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Abstract
From radial curvature geometry’s standpoint, we prove a fewsphere theorems of

the Grove–Shiohama type for certain classes of compact Finsler manifolds.

1. Introduction

Beyond a doubt, one of the most beautiful theorems in global Riemannian geometry
is the diameter sphere theorem of Grove and Shiohama [3]. In their proof, Toponogov’s
comparison theorem (TCT) was very first applied seriously together with the critical
point theory, introduced by themselves, of distance functions. That is, if a complete
Riemannian manifoldX has a critical point, sayq 2 X n {p}, of the distance function
dp to a point p 2 X, thenq is the cut point ofp. And hencedp is not differentiable at
q. However, they overcame the analytical obstruction by applying the original TCT to
the triangle4(pxy) with the interior angle�(pxy) � �=2 at x. That is the point, i.e.,
they took the manifold into their hands by directly drawing segments on it.

Our purpose of this article isto prove a sphere theorem of the Grove–Shiohama
type for a certain class of forward complete Finsler manifolds whose radial flag curva-
tures are bounded below by1. Of course, our major tools to prove it are a TCT for
such a class and the critical point theory, more precisely, Gromov’s isotopy lemma ([2]).
Such a TCT is easily proved by modifying the TCT established in [6] (see Section 2 in
this article), and the isotopy lemma holds from a similar argument to the Riemannian
case. The fact that, compared with the Riemannian case, there are few theorems on the
relationship between the topology and the curvature of a Finsler manifold is thewor-
thy of note. E.g., Shen’s finiteness theorem ([10]), Rademacher’s quarter pinched sphere
theorem ([9]), and the finiteness of topological type and a diffeomorphism theorem to
Euclidean spaces of the author with Ohta and Tanaka in [7].

To state our sphere theorems of the Grove–Shiohama type in Finsler case, we will
introduce several notions in the geometry and radial curvature geometry: Let (M, F, p)
denote a pair of a forward complete, connected,n-dimensionalC1-Finsler manifold
(M, F) with a base pointp 2 M, anddW M �M ! [0,1) denote the distance function
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induced fromF . Remark that thereversibility F(�v)D F(v) is not assumed in general,
and henced(x, y) ¤ d(y, x) is allowed.

For a local coordinate (xi )n
iD1 of an open subsetO � M, let (xi , v j )n

i , jD1 be the
coordinate of the tangent bundleTO over O such that

v WD

n
X

jD1

v

j �

�x j

�

�

�

�

x

, x 2 O.

For eachv 2 Tx M n {0}, the positive-definiten � n matrix

(gi j (v))n
i , jD1 WD

�

1

2

�

2(F2)

�v

i
�v

j
(v)

�n

i , jD1

provides us the Riemannian structureg
v

of Tx M by

g
v

0

�

n
X

iD1

ai �

�xi

�

�

�

�

x

,
n
X

jD1

b j �

�x j

�

�

�

�

x

1

A

WD

n
X

i , jD1

gi j (v)ai b j .

This is a Riemannian approximation ofF in the directionv. For two linearly independ-
ent vectorsv, w 2 Tx M n {0}, the flag curvatureis defined by

KM (v, w) WD
g
v

(Rv(w, v)v, w)

g
v

(v, v)g
v

(w, w) � g
v

(v, w)2
,

where Rv denotes the curvature tensor induced from the Chern connection. Remark
that KM (v, w) depends on theflag {sv C tw j s, t 2 R}, and also on theflag pole
{sv j s> 0}.

Given v, w 2 Tx M n {0}, define thetangent curvatureby

TM (v, w) WD gX(DY
YY(x) � DX

Y Y(x), X(x)),

where the vector fieldsX, Y are extensions ofv, w, and Dw

v

X(x) denotes the covari-
ant derivative ofX by v with reference vectorw. Independence ofTM (v, w) from
the choices ofX, Y is easily checked. Note thatTM � 0 if and only if M is of
Berwald type(see [11, Propositions 7.2.2, 10.1.1]). In Berwald spaces,for any x, y 2
M, the tangent spaces (Tx M, F jTx M ) and (TyM, F jTy M ) are mutually linearly isometric
(cf. [1, Chapter 10]). In this sense,TM measures the variety of tangent Minkowski
normed spaces.

Let QM be a complete 2-dimensional Riemannian manifold, which is homeomorphic
to R2 if QM is non-compact, or toS2 if QM is compact. Fix a base pointQp 2 QM . Then,
we call the pair (QM , Qp) a model surface of revolutionif its Riemannian metricd Qs2 is
expressed in terms of the geodesic polar coordinate aroundQp as

d Qs2
D dt2

C f (t)2 d�2, (t, �) 2 (0, a) � S1
Qp,
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where 0< a�1, f W (0,a)! R denotes a positive smooth function which is extensible
to a smooth odd function around 0, andS1

Qp WD {v 2 T
Qp QM j kvk D 1}. Define theradial

curvature function GW [0, a) ! R such thatG(t) is the Gaussian curvature atQ (t),
where Q W [0, a) ! QM is any (unit speed) meridian emanating fromQp. Note that f
satisfies the differential equationf 00 C G f D 0 with initial conditions f (0) D 0 and
f 0(0)D 1. It is clear that, if f (t) D t, sint , and sinht , then QM D R2, S2, andH2(�1),
respectively. We call (QM , Qp) a von Mangoldt surfaceif G is non-increasing on [0,a).
A round sphere is the only compact, ‘smooth’ von Mangoldt surface, i.e., f satisfies
limt"a f 0(t) D �1. If a von Mangoldt surface has the propertya <1 and if it is not
a round sphere, then limt"a f (t) D 0 and limt"a f 0(t) > �1. Therefore, such a surface

( QM , Qp) has a singular point, sayQq 2 QM , at the maximal distance fromQp 2 QM such
that d( Qp, Qq) D a, and hence QM is an Alexandrov space. Its shape can be understood
as a ‘balloon’ (See [4, Example 1.2]). On the other hand, paraboloids and 2-sheeted
hyperboloids are typical examples of non-compact von Mangoldt surfaces. An atypical
example of such a surface is found in [8, Example 1.2].

