions. The second multiplicity re-
sult concerns equations driven by thep-Laplace differential operator and a perturbation
which is (p� 1)-sublinear nearC1.
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Equations involving the combined effects of singular and superlinear terms, were
studied by Coclite–Palmieri [4], Ghergu–Rădulescu [10], Hirano–Saccon–Shioji [13],
Lair–Shaker [16], Sun–Wu–Long [24] (semilinear equationsdriven by the Laplacian) and
by Gasínski–Papageorgiou [9], Giacomoni–Schindler–Takáč [11], Kyritsi–Papageorgiou
[14], Perera–Zhang [22] (nonlinear equations driven by thep-Laplacian). All the afore-
mentioned works deal with equations which have a parametricsingular term and prove
multiplicity of solutions for all small values of the parameter. We stress that in our case
the differential operator is nonhomogeneous and this is a source of difficulties in the ana-
lysis of problem (1).

2. Mathematical background—hypotheses

In this section we recall some definitions and facts from critical point theory which
we will use in the sequel and also we introduce the hypotheseson the data of (1).

Let X be a Banach space andX� its topological dual. Byh � , � i we denote the
duality brackets for the pair (X�, X). Let ' 2 C1(X). We say thatc 2 R is a critical
value of ', if there existsx 2 X s.t. '0(x) D 0 and'(x) D c. We say that' satisfies
the “Cerami condition” (the “C-condition” for short), if the following is true:

“Every sequence{xn}n�1 � X s.t. {'(xn)}n�1 � R is bounded and

(1C kxnk)'
0(xn)! 0 in X� as n!1,

admits a strongly convergent subsequence”.
This compactness-type condition is in general weaker than the usual Palais–Smale

condition. Nevertheless, the C-condition suffices to provea deformation theorem and
from it derive the minimax theory of certain critical valuesof ' 2 C1(X). In particu-
lar, we can state the following theorem, known in the literature as the “mountain pass
theorem”.

Theorem 1. If ' 2 C1(X) satisfies the C-condition, x0,x1 2 X, kx0�x1k> � > 0,

max{'(x0), '(x1)} < inf['(x) W kx � x0k D �] D �
�

and

cD inf
20

max
0�t�1

'( (t)) where 0 D { 2 C([0, 1], X) W  (0)D x0,  (1)D x1},

then c � �
�

and c is a critical value of'.

In this work, in addition to the Sobolev spaceW1,p
0 (�), we will also use the Banach

spaceC1
0( N�) D {u 2 C1( N�) W uj

��

D 0}. This is an ordered Banach space with posi-
tive cone

C
C

D {u 2 C1
0( N�) W u(z) � 0, for all z 2 N�}.
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This cone has a nonempty interior given by

int C
C

D

�

u 2 C
C

W u(z) > 0 for all z 2 �,
�u

�n
(z) < 0 for all z 2 ��

�

,

with n( � ) being the outward unit normal on��.

By k � k we denote the norm of the Sobolev spaceW1,p
0 (�). By virtue of Poincare

inequality, we have

kuk D kDukp for all u 2 W1,p
0 (�).

By k �k we will also denote theRN-norm. However, no confusion is possible since
it will always be clear from the context which norm we use.

For x 2 R, we setx� D max{�x, 0} and then foru 2W1,p
0 (�) we defineu�( � ) D

u( � )�. We know that

u� 2 W1,p
0 (�), juj D uC C u� and u D uC � u�.

By j � jN we denote the Lebesgue measure onRN .
For h W � � R! R a measurable function (for example a Carathéodory function),

we define

Nh(u)( � ) D h( � , u( � )) for all u 2 W1,p
0 (�)

(the Nemytskii or superposition operator corresponding toh).
Now, let # 2 C1(0,1) be such that

(2)
0<

t# 0(t)

#(t)
� c0 for all t > 0 and some c0 > 0

and c1t p�1
� #(t) � c2(1C t p�1) for all t > 0 and some c1, c2 > 0.

Below we have gathered the hypotheses on the dataa(y), �(z), f (z, x) of problem
(1) which will be used in this work.

The hypotheses on the mapy! a(y) involved in the differential operator are the
following:

H(a). a(y) D a0(kyk)y for all y 2 RN with a0(t) > 0 for all t > 0 and
(i) a0 2 C1(0,1), t ! a0(t)t is strictly increasing,a0(t) ! 0 as t ! 0C and
limt!0C ta00(t)=a0(t) D c > �1;
(ii) kra(y)k � c3#(kyk)=kyk for all y 2 RN

n {0} and somec3 > 0;
(iii) (ra(y)� , � )

R

N
� (#(kyk)=kyk)k�k2 for all y 2 RN

n {0}, all � 2 RN .
(iv) if G0(t) D

R t
0 a0(s)s ds for all t � 0, then

pG0(t) � a0(t)t2
� Oc for all t � 0 and some Oc > 0.

The hypotheses on the weight function�( � ) are the following:
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H(�). � 2 C(�) \ L1(�), �(z) � 0 for all z 2 �, � ¤ 0.
The hypotheses on the perturbationf (z, x) are the following:
H( f ). f W � � R ! R is a continuous function s.t. for allz 2 �, f (z, 0) D 0,

f (z, x) � 0 for all x � 0 and
(i) f (z, x) � �(z)(1C xr�1) for all z 2 �, all x � 0 and with� 2 L1(�)

C

,

p < r < p� D

8

<

:

N p

N � p
if p < N,

C1 if p � NI

(ii) if F(z, x) D
R x

0 f (z, s) ds, then

lim
x!C1

F(z, x)

xp
D C1 uniformly for all z 2 �I

(iii) there exist� 2 ((r � p) max{1, N=p}, p�) and �0 > 0 s.t.

�0 � lim inf
x!C1

f (z, x)x � pF(z, x)

x�
uniformly for all z 2 �I

(iv) there exists� 2 C(�), �(z) � 0 for all z 2 �, with �(z) � (c1=(p�1))O�1(p) for all
z 2 �, � ¤ (c1=(p� 1))O�1(p) and

lim sup
x!0C

f (z, x)

xp�1
� �(z) uniformly for all z 2 �.

