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Abstract
We give a graded dimension formula described in terms of doatdrics of
Young diagrams and a simple criterion to determine the sgmation type for the

finite quiver Hecke algebras of typfél(l).

Introduction

This is the fourth of our series on finite quiver Hecke algebrghe quiver Hecke
algebras or affine quiver Hecke algebrasvere introduced by Khovanov-Lauda [18,
19] and Rouquier [26] for providing categorification of (thegative half of) quantum
groups. Their certain quotient algebras, thelotomic quiver Hecke algebras“ig),
where A is fixed andg is varying, together with induction and restriction furrsto
among their module categories, categorify the irreduciti¢gest weight modulé/ (A)
over the quantum group. Whef = Ag, we call the algebra®?°(8) the finite quiver
Hecke algebrasAs was explained in our previous papers [1, 2, 3] in the seffiaite
quiver Hecke algebras can be understood as vast gendmiizitthe lwahori—Hecke
algebras associated with the symmetric group in the doeaif Lie type.

In this paper, we study the representation type of finite euivecke algebr&*o(p)
of affine typeCl(l). The main results are a graded dimension formul®&#f(8) described
in terms of combinatorics of Young diagrams (Theorem 2.&) arcriterion for the rep-
resentation type oR"(g) in Lie theoretic terms (Theorem 5.5). Recall that we stddie
affine typesAi(l), A(zf) and Dl(i)l in our previous papers, and proved that the patterns of
the representation type followed natural generalizatibBrdmann and Nakano’s for the
Iwahori—Hecke algebras associated with the symmetricmrélowever, the affine type
Cl(l) shows a new pattern. In particular, we have an unexpectedt that R*°(5) is not
of finite representation type.

Now, we explain in some detail the tools and the strategy tuverthe results.
Firstly, the g-deformed Fock spacé& of type Cl(l) [16] is a key ingredient for proving

the graded dimension formula. ThG(l)-type Fock spaceF is constructed by folding
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the usualqg-deformed A(lell-type Fock space. Namely, the basis is given by the set
of all partitions as in the usual Fock space, but we changedhiglue pattern on the
nodes of partitions via the folding map

7:{0,1,...,2—-1} - {0,1,...,1}

defined byz(0) =0, 7(1) =l andn (2 —i) == (i) =i fori =1,...,I —1. Investigating
the action ofe,, - --e, f,.---f, on the Fock spac&, we obtain the dimension formula.
Thus, the formula is described in terms of combinatorics ofing diagrams, which is
very similar to the graded dimension formula of affine tyfen [5, Section 4.11]. We
remark that the residue pattern (1.3) for ty@é” also appears as colors of arrows in
the Kirillov—Reshetikhin crystaB!! of type Cl(l), which is not a perfect crystal [10].

To achieve the second result, we follow the framework to rieitee the representa-
tion type given in [2]. Let maxf) denote the set of maximal weights of the irreducible
highest weight module/(A). In the three affine cases studied in our previous papers
in the series, the set max{) consists of a single Weyl group orbit. Thus, we may
generalize the notion of cores and weights of Young diagrdmshe affine typeCl(l),
max(Ag) consists of several Weyl group orbits and the represestatire given by the
set maxf\g) N P*. It is not difficult to calculate the set and the result is

iel,iis ever},

i
max(Ag) NPT = {Ao + @i — 56

wherewy = 0 and ifi # 0 then
. . 1
o =a1+ 20+ -+ (i —1)Oli—1+l(c(i +O{i+1+"'+01|_1+§0!|).

Thus, by thesl,-categorification theorem, we have to investigate the sspri@tion type
of RA(k§ — ;) for k > i/2. We first consider the representation typeRf(s).

Recall that one of the ingredients in our series of papersexphcit construction of
RAo(8)-modules orR*°(28)-modules. Recently, an interesting paper by Kleshchev and
Muth [21] appeared, and they constructed irreduciBf®(8)-modules for several un-
twisted affine types in the spirit of Kang, Kashiwara and Kibb]j which includes the
affine typeCl(l). Thus, we use their construction and, combining with theetision for-
mula, we find the radical series of the indecomposable piigge®”°(5)-modules, and
determine the representation typeRf(5) (Theorem 3.7). The result is th&"(s) is a
symmetric special biserial algebralit= 2, and it is of wild representation typelif> 3.

Next task is to deal with the representation typeR3f (25 — wy). In this case, we
do not need explicit description of irreducible modulesd ave may derive the radical
series of the indecomposable projective modules from thegoafication theorem and
crystal properties. The result tells th&“°(25 — w,) is of wild representation type
(Theorem 4.2).
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Using the same arguments in [2] with small modifications, wayrhandle the re-
maining cases, and we obtain the second main result (Thebrgm

1. Quantum affine algebras

Letl ={0,1,...,1} be an index set, and the affine Cartan matrixof type Cl(l)
(I =2)¢
2 -1 0 --- 0 0 O
-2 2 -1 --- 0 0 O
o -1 2 -.- 0 0 O
A=@jijea=| 1+ oo
o o o - 2 -1 0
o o o ... -1 2 =2
o o o .- 0 -1 2

An affine Cartan datun{A, P, I1, I1Y) of type Cl(l) consists of
(1) the affine Cartan matriA as above,
(2) a free abelian group of rank| + 2, called theweight lattice
(3) T ={« |i €1} CP, called the set okimple roots
(4) II¥ ={hij |i e} cPY:=Hom(, Z), called the set osimple coroots
which satisfy the following properties:
(@) (hi,a;) =& foralli,jel,
(b) TT and TV are linearly independent sets.
The free abelian grou® = @, Z«; is called theroot lattice, and Q" =
Y icl Z=oai is the positive coneof the root lattice. For8 = Y, ki € Q*, set
I8l = Y i, ki to be theheightof 8. We denote byw the Weyl groupassociated with
A, which is generated byr;}ic; acting onP by riA = A — (h;j, A)a;, for A € P. Let

Pf={AeP|A(h)=0foriel}.