We say that a Finsler manifold (M, F, p) has theradial flag curvature bounded be-
low by that of a model surface of revolution( QM , Qp) if, along every unit speed minimal
geodesic W [0, l )! M emanating fromp, we have

KM ( P (t), w) � G(t)

for all t 2 [0, l ) andw 2 T
 (t)M linearly independent toP (t). Also, we say that (M, F, p)

has theradial tangent curvature bounded below by a constantÆ 2 (�1,0] if, along every
unit speed minimal geodesic W [0, l )! M emanating fromp,

TM ( P (t), w) � Æ

for all w 2 T
 (t)M.

We set BC

r (p) WD {x 2 M j d(p, x) < r },

(1.1) Gp(x) WD {P (l ) 2 Tx M j  is a minimal geodesic segment fromp to x},

where l WD d(p, x), Lm(c) WD
R a

0 max{F(Pc), F(�Pc)} ds, and radp WD supx2M d(p, x).
Now, our main result is stated as follows:

Theorem 1.1. Let (M, F, p) be a compact connected n-dimensional C1-Finsler
manifold whose radial flag curvature is bounded below by1 and radial tangent curva-
ture is equal to0. Assume that
(1) F(w)2

� g
v

(w, w) for all x 2 BC

�=2(p), v 2 Gp(x), and w 2 Tx M;

(2) g
v

(w, w) � F(w)2 for all x 2 M n BC

�=2(p), v 2 Gp(x) and w 2 Tx M;
(3) the reverse curveNc(s) WD c(a�s) of c is geodesic and Lm(c) � radp for all minimal
geodesic segments cW [0, a] ! M n {p}.
If radp > �=2, then M is homeomorphic to the sphereSn.
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REMARK 1.2. We give here related remarks for Theorem 1.1: Except forLm(c) �
radp, all conditions in the theorem are sufficient ones that make our TCTs hold (see
Corollary 2.8 and Lemma 2.9 in Section 2). The biggest obstruction when we estab-
lish TCTs in Finsler geometry is the covariant derivative even thoughF is reversible.
Thanks to the conditions (1) and (2), we can overcome the obstruction, i.e., by the (1)
and f 0(t)D cost > 0 on [0,�=2), we can transplant the strictly convexness ofB

�=2( Qp) �
QM D S2 to BC

�=2(p) (See Section 4), where the convexity onB
�=2( Qp) arises from the posi-

tive second fundamental form forf 0 > 0 on [0,�=2). As well as, the strictly concaveness

of QM nB
�=2( Qp) is transplanted toM nBC

t0 (p) by the (2) andf 0(t)D cost < 0 on (�=2,� ].
Note that one may construct non-Riemannian spaces satisfying (1) and (2) (cf. [7, Ex-
ample 1.3]). The geodesic property onNc in the condition (3) andTM ( P (t), w) D 0 just

only imply g
P

(D P

Pc Pc, P )D 0. Note thatD P

Pc Pc¤ 0 in general. We can replaceLm(c) � radp

in (3) with the following weaker assumption:

Lm(c)

(

< � for c satisfyingc([0, a]) \ (M n BC

�=2(p)) ¤ ;;
� radp for c emanating fromq 2 �BC

radp
(p) to any point in BC

�=2(p).

Here, note that�BC

radp
(p) D {q} (see Lemma 3.4). Remark that diam(M) � � from the

Bonnet–Myers theorem ([1, Theorem 7.7.1]).

We can remove the (3) in Theorem 1.1 as follows:

Corollary 1.3. Let (M, F, p) be a compact connected n-dimensional C1-Finsler
manifold whose radial flag curvature is bounded below by1 and radial tangent curva-
ture is equal to0. Assume that
(1) F(w)2

� g
v

(w, w) for all x 2 BC

�=2(p), v 2 Gp(x), and w 2 Tx M;

(2) g
v

(w, w) � F(w)2 for all x 2 M n BC

�=2(p), v 2 Gp(x) and w 2 Tx M.
If F is reversible anddiam(M) D radp > �=2, then M is homeomorphic toSn.

If F is of Berwald type, the geodesic property onNc (of the (3)) andTM ( P (t),w)D
0 in Theorem 1.1 are automatically satisfied. Hence, we have one more corollary:

Corollary 1.4. Let (M, F, p) be a compact connected n-dimensional C1-Berwald
space whose radial flag curvature is bounded below by1. Assume that
(1) F(w)2

� g
v

(w, w) for all x 2 BC

�=2(p), v 2 Gp(x), and w 2 Tx M;

(2) g
v

(w, w) � F(w)2 for all x 2 M n BC

�=2(p), v 2 Gp(x) and w 2 Tx M;
(3) Lm(c) � radp for all minimal geodesic segments cW [0, a] ! M n {p}.
If radp > �=2, then M is homeomorphic toSn.
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2. TCTs

To prove Theorem 1.1, we need Toponogov’s comparison theorems (TCT) in Finsler
geometry. In [6], we recently established a TCT for a certainclass of Finsler manifolds
whose radial flag curvatures are bounded below by that of a vonMangoldt surface. In
this section, we modify the TCT in the case where a model surface is the unit sphere.

2.1. Angles, triangles, and a counterexample.Let (M,F, p) be a forward com-
plete, connectedC1-Finsler manifold with a base pointp 2 M, and denote byd its
distance function. It follows from the Hopf–Rinow theorem that the forward complete-
ness guarantees that any two points inM can be joined by a minimal geodesic seg-
ment. Owing tod(x, y) ¤ d(y, x) generally, we need a distance with the symmetric
property to define the ‘angles’: Define

dm(x, y) WD max{d(x, y), d(y, x)}.

Since jd(p, x) � d(p, y)j � dm(x, y), we may define the angles with respect todm as
follows.

DEFINITION 2.1 (Angles). LetcW [0, a] ! M be a unit speed minimal geodesic
segment (i.e.,F(Pc) � 1) with p � c([0, a]). The forward and thebackward angles
�!

� (pc(s)c(a)),
 �

� (pc(s)c(0)) 2 [0, � ] at c(s) are defined via

cos
�!

� (pc(s)c(a)) WD � lim
h#0

d(p, c(sC h)) � d(p, c(s))

dm(c(s), c(sC h))
for s 2 [0, a),

cos
 �

� (pc(s)c(0)) WD lim
h#0

d(p, c(s)) � d(p, c(s� h))

dm(c(s� h), c(s))
for s 2 (0, a].