In Section 4, we consider equations driven by thep-Laplacian with a (p � 1)-
sublinear perturbationf (z, x). In that case, our conditions onf (z, x) are the following:

H( f )0. f W ��R! R is a continuous function s.t.f (z, 0)D 0 for all z 2 � and
(i) for every � > 0, there exists�

�

2 L1

C

(�) s.t.

j f (z, x)j � �
�

(z) for a.a. z 2 �, all 0� x � �I

(ii) there exist� 2 L1

C

(�) and O� > 0 s.t.

�(z) � O�1(p) a.e. in �, � ¤

O

�1(p),

�(z) � lim inf
x!C1

f (z, x)

xp�1
� lim sup

x!C1

f (z, x)

xp�1
� O� uniformly for a.a. z 2 �.

(iii) there exist 0< Æ0 < �0 s.t.

0� f (z, x) for all z 2 �, all x 2 [0, Æ0],

�(z)��0 C f (z, �0) < 0 for all z 2 �I
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(iv) for every � > 0, there existsO�
�

> 0 s.t. for a.a.z 2 �, x ! f (z, x) C O�
�

xp�1 is
nondecreasing on [0,�].

REMARK . Evidently G0( � ) is strictly convex and strictly increasing. We set
G(y) D G0(kyk) for all y 2 RN . We have

rG(y) D G0

0(kyk)
y

kyk
D a0(kyk)y D a(y) for all y 2 RN

n {0}.

Therefore,G( � ) is the primitive ofa( � ), it is convex andG(0)D 0. Hence

(3) G(y) � (a(y), y)
R

N for all y 2 RN .

From hypothesesH (a) and (2), (3), we obtain easily the following lemma which
summarizes the main properties of the mapa( � ).

Lemma 2. If hypotheses H(a) hold, then
(a) y! a(y) is maximal monotone and strictly monotone;
(b) ka(y)k � c4(1C kykp�1) for all y 2 RN and some c4 > 0;
(c) (a(y), y)

R

N
� (c1=(p� 1))kykp for all y 2 RN .

From this lemma and the integral form of the mean value theorem, we deduce the
following growth properties of the primitiveG( � ).

Corollary 3. If hypotheses H(a) hold, then

c1

p(p� 1)
kykp

� G(y) � c5(1C kykp) for all y 2 RN and some c5 > 0.

EXAMPLE . The following maps satisfy hypothesesH (a):
(a) a(y) D kykp�2y with 1< p <1.

Then the corresponding differential operator is thep-Laplacian

1pu D div(kDukp�2Du) for all u 2 W1,p
0 (�).

(b) a(y) D kykp�2yC kykq�2y with 1< q < p, p � 2.
Then the corresponding differential operator is the sum of ap-Laplacian and a

q-Laplacian (a (p, q)-differential operator)

1puC1qu for all u 2 W1,p
0 (�).

This operator arises in quantum physics (see Benci–D’Avenia–Fortunato–Pisani [1])
and in plasma physics (see Cherfils–Il’yasov [3]).
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(c) a(y) D (1C kyk2)(p�2)=2y with 2� p <1.
Then the corresponding differential operator is the generalized p-mean curvature

operator defined by

div[(1C kDuk2)(p�2)=2Du] for all u 2 W1,p
0 (�).

(d) a(y) D kykp�2yC ln(1C kykp�2)y with 1< p <1.

Let AW W1,p
0 (�)!W�1,p0(�) D W1,p

0 (�)� (1=pC1=p0 D 1) be the nonlinear map
defined by

(4) hA(u), yi D
Z

�

(a(Du), Dy)
R

N dz for all u, y 2 W1,p
0 (�).

From Papageorgiou–Rocha–Staicu [21], we have:

Proposition 4. The nonlinear map AW W1,p
0 (�) ! W�1,p0(�) defined by(4) is

bounded(maps bounded sets to bounded sets), continuous and strictly monotone(hence

maximal monotone too) and of type(S)
C

, i.e., if un
w

�! u in W1,p
0 (�) and

lim sup
n!C1

hA(un), un � ui � 0,

then un ! u in W1,p
0 (�).

REMARK . Since our aim is to produce positive solutions and the abovehypoth-
eses concern the positive semiaxisR

C

D [0, C1), by truncating f (x, � ) if necessary,
we may and will assume thatf (z, x)D 0 for all z2 � and all x � 0. From hypotheses
H ( f ) (ii), (iii) it follows that

lim sup
x!C1

f (z, x)

xp�1
D C1 uniformly for all z 2 �.

This means that the perturbationf (z, � ) is (p�1)-superlinear nearC1. However,
note that we do not employ the usual in such cases Ambrosetti–Rabinowitz condition
(the AR-condition for short). We recall that the AR-condition (unilateral version) says
that there exist� > p and M > 0 s.t.

(5) 0< �F(z, x) � f (z, x)x for all z 2 �, all x � M

and inf
�

F( � , M) > 0.
A direct integration of (5), leads to the following growth estimate

(6) c6x� � F(z, x) for all z 2 �, all x � M, and some c6 > 0.
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Evidently (6) implies that hypothesisH ( f ) (ii) holds. Also, if the AR-condition
holds, we may assume that� > (r � p) max{1, N=p}. Then we have

f (z, x)x � pF(z, x)

x�
D

f (z, x)x � �F(z, x)

x�
C (� � p)

F(z, x)

x�

� (� � p)c6 (see (5), (6))

) lim inf
x!C1

f (z, x)x � pF(z, x)

x�
� (� � p)c6 uniformly for all z 2 �.

So, hypothesisH ( f ) (ii) holds. Hence our “superlinearity” condition is more gen-
eral than the AR-condition and permits the use of superlinear perturbations with “slower”
growth nearC1. We mention, that similar conditions were also employed by Costa–
Magalhães [5], Fei [6] and Li–Wu–Zhou [19].

EXAMPLE . The following functions satisfy hypothesesH ( f ) (for the sake of sim-
plicity we drop thez-dependence):

f1(x) D #xp�1
C x��1 for all x � 0 with # 2 (0, O�1(p)) and � 2 (p, p�),

f2(x) D xp�1 ln(1C x) for all x � 0.