Fori €1, let A; be theith fundamental weighin P*. In particular, we have\;(h;) =
8i,j. The null root in the affine typeCl(l) is given by

d=ap+ 201+ -+ 201+ .

Note that(h;, ) = 0 andws = §, fori € | andw € W. Let (do, dg, ..., d) =
(2,1,...,1,2). Then the standard symmetric bilinear pairing ©n P satisfies
1.1) @i | A) =di(hj, A) forall AeP.

Lf | = 1 then it becomes the affine typ&"”, which was already studied in [1].
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We setwy := 0, and we define, for € | \ {0},
. . 1
(12) wmi=oat+20++ ([ —Loiog +i (Oli +aivi et + Em)-

Note that ifi # 0 then
-1 if j=0,
withj)) =11 if j=i,
0  otherwise,

and they form a basis fo} ;.\ o Q-

Let g be the affine Kac—Moody algebra associated with the Cartamdgt,P, IT,IT")
and letUq(g) be its quantum group. The quantum grdig(g) is aC(q)-algebra generated
by fi, e (i € 1) andg" (h € P) with certain relations (see [12, Chapter 3]) for details).
Let A = Z[q, g ]. We denote byJ, (g) the subalgebra dfl4(g) generated byfi(”) =
f"/[n]i! for i € | andn € Z-o, whereq; = q% and

n

q'—q "
[n]i = Wa [n]i! = l_[[k]i-

i k=1

For a dominant integral weight € P*, let V(A) be the irreducible highest weight
Uq(g)-module with highest weights and Va(A) the U, (g)-submodule ofV (A) gener-
ated by the highest weight vector. As is usual, we denotdBf¥) the crystal associ-
ated withV(A). We use standard notation (Wt, &, ¢i,¢;) (i € 1) for crystal structure
(see [12, Chapter 3] for details).

The Fock space representation to)(q(Cl(l)) was constructed in [16] by folding the
Fock space representation ﬂjl’;‘(A(2|l)_1) via the Dynkin diagram automorphism. Later,
the combinatorial description for the Fock space and itstafybase were developed in
[20, 24]. Let us recall the combinatorial realization foetRock space.

Let A =M1 =X >:--> X > 0) be a Young diagram of sizR| := Z!:l Ai.
When |A| = n, we write A = n. We consider the residue pattern

(1.3) 0,1,2,...,1-1,1,1 —1,...,2, 1.

We repeat the residue pattern in the first row, and shift ith® tight by one in the
next row. If b is a node of residué at the (p, q)-position, b is called ani-node and
res(, q) = i. For example, wheth = 4 andx = (12, 10, 4, 2), we have res(2, 5 3
and the residues are given as follows:

0[1]2]|3[4[3]2]1]0]1][2]3]
1]2]3]4[3]2]1]0

01

N ROk

1
2
3
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Let ST(1) be the set of all standard tableaux of shagen. For T € ST(A), we define
the residue sequencef T by

resT) = (res(T), res(T), .. ., res(T)),

where reg(T) is the residue of the node of entkyin T, for 1 <k <n.

Let A be a Young diagram. By aaddable (resp. removablg¢ node b of A, we
mean a node which can be added to (resp. removed fioio) obtain another Young
diagramai b (resp.A ' b). For an addable or removable nobdewith resp) =i,
we set

dy(1) := d; (#{addablei-nodes of strictly belowb}

— #{removablei-nodes of strictly belowb}),
d°(1) := d; (#{addablei-nodes of strictly abové)}

— #{removablei-nodes of strictly abovd}),
di(A) := #{addablei-nodes ofi} — #{removablei-nodes ofi},

whered; is given in (1.1). LetF be theQ(q)-vector space generated by all Young
diagrams, which is thé&ock spaceconcerned in this paper. For a Young diagran
F, we define

(1.4) eh=1 % /b, fia=) g b,
b b

where b runs over all removablé-nodes and all addablenodes respectively. Then,
the actionsg and f; give aUq(g)-module structure o, and we haveg™ » = q4@a,
foriel.

We identify the crystal basis of the Fock space with the setllo¥oung diagrams.
Its crystal structure can be described by considering thelussignature Let A be a
Young diagram, and consider all addable or removabt®desb;, by, ..., by of A
from top to bottom. To eacly of A, we assign its signaturs, as + (resp.—) if it
is addable (resp. removable). We cancel out all possibleH) pairs in thei-signature
(s, ..., sm) so that a sequence of’s is followed by —'s. We define f;1 to be a
Young diagram obtained fromh by adding a node to the addable node corresponding
to the right-most+ in thei-signature. Similarlyg 2 is defined to be a Young diagram
obtained fromi by removing the removable node corresponding to the lefitmoin
the i-signature. Then, the Young diagrams fornJg(g)-crystal.

We remark that the above description is obtained from therg®®on in [24, The-
orem 3.1] by flipping Young diagrams diagonally. This dgsiioin matches with the de-
scription of the affine type\ Fock space for a upper crystal base given in [5, Section 3.6].
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2. Quiver Hecke algebras

Let k be an algebraically closed field and, @, I1, I1") the affine Cartan datum
in Section 1. We set polynomial@; ;(u, v) € k[u, v], for i, j € I, of the form

> tjpquPed if i #j,
Qi'j (U, U) = Pl |ai)+a(ejlerj)+2(exi | )=0
0 if i=]j,
wheret; j.pq € k are such thatj .4, 0 # 0 and Q; j(u,v) = Qji(v,u). The symmetric

groupS, = (x| k=1,...,n—1) acts onl" by place permutations.