REMARK 2.2. The limits in Definition 2.1 are as follows:

lim
h#0

d(p, c(sC h)) � d(p, c(s))

dm(c(s), c(sC h))
D

1

�

min{g
v

(v, Pc(s)) j v 2 Gp(c(s))},

lim
h#0

d(p, c(s)) � d(p, c(s� h))

dm(c(s� h), c(s))
D

1

�

max{g
v

(v, Pc(s)) j v 2 Gp(c(s))}

where� WD max{1, F(�Pc(s))}. These are, of course, in [�1, 1] (see [6, Lemma 2.2]).

DEFINITION 2.3 (Forward triangles). For three distinct pointsp, x, y 2 M,

4(�!px, �!py) WD (p, x, yI  , � , c)

will denote theforward triangle consisting of unit speed minimal geodesic segments

emanating fromp to x, � from p to y, and c from x to y. Then the corresponding
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Fig. 1. The forward angle.

Fig. 2. The forward triangle.

interior angles
�!

�x,
 �

� y at the verticesx, y are defined by

�!

�x WD
�!

� (pc(0)c(a)),
 �

� y WD
 �

� (pc(a)c(0)),

respectively, wherea WD d(x, y).

DEFINITION 2.4 (Comparison triangles). Fix a model surface of revolution
( QM, Qp). Given a forward triangle4(�!px,�!py)D (p,x, yI ,� ,c) � M, a geodesic triangle
4( Qp Qx Qy) � QM is called itscomparison triangleif

Qd( Qp, Qx) D d(p, x), Qd( Qp, Qy) D d(p, y), Qd( Qx, Qy) D Lm(c)

hold, whereLm(c) D
R d(x,y)

0 max{F(Pc), F(�Pc)} ds.
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There are many forward triangles admitting their comparison triangles, but TCT
does notalways hold for all of them:

EXAMPLE 2.5 ([5]). For an even numberq, let M beR2 with the l q-norm. Then,
M is Minkowskian. Take a forward triangle4(�!px, �!py) � M, where p WD (0, 0), x WD
(1, 0), y WD (0, 1)2 M, and letc(t) WD (1� t, t) denote the side of4(�!px, �!py) joining

x to y. Assume thatq is sufficiently large. Then, we observe that both angles
�!

�x and
 �

� y are nearly 0, respectively. We are able to think of (R

2, Qp) as a reference surface
for M, because flag curvatureKM � 0. It is clear that4(�!px,�!py) admits its comparison
triangle4( Qp Qx Qy) � R2. Since4(�!px, �!py) is nearly equilateral,4( Qp Qx Qy) is too. Hence,
�!

�x < �Qx and
 �

� y < �Qy hold. Therefore, TCT does not hold for the4(�!px, �!py).

2.2. Modified TCTs. From Example 2.5, we understand that some strong con-
ditions are demanded to establish a TCT in Finsler geometry.Taking this into account,
we have the following:

Theorem 2.6 ([6, Theorem 1.2]). Assume that(M, F, p) is a forward complete,
connected C1-Finsler manifold whose radial flag curvature is bounded below by that
of a von Mangoldt surface( QM , Qp) satisfying f0(�) D 0 and G(�) ¤ 0 for unique� 2
(0,1). Let 4(�!px, �!py) D (p, x, yI  , � , c) � M be a forward triangle satisfying that,
for some open neighborhoodN (c) of c,
(1) c([0, d(x, y)]) � M n BC

�

(p);

(2) g
v

(w, w) � F(w)2 for all z 2 N (c), v 2 Gp(z) and w 2 TzM;
(3) TM (v, w) D 0 for all z 2 N (c), v 2 Gp(z) and w 2 TzM, and the reverse curve
Nc(s) WD c(d(x, y) � s) of c is also geodesic.

If such4(�!px,�!py) admits a comparison triangle4( Qp Qx Qy) � QM , then we have
�!

�x � �Qx

and
 �

� y � �Qy.

REMARK 2.7. The application of Theorem 2.6 will be referred to [7]. Here, we
proved the finite topological type and a diffeomorphism theorem toRn.

Corollary 2.8. Assume that(M, F, p) is a compact connected C1-Finsler mani-
fold whose radial flag curvature is bounded below by1. Let 4(�!px, �!py) D (p, x, yI
 , � , c) � M be a forward triangle satisfying that, for some open neighborhoodN (c)
of c,

(1) c([0, d(x, y)]) � M n BC

�=2(p);

(2) g
v

(w, w) � F(w)2 for all z 2 N (c), v 2 Gp(z) and w 2 TzM;
(3) TM (v, w) D 0 for all z 2 N (c), v 2 Gp(z) and w 2 TzM, and the reverse curve
Nc(s) WD c(d(x, y) � s) of c is also geodesic.
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Fig. 3. The forward triangle of TCT.

If such4(�!px,�!py) admits a comparison triangle4( Qp Qx Qy) in (S2, Qp), then we have
�!

�x �

�Qx and
 �

� y � �Qy. Here, (S2, Qp) denotes the unit sphere, i.e., its Riemannian metric dQs2

is expressed as dQs2
D dt2

C f (t)2d�2, (t, �) 2 (0, �) � S1
Qp, such that f(t) D sin t .

Proof. In Theorem 2.6,f 0(t) < 0 on (�,1), becausef 0(�) D 0 and G(�) ¤ 0
for unique � 2 (0,1). Hence, the corollary is immediate from Theorem 2.6, since
f 0(t) D cost < 0 on (�=2, �) and f 0(�=2)D 0 for unique�=2 2 (0, �).

Lemma 2.9. Assume that(M, F, p) is a compact connected C1-Finsler manifold
whose radial flag curvature is bounded below by1. Let4(�!px,�!py)D (p, x, yI ,� ,c) �
M be a forward triangle satisfying that, for some open neighborhoodN (c) of c,
(1) c([0, d(x, y)]) � BC

�=2(p) n {p};

(2) F(w)2
� g

v

(w, w) for all z 2 N (c), v 2 Gp(z) and w 2 TzM;
(3) TM (v, w) D 0 for all z 2 N (c), v 2 Gp(z) and w 2 TzM, and the reverse curve
Nc(s) WD c(d(x, y) � s) of c is also geodesic.
If such 4(�!px, �!py) admits a comparison triangle4( Qp Qx Qy) in (S2, Qp), then we have
�!