Note that f2 does not satisfy the AR-condition.

REMARK . In the case of hypothesesH ( f )0, again without any loss of generality,
we assume thatf (z, x) D 0 for all z 2 �, all x � 0. HypothesisH ( f )0 (ii) classifies
the perturbation as (p � 1)-sublinear. HypothesisH ( f )0 (iii) expresses the oscillatory
behavior near zero.

EXAMPLE . The following function satisfies hypothesesH ( f )0. As before, for the
sake of simplicity, we drop thez-dependence

f (x) D

8

�

�

<

�

�

:

0 if x < 0,

xp�1
� cx#�1 if 0 � x � 1,

�xp�1
� Ocxq�1 if 1 < x

with 1< q < p < # , c � k�k
1

C 1, � > O�1(p) and OcD �C c� 1> 0.

Next, let us recall some facts about the spectrum of (�1p, W1,p
0 (�)). So, letm 2

L1(�)
C

, m¤ 0 and consider the following weighted nonlinear eigenvalueproblem

(

�1pu(z) D �m(z)ju(z)jp�2u(z) a.e. in �,

uj
��

D 0.
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There is a smallest eigenvalueO�1(p, m) which is positive, isolated (i.e., there exists
" > 0 s.t. (O�1(p, m), O�1(p, m)C ") contains no eigenvalue) and simple (i.e., ifu, v are
eigenfunctions corresponding toO�1(p, m) > 0, thenuD �v, � ¤ 0). Also, O�1(p, m) > 0
admits the following variational characterization

(7) O

�1(p, m) D inf

�

kDukp
p

R

�

mjujp dz
W u 2 W1,p

0 (�), u ¤ 0

�

.

The infimum in (7) is realized on the corresponding one-dimensional eigenspace.
From (7) it is clear that the eigenfunctions corresponding to O�1(p, m) do not change sign.
By Ou1(p, m) we denote the positiveL p-normalized eigenfunction (i.e.,kOu1(p, m)kp D 1).
From the nonlinear regularity theory and the nonlinear maximum principle (see Gasiński–
Papageorgiou [8] (pp. 737–738)), we haveOu1(p, m) 2 int C

C

. Note that�1(p, m) is the
only eigenvalue, with eigenfunctions of constant sign. Ifm(z) � m0(z) a.e. in�, m ¤
m0, then O�1(p, m0) < O�1(p, m). Finally, if m � 1, then we writeO�1(p, 1)D O�1(p) and
Ou1(p, 1)D Ou1(p).

3. The nonhomogeneous problem

We consider the following auxiliary Dirichlet problem:

(8) � div a(Du(z)) D �(z)u(z)� in �, uj
��

D 0, u � 0,  2 (0, 1).

Proposition 5. If hypotheses H(a), H (�) hold, then problem(8) has a solution
u 2 int C

C

.

Proof. For everyn � 1, we consider the following perturbed version of prob-
lem (8)

(9) � div a(Dun(z)) D �(z)

�

un(z)C
1

n

�

�

in �, unj�� D 0, un � 0,

n � 1,  2 (0, 1).
First we solve problem (9). To this end, letw 2 L p(�) and let y D E(w) be the

unique solution of the following Dirichlet problem

(10) � div a(Dy(z)) D �(z)

�

jw(z)j C
1

n

�

�

in �, yj
��

D 0, y � 0,

 2 (0, 1).
From the nonlinear regularity theory (see Ladyzhenskaya–Ural’tseva [15] (p. 286))

and Lieberman [18] (p. 320)), we have thaty 2 C
C

n {0}. In fact the nonlinear strong
maximum principle of Pucci–Serrin [23] (p. 111), implies that y(z) > 0 for all z 2 �.
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Therefore, we can apply the nonlinear boundary point theorem of Pucci–Serrin [23]
(p. 120) and we infer thaty 2 int C

C

. On (10) we act withy and using Lemma 2 (c),
we obtain

c1

p� 1
kDykp

p �

Z

�

�y

(jwj C 1=n)
dz� n k�k

1

Z

�

y dz (see H (�))

)

c1

p� 1
O

�1(p)kykp
p � c7n kykp for some c7 > 0 (see (7))

) kykp � O�n for some O�n > 0, n � 1.(11)

Let NBL p

O�n
D {u 2 L p(�) W kukp � O�n} and consider the mapE W NBL p

O�n
!

NBL p

O�n
(see

(11)). Using the Sobolev embedding theorem and the previouscalculations, we see that
E is compact. Then the Schauder fixed point theorem implies that for every n � 1, we
can findun 2 NBL p

O�n
s.t. un D E(un) for all n � 1. We have

� div a(Dun(z)) D �(z)

�

un(z)C
1

n

�

�

in �, unj�� D 0, un � 0,

 2 (0, 1)

) un 2 int C
C

(as above).

Claim. {un}n�1 � int C
C

is an increasing sequence.

For everyn � 1, we have

(12) A(un) D �

�

un C
1

n

�

�

� �

�

un C
1

nC 1

�

�

in W�1,p0(�).

So, for everyn � 1, we have

(13)

A(un) � A(unC1)

� �

�

1

(un C 1=(nC 1))
�

1

(unC1C 1=(nC 1))

�

(see (12))

D �

�

(unC1C 1=(nC 1)) � (un C 1=(nC 1))

(un C 1=(nC 1)) (unC1C 1=(nC 1))

�

in W�1,p0(�).

On (13) we act with (un � unC1)C 2 W1,p
0 (�) and obtain

0� hA(un) � A(unC1), (un � unC1)Ci (see Lemma 2 (a))

D

Z

�

�

�

(unC1C 1=(nC 1)) � (un C 1=(nC 1))

(un C 1=(nC 1)) (unC1C 1=(nC 1))

�

(un � unC1)C dz

) j{un > unC1}jN D 0

) un � unC1 for all n � 1.
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This proves the claim.
By virtue of the claim, we have

(14) A(un) D �

�

un C
1

n

�

�

� �u�1 in W�1,p0(�) for all n � 1.