DEerFINITION 2.1. Thequiver Hecke algebra @) associated with polynomials
(Qij(u, v))i,jer is the Z-gradedk-algebra defined by three sets of generators

feW)|lv=_(1,...,v)el", {X|1l<k=n}, {Y|1<l<n-1}
subject to the following relations:

ew)e(v) = 8,vev), Y ew) =1, Xe) =eX XX = XX,

veln

vie(v) = e(s)v, Y = iy it [k—1] > 1,
1//kze(v) = kavvk+1(xk’ Xk+1)9(v),

—e(v) if I =k and v = w1,
(Vi — X yv)e(v) = 3e(v)  if I=k+1 and v = vyq,
0 otherwise,

(Vi1 ¥k¥irr — VW1 ¥i)€(v)
{ QUk,Uk+1(Xk’ Xk+1) - ka,uk+1(xk+21 Xk+l)

e(v) if vk =2,

Xk — Xk+2
0 otherwise.

Using the isomorphism given in [26, p.25] (cf. [1, Lemma 3.2ye may assume
that, fori < j,

u—v2 if i=0,j=1,

u—v if j=i+1,i#0 j#I,
Qi,j(u,v) =
=0 ey i=1-1,j=I,

1 otherwise.

R(n) is a graded algebra by th#-grading given as follows:
dege(v)) =0, degkwe(v)) = (o | ), deglye(v)) = —(ay | ay.,).
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For an R(m)-module M and anR(n)-module N, we define anR(m + n)-module
Mo N by

Mo N = R(m 4+ n) ®krmszrmn) (M & N).

For a dominant integral weight € P*, let R*(n) be the quotient algebra d®(n)
by the ideal generated by the eleme{"»trlgh"l’A)e(v) | v e I}, which is called thecyclo-
tomic quiver Hecke algebra

For g € QF with |B] =n, we setl? = {v = (v, ..., v) € 1" | Yy o = B}
and define

RA(B) := R (n)e(B),

wheree(B) =Y s€(v). We are interested in cyclotomic quiver Hecke algeliRas(B),
which we callfinite quiver Hecke algebras of typq(]t Let us recall some results which
are valid for generaR(B).

Proposition 2.2 (cf. [2, Corollary 4.8]) For w € W, R*(8) and R*(A — wA +
wp) have the same number of simple modules and the same repaseriype.

We denote the direct sum of the split Grothendieck grouphiefcategorieR™ (8)-proj
of finitely generated projective gradeR*(8)-modules by

Ko(R*) = €D Ko(R"(B)-proj).

BeQ*

Note thatKo(R%) has a freeA-module structure induced from tt#&-grading onR*(B),
i.e. @M)x = My_1 for a graded moduleVl = P, ., M. Let e(v, i) be the idempotent
corresponding to the concatenation wfand (), and sete(8, i) = Y s e(v, i) for
B € Q". Then we define the induction funct: R*(8)-mod— R*(B + «;)-mod and
the restriction functorE; : R*(8 + «;)-mod — R”(B)-mod by

Fi(M) = R (B + ai)e(B, i) ®ra M,  Ei(N) = e(B, )N,
for an RA(B8)-module M and anR*(8 + «;)-module N.

Theorem 2.3([14, Theorem 5.2]) Let | = (hj, A — 8), for i € I. Then one of
the following isomorphisms of endofunctors ort(R)-mod holds.
(1) Ifl; =0, then
li-1
qi‘ZFi E; & @ inkid = EF.
k=0
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(2) Ifl; <0, then
-1
G °RE = EF & @ g *“d.
k=0

For the biadjointness of the functors, see [17].i £ j, thenq @l®)FE; = EF;
holds. Moreover, the functorg ™~ E; and F;, make Ko(R") into a U, (g)-module
and the next theorem shows that the modulé&/4$A). For the latter half of the the-
orem, see also [22].

Theorem 2.4 ([14, Theorem 6.2]) There exists a W(g)-module isomorphism be-
tween K(RY) and V4(A). In particular, the number of isoclasses of irreducible ®)-
modules is equal to the size of(B),_g, the weightA — g part of the highest weight
crystal B(A).

For a graded modul = @, _, Mk, the graded dimensiorf M is defined by

dimg M = " dim(Mi)g*.

kez

Note that ding(q'M) = g' dimqy M. For an R*(8)-module M, the g-characterchy(M)
and characterch(M) of M are defined by

chy(M) = > dimg(e(v)M)v, ch(M) = dim(e(v)M)v.

vel velB
For A e PT and B € QT, set
1
def(a, ) = (B | A) = 5(B | B).
Using @ | o) = 2d;, it is easy to check
def(A, B —ai) + (A — B | i) = def(A, B) —di.
Proposition 2.5 ([23, Proposition 3.3]) Letv = (vy,...,vn), vV = (vy, ..., V) €
I#, and letv, be the highest weight vector of the highest weightglymodule (A).
Then we have

€, - &y, fu oo+ fioa = g7 %A (dimg e(v) R (B)e(V))va-

We now consider the-dimension dirg R*(8). Let A -n and T be a standard
tableau of shape. For 1<k <n, let T.x be a standard tableau obtained frdmby
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removing the nodes whose entries are greater than or eqial\We define inductively

deg(T) := deg(T-n) + db(2), codeg) := codegl-n) + d°(r /" b),

whereb is the node ofT containing entryn. We set dedf) = codeg@) = 0. Observe
that if b is a removable-node, then

db(r) +d°(. 7 b) = didi (1) + .
One can prove the following identity by the same inductiqquament as [6, Lemma 3.12]:
(2.1) deg(T) + codeg() = def(Ag, B).

Forv e IM, let

Koo )= Y q®0, Ke):= ) oo,

TeST(), resT)=v TeST(x)

Theorem 2.6. For v,V € |#, we have

dimy e(v)R*(B)e(v') = > Kq(h, 1)Kq(h, V'),

AN, Wt(L)=Ao—p

dimg R(8)= > Kq0)?