�x � �Qx and
 �

� y � �Qy.

Proof. Set� WD max{F(w), F(�w)}. The assumption (2) yields�2
� g

v

(w, w).
Hence, one can prove this lemma by the almost similar argument as that in [6]. See
Section 4 in this article for a detailed explanation of that.
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3. Proof of Theorem 1.1

Let (M, F, p) be the same as that in Theorem 1.1. Hence, our model surface as a
reference surface is the unit sphere (S

2, Qp), i.e., its Riemannian metricd Qs2 is expressed
as d Qs2

D dt2
C f (t)2d�2, (t, �) 2 (0, �) � S1

Qp, such that f (t) D sin t .

Lemma 3.1. The setS2
nBt ( Qp) is strictly convex for all t2 (�=2,�), i.e., for any

distinct two pointsQx, Qy 2 �Bt ( Qp) and minimal geodesic segmentQcW [0,a]! S

2 between
them, we haveQc((0, a)) � S2

n Bt ( Qp), where aWD Qd( Qx, Qy).

Proof. Use the second variation formula.

Hereafter, by the Bonnet–Myers theorem ([1, Theorem 7.7.1]), we may assume,
without loss of generality,

(3.1) radp < � .

Lemma 3.2 (Key lemma). For any distinct two points x, y 2 M n BC

�=2(p), then

c([0, d(x, y)]) \ �BC

�=2(p) D ;

holds for all minimal geodesic segments c emanating from x toy. In particular, the
set Mn BC

�=2(p) is convex.

Proof. Suppose thatc([0, d(x, y)]) \ �BC

�=2(p) ¤ ; for some minimal geodesic
segmentc emanating fromx to y. Then, we consider five cases:

CASE 1: Assume that there exists0, s1, s2 2 [0, d(x, y)) with 0 � s0 < s1 < s2

such that

c([s0, s1)) � M n BC

�=2(p), c([s1, s2]) � �BC

�=2(p).

For sufficiently small" > 0 with " < s1 � s0, take the forward triangle4(
����!

pc(s0),
�������!

pc(s1 � ")) � M. Note thatc([s0, s1 � "]) � M n BC

�=2(p). Since d(p, c(s0)) > �=2
and d(p, c(s1 � ")) > �=2, we have, by the assumption and (3.1), that

jd(p, c(s0)) � d(p, c(s1 � "))j � dm(c(s0), c(s1 � "))

� Lm(c) < � < d(p, c(s0))C d(p, c(s1 � ")),

and hence4(
����!

pc(s0),
�������!

pc(s1 � ")) admits a comparison triangle4( Qpec(s0)Cc(s1 � ")) � S2.
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Fig. 4. The limit argument.

By Corollary 2.8, we have
 �

� (pc(s1� ")c(s0)) � �Cc(s1 � "). It follows from [13, Prop-
osition 2.1] (see Fig. 41) that

�

2
D

 �

� (pc(s1)c(s0)) � lim
"#0

 �

� (pc(s1 � ")c(s0)) � �ec(s1).

Set4( Qpec(s0)ec(s1)) WD lim
"#04( Qpec(s0)Cc(s1 � ")), and let Q�W [0, Qd(ec(s0),ec(s1))]! S

2

denote the side of4( Qpec(s0)ec(s1)) joining ec(s0) to ec(s1). If �ec(s1) D �=2, then

Q�([0, Qd(ec(s0), ec(s1))]) � �B
�=2( Qp)

because�B
�=2( Qp) is geodesic. This contradictsQd( Qp, ec(s0)) > �=2. If �ec(s1) < �=2,

then there existsa 2 (0, Qd(ec(s0), ec(s1))) such that Q�(a) 2 �B
�=2( Qp). This contradicts the

structure of the cut locus ofS2 because�( Q�(a) Qpec(s1)) < � and �B
�=2( Qp) is geodesic.

CASE 2: Assume that there exists3, s4, s5 2 (0, d(x, y)] with 0 < s3 < s4 < s5

such that

c([s3, s4]) � �BC

�=2(p), c((s4, s5]) � M n BC

�=2(p).

1In the right picture of Fig. 4, the circle marks on the segments emanating fromp to c(s1) mean
that the segments have the same length.
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Consider the forward triangle4(
�������!

pc(s4C "),
����!

pc(s5)) � M, where" > 0 is sufficiently

small with " < s5�s4. Applying the similar limit argument in Case 1 to4(
�������!

pc(s4C "),
����!

pc(s5)), we have the triangle4( Qpec(s4)ec(s5)) WD lim
"#04( QpCc(s4C ")ec(s5)) satisfying

�

ec(s4) � �=2. The angle condition yields the same contradiction as thatin Case 1.
CASE 3: Assume that there exists0,s1,s2 2 [0,d(x, y)] with s0 < s1 < s2 such that

c([0, d(x, y)]) \ �BC

�=2(p) D {c(s1)}, c((s0, s1)), c((s1, s2)) � M n BC

�=2(p).

Then, we get a contradiction from the same argument as Case 1,or Case 2.
CASE 4: Assume that there exists0, s1 2 (0, d(x, y)) with s0 < s1 such that

c((s0, s1)) � BC

�=2(p) n {p}, c(s0), c(s1) 2 �BC

�=2(p),

and that

(3.2)
�!

� (pc(s0)c(s1)) <
�

2
,
 �

� (pc(s1)c(s0)) <
�

2
.

Take a subdivisionr0 WD s0 < r1 < � � � < rk�1 < rk WD s1 of [s0,s1] such that4(
�����!

pc(r i�1),
���!

pc(r i )) admits a comparison triangleQ4i
WD 4( QpAc(r i�1)ec(r i ))� S2 for eachi D 1,2,:::,k.

Applying Lemma 2.9 to4(
�����!

pc(r i�1),
���!

pc(r i )), but for eachi D 2, 3, : : : , k� 1, we have

(3.3)
�!

�c(r i�1) � �( QpAc(r i�1)ec(r i )),
 �

�c(r i ) � �( Qpec(r i )Ac(r i�1)).