Sinceu1 2 intC
C

, we can findt 2 (0,1) small s.t. (t Ou1(p)1=q) � u1 (see Filippakis–
Kristaly–Papageorgiou [7], Lemma 3.3). Then forq > max{N=p, 1}, we have

(15) �u�1 � t��( Ou1(p)1=q)� � t� k�k
1

( Ou1(p)1=q)� 2 Lq(�)

(see Lazer–McKenna [17]).
From (14), (15) and Ladyzhenskaya–Ural’tseva [15] (p. 286), we know that we can

find M1 > 0 s.t. kunk1 � M1 for all n � 1. Then from Lieberman [18], we can find
M2 > 0 and� 2 (0, 1) s.t.

(16) un 2 C1,�
0 ( N�) and kunkC1,�

0 ( N�) � M2 for all n � 1.

Exploiting the compact embedding ofC1,�
0 ( N�) into C1

0( N�), from (16) and the claim
we have

(17) un ! u in C1
0( N�) and u 2 int C

C

.

Recall that

A(un) D �

�

un C
1

n

�

�

for all n � 1.

So, passing to the limit asn!1 and using (17), we obtain

A(u) D �u�

) u 2 int C
C

is a solution of (8).

Since f � 0 (seeH ( f )), we have

(18) A(u) � �u� C N f (u) in W�1,p0(�).

Next note that by virtue of hypothesesH ( f ) (i), (iv), given " > 0, we can find
�

"

> 0 s.t.

(19) f (z, x) < (�(z)C ")xp�1
C �

"

xr�1 for all z 2 �, all x > 0.
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From (15) and (17), we have that�u� 2 Lq(�). Therefore, we consider the
following auxiliary Dirichlet problem

(20)

8

<

:

� div a(Du(z)) D �(z)u(z)� C (�(z)C ")ju(z)jp�2u(z)
C �

"

ju(z)jr�2u(z) in �,
uj
��

D 0, u � 0,  2 (0, 1).

9

=

;

Proposition 6. If hypotheses H(a), H (�) hold, then for " > 0 and k�k
1

small,
problem (20) has a solutionNu 2 int C

C

.

Proof. Let W W1,p
0 (�)! R be theC1-functional defined by

 (u) D
Z

�

G(Du(z)) dz�
1

p

Z

�

(�(z)C ")uC(z)p dz�
�

"

r
kuCkrr

�

Z

�

�(z)

u(z)
uC(z) dz, for all u 2 W1,p

0 (�).

In problem (20) the reaction� (z,x) is the continuous on��R function defined by

� (z, x) D (�(z)C ")(xC)p�1
C �

"

(xC)r�1
C �(z)u(z)� .

Clearly this function satisfies the unilateral AR-condition (see (5)) and so it follows
easily that

(21)  satisfies the C-condition.

By virtue of Corollary 3, we have

 (u) �
c1

p(p� 1)
kDukp

p �
1

p

Z

�

(�(z)C ")jujp dz�
�

"

r
kukrr �

Z

�

�(z)

u(z)
juj dz

�

1

p

�

�

�

�

"

O

�1(p)

�

kukp
� c8(kukr C k�k

1

kuk)

for some��, c8 > 0.
Here we have used Lemma 5.1.3 (p. 356) of Papageorgiou–Kyritsi-Yiallourou [20],

the fact thatu� 2 Lq(�) (see (15), (17)) and the claim in the proof of Proposition 5).
Choosing" 2 (0, �� O�1(p)), we have

(22)
 (u) � c9kuk

p
� c8(kukr C k�k

1

kuk) for some c9 > 0

D [c9 � c8(kukr�p
C k�k

1

kuk1�p)]kukp.

Let �(t) D t r�p
Ck�k

1

t1�p, t > 0. Evidently,� 2 C1(0,1) and since 1< p< r ,
we see that

�(t)!C1 as t ! 0C and �(t)!C1 as t !C1.
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Therefore we can findt0 2 (0,C1) s.t.

�(t0) D inf[�(t) W t � 0]

) �

0(t0) D (r � p)t r�p�1
0 C (1� p)k�k

1

t�p
0 D 0

) t0 D

�

(p� 1)k�k
1

r � p

�1=(r�1)

.

Then�(t0)! 0 ask�k
1

! 0C. So, for k�k
1

small we have

�(t0) <
c9

c8

and this by virtue of (22) implies that

(23)  (u) � �0 > 0 for all kuk D t0.

Finally hypothesisH ( f ) (iii) implies that

(24)  (t Ou1(p))! �1 as t !C1.

From (21), (23) and (24) we see that we can apply Theorem 1 (themountain pass

theorem) and findNu 2 W1,p
0 (�) s.t. �0 �  ( Nu) and

 

0( Nu) D 0

) A( Nu) D �u� C (# C ")( NuC)p�1
C �

"

( NuC)r�1(25)

) Nu ¤ 0.

On (25) we act withNu 2 W1,p
0 (�) and obtainNu � 0, Nu ¤ 0.

Note that

A(u) D �u�

� �u� C (# C ") Nup�1
C �

"

Nur�1
D A( Nu) in W�1,p(�),

) hA(u) � A( Nu), (u � Nu)Ci � 0

) u � Nu (see Lemma 2 (a)).

From Ladyzhenskaya–Ural’tseva [15] (p.286), we haveNu 2 L1(�). Let d(z) D
d(z, ��). We can findc10 > 0 s.t.

0� Nu(z) � c10d(z) for all z 2 N� (see Guo [12]).

Recall thatu 2 int C
C

. So, we can findc11 > 0 s.t.

c11d(z) � u(z) for all z 2 N�.



NONLINEAR ELLIPTIC EQUATIONS WITH SINGULAR REACTION 501

We have

u(z)� �
1

c11

d(z)� for all z 2 N�.

Then from Giacomoni–Schindler–Takáč [11] we infer that

Nu 2 C
C

n {0}.

Finally, invoking the boundary point theorem of Pucci–Serrin [23] (p. 120), we
conclude thatNu 2 int C

C

.

By virtue of (19) and since� Nu� � �u� , we have

(26) A( Nu) � � Nu� C N f ( Nu) in W�1,p0(�).

Now we are ready for the first multiplicity theorem.