Abn, wt(A)=Ao—p

dimg R*(n) = >~ Kq(1)%

AN

Proof. Letv = (vy,...,vy) andv’ = (v}, ..., ) € 17, It follows from (1.4) and
(2.1) that

qdef(onﬂ)eul e evn fvé ctt f\)i@

:qdef(/\o,ﬂ) Z Z qdeg(r) Z q—COdeg(f) )

AN, wt(l)=Ao—B | TeST(R), TeST()),
res(T)=v res(T)=v’

= Z Kq(, v)Kg(x, v")9,

Abn, WtQ)=Ao—p

which gives the first assertion by Proposition 2.5.
The remaining assertions follow fronR*(8) = @, ,;» e(v)R*(B)e(v') and

RY(n) = @)5_n R*(8)- O

The corollary below follows from Theorem 2.6 immediately.
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Corollary 2.7. (1) Letv € I". Then e(v) # 0 in R*(n) if and only if v may
be obtained from a standard tableau T as= res(T).
(2) For a natural number nwe havedim R*°(n) = n!.

3. Representations ofRAo(8)

In [21, Section 8.1], irreducibl&R*°(§)-modules for several non-simply laced affine
types were constructed. Let us recall the construction yfpe C,(l).

Let z be an indeterminate. F&r=0,1,2,3 and Ki <I, except for k,i) = (2,1),
let Lfk be the graded free 1-dimensiondlz]-module with generatopy, and set

(0) if k=0,
@2 0=11,1-1,...,i+1) if k=1, 1<i <,
vl =L@, 2,...,1-1) if k=1,i=I,
L,2,...,i-1) if k=2, 2<i<I,
0 if k=3
We setp® = a,, +---+a,, wherev® = (v1,v,,..., ). Define anR*(8M)-module

structure onL{, by e(v)vx = 8, 0wk, Yrvx =0 and

Zuk if k=1, s<lI,
Xsok =y —2vx if (k=1,s>Dork=2)or k=3,i <),
vy if (k=0 ork=1s=)ork=3i=I).

We set

(3.1) L2 =

LigR L RLY, it =1,
LfOE Lflo sz& LiZ’3 if i>1,
and declare that; and y5_; act as 0 onL?.
Proposition 3.1 ([21, Propositions 3.9.2, 8.1.3 and 8.1.6]Y1) Fori =1,...,1,
L? is a k[Z] ® R(s)-module.
(2) The quotientS; := L7/zL? is an irreducible Ro(s)-module.
(3) {S1,S5..., S} is a complete list of irreducible R(8)-modules.

Lemma 3.2. If M is an irreducible RB)-module withe;j(M) = 1 then EM is
an irreducible RB — «j)-module.

Proof. It immediately follows from [18, Lemma 3.8]. O
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By the definition ofS;, we may enumerate basis elementsLgf, o L{, and we
have the following description of the characters &r

(3.2) chs= > res)« (),

TesT(A®)

where A\() = (i, 12-1) and res{) * (i) is the concatenation of reg) and {). Thus,
we haveej(S;) = 6 j, and Lemma 3.2 implies that

Ei = EiSi

is an irreducibleR*°(§ — «;)-module, fori = 1,...,l. Using (3.2) again, if #1 then
1 i9f j=i+1,i-1,

3.3 gi(Li) =

(33) i(£) {0 otherwise.

Thus, Ej+1£; is an irreducibleRA(§ — o — aj+1)-module, for 1<i <1 —1, by

Lemma 3.2.

Lemma 3.3. (1) R*°(ag + a1) is isomorphic tok[x]/(x?).
(2) For 1<i <|—1, R*(§ —¢;) is isomorphic to a matrix ring ovek[x]/(x?), and
L; is the unique irreducible ®(5 — «;)-module.
(3) For 1<i <Il—1, R*(§ —a; —aj;1) is isomorphic to a matrix ring ovek[x]/(x?),
and B 1L ~ Ei L1 is the unique irreducible R(§ — o — o ,1)-module if1 <i <
| —2, and §£;_; is the unique irreducible ®(§ — oj_1 — o)-module.
(4) RM(§ — o) is a simple algebra and’, is the unique irreducible R(§ — «)-
module.

Proof. The assertion (1) follows from Theorem 2.6. IndeénhqdR*°(2) = 1+ g2
implies that there is a homogeneous elemest 0 of degree 2 such that® = 0. One
can verify the following formulas, fop =1\1{0,l — 1,1} andt = I \ {0,1}, by direct
computation.

ANo—38+ap+aprr=(p-alpoz---T)pr2---N_ahl-g---r3r2)(Ao — oo — 1),
Ao—8+a_1+a = (N-af—z: - ry)(r—1--rara)(Ap — oo — @),

Ao —38 + oy = (N—ale—z - - r1)(Fegn -+ - M_anfi— - - - rar2)(Ao — oo — 1),

Ao—38+a =r_g---rari(Ao— o).

By [7, Theorem 6.4] (cf. [2, Theorem 4.5]R"(§ —a;) and R*°(§ —a; —j+1) are
derived equivalent tdRo(xo + ar1). Sincek[x]/(x?) is the unique Brauer tree algebra
with one edge and no exceptional vertex, b& (5§ — «;) and R"(§ —a; — oj+1) are
Morita equivalent tok[x]/(x?) by [25, Theorem 4.2]. In particular, they have a unique
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irreducible module. As we already know thét is an irreducibleR*°(§ — «;)-module,
(2) follows. We also know thaE; 1 L;, for 1<i <I1—1, andE; Lj;q, for 1 <i <1-2,
are irreducibleR*(§ — o — o;+1)-modules. Thus (3) follows. Finally, Proposition 2.2
tells that R (5 —) is a simple algebra, and we already know tiatis an irreducible
RA°(8 — oq)-module, which proves (4). O

By Lemma 3.3 (4),£, is a projective module. Far# |, we denote the projective
cover of £; by Li. Then, we have a non-split exact sequence

(3.4) 0—> L — Li > £ > 0.

