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Abstract
This paper extends the work of Nikkuni [4] finding an explicitrelationship for the

graph K3,3,1 between knotting and linking, which relates the sum of the squares of
linking numbers of links in the embedding and the second coefficient of the Conway
polynomial of certain cycles in the embedding. Then we use this and other similar
relationships to better understand the relationship between knotting and linking in the
Petersen family. The Petersen family is the set of minor minimal intrinsically linked
graphs. We prove that if such a spatial graph is complexly algebraically linked then
it is knotted.

1. Introduction

Throughout this paper we will work with finite simple graphs,in the piecewise
linear category. Aspatial graphis an embedding of a graphG in R3, denoted f (G) or
simply f . This paper focuses on the interaction between knotting andlinking in spatial
graphs. A knot or link is said to be in a spatial graph if the knot or link appears as
a subgraph. An embeddingf of a graphG is linked if there is a nontrivial link in
f (G). An embedding f of a graphG is algebraically linked if there is a link with
nonzero linking number inf (G). We will say an embedding of a graph iscomplexly
algebraically linked(CA linked) if the embedding contains a 2-component linkL with
jlk(L)j � 2 or (at least) two 2-component linksL1 and L2 with lk(L i ) ¤ 0, where lk
denotes the linking number inR3. An embedding f of a graphG is knotted if there
is a nontrivial knot in f (G). An embedding that is not knotted is calledknotless.

A graphG is intrinsically knottedif every embedding ofG into R3 contains a non-
trivial knot. A graph G is intrinsically linked if every embedding ofG into R3 con-
tains a non-split link. The combined work of Conway and Gordon [1], Sachs [7], and
Robertson, Seymour, and Thomas [5] fully characterize intrinsically linked graphs. They
showed that the Petersen family is the complete set of minor minimal intrinsically linked
graphs, i.e. every intrinsically linked graph contains a graph in the Petersen family as a
minor. The Petersen family is a set of seven graphs shown in Fig. 1. We will denote this
set of graphs byPF . They are related byrY-moves (shown in Fig. 11), as indicated by
the arrows in Fig. 1. The set of intrinsically knotted graphshas not been fully character-
ized. However it is known that every intrinsically knotted graph is intrinsically linked.
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Fig. 1. The graphs of the Petersen family. The arrows indicate a
rY-move.
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This is a consequence of the work characterizing intrinsically linked graphs [5]. The con-
verse does not hold; there are many graphs that are intrinsically linked graphs that have
knotless embeddings. In particular, none of the graphs ofPF are intrinsically knotted.

The study of intrinsically knotted graphs and intrinsically linked graphs began with
the work of Sachs, and Conway and Gordon. When Conway and Gordon proved that
K6 is intrinsically linked and thatK7 is intrinsically knotted, they did this by proving
for every embeddingf of K6 the following holds, the sum of the linking numbers over
all 2-component links inf (K6) is odd, and for every embeddingf of K7 the follow-
ing holds, the sum of the second coefficient of the Conway polynomial over all knots
in f (K7) is odd. In the recent work of Ryo Nikkuni, he generalizes these results to get
formulae for bothK6 and K7 explicitly relating knotting and linking in their embed-
dings, see [4]. Acycle  in a graphG is a subgraph ofG homeomorphic to a circle.
In particular, is called ak-cycle if it consists of exactlyk edges and a Hamiltonian
cycle if it contains all vertices ofG. In keeping with the notation of Nikkuni [4], let
0(G) denote the set of all cycles inG, let 0H (G) be the set of all Hamiltonian cycles
in G, let 0m(G) be the set of allm-cycles in G, let 0(2)

s,t (G) be the set of all pairs of
disjoint s-cycles andt-cycles, and let0(2)(G) be the set of all pairs of disjoint cycles.
Recently, Nikkuni proved the following theorem relating the linking and knotting in an
embedding ofK6:

Theorem 1 ([4]). For any embedding f of K6 into R3 the following holds:

X

�20

(2)(K6)

lk( f (�))2
D 2

 

X

20H (K6)

a2( f ( )) �
X

205(K6)

a2( f ( ))

!

C 1,

where a2 is the second coefficient of the Conway polynomial.

Due the nature of therY-moves, Nikkuni’s result forK6 implies there are similar re-
lations between knotting and linking for all of the graphs that can be obtained from
K6 by rY-moves. This left a single graphK3,3,1 of PF for which it was unknown if
there was such a relationship. We prove for every embeddingf of K3,3,1 that

X

�203,4(K3,3,1)

lk( f (�))2
D 2

0

B

B

�

X

20H

a2( f ( )) � 2
X

206
A�

a2( f ( )) �
X

205
A2

a2( f ( ))

1

C

C

A

C 1,

where A is the single vertex of valance 6 inK3,3,1. This gives an explicit connection
between linking and knotting in embeddings ofK3,3,1, completely our understanding of
the PF .