Theorem 7. If hypotheses H(a), H (�) and H( f ) hold, then for k�k
1

small,
problem (1) has at least two nontrivial solutions

u0, u1 2 int C
C

, u0 � u1, u0 ¤ u1.

Proof. We consider the following truncation of the reactionin problem (1):

(27) k(z, x) D

8

�

�

<

�

�

:

�(z)u(z)� C f (z, u(z)) if x < u(z),

�(z)x� C f (z, x) if u(z) � x � Nu(z),

�(z) Nu(z)� C f (z, Nu(z)) if Nu(z) < x.

Evidently k(z, x) is continuous on��R. Set K (z, x) D
R x

0 k(z, s) ds and consider

the functional� W W1,p
0 (�)! R defined by

� (u) D
Z

�

G(Du(z)) dz�
Z

�

K (z, u(z)) dz for all u 2 W1,p
0 (�).

Claim 1. � 2 C1(W1,p
0 (�)) and � 0(u) D A(u) � Nk(u) for all u 2 W1,p

0 (�).

To establish Claim 1, it suffices to show that�0 2 C1(W1,p
0 (�)), where

�0(u) D
Z

�

K0(z, u(z)) dz for all u 2 W1,p
0 (�)
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where K0(z, x) D
R x

0 k0(z, s) ds with

k0(z, x) D

8

�

�

<

�

�

:

�(z)u(z)� if x < u(z),

�(z)x� if u(z) � x � Nu(z),

�(z) Nu(z)� if Nu(z) < x

and that� 00(u) D Nk0(u) for all u 2 W1,p
0 (�).

To this end, letu, y 2 W1,p
0 (�) and � ¤ 0. From the integral form of the mean

value theorem, we have

(28)
1

�

[�0(uC �y) � �0(u)] D
Z

�

Z 1

0
k0(z, uC s�y) ds y dz.

We know that

(29)
Z 1

0
k0(z, uC s�y) ds! k0(z, u) for a.a. z 2 �, as �! 0C.

For j�j small, we have

(30)

Z 1

0
k0(z, uC s�y) ds

� 2k�k
1

u(z)� C
Z 1

0
ju(z)C s�y(z)j� dsX{u�u�Nu}(z)

� 2k�k
1

u(z)� C c12

�

max
0�s�1
ju(z)C s�y(z)j�

�

X{u�u�Nu}(z)

for some c12 > 0 (see Taká̌c [25] (p. 233))

� c13u(z)� for some c13 > 0

� c14d(z)� for some c14 > 0, all z 2 �.

Note that

(31) c14d(z)� y(z) D c14d(z)1� y(z)

d(z)
� c15

y(z)

d(z)

for all z 2 � and somec15 > 0.
Using Hardy’s inequality (see Brezis [2] (p. 313)), we have that

y

d
2 L p(�).
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Then from (29), (30), (31) we see that we can apply the Lebesgue dominated con-
vergence theorem and obtain

h�

0

0(u), yi D
Z

�

k0(z, u)y dz for all y 2 W1,p
0 (�)

(see (28) and recall thatC1
0( N�) is dense inW1,p

0 (�))

) �

0

0(u) D Nk0(u) for all u 2 W1,p
0 (�).

This proves Claim 1.
From (27) and since�( �)= Nu( �) � �( �)=u( �) 2 Lq(�), it follows that the functional

� ( � ) is coercive. Also, using the Sobolev embedding theorem, wecan easily see that
� ( � ) is sequentially weakly lower semicontinuous. So, by the Weierstrass theorem, we

can findu0 2 W1,p
0 (�) s.t.

(32) � (u0) D inf[� (u) W u 2 W1,p
0 (�)].

From (32) and Claim 1, it follows that

�

0(u0) D 0

) A(u0) D Nk(u0).(33)

On (33) we act with (u � u0)C 2 W1,p
0 (�). Then

hA(u0), (u � u0)Ci D
Z

�

k(z, u0)(u � u0)C dz

D

Z

�

[�u� C f (z, u)](u � u0)C dz (see (27))

� hA(u), (u � u0)Ci (see (8) and recallf � 0)

)

Z

{u�u0}

(a(Du) � a(Du0), Du � Du0)
R

N dz� 0

) j{u � u0}jN D 0 (see Lemma 2 (a)), henceu � u0.

Next on (33) we act with (u0 � Nu)C 2 W1,p
0 (�). We have

hA(u0), (u0 � Nu)Ci D
Z

�

k(z, u0)(u0 � Nu)C dz

D

Z

�

[� Nu� C f (z, Nu)](u0 � Nu)C dz (see (27))

� hA( Nu), (u0 � Nu)Ci (see (26))

)

Z

{u0> Nu}

(a(Du0) � a(D Nu), Du0 � D Nu)
R

N dz� 0
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) j{u0 > Nu}jN D 0 (see Lemma 2(a)), henceu0 � Nu.

So we have proved that

u0 2 [u, Nu] D {u 2 W1,p
0 (�) W u(z) � u(z) � Nu(z) a.e. in�}.

Then from (27) and (33) we infer thatu0 is a nontrivial positive solution of prob-
lem (1). As before (see the proof of Proposition 6), using theregularity result of [18]
we have thatu0 2 [u, Nu] \ int C

C

.
Using u0 2 int C

C

, we introduce the following truncation of the reaction in prob-
lem (1)

(34) e(z, x) D

(

�(z)u0(z)� C f (z, u0(z)) if x < u0(z),

�(z)x� C f (z, x) if u0(z) � x.

Evidently e(z,x) is continuous on��R. We setE(z,x)D
R x

0 e(z,s)ds and consider

the functional� W W1,p
0 (�)! R defined by

�(u) D
Z

�

G(Du(z)) dz�
Z

�

E(z, u(z)) dz for all u 2 W1,p
0 (�).

As in the proof of Claim 1, we show that� 2 C1(W1,p
0 (�)) and

(35) �

0(u) D A(u) � Ne(u) for all u 2 W1,p
0 (�).

Claim 2. The functional� satisfies the C-condition.

Let {un}n�1 � W1,p
0 (�) be a sequence s.t.