For sufficiently small", Æ > 0 with " < r1 � r0 and Æ < rk � rk�1, take two forward

triangles4(
�������!

pc(r0C "),
����!

pc(r1)),4(
�����!

pc(rk�1),
�������!

pc(rk � Æ)) � M. Note that these two tri-
angles admit their comparison triangles

Q

4

"

WD 4( QpCc(r0C ")ec(r1)), Q

4

Æ

WD 4( QpBc(rk�1)Cc(rk � Æ)) � S
2,

respectively. Without loss of generality, we may assumeQ41
D lim

"#0 Q4" and Q4k
D

lim
Æ#0 Q4Æ because lim

"#0 Q4" and lim
Æ#0 Q4Æ are isometric to Q41 and Q4k, respectively.

By Lemma 2.9,
�!

�c(r0 C ") � �( QpCc(r0C ")ec(r1)),
 �

�c(r1) � �( Qpec(r1)Cc(r0C ")), and

that
�!

�c(rk�1) � �( QpBc(rk�1)Cc(rk � Æ)),
 �

�c(rk � Æ) � �( QpCc(rk � Æ)Bc(rk�1)). Hence, it
follows from (3.2) and [13, Proposition 2.1] that

(3.4)
�

2
>

�!

�c(r0) � lim
"#0

�!

�c(r0C ") � �( Qpec(r0)ec(r1)),
 �

�c(r1) � �( Qpec(r1)ec(r0)),

and that

(3.5)

�!

�c(rk�1) � �( QpBc(rk�1)ec(rk)),
�

2
>

 �

�c(rk) � lim
Æ#0

 �

�c(rk � Æ) � �( Qpec(rk)Bc(rk�1)).
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Fig. 5. The limit argument in (3.4).

Starting from Q41, we inductively draw a geodesic triangleQ4iC1
� S

2 which is

adjacent to Q4i so as to have a common sideQpec(r i ), where 0WD �(ec(r0)) � �(ec(r1)) �

� � � � �(ec(rk)). Since
 �

�c(r i )C
�!

�c(r i ) � � for eachi D 1, 2, : : : , k� 1, we obtain, by
(3.3), (3.4), (3.5),

(3.6) �( Qpec(r i )Ac(r i�1))C�( Qpec(r i )Bc(r iC1)) � � .

Let O� W [0, Lm(cj[s0,s1])]! S

2 denote the broken geodesic segment consisting of minimal

geodesic segments fromAc(r i�1) to ec(r i ), i D 1, 2, : : : , k. Set O� (s) WD (t( O� (s)), �( O� (s))).
By (3.6), we have the unit speed, but not necessarily minimalat this moment, geodesic

Q�W [0, a] ! S

2 emanating fromec(r0) to ec(rk) and passing underO� ([0, Lm(cj[s0,s1])]), i.e.,

�( Q�) 2 [0, �(ec(rk))] on [0,a] and t( O� (s)) > t( Q�(u)) for all (s, u) 2 (0, Lm(cj[s0,s1]))� (0,a)

with �( O� (s)) D �( Q�(u)) (see Fig. 6). Sincea � Lm(cj[s0,s1]) < � by the assumption and
(3.1), Q� is minimal with �( Q�(0) Qp Q�(a)) < � . This contradicts the structure of the cut
locus ofS2 because�B

�=2( Qp) is geodesic.
CASE 5: Assume thatc is passing throughp. Take a sequence{ci W [0, l i ] !

M n {p}}i2N of minimal geodesic segmentsci emanating fromx D ci (0) convergent to
c. Applying the same argument as that in Case 4 to eachci for sufficiently largei , we

get a contradiction. Note that limi!1

Lm(ci ) D Lm(c) � radp, but x, y 2 M n BC

�=2(p).
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Fig. 6. The segmentQ�.

Therefore,c([0, d(x, y)]) \ �BC

�=2(p) D ; holds for all minimal geodesic segments
c emanating fromx to y. The second assertion is clear from the first assertion.

Corollary 3.3. Let 4(�!px,�!py) D (p, x, yI  , � , c) � M be a forward triangle for

x 2 M n BC

�=2(p) and y2 BC

�=2(p) satisfying

{z} WD c((0, a)) \ �BC

�=2(p) ¤ ;,

where aWD d(x, y). Then, the forward triangle4(�!px, �!pz) � M admits its comparison

triangle 4( Qp QxQz) � S2 such that
�!

�x � �Qx and
 �

�z� �Qz. Additionally, if the forward

triangle 4(�!pz, �!py) � M admits its comparison triangle4( QpQzQy) � S2, then
�!

�z� �Qz

and
 �

� y � �Qy.

Proof. Apply the same limit argument in the proof of Lemma 3.2to forward
triangles.

Lemma 3.4. The function d(p, � ) attains its maximum at a unique point q2 M.
In particular, M n BC

�=2(p) is a topological disk.
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Proof. Suppose that there exist two distinct pointsx, y 2 �BC

radp
(p). Then, the

forward triangle4(�!px, �!py) � M admits its comparison triangle4( Qp Qx Qy) � S

2. Let
cW [0, d(x, y)] ! M and QcW [0, Lm(c)] ! S

2 be sides of4(�!px, �!py) and4( Qp Qx Qy) em-
anating fromx to y and from Qx to Qy, respectively. By Corollary 2.8 and Lemma 3.1,
d(p, c(s)) > radp holds for all s 2 (0, d(x, y)). This contradicts the definition of radp.
The second assertion follows from the uniqueness and Lemma 3.2.

DEFINITION 3.5. We say that a pointx 2 M is a (forward) critical point for
p 2 M if, for every w 2 Tx M n{0}, there existsv 2 Gp(x) such thatg

v

(v,w) � 0. Here
see (1.1) for the definition ofGp(x).

By similar arguments to the Riemannian case, we have Gromov’s isotopy lemma [2]:

Lemma 3.6. Given 0< r1 < r2 � 1, if BC

r2 (p) n BC

r1
(p) has no critical point for

p 2 M, then BC

r2 (p) n BC

r1
(p) is homeomorphic to�BC

r1
(p) � [r1, r2].

Lemma 3.7. There are no critical point for p inBC

�=2(p) n {p}. In particular,

BC

�=2(p) is a topological disk.