In Section 2, we define the Wu invariant and give background onthe key ingredi-
ents that go into such results. In Section 3, we prove Theorem7 obtaining the above
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stated relationship for the graphK3,3,1. In Section 4, we further examine the relation-
ship between knotting and linking in the Petersen family.

One might expect that a knotted embedding would be an embedding with more
complex linking. However there are knotted embeddings ofK6 that contain only a sin-
gle Hopf link, see Fig. 12. The question of when complexity inlinking of an embed-
ding can guaranty that the embedding is knotted, is much morefruitful. We prove:

Theorem 2. If f is a CA linked embedding of G2 PF , then f is knotted.

This result gives an algebraic linking condition on the embedding that will result in
a knotted embedding. Another natural question is whether the presences of additional
links with linking number 0, or more complex links with linking number�1 would
guarantee knotting in the embedding. We give examples of embeddings ofK6 suggest-
ing that such geometric linking will not guarantee a knottedembedding.

2. Background on graph homologous embeddings and the Wu invariant

This sections contains a brief description of the Wu invariant, and graph-homologous
embeddings, along with useful relationships between the Wuinvariant, the�-invariant,
and the second coefficient of the Conway polynomial.

Let V(G) and E(G) be the set of all vertices and the set of all edges of a graph
G, respectively. LetG be a graph withV(G) D {v1, : : : , vm} (fixed ordering),E(G) D
{e1, : : : , en} and a fixed orientation on each of the edges. Note,G is a finite one-
dimensional simplicial complex. For a simplicial complexX, let

P2(X) D {s1 � s2 j s1, s2 2 X, s1 \ s2 D ;}

be thepolyhedral residual spaceof X. Let � be the involution onP2(X), i.e. � (s1 �

s2) D s2 � s1. Let f be an embedding ofG into R

3. The second skew-symmetric
cohomology group of the pair (P2(G), � ) is denoteL(G). It is known that L(G) is
a free abelian group and the Wu invariant off , denotedL( f ) is in L(G). Next we
will focus on computations for graphs. For more background on the Wu invariant and
a more general approach see [3, 8, 10, 12].

Following [10], Section 2, there is explicit presentation of L(G). An orientation
of a 2-cell ei � ej 2 P2(G) is given by the ordered pair of orientations ofei and ej .
Let Eei ej D ei � ej C ej � ei 2 C2(P2(G)) for ei \ ej D ; (1 � i < j � n). The set
{Eei ej j 1 � i < j � n, ei \ ej D ;} is a free basis forC2(P2(G), � ). Now the set of
dual elements{Eei ej

j 1� i < j � n, ei \ ej D ;} generateL(G). The relations on the
generators are given by the coboundary applied to the set{Vei vs

j 1 � i � n, 1� s �
m, vs � ei }. The coboundary is defined by:

Æ

1(Vei vs) D
X

I (ej )Dvs

E�(ei ej )
�

X

T(ej )Dvs

E�(ei ej ),
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where I (ei ) is the initial vertex ofej , T(ej ) is the terminal vertex ofej and �(ei ej )
is the standard orderingei ej if i < j and ej ei if j < i . The Wu invariantL( f ) can
be calculated from a projection� W R3

! R

2 where� Æ f is a regular projection with
finitely many multiple points all of which are transverse double points that occur away
from vertices. Letai j ( f ) be the sum of the signs of the crossings that occur between
�Æ f (ei ) and�Æ f (ej ). Let W D

P

ai j ( f )Eei ej summed over all pairs of disjoint edges
of G. The Wu invariantL( f ) is the coset of the sumW in L(G).

A spatial graph-homology(or just homology) is an equivalence relation on spatial
graphs introduced by Taniyama, see [9] for the precise definition. A result that will be
central to obtaining our results is:

Theorem 3 ([10]). Two embeddings f and g of a simple graph G inR3 are
homologous if and only ifL( f ) D L(g).

Another key insight is that, if two embeddings are spatial graph-homologous then
the subgraphs are also spatial graph-homologous. Both linking number and the Wu
invariant are spatial graph-homology invariants.