(36) j�(un)j � M3 for some M3 > 0, all n � 1

and

(37) (1C kunk)�
0(un)! 0 in W�1,p0(�) as n!1.

From (37) we have

jh�

0(un), hij �
"nkhk

1C kunk
for all h 2 W1,p

0 (�) with "n # 0C

)

�

�

�

�

hA(un), hi �
Z

�

e(z, un)h dz

�

�

�

�

�

"nkhk

1C kunk
for all n � 1(38)

(see (35)).
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In (38), we chooseh D �u�n 2 W1,p
0 (�). Then using Lemma 2 (c), we have

c1

p� 1
kDu�n k

p
p � c16ku

�

n k for some c16 > 0, all n � 1

(note thatu�0 � u� 2 Lq(�)). Therefore

(39) {u�n }n�1 � W1,p
0 (�) is bounded.

Next in (38) we chooseh D uCn 2 W1,p
0 (�). Then

(40) �

Z

�

(a(DuCn ), DuCn )
R

N dzC
Z

�

e(z, uCn )uCn dz� "n, for all n � 1.

On the other hand, from (36) and (39), we have

(41)
Z

�

pG(DuCn ) dz�
Z

�

pE(z, uCn ) dz� M4,

for someM4 > 0, all n � 1.
We add (40) and (41) and obtain

Z

�

[ pG(DuCn ) � (a(DuCn ), DuCn )
R

N ] dz

C

Z

�

[e(z, uCn )uCn � pE(z, uCn )] dz� M5 for some M5 > 0, all n � 1

)

Z

{un�u0}

[e(z, uCn )uCn � pE(z, uCn )] dz� M6

for someM6 > 0, all n � 1 (see (34) and hypothesisH (a) (iv))

)

Z

{un�u0}

[ f (z, uCn )uCn � pF(z, uCn )] dz� M7,(42)

for someM7 > 0, all n � 1 (see (34) and recall thatu�0 � u� 2 Lq(�)).
By virtue of hypothesesH ( f ) (i), (iii), we can find �1 2 (0, �0) and c17 > 0 s.t.

(43) �1x� � c17 � f (z, x)x � pF(z, x) for a.a. z 2 �, all x � 0.

Using (43) in (42), we obtain

�1

Z

{un�u0}

(uCn )� dz� M8, for some M8 > 0, all n � 1

) {uCn }n�1 � L� (�) is bounded.(44)
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From hypothesisH ( f ) (iii) it is clear that without any loss of generality, we may
assume that� � r < p�.

First supposep ¤ N. We can findt 2 [0, 1) s.t.

(45)
1

r
D

1� t

�

C

t

p�
.

By virtue of the interpolation inequality (see, for example, Gasínski–Papageorgiou
[8] (p. 905)), we have

kuCn kr � ku
C

n k
1�t
�

� kuCn k
t
p�

) kuCn k
r
r � M9ku

C

n k
tr
p� , for some M9 > 0, all n � 1 (see (44)).(46)

In (38) we chooseh D uCn 2W1,p
0 (�) and using Lemma 2 (c) and (34), we obtain

c1

p� 1
kDuCn k

p
p � M10C

Z

{un�u0}

f (z, uCn )uCn dz for some M10 > 0, all n � 1

� M11(1C ku
C

n k
r
r ) for some M11 > 0, all n � 1 (seeH ( f ) (i))

� M12(1C ku
C

n k
tr ) for some M12 > 0, all n � 1

(47)

(see (46)).
The choice of� (seeH ( f ) (iii)) and (45), imply thattr < p. Hence, from (47) it

follows that

(48) {uCn }n�1 � W1,p
0 (�) is bounded.

If p D N, then p� D C1 and by the Sobolev embedding theorem,W1,p
0 (�) ,!

Ls(�) for all s 2 [1, C1). So, the above argument works and we reach (48), if we
replacep� by s> r large.

From (39) and (48) we infer that

{un}n�1 � W1,p
0 (�) is bounded.

Therefore, we may assume that

(49) un
w

�! u in W1,p
0 (�) and un ! u in Ls(�)

with s D r if N � p and s > max{r, N=(N � p)}, if N > p. In (38) we choose

h D un � u 2 W1,p
0 (�), pass to the limit asn!1 and use (49). Then

lim
n!C1

hA(un), un � ui D 0

) un ! u in W1,p
0 (�) as n!1 (see Proposition 4).
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This proves Claim 2.
From (34) and hypothesisH ( f ) (ii), we have

(50) �(t Ou1(p))! �1 as t !C1.

Recall thatu0 � Nu. We may assume that there is no solution of (1) distinct fromu0

in the order interval [u0, Nu] D {u 2W1,p
0 (�)W u0(z) � u(z) � Nu(z) a.e. in�}. Otherwise,

we already have the desired second positive solution of (1) and so we are done.
We introduce the following truncation ofe(z, � ):

(51) e0(z, x) D

(

e(z, x) if x � Nu(z),

e(z, Nu(z)) if Nu(z) < x.

This is a continuous function. We setE0(z, x) D
R x

0 e0(z, s) ds and consider the

C1-functional�0 W W1,p
0 (�)! R defined by

�0(u) D
Z

�

G(Du(z)) dz�
Z

�

E0(z, u(z)) dz for all u 2 W1,p
0 (�).

From (51) it is clear that�0( � ) is coercive. Also, it is sequentially weakly lower

semicontinuous. So, we can findOu0 2 W1,p
0 (�) s.t.

�0( Ou0) D inf[�0(u) W u 2 W1,p
0 (�)]

) �

0

0( Ou0) D 0

) A( Ou0) D Ne0( Ou0).(52)

Reasoning as in the first part of the proof, using (26) and the fact that u0 is a
solution of (1), we show that

Ou0 2 [u0, Nu](53)

) Ou0 is a solution of (1) (see (51) and (52))

) Ou0 D u0 (see (53)).