We get indecomposable projecti®*(§ — «;)-modulesM;, for 1 <i <1, defined by

L i i £l
e i =1
Lemma 3.4. We have EM; =0 unless j=i £+ 1. If j =i £1 then EM; ~

E;M; is the unique indecomposable projectivé°® — «; — «j)-module.

Proof. If j #i £ 1, then E;M; = 0 follows from (3.3). Computation of the
characters impliesH,_1£] = 2[E £,_1], which is equal to E|£A|,1]. Since E_1 M,
and E; M, _; are projective modules,H_1M,] = [E; M,_4] implies that they are iso-
morphic. Suppose that#1, j #1 and j =i £ 1. Then we have the exact sequence

(3.5) 00— Ejﬁi — EjMi — Ejﬁi — 0.

If E;£; was a projective module, it would contradict Lemma 3.3 (3hug, E;Z; is

not projective and (3.5) does not split. It implies thgtM; is an indecomposable pro-
jective RA(§ — o — &j)-module. Interchanging the role ofand j, EiM; is also an
indecomposable projectiv®*°(§ — & — «j)-module. As the indecomposable project-
ive RA(§ — & — j)-module is unique by Lemma 3.3 (3), we conclude that they are
isomorphic. O

We now consider the projectivR*°(§)-modulesP; := FFM;, for 1 <i <I|. By
the biadjointness of; and E; and¢j(S;) = §i,j, we have

dim HOm(Pi, Sl) = dim HOm(A/li, EiSj) = Si’j dim HOm(/\/li, £|) = 5”',
dim HomQS‘j,Pi) = dim HOI’T'I(EiSJ',Mi) = 5i,j dim HOm(Ei, M|) = Si,j,

which tells thatP; is the projective cover of;, for all i, and R°(§) is weakly sym-
metric. In particular,”, are self-dual. It follows from Theorem 2.3 and Lemma 3.4
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that, if i # j then
dim Hom(P;, P;) = dim Hom(M, E; K M;) = dim Hom(E M, E; M;)
= 26j,i+1.

The similar argument shows that

dim Hom(P;, P;) = dim Hom(M;, E; Fj M;)

= dim Hom(u;, M® M homd el
B {4 if i £l
2 if i=1

Thus, in the Grothendieck group, we have

[P1] = 4[S1] + 2[S2],  [Pi] = 2[Si-a] + 4[Si] + 2[Si+a],

(3.6)
[P] = 2[Si—1] + 2[S],

fori =2,...,1 —1.
Define Q; := F L;, for i # 1. By the same argument as above, we compute
dim HOm(Qi, SJ) = dim Hom@S,—, Q,) = (Si,j-

Applying the functorF; to (3.4), and noting thaP; is indecomposable, we have the
following non-split exact sequence, for=1,...,1 — 1.

8.7) 0> Q —P — Q9 —0.

SinceP; is self-dual, and So¢lj) ~ S; ~ Top(Q;), we conclude that

S1 Si
(3.8) Q=S QG x=2518S4m (2=<i=<I-1).
S1 Si

The radical series fo@; is clear. Suppose tha®;, for some 2<i <|—1 is uniserial.

If Rad(Q;)/Rad(Q;) ~ Si+1 then Si1; appears in Rad®)/Rad(P;) and S;;1 appears
in So&(P;)/ Soc(P;), which implies thatS.1 ® Si+1 appears in Radf)/Rad(P;). On
the other hand, either 8f.1] or 2[S 1] all appear in Ra®{?;). They contradict and
we conclude thatQ; is not uniserial. We have the desired shape of the radica#sser
for Q;.
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Proposition 3.5. The radical series of?;, for 1 <i <, are given as follows.

81 Si S|
S$18S: SPS1®Siv1 Si—1
P~ , P~ i #L1), P~ .
TS a8 'TSaeS1 8 S t#LD ' TS0
81 Si S|

Proof. We setS; := L%/ZL%, whereL? is given in (3.1). By definitionx; acts
as zero, and; is an R*°(5)-module. On the other hana, acts as nonzero o8, by
| > 2. It implies thatS; is indecomposable and we have the radical series

A S
S~ Sy

Thus, RadpP;)/Rad(P;) hasS; as a direct summand. It follows from (3.7) and (3.8)
that P, has the radical series as follows.

S1
188
v S ® St
S1

P

Let ¢: P, — Py be a lift of the mapP, —» S, < Rad(Py)/Rad(P;). From the
shape of the radical series B, we know that Rat{lm¢) ~ S;. It implies thatS; ap-
pears in Rat{P,)/Rad(P,). Under the projectiorp,: P> — Q-, this S; maps to zero.
Namely, it appears in Kepb) ~ Q,. Multiplying Rad(R*(8)) to this S1, we know
that SocP,) = Rad(P,). By (3.7) and (3.8),S, appears in R&{P,)/Rad(P,). It
follows that P, has a uniserial submodule of length 2 with t&p as composition fac-
tors. Hence,S, appears in Rad()/Rad(P,). Then, thisS, must appear in Kegp),
which implies thatS; appears in R&qP,)/Rad(P,). We conclude that

So
~826981€9$3
TSeS 0S8

Sy

P

Applying the same argument to a lift of the m& — S; — Rad(Pi_1)/Rad(Pi_1),
we obtain
Si
_SiDSi-10 S
TS SaeS’
Si

P
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fori =2,..., | — 1. We now considefP,. SinceP is self-dual, (3.6) implies that
we have

S

_Si1
h= Si-1

S
or

S
P=S510 8- 1.
S

Let ¥ : P, — P,_1 be a lift of the mapP, — & < Rad(P_1)/Rad(P,_1). It follows
from the shape of the radical series/f_; that Rad(Im) ~ S,_1, which implies that
S_1 appears in R&qP)/Rad(P). Therefore, we have

which completes the proof. O
Lemma 3.6. If | =2, then there is an isomorphism of algebras
e(0121)R"(4)e(0121) =~ K[X, y]/(X?, y* — axy),
for some ac k.