The Wu invariant off (K3,3) can be expressed in this simple combinatorial form [10]:

L( f ) D
X

(x,y)

"(x, y)l ( f (x), f (y)),

the sum over all unordered disjoint pairs of edges inG, wherel ( f (x), f (y)) is the sum
of the signs of the crossing betweenf (x) and f (y), and"(x, y) is a weighting defined,

"(x, y) D

�

�1, for (ci , bl ) if i is odd,
1, else,

where the edges ofK3,3 are labeled as indicated in Fig. 2. This makes sense because
the L(K3,3) � Z. There is a similar formula forK5, but it is omitted because it will
not be used here. These explicit calculations for theK3,3 subgraphs of a graphG are
what make it possible to relate the Wu invariantL( f ) and linking in the given em-
bedding f . Then theL( f ) also needs to be related to the second coefficient of the
Conway polynomiala2. This is done via another invariant known as the�-invariant of
f [8]. For a spatial embeddingf of K3,3 or K5:

�( f ) WD
X

20H

a2( f ( )) �
X

204

a2( f ( )).

There is the following relationship between the�-invariant andL( f ):
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Fig. 2. On the left: The graphK3,3,1 with edges oriented and the
edges and vertices labeled.On the right: The graphK3,3 with
edges oriented and labeled in the standard convention for the Wu
invariant.

Proposition 4 ([2]). Let f be a spatial embedding of K3,3 or K5 then,

�( f ) D
L( f )2

� 1

8
.

Together this gives the relationship betweenL( f ) and a2 of certain cycles in embed-
dings of K3,3 and K5.

3. Conway–Gordon theorem for K3,3,1

In this section we prove the before mentioned relationship between the linking
number anda2 of cycles in embeddings ofK3,3,1. In the following proposition we de-
termine a standard embedding ofK3,3,1, which given the correct choice of nine integers
is graph-homologous to any other given embedding ofK3,3,1. We prove this by find-
ing a basis forL(K3,3,1). Throughout this paper we indicate the number of half twists
between two edges with a box and integer as shown in Fig. 3, with the handedness of
the crossings is as shown.

Proposition 5. Given an embedding f of K3,3,1 there exist a choice of the nine
integers li , mi , ni for i D 1, 2, 3, such that h is spatial graph-homologous to the em-
bedding f . The embedding h is shown inFig. 4.

Proof. We will use the edge and vertex labeling, as well as edge orientation in-
dicated in Fig. 2. The order on the sets isE(K3,3,1) D {a1, : : : , a6, b1, b2, b3, c1, : : : , c6}



KNOTTING AND L INKING IN PETERSEN FAMILY 1085

Fig. 3. Crossings between two edges.

Fig. 4. An embeddingh of K3,3,1 where the integers in the boxes
indicate the number of half twists between the two edges, as
shown in Fig. 3.
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and V(K3,3,1) D {1, 2, 3, 4, 5, 6,A}. Let SD {Eb1b2, Eb1b3, Eb2b3, Eb1c2, Eb1c5, Eb2c1, Eb2c4,
Eb3c3, Eb3c6}. In the following we will show thatS is a basis forL(K3,3,1). The set
of dual elements to the basis elements inS come from the pairs of edges with cross-
ings in h. Thus, Theorem 3 implies for anyf that L( f ) D L(h) for some choice of
l i , mi , ni 2 Z for i D 1, 2, 3.

In the following the coboundary is applied to different setsof Vei vs to obtain the
relations and express all of the otherEei ej in terms of the elements ofS. If we con-
sider the coboundary for elementsVb1� we find

Æ

1(Vb12) D Eb1c2
C Ea2b1

� Eb1b3
D 0,

Æ

1(Vb13) D Eb1b2
� Ea3b1

� Eb1c2
D 0,

Æ

1(Vb15) D Eb1c5
C Eb1b3

� Ea5b1
D 0,

Æ

1(Vb16) D Ea6b1
� Eb1b2

� Eb1c5
D 0.

One can solve forEai b1 in each of the above. So we see the elementsEai b1 (for i such
that b1 \ ai D ;) can all be expressed as linear combinations elements ofS. This is
consistent with the additional relation given byÆ1(Vb1 A). Similarly, all those elements
of the form Eai b2, and Eai b3 (for appropriateai ) can be expressed as linear combina-
tions elements ofS. In the same way, if we consider the coboundary for elementsVa1�

we find

Æ

1(Va12) D Ea1c2
� Ea1b3,

Æ

1(Va14) D Ea1c4
� Ea1c3,

Æ

1(Va16) D �Ea1c5
� Ea1b2,

Æ

1(Va13) D Ea1b2
C Ea1c3

� Ea1c2,

Æ

1(Va15) D Ea1c5
C Ea1b3

� Ea1c4.