Next we show thatu0 2 intC1
0( N�)[0, Nu]. To this end, we have the following inequalities

� div a(Du0(z)) � �(z)u0(z)�

D f (z, u0(z))

< (�(z)C ")u0(z)p�1
C �

"

u0(z)r�1 (see (19))

D � div a(D Nu(z)) � �(z) Nu(z)� a.e. in �.
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Invoking the strong comparison principle of Giacomoni–Schindler–Taká̌c [11] (The-
orem 2.3) we have

Nu � u0 2 int C
C

) u0 2 intC1
0( N�)[0, Nu].

Note that

�j[0, Nu] D �0j[0, Nu] (see (34) and (51))

) u0 is a localC1
0( N�)-minimizer of �

) u0 is a local W1,p
0 (�)-minimizer of � (see [11]).

So, we can find� > 0 s.t.

(54) �(u0) < inf[�(u) W ku � u0k D �] D �
�

(see [7]).

Then (50), (54) and Claim 2, permit the use of Theorem 1 (the mountain pass

theorem). So, we can findu1 2 W1,p
0 (�) s.t.

(55) �

0(u1) D 0 and �

�

� �(u1).

From (54) and (55), we see thatu1 ¤ u0. Also, from (55), we have

A(u1) D Ne(u1).

Acting with (u0 � u1)C 2 W1,p
0 (�) and using (34), we show that

u1 2 [u0) D {u 2 W1,p
0 (�) W u0(z) � u(z) a.e. in�}

) u1 is a solution of (1) (see (34)) andu1 � u0.

As before, we show thatu1 2 int C
C

.

4. The homogeneous problem

In this section we consider problem (1) with the general nonhomogeneous differ-
ential operator replaced by thep-Laplacian (which is (p � 1)-homogeneous). So, the
problem under consideration, is now the following:

(56) �1pu(z) D �(z)u(z)� C f (z, u(z)) in �, uj
��

D 0, u � 0,  2 (0, 1).

For this problem, we will consider a (p� 1)-sublinear perturbationf (z, x) which
can have partial interaction withO�1(p) > 0 at C1 (nonuniform nonresonance). Also,
in this case, we do not require the positivity off and instead for the reaction we as-
sume an oscillatory behavior near zero. Finally, in the multiplicity theorem, we do not
impose any restriction onk�k

1

.
The new hypotheses on the perturbationf (z, x) are H ( f )0 (see Section 2, p. 492).
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Theorem 8. If hypotheses H(�), H ( f )0 hold, then problem(56) admits at least
two positive solutions

u0, u1 2 int C
C

, u0 � u1, u0 ¤ u1.

Proof. Let u 2 int C
C

be the solution of the auxiliary problem (8) produced in
Proposition 5. Lett 2 (0, 1) be small s.t.tu(z) � Æ0 for all z 2 N�, with Æ0 > 0 as in
hypothesisH ( f )0 (iii). We set Ou D tu 2 int C

C

and we have

(57)
�1p Ou(z) D �t p�1

1pu(z) D t p�1
�(z)u(z)� (see Proposition 5)

� �(z)u(z)� C f (z, Ou(z)) a.e. in �

(see H ( f )0 (iii) and recall thatt 2 (0, 1)).
Also, we have

(58) �1p�0 D 0� �(z)��0 C f (z, �0) a.e. in (seeH ( f )0 (iii))

and Ou(z) < �0 for all z 2 N�.
We consider the following truncation of the reaction in problem (56):

(59) g(z, x) D

8

�

�

<

�

�

:

�(z) Ou(z)� C f (z, Ou(z)) if x < Ou(z),

�(z)x� C f (z, x) if Ou(z) � x � �0,

�(z)��0 C f (z, �0) if �0 < x.

This is a continuous function. We setG(z, x) D
R x

0 g(z, s) ds and consider the

functional W W1,p
0 (�)! R defined by

 (u) D
1

p
kDukp

p �

Z

�

G(z, u(z)) dz for all u 2 W1,p
0 (�).

As in Claim 1 in the proof of Theorem 7, we can check that

 2 C1(W1,p
0 (�)) and  

0(u) D A(u) � Ng(u) for all u 2 W1,p
0 (�).

From (59) it is clear that ( � ) is coercive. Also, it is sequentially weakly lower

semicontinuous. Therefore, we can findu0 2 W1,p
0 (�) s.t.

 (u0) D inf[ (u) W u 2 W1,p
0 (�)]

)  

0(u0) D 0

) A(u0) D Ng(u0).(60)



510 N.S. PAPAGEORGIOU AND G. SMYRLIS

On (60) first we act with (Ou�u0)C 2W1,p
0 (�) and then with (u0��0)C 2W1,p

0 (�).
Using (57) and (58) and the nonlinear regularity result of Lieberman [18], we have

u0 2 [u, �0] D {u 2 W1,p
0 (�) W u(z) � u(z) � �0 a.e. in�}, u0 2 int C

C

.

Let � D �0 and let O�
�

> 0 be as postulated by hypothesisH ( f )0 (iv). We have

(61)

�1pu0(z) � �(z)u0(z)� C O�
�

u0(z)p�1

D f (z, u0(z))C O�
�

u0(z)p�1

� f (z, �0)C O�
�

�

p�1
0 (see H ( f )0 (iv) and recallu0(z) � �0 for all z 2 N�)

< ��(z)��0 C
O

�

�

�

p�1
0 a.e. in �.

Let D0 D {z 2 � W u0(z) D �0} and D1 D {z 2 � W Du0(z) D 0}. Let w D �0� u0 2

C1( N�). Thenw(z) � 0 for all z 2 N�.
Let Oz2 D0. Thenw( � ) attains its minimum atOz and soDw(Oz)D 0) Du0(Oz)D 0,

henceOz 2 D1. So, we have proved thatD0 � D1.
Sinceu0 2 int C

C

, it follows that D1 is a compact subset of�. The setD0 being
a closed subset of the compact setD1 is itself compact. Hence, we can find�1 � �

open s.t.

(62) D0 � �1 � N�1 � �.

Let h1(z)D f (z,u0(z))C O�
�

u0(z)p�1 andh2(z)D ��(z)��0 C
O

�

�

�

p�1
0 . Thenh1,h2 2

C(�) and h1(z) < h2(z) for all z 2 � (see (61)). So, we can find" 2 (0, 1) small s.t.

u0(z)C " � �0 for all z 2 ��1 (see (62)), h1(z)C " � h2(z) for all z 2 N�1.
(63)

We chooseÆ D Æ(") 2 (0, 1) s.t.