Proof. SinceM n BC

�=2(p) is convex (Lemma 3.2),�BC

�=2(p) has no critical point

for p. Suppose that there exists a critical pointx 2 BC

�=2(p) n {p} for p. Let q 2 M
be the same as that in Lemma 3.4 such thatd(p, q) D radp, andcW [0, a] ! M a unit
speed minimal geodesic segment emanating fromq to x, where a WD d(q, x). Then,
c([0, a]) \ �BC

�=2(p) ¤ ;. From the cases in the proof of Lemma 3.2, it is sufficient to

consider the case wherec((0, a)) \ �BC

�=2(p) is one point, say

{q1} WD c((0, a)) \ �BC

�=2(p).

Since bothq D c(0) and x D c(a) are critical points forp, we have

(3.7)
�!

� (pc(0)c(a)) �
�

2
,
 �

� (pc(a)c(0))�
�

2
.

Note thatc does not pass throughp, because, by the definition of critical points, there
exist at least two minimal segments emanating fromp to x andc is minimal. Now, take a
subdivisions0 WD 0< s1 < � � � < sk�1 < sk WD a of [0, a] such thatc(s1) D q1 2 �BC

�=2(p)

and that4(
�����!

pc(si�1),
���!

pc(si )) admits a comparison triangleQ4i
WD 4( QpAc(si�1)ec(si )) � S2

for eachi D 2, 3, : : : , k. By Corollary 3.3,4(
����!

pc(s0),
����!

pc(s1)) admits its a comparison

triangle Q41
WD 4( Qpec(s0)ec(s1)) � S2 satisfying

(3.8)
�!

�c(s0) � �( Qpec(s0)ec(s1)),
 �

�c(s1) � �( Qpec(s1)ec(s0)).
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Moreover, by Corollary 3.3 again, we have

(3.9)
�!

�c(s1) � �( Qpec(s1)ec(s2)),
 �

�c(s2) � �( Qpec(s2)ec(s1)).

In particular, by (3.7) and (3.8), we have

(3.10) �( Qpec(s0)ec(s1)) �
�

2
.

Applying Lemma 2.9 to4(
�����!

pc(si�1),
���!

pc(si )) for eachi D 3, 4, : : : , k,

(3.11)
�!

�c(si�1) � �( QpAc(si�1)ec(si )),
 �

�c(si ) � �( Qpec(si )Ac(si�1)).

In particular, by (3.7) and (3.11), we have

(3.12) �( Qpec(sk)Bc(sk�1)) �
�

2
.

Starting from Q41, we inductively draw a geodesic triangleQ4iC1
� S

2 which is adjacent

to Q4i so as to have a common sideQpec(si ), where 0WD �(ec(s0)) � �(ec(s1)) � � � � �

�(ec(sk)). Since
 �

�c(si )C
�!

�c(si ) � � for eachi D 1, 2,: : : , k�1, we obtain, by (3.11),
(3.8), (3.9),

(3.13) �( Qpec(si )Ac(si�1))C�( Qpec(si )Bc(siC1)) � � .

Let O� W [0, Lm(c)]! S

2 denote the broken geodesic segment consisting of minimal geo-

desic segments fromAc(si�1) to ec(si ), i D 1, 2, : : : , k. Set O� (r ) WD (t( O� (r )), �( O� (r ))). By

(3.13), we have the unit speed geodesicQ� W [0, b] ! S

2 emanating fromQ�(0) D ec(s0)

to Q�(b) D ec(sk) and passing underO� ([0, Lm(c)]), i.e., �( Q�) 2 [0, �(ec(sk))] on [0, b] and
t( O� (r )) > t( Q�(u)) for all (r, u) 2 (0, Lm(c)) � (0, b) with �( O� (r )) D �( Q�(u)). Sinceb �
Lm(c) < � by (3.1), Q� is minimal with�

�

P

Q (0), PQ� (0)
�

< � , where Q and Q� denote min-

imal geodesic segments (i.e., sub-meridians) emanating from Qp to ec(s0) and from p to
ec(sk), respectively. SinceQ� lives under O� ([0, Lm(c)]), we have, by (3.12) and (3.10),

(3.14) �

�

P

Q�(0),� PQ ( Qd( Qp, ec(s0)))
�

�

�

2
, �

�

P

Q�(b), PQ� ( Qd( Qp, ec(sk)))
�

�

�

2
.

Since Qd( Qp,ec(s0))> �=2> Qd( Qp,ec(sk)), there existsb0 2 (0,b) such thatQ�(b0) 2 �B
�=2( Qp).

Let N� W [0, � ] ! S

2 be an extension ofQ� to the antipodal pointec(s0)
�

to ec(s0) D Q�(0),
and setN�(u) WD (t(u), �(u)). SinceS2

n Bu( N�(0)) is strictly convex for allu 2 (�=2, �)
(by the same proof of Lemma 3.1),�( PN�(radp), (�=�t)j

N�(radp)) > �=2 holds. This implies

(3.15) t 0(radp) < 0,
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where note thatN� emanates fromec(s0) to ec(s0)
�

. Since N�((b0, radp)) � B
�=2( Qp) and

f 0(t) D cost > 0 on (0,�=2), it follows from [12, (7.1.15)] that

(3.16) t 00(u) D f (t(u)) f 0(t(u))� 0(t(u))2
> 0

holds on (b0, radp). Hence, by (3.15) and (3.16),t(u) is decreasing on [b0, radp]. Since
b 2 (b0, radp),

�

�

P

Q�(b), PQ� (t(b))
�

>

�

2
.

This contradicts the right inequality in (3.14). Therefore, BC

�=2(p) n {p} has no critical

point for p. By Lemma 3.6,BC

�=2(p) is a topological disk.

By Lemmas 3.4 and 3.7,M is homeomorphic toSn.