Proof. We havel = ag + 201 + ap, for | = 2. Theorem 2.6 gives

dim e(012)R*°(8 — ar1)e(012) = dim RA(5 — 1) = 2,
dim e(0121)R(5)e(0121) = 4.

Since Ag— 8 + a1 = rp(Ag— g — 1), the argument in the proof of Lemma 3.3 shows
e(012)RA(5 — a1)e(012) = R (8 — ag) ~ K[x]/(x?).

Thus, it follows from Theorem 2.3 anfl; R*°(§—a;) = O that we have an isomorphism
of R (8 — ay)-bimodules as follows.

(K ® ky) ® e(012)R (8 — a1)e(012) ~ e(0121)R (5)e(0121).

We conclude thag(0121)R(8)e(0121) ~ K[x, y]/(X?, y? — axy), for somea e k. [
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Theorem 3.7. If | = 2, then the algebra R°(§) is a symmetric special biserial
algebra of tame representation type. When 8, R*(3) is of wild representation type.

Proof. Suppose thdt= 2. Proposition 3.5 gives

S S>

S$180S S1

P1 >~ , P~ 7,
T Ses 278
S1 S>

which imply

if (=L)or(=2j=1),

1
dim Hom(P;, Rad(P;)/Rad(P;)) = {0 it i=j=2

By (3.7), P1 has a submodul® which is isomorphic t0Q;. Let y: P; —» Q —
P1 be the homomorphism induced from (3.7). Note thrats a lift of P; — S; —
Rad(P1)/Rad(P1). Since Imf) = Ker(y) ~ Q;, we havey? = 0. We set

o = a lift of Py — S; — Rad(P,)/Rad(Py),
B = a lift of P, — S, < Rad(P1)/Rad(Py).

Im(B) is uniserial sincé>; is. Considering the configuration of the radical series, aeeh

Sz Sz
Im(o) = Rad(P,), Ker(@) >~ S, Im(8) ~ S1, Ker(g) ~ So.
S1 S1

Thus, Ba = 0 and ImfaB) = Soc(P1) = Im(aBy).
By Theorem 2.6, we have difR*°(ag + a1 + 2)e(012) = 2. On the other hand,
dim M; = 2 by dim£; = |ST(AY)| = 1 and we have a surjective homomorphism

RAO(O{o + a1 + 2)e(012) > M,
by e(012)C; # 0. SinceM; is projective, it is a split epimorphism. We havel; ~

FoF1Fol, where 1 is the trivial R*°(0)-module. Thus, we hav®; ~ FiF,FFol.
Lemma 3.6 shows that Erg) ~ e(0121)R"°(5)e(0121) is commutative, which yields

vap = afy.

Therefore, the quiver of the basic algebraRfe(s) is given as
e

~_
B
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and the defining relations are

pa =0, yap=apy, y*=0.

The assertion follows by [1, Theorem 7.1 (2b)].

Suppose that > 3. Considering the configuration of the radical series inpPro
osition 3.5, the quiver of the basic algebra Bf°(§) has| vertices and it is given
as follows.

SN o B o B QL
Then, the assertion follows by [8, 1.10.8 (iv)]. O

4. Representations ofRA(28 — w,)

In this section, we assume thiat 4. Let
Bo =25 — w4 = 209 + 301 + 2000 + 3.

Using the crystal of the Fock space in SectionB{Ag)a,—g, has two elementby, by,
which are realized as the following Young diagrams:

by = , b=
Note that
1 if i=1,3, 1 if i =2,
4.1 g (b)) = &i(b) =
-1 (b {0 otherwise, 1(b2) {0 otherwise.

We denote by7; and 7 the irreducibleR"°(80)-modules which corresponds tg and
b, respectively.
On the other handAq — Bo + ag is not a weight ofV (Ag) by Theorem 2.6. Then,
by direct computations, we have
Ao — Po + a3z = rarirorara(Ag — oo — o),
Ao — Bo + oz =Trarirorira(Ao — o — ea),

Ao — Po+ ay =rararorara(Ag — ag — ay),
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and the algebrafk?°(8y — ), for k = 1, 2, 3, are derived equivalent ®*°(ag + a1).
Since R (ag + a1) ~ K[X]/(x?), R2(Bo — ax) are matrix rings ovek[x]/(x?) by the
same argument as in Lemma 3.3. Similarly, it follows from

Ao —Po+ a1+ az = rargrara(Ag — g — 1),

Ao — Po+ az+ a3 =rirorara(Ag — g — aq)
that R(8p — a1 — az) and R*(B8y — a» — a3) are isomorphic to matrix rings over
K[x]/(x?).

For k = 1, 2, 3, letl be the unique irreducibl®*e(By — ay)-module andly its
projective cover. Note tha, has the radical series

A Z/{k
4.2) U=y

By (4.1), we may apply Lemma 3.2 tf, and 7;. Then the uniqueness of the irredu-
cible R*(By — ax)-modules implies that

Ea(T2) ~ Uz, Eu(T1) = Uy, Es(Th) =~ Us.
We consider the following projectivl’°(8,)-modules
Ri == Rk, fori=1,2,3.