(64) � jsp�1
� (s0)p�1

j �

"

2
and k�k

1

�

�

�

�

1

s
�

1

(s0)

�

�

�

�

�

"

2

for all s,s0 2 [min
N

�1
u0,�0] with js�s0j � Æ (recall thatu0 2 intC

C

and so min
N

�1
u0 > 0

and this implies thats! k�k
1

=s is uniformly continuous on [min
N

�1
u0, �0]). Then

we have

�1p(u0C Æ) � �(z)(u0C Æ)
�

C

O

�

�

(u0C Æ)
p�1

D �1pu0 � �(z)(u0C Æ)
�

C

O

�

�

(u0C Æ)
p�1

� �(z)u�0 � �(z)(u0C Æ)
�

C f (z, u0)C O�
�

(u0C Æ)
p�1

� k�k

1

ju�0 � (u0C Æ)
�

j C h1(z)C O�
�

j(u0C Æ)
p�1
� up�1

0 j
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�

"

2
C

"

2
C h1(z) (see (63), (64))

� h2(z) D �1p�0 � �(z)��0 C
O

�

�

�

p�1
0 a.e. in �1

) u0(z)C Æ � �0 for z 2 �1 (by the weak comparison principle, see [23])

) D0 D ; (see (62))

) u0(z) < �0 for all z 2 N�.

So, we have proved that

(65) u0 2 intC1
0( N�)[0, �0].

Using u 2 int C
C

, we introduce the following truncation of the reaction

(66) g0(z, x) D

(

�(z)u0(z)� C f (z, u0(z)) if x < u0(z),

�(z)x� C f (z, x) if u0(z) � x.

This is a continuous function on� � R. Let G0(z, x) D
R x

0 g0(z, s) ds and con-

sider theC1-functional  0 W W1,p
0 (�) ! R (see Claim 1 in the proof of Theorem 7)

defined by

 0(u) D
1

p
kDukp

p �

Z

�

G0(z, u(z)) dz for all u 2 W1,p
0 (�).

Claim.  0 satisfies the C-condition.

Let {un}n�1 � W1,p
0 (�) be a sequence s.t.{ 0(un)}n�1 � R is bounded and

(67) (1C kunk) 
0

0(un)! 0 in W�1,p0(�).

From (67) we have

jh 

0

0(un), hij �
"nkhk

1C kunk
for all h 2 W1,p

0 (�) with "n # 0C

)

�

�

�

�

hA(un), hi �
Z

�

g0(z, un)h dz

�

�

�

�

�

"nkhk

1C kunk
for all n � 1(68)

(see Claim 1 in the proof of Theorem 7).

In (68) we chooseh D �u�n 2 W1,p
0 (�). Then

kDu�n k
p
p � M13 for some M13 > 0, all n � 1 (see (66))

) {u�n }n�1 � W1,p
0 (�) is bounded.(69)
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Suppose thatkuCn k !1. Let yn D uCn =ku
C

n k for all n� 1. Thenkynk D 1, yn � 0
for all n � 1. So, we may assume that

(70) yn
w

�! y in W1,p
0 (�) and yn ! y in Ls(�), y � 0,

where s D p if N � p and s > max{p, N=(N � p)} if N > p. From (68) and (69)
we have

(71)

�

�

�

�

hA(yn), hi �
Z

�

g0(z, uCn )

kuCn kp�1
h dz

�

�

�

�

� "

0

nkhk for all h 2 W1,p
0 (�)

with "

0

n ! 0C.
HypothesisH ( f )0 (ii) implies that

(72)
Ng0(u

C

n )

kuCn kp�1

w

�! �0yp�1 in Ls(�) with �(z) � �0(z) � O�

a.e. in� (see [7]).
Also, if in (71) we chooseh D yn � y 2 W1,p

0 (�), then using (70) we have

lim
n!1

hA(yn), yn � yi D 0

) yn ! y in W1,p
0 (�) (see Proposition 4), hencekyk D 1, y � 0.(73)

So, if in (71) we pass to the limit asn!1 and use (72), (73), then

hA(y), hi D
Z

�

�0yp�1h dz for all h 2 W1,p
0 (�)

) A(y) D �0yp�1

) �1py(z) D �0(z)y(z)p�1 a.e. in �, yj
��

D 0.(74)

We have

O

�1(p, �0) � O�1(p, �) < O�1(p, O�1(p)) D 1

) y must be nodal (see (74)), a contradiction to (73).

This proves that

{uCn }n�1 � W1,p
0 (�) is bounded

) {un}n�1 � W1,p
0 (�) is bounded (see (69)).

From this as in the proof of Theorem 7 (see Claim 2), via Proposition 4, we con-
clude that 0 satisfies the C-condition. This proves the claim.
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As in the proof of Theorem 7, by truncatingg0(z, � ) at �0 and using (65), we show
that u0 is a local minimizer of 0. So, we can find� 2 (0, 1) s.t.

(75)  0(u0) < inf[ 0(u) W ku � u0k D �] D Q�0.

HypothesisH ( f )0 (ii) implies that

(76)  0(t Ou1(p))! �1 as t !C1.

Then from (75), (76) and the claim, we see that we can apply Theorem 1 (the

mountain pass theorem) and findOu 2 W1,p
0 (�) s.t.

(77)  

0

0( Ou) D 0 and Q�0 �  0( Ou).

From (76) and (77) we haveu0 ¤ Ou, u0 � Ou, Ou 2 int C
C

and solves problem (56).

Evidently, combining the proof of Theorem 7 with the first part of the proof of
Theorem 8, we can have the following multiplicity theorem for p-Laplacian equations
with the combined effects of singular and superlinear terms. We emphasize that no
restriction onk�k

1

is imposed and so our result is in this respect an improvement
over all the previous singularp-Laplacian equations.

Theorem 9. If hypotheses H(�) and H( f ) hold, then problem(56) has at least
two positive solutions

u0, Ou 2 int C
C

, u0 � Ou, u0 ¤ Ou.
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