4. Appendix: Proof of Lemma 2.9

Let (M, F, p) be a forward complete, connectedC1-Finsler manifold with a base
point p 2 M, and letd denote its distance function and Cut(p) the cut locus ofp. Set
B�

r (x) WD {y 2 M j d(y, x) < r }. Take a pointq 2 M n (Cut(p)[ {p}) and smallr > 0
such thatB�

2r (q)\ (Cut(p)[{p})D ; and thatB�

r (q) WD BC

r (q)\B�

r (q) is geodesically
convex (i.e., any minimal geodesic joining two points inB�

r (q) is contained inB�

r (q)).
Given a unit speed minimal geodesic segmentcW (�", ") ! B�

r (q), we consider the
C1-variation

'(t, s) WD expp

�

t

l
exp�1

p (c(s))

�

, (t, s) 2 [0, l ] � (�", "),

where l WD d(p, c(0)). Sincex WD c(0) � Cut(p), there is a unique minimal geodesic
segment W [0, l ] ! M emanating fromp to x. By setting J(t) WD (�'=�s)(t, 0), we
get the Jacobi fieldJ along  with J(0)D 0 and J(l ) D Pc(0). Note thatJ(t) ¤ 0 on
(0, l ] from the minimality of  , and that

(4.1) J?(t) WD J(t) �
g
P (l )( P (l ), Pc(0))

l
t P (t), t 2 [0, l ],

is the g
P

-orthogonal componentJ?(t) to P (t) (see [6, Lemma 3.2]). Moreover, since
 is unique, it follows from the proof of [6, Lemma 2.2] that

(4.2) � cos
�!

� (pxc(")) D cos
 �

� (pxc(�")) D ��1g
P (l )( P (l ), Pc(0)),

where� WD max{1, F(�Pc(0))}. Hence,� �
�!

� (pxc(")) D
 �

� (pxc(�")). In the following
discussion, we set

(4.3) ! WD � �

�!

� (pxc(")) D
 �

� (pxc(�")).
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Hereafter, we assume that the radial flag curvature of (M, F, p) is bounded below
by 1. Hence, its model surface is the unit sphere (S

2, Qp) with its metric d Qs2
D dt2

C

f (t)2 d�2, (t, �) 2 (0, �) � S1
Qp, such that f (t) D sin t . For small Æ > 0 with Æ < 1,

we set

f
Æ

(t) WD
1

p

1� Æ
sin(
p

1� Æt)

on [0,�=
p

1� Æ]. Then, f
Æ

satisfies f 00
Æ

C(1�Æ) f
Æ

D 0 with f
Æ

(0)D 0, f 0
Æ

(0)D 1. Thus,

we have a new sphere (S2
Æ

, Qo) with the metricd Qs2
Æ

D dt2
C f

Æ

(t)2d�2 on (0,�=
p

1� Æ )�
S

1
Qo. Since the curvature 1� Æ of (S2

Æ

, Qo) is less than 1, we may also employ (S

2
Æ

, Qo) as
a reference surface forM.

Let c, x D c(0),  and l D d(p, x) be the same in the above. Fix a pointQx 2
S

2
Æ

with Qd
Æ

( Qo, Qx) D l , where Qd
Æ

denotes the distance function induced fromd Qs2
Æ

. Let
Q W [0, l ] ! S

2
Æ

be the minimal geodesic segment fromQo to Qx, and take a unit parallel

vector field QE along Q orthogonal to PQ . Define the Jacobi fieldQX along Q by

(4.4) QX(t) WD
1

f
Æ

(l )
f
Æ

(t) QE(t).

Lemma 4.1 ([6, Lemma 3.4]). For any Jacobi field X along which is g
P

-
orthogonal to P and satisfies X(0)D 0 and g

P (l )(X(l ), X(l )) D 1, we have

QI l ( QX, QX) � I l (X, X)C
Æ

f
Æ

(l )2

Z l

0
f
Æ

(t)2 dt.

Here, I l and QI l denote the index forms with respect to j[0,l ] and Q j[0,l ] , respectively.

Fix a geodesicQcW (�", ")! S

2
Æ

with Qc(0)D Qx such that

�

�

P

Q (l ), PQc(0)
�

D !,


P

Qc




D � WD max{1, F(�Pc(0))},

where! is as that in (4.3). Consider the geodesic variation

Q'(t, s) WD exp
Qo

�

t

l
exp�1

Qo (Qc(s))

�

, (t, s) 2 [0, l ] � (�", ").

By setting QJ(t) WD (� Q'=�s)(t, 0), we get the Jacobi fieldQJ along Q with QJ(0)D 0 and
QJ(l ) D PQc(0). And the Jacobi field

QJ?(t) WD QJ(t) �




P

Q (l ), PQc(0)
�

l
t PQ (t)

along Q is orthogonal toPQ (t) on [0, l ].
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Lemma 4.2. Assume that
(1) B�

2r (q) � BC

�=2(p);

(2) F(v)2
� g

P (l )(v, v) for all v 2 Tx M.
If ! 2 (0, �), then there existsÆ1 WD Æ1( f, r ) > 0 such that, for any Æ 2 (0, Æ1),

QI l ( QJ
?, QJ?) � I l (J?, J?) � ÆC1g

P (l )(J?(l ), J?(l )) > 0

holds, where C1 WD 1=(2 f (l0)2)
R l0

0 f (t)2 dt and l0 WD d(p, q).

Proof. By the assumption (2) in this lemma,

(4.5) �

2
� g

P (l )(Pc(0), Pc(0)).

Indeed, (4.5) is immediate in the case where� D 1. If � D F(�Pc(0)), then

1� g
P (l )

�

�Pc(0)

F(�Pc(0))
,
�Pc(0)

F(�Pc(0))

�

D

1

F(�Pc(0))2
g
P (l )(Pc(0), Pc(0)).

By (4.2) and (4.3),g
P (l )( P (l ), Pc(0))D � cos!. Then, QJ?(l ) D �� sin! � QX(l ) holds,

where QX is the same as that in (4.4). Since bothQJ? and QX are Jacobi fields onS2
Æ

,
QJ?(t) D �� sin! � QX(t) on [0, l ]. Hence

(4.6) QI l ( QJ
?, QJ?) D (� sin!)2

QI l ( QX, QX).

On the other hand, it follows from (4.1) and (4.5) that

g
P (l )(J?(l ), J?(l )) D g

P (l )(Pc(0), Pc(0))� (� cos!)2
� (� sin!)2.