Then, by the biadjointness d&; and F;,

A 1 if i=1,3,
dim Hom(R;, 71) = dim Hom{4, Ei77) = " ,
0 otherwise,
. ) N 1 if i=2,
dim Hom(R;, 73) = dim Hom{4, Ei 73) = :
0 otherwise,
A 1 if i=1,3,
dim Hom(71, Ri) = dim Hom(E; 71, U;) = " .
0 otherwise,

dim Hom(T3, R:) = dim Hom(Ei T3, {4) = {1 T 1=2
0 otherwise.
Thus, R, is the projective cover of;. Since both ofR; and R3 are indecomposable
projective modules which surjects 1, R1 >~ R3 is the projective cover of;.
In the crystal of the Fock spack, we haveg;(Uf2) = e2(U;) = 1. Thus, Lemma 3.2
implies that E;(i2) and Ep(U4;) are irreducibleRA(8y — a3 — ap)-modules, and the
uniqueness of the irreducib®*°(8y — a1 — ap)-modules impliesE; (i) ~ Ex(U;). We
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have the exact sequence
(43) 0— EluZ —> E]_Z/A[Z —> E]_Uz — 0.
Since E1(U>) is not projective, it does not split, andyt, is indecomposable project-

ive. The same argument shows tHEsls, is indecomposable projective. Hence, the
indecomposable projectiv®*°(8p — a1 — az)-module is given by

E1(Uf2)
Ea(ll)

Ei(lh) ~ Ex(lh) ~
It follows that, fori, j =1, 2 withi # j, we have
dim Hom(R, R;) = dim Hom(E;u, Eilf;) = 2,
dim Hom(R;, Ri) = dim Hom¢, E; Fith) = dim Homg, P Ao—foteily — 4,

Therefore, R; and R, are self-dual modules whose composition multiplicitieg ar
given by

[Ra] = 4[Ta] + 2[T2],  [Ro] = 2[T] + 4[Ta].
Let V := KU, fori =1, 2. By the same argument as above, we have
dim Hom(;, 7;) = dim Hom(7;, V) = & ;.
We have the exact sequence
(4.4) 0=V -Ri =V =0,

which does not split becausR; are indecomposable. As Tapj ~ 77 ~ Soc(),
we have

T T2
(4.5) Vi~Ta VoxTi.
T T2

Proposition 4.1. The radical series ofR; and R, are given as follows

T T2
_TieT ., ToT
[E=ren Enen
T T2

Proof. As the argument is symmetric in=1 andi = 2, we only considefR;.
It is clear from (4.5) that/; appears in Rad1)/Rad(R,). If Rad(R1)/Rad(R,) is
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irreducible, then EX(77, 71) = 0. Since Rat{R1)/Rad(R,) contains7; by (4.4) and
(4.5), it implies thatR; has the radical series of the following form.

T1
T2
Ri~T1® T
T2
T1

But if we look at RadR:)/Rad(R,), we have dimExt(7, 71) > 2, and the self-duality

of irreducible modules implies that dimBExf7,7;) > 2. It contradicts dimExt(71,7,) =

1. Thus, RadRi)/Rad(R,) is not irreducible, and we have the desired shape of the
radical series. O

Theorem 4.2. The algebra R°(25 — wy) is wild.

Proof. By (4.4),R; has a submodul® which is isomorphic toV;. Let y: Ry —
YV — R, be the homomorphism induced by (4.4), which is a lift Bf — 71 —
RadR;)/Rad(Ry). We havey? = 0. Similarly, we take a lifts of Ry — T, —
RadR.)/Rad(R,) such thats? = 0. We now choose

o = a lift of Ry — 71 < Rad(R,)/Rad(Ry,),
g = a lift of R, - T — Rad(R1)/Rad(R1).

Then, the quiver of the basic algebra Bf‘°(25 — =) is given as follows:
(4.6) y(e e )s
B

Considering the configuration of the radical series frompBsition 4.1, we must have

T T2 T T2
Im@B) ~ -+, ImBa)~ 2 Im@)>~Ti®&T IMmMB~THeT
T T2
T2 T1
and it follows that
T

afa = pap =0, Imya)=Im(ad) ~ Im(B) = Im(By) ~ ;:i

7~2|

By adjustingy and$§ by nonzero scalar multiples, we may assupne = «8. Thus,
we have the defining relations for the basic algebra as fellowherec € k is a
nonzero scalar:

y2=8=afa =Baf =0, ya=ad, 8 =chy.
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Since the algebra of the quiver (4.6) with the defining relagi
y2=8=afa=paf =0 ya=as, =By =0

is of wild representation type by [11, Theorem 1, Table W [38) is R"(25 — w3).
O

5. Representations type ofRA(B)

By the categorification theorenR*(B8) # 0 if and only if A — 8 is a weight of
V(A). A weight u of V(A) is maximalif u+ 6 is not a weight ofV(A). Let max()
be the set of all maximal weights &f(A).

Proposition 5.1. For the weight system of thg(A)-module (Ap) in type Cfl),
we have
(1) max@ro) NPt ={Ag+mi —(i/2)5|i €1, i is even,
(2) w is a weight of (Ap) if and only if u = wn—ké for somew € W, n € max(Ag)N
Pt and ke Zxq.