Then, we get a constanta WD (� sin!)2
� g

P (l )(J?(l ), J?(l )) � 0. Sinceg
P (l )(J?(l ),

J?(l )) > 0 for ! 2 (0, �), we have, by Lemma 4.1,

QI l ( QX, QX) �
I l (J?, J?)

g
P (l )(J?(l ), J?(l ))

C

Æ

f
Æ

(l )2

Z l

0
f
Æ

(t)2 dt,

hence

(4.7)

�I l (J?, J?) � �g
P (l )(J?(l ), J?(l ))

�

QI l ( QX, QX) �
Æ

f
Æ

(l )2

Z l

0
f
Æ

(t)2 dt

�

D {a� (� sin!)2} QI l ( QX, QX)C
Æ � g

P (l )(J?(l ), J?(l ))

f
Æ

(l )2

Z l

0
f
Æ

(t)2 dt.

By (4.6) and (4.7),

QI l ( QJ
?, QJ?) � I l (J?, J?) � a QI l ( QX, QX)C

Æ � g
P (l )(J?(l ), J?(l ))

f
Æ

(l )2

Z l

0
f
Æ

(t)2

�

Æ � g
P (l )(J?(l ), J?(l ))

f
Æ

(l )2

Z l

0
f
Æ

(t)2,
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where note thata � 0, and that QI l ( QX, QX) D
p

1� Æ= tan(
p

1� Æl ) > 0, becausel <
�=2< �=2

p

1� Æ by the assumption (1) in this lemma. Sincejl � l0j � max{d(q, x),
d(x, q)} < r , and sincel , l0 < �=2 (from the (1)), taking smallerÆ1( f, r ) > 0 if neces-
sary, we get the desired assertion in this lemma for allÆ 2 (0, Æ1).

Lemma 4.3. Assume that
(1) B�

2r (q) � BC

�=2(p);

(2) F(v)2
� g

P (l )(v, v) for all v 2 Tx M;
(3) TM ( P (l ), Pc(0))D 0.
For eachÆ 2 (0,Æ1), � 2 (0,�=2), if ! 2 [� ,� � � ], then there exists"0 WD "0(M, l , f, ",
Æ, �) 2 (0, ") such that L(s) � QL(s) holds for all s2 [�"0, "0]. Here, L(s) WD d(p, c(s))
and QL(s) WD Qd

Æ

( Qo, Qc(s)).

Proof. We will state the outline of the proof, since the proofis very similar to
[6, Lemma 3.6] thanks to Lemma 4.2. SetR(s) WD L(s)�{L(0)C L 0(0)sC L 00(0)s2

=2}.
Then, there existsC2 WD C2(M, l ) > 0 such that

L(s) D L(0)C L 0(0)sC
1

2
L 00(0)s2

CR(s)

� l C s� cos!C
s2

2
I l (J?, J?)C C2jsj

3.

Note thatL 0(0)D �cos! and L 00(0)D I l (J?, J?) hold by [6, Lemma 3.3], (4.2), (4.3),
and the assumption (3) in this lemma. Similarly,

QL(s) � l C s� cos!C
s2

2
QI l ( QJ

?, QJ?) � C3jsj
3

for someC3 WD C3( f, l ) > 0 and all s 2 (�", "). Since g
P (l )(J?(l ), J?(l )) > 0 for all

! 2 [� , � � � ], there existsC4 WD C4(M, �) > 0 such thatg
P (l )(J?(l ), J?(l )) > C4 > 0.

From Lemma 4.2,QL(s)� L(s) � s2{ÆC1C4 � 2(C2CC3)s}=2 holds. Therefore, we get
L(s) � QL(s) for all s 2 [�"0, "0], if "0 WD min{", ÆC1C4=2(C2C C3)}.

Thanks to Lemma 4.3 and the structure ofS2
Æ

, we may prove Lemma 2.9 by the
same arguments in Sections 4, 5, and 6 in [6].

REMARK 4.4. Although we do not consider cases of! D 0, or � in Lemma 4.3,

Lemma 2.9 holds in cases of
�!

�x D � ,
 �

� y D 0, or
�!

�x D 0,
 �

� y D � because the
reverse curveNc of the geodesic segmentc is geodesic.

ACKNOWLEDGEMENTS. I would like to thank Professor M. Tanaka for helpful
discussions.



1162 K. KONDO

References

[1] D. Bao, S.-S. Chern and Z. Shen: An Introduction to Riemann–Finsler Geometry, Springer,
New York, 2000.

[2] M. Gromov: Curvature, diameter and Betti numbers, Comment. Math. Helv.56 (1981),
179–195.

[3] K. Grove and K. Shiohama:A generalized sphere theorem, Ann. of Math. (2) 106 (1977),
201–211.

[4] K. Kondo: Radius sphere theorems for compact manifolds with radial curvature bounded below,
Tokyo J. Math.30 (2007), 465–475.

[5] K. Kondo and S. Ohta:Private communications, (2012).
[6] K. Kondo, S. Ohta and M. Tanaka:A Toponogov type triangle comparison theorem in Finsler

geometry, preprint (2012), arXiv:1205.3913.
[7] K. Kondo, S. Ohta and M. Tanaka:Topology of complete Finsler manifolds with radial flag

curvature bounded below, Kyushu J. Math.68 (2014), 347–357.
[8] K. Kondo and M. Tanaka:Total curvatures of model surfaces control topology of complete open

manifolds with radial curvature bounded below, I, Math. Ann. 351 (2011), 251–266.
[9] H.-B. Rademacher:A sphere theorem for non-reversible Finsler metrics, Math. Ann.328 (2004),

373–387.
[10] Z. Shen: Volume comparison and its applications in Riemann–Finslergeometry, Adv. Math.

128 (1997), 306–328.
[11] Z. Shen: Lectures on Finsler Geometry, World Sci. Publishing, Singapore, 2001.
[12] K. Shiohama, T. Shioya and M. Tanaka: The Geometry of Total Curvature on Complete Open

Surfaces, Cambridge Tracts in Mathematics159, Cambridge Univ. Press, Cambridge, 2003.
[13] M. Tanaka and S.V. Sabau:The cut locus and distance function from a closed subset of a

Finsler manifold, preprint (2012), arXiv:1207.0918.

Department of Mathematical Science
Yamaguchi University
Yamaguchi City, Yamaguchi Pref. 753-8512
Japan
e-mail: keikondo@yamaguchi-u.ac.jp