Proof. (1) Letu € max(Ao) NP*. Sincen € P* anday, ..., » form a basis
of > i1\ Qui, 1 can be written as

nw= Ao+ Z piwmi + 1§
iel\{0}
for somep = u(hj) € Z>o andt € Z. Then, the computations

O0<u(ho) =1—p1—---—pn,
O<u(hg+---+h))=p1+---+ pn
imply that u = Ag + @; +t8 for somei € | \ {0}, or u = Ag +t§. In the latter case,
u € max(\o) implies thatu = Ag, which is equal toAg + @wp. In the former case,

Ao — 1 € Q1 implies thati is even by the definition (1.2). We show thiat= —i /2.
We consider the Young diagram

AQ) =G,y .. i)

i/2

in the Fock spaceF. Considering the residue pattern, we have

wt(A(i)) = Ag— (ié(){o +(—Dar+( —2az+--- +Oli_1) = Ao+ @ — iiﬁ.
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Thus, Theorem 2.6 implies
dim RAO(iéa — wi) #£0,

and Ap + @ — (1/2)5 is a weight of V(Ayp). It follows from
(—zzri + '58) —5¢ Q7

that Ag + @ — (i/2)5 is maximal.
(2) max(o) is W-invariant by [13, Proposition 10.1] and we have

max(Ao) = W(max(Ao) N P*)

by [13, Corollary 10.1]. Then, for any weight of V(Ap), there exist a unique €
max(Ap) and a uniquek € Zso such thaty = ¢ —ké§ [13, (12.6.1)]. 0

Lemma 5.2 ([9, Proposition 2.3], [3, Remark 5.10]) Let A and B be finite di-
mensionalk-algebras and suppose that there exists a constant €and functors

F: A-mod— B-mod, G: B-mod— A-mod

such that for any A-module M

(1) M is a direct summand of GfM) as an A-module
(2) dimF(M) < CdimM.

Then if A is wild, so is B.

Lemma 5.3. (1) If R*(8 —«;) is wild and (hj, Ag— B + «j) > 1, then R(B)
is wild.
(2) Suppose that (ks — w;) is wild. Then we have

(@ RA((k + 1)6 — ) is wild,

(b) ifi +2¢1, then RO((k + 1)5 — i) is wild.

Proof. (1) Considering the functors
Fj: RY(B —aj)-mod — R*(B8)-mod, E;: R*(B)-mod— R*(B —«;)-mod,

the assertion follows from Lemma 5.2 and Theorem 2.3.
(2) For 0<i <I—1 andk € Zs, direct computation shows

Ao+ @it —(K+1)§ +atipr =rifi—y -+ raror1- - ri(Ag + @y —Ké),
Ao+ —(K+1)6 + oy =r1_afj—2---Tafol1 -+ -1 (Ag + @i —Ké).
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Thus, (2) (a), fori #1, and (2) (b) follow from Proposition 2.2 and (1) because

(hiy1, Ao+ @i — (K+ 1)8 + aig1) = 2,
(hi, Ao+ —(K+1)8 + o) = 2.

Similarly, we consider
Ao+ —(K+1)§+ag=rirz---r (Ao + @ —K§).
Then (2) (a), fori =1, follows from Proposition 2.2 and (1) because
(ho, Ao + @ — (K+ 1)8 + ap) = 2.
We have proved the lemma. ]
Lemma 5.4. The algebras R(25 — ) and R°(28) are wild.

Proof. Note that 8— @, =8 +ag+a;. If | >3, Lemma 5.3 (1) and Theorem 3.7
imply that R%(25 — w>) is wild, because we have

(ho, Ao —8) =1, (hy, Ag—3—ap) =2.

Applying Lemma 5.3 (2) (a), Theorem 3.7 also implies tifRdtc(25) is wild.
In the following, we suppose that= 2. We set

=) ev0), ea= Y eV, 1), e=> ev0,1).

veld Vel st veld

Considering the residue pattern and Theorem 2.6, we have
EoR*(8) = 0.
Since (hg, Ag — 8) = 1, Theorem 2.3 gives an algebra isomorphism
RA0(8) ~ EoFoR"(8) = &R"™(§ + ao)ep.
We also haveE; R*(§ + ag) = 0 by Theorem 2.6. It follows from
(h1, Ag—8 —ag) =2
and Theorem 2.3 that there is a bimodule isomorphism

(5.1) K[t]/(t?) @k R™(8 + ag) ~ E1F1R™ (8 + ap) = e, R (28 — w)ey.
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Thus, multiplyinge = eg = eje on the both sides and factoring out the square of the
radicals, (5.1) gives the isomorphism of algebras

eRM(28 — wy)e/Rad(e R*(25 — w»)e)

~ K[t]/(t%) ® R (8)/(t? t RadR"°(8)), Rad(R"(5))).
We denote the algebra b§ and letO be the irreduciblek[t]/(t?)-module. ThenB has
irreducible modules? ® S; and O ® S,, whereS; and S, are the irreducibleR"e(5)-

modules in Proposition 3.1. By Proposition 3.5, the prajectover of O ® S; has the
radical series

0® S
0SS 085 0S8,

which implies that the quiver o R*(25 — w»)e contains

g,

as a subquiver. By [8, 1.10.8 ()R*(25 — w»)e is wild, and so iSR*(25 — w>).
Then, R(28) = R (28 — w» + a1 + a) is wild by Lemma 5.3 (1) because we have

O

(ho, Ag— 28 + a1 +a2) =1, (hy, Ag— 20 + 1) = 2.
We have proved the lemma. O

We summarize the results which are obtained so far. Suppede & 4 is even.
Then, Theorem 4.2 and Lemma 5.3 (2) (a) (b) imply tRat(ké—;), for k>i/2, are
all wild. If i =2, thenR*(§ — ) = RA(ag+ ) is of finite type by Lemma 3.3 (1),
and RA(k§ — @), for k > 2, are wild by Lemma 5.4 and Lemma 5.3 (2) (a). If
i = 0, R%(0) is a simple algebra, an®"°(5) is tame ifl = 2 and wild if | > 2
by Theorem 3.7. AsR”(25) is wild by Lemma 5.4, Lemma 5.3 (2) (a) implies that
RAo(ks), for k > 2, are wild. Thus, we have the following theorem.

Theorem 5.5. Letie | be an even index. For € W(Ag— @) and k> i/2, the
finite quiver Hecke algebra R(Ag — « + k3) of type Cﬁ” is
(1) a simple algebra if i=k = 0,
(2) of finite representation type if+ 2 and k=1,
(3) of tame representation type if== 0, k =1 and | = 2,
(4) of wild representation type otherwise.
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