Thus, all of the elements of the fromEa1ci (for i such thata1 \ ci D ;) can be ex-
pressed as a linear combination ofEa1b2 and Ea1b3, which can in turn be expressed
as a linear combination of the elements inS. Similarly, those elements of the form
Ea j ci can be expressed as a linear combination ofEal bk for those l and k such that
al \ bk D ;. Finally, if we consider the coboundary for elementsVc1� we find

Æ

1(Vc13) D Ec1c3
C Eb2c1

� Ea3c1,

Æ

1(Vc14) D Ea4c1
C Ec1c4

� Ec1c3,

Æ

1(Vc15) D Ec1c5
� Ec1c4

� Ea5c1,

Æ

1(Vc16) D Ea6c1
� Ec1c5

� Eb2c1.

So the elementsEc1ci (for i such thatc1 \ ci D ;) can be written as a linear combin-
ation of Ec1b2 and Ea j c1 (for j such thata j \ c1 D ;), which can be written as linear
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combinations of those elements inS. Similarly, all the remaining elements,Eci c j , can
be written as linear combinations of the elements inS.

In [3], Nikkuni shows for a graph in a class containingK3,3,1 that

rank(L(G)) D
1

2

 

�

2
1 C �1C 4jE(G)j �

X

v2V(G)

(val(v))2

!

where �1 is the first Betti number ofG, and val(v) is the valency ofv. So we see
rank(L(K3,3,1)) D 9. Thus S is a basis forL(G).

The following lemma is about the relationship between the sum of the square of
the linking number of all of the links inK3,3,1 and the sums of the squares of the Wu
invariant of subgraphs ofK3,3,1 that are isotopic toK3,3 and K3,3 subdivisions. Let the
valence 6 vertex ofK3,3,1 be labeledA.

Let Gi for i D 1, : : : , 18 be the subdivisions ofK3,3 obtained by deleting three of
the edges adjacent toA and then deleting the two edges not adjacent to those already
deleted edges, see Figs. 5, 6, and 7. In deleting three edges adjacent toA, the cases
where the edge sets{1A, 3A, 5A} or {2A, 4A, 6A} are deleted must be excluded. Let
Hi for i D 1, : : : , 6 be theK3,3 subgraphs that are obtained by deleting one vertex
v ¤ A and deleting the two appropriate additional edges that are adjacent to A, see
Fig. 8. Let K be theK3,3 subgraph obtained by deleting the vertexA, see Fig. 9.

Lemma 6. For any embedding f of K3,3,1 into R3 the following holds

X

203,4(K3,3,1)

lk( f (�))2
D

1

8

X

Gi

L( f jGi )
2
�

1

2
L( f jK )2

�

1

8

X

Hi

L( f jHi )
2,

where Gi , K , Hi are the above described subgraphs.

Proof. From Proposition 5 we know there exists nine integersl i , mi , ni for i D
1, 2, 3, such that the embeddingh of K3,3,1 is spatial graph-homologous tof . If two
embeddings are spatial graph-homologous then the subgraphs are also spatial graph-
homologous. Both linking number and the Wu invariant are spatial graph-homology
invariants. Thus we need only show:

X

03,4(K3,3,1)

lk(h(�))2
D

1

8

X

Gi

L(hjGi )
2
�

1

2
L(hjK )2

�

1

8

X

Hi

L(hjHi )
2.

Let the embedding ofh(Gi ) be as indicated in Figs. 5, 6, and 7. Let the embedding
of h(Hi ) be as indicated in Fig. 8. Using the formula give in Section 2we find the



1088 D. O’DONNOL

Fig. 5. Theh embeddings of theGi subgraphs ofK3,3,1 for i D
1, : : : , 6. All of the subscripts ofl , m, n are given byi C 3D i .

Fig. 6. Theh embeddings of theGi subgraphs ofK3,3,1 for i D
7, : : : , 12. All of the subscripts ofl , m, n are given byi C 3D i .
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Fig. 7. Theh embeddings of theGi subgraphs ofK3,3,1 for i D
13,: : : , 18. All of the subscripts ofl , m, n are given byi C3D i .

Fig. 8. Theh embeddings of theHi subgraphs ofK3,3,1 for i D
1, : : : , 6. All of the subscripts ofl , m, n are given byi C 3D i .
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Fig. 9. Theh embedding of theK subgraphs ofK3,3,1. All of
the subscripts ofl , m, n are given byi C 3D i .

Wu invariants are as follows, where all subscripts ofl , m, n, are given byi C 3D i :

L(hjGi ) D �2(l i CmiC2CniC1CniC2)�1 for i D 1, 2, 3,

L(hjGi ) D �2(l i C l iC1Cmi Cni )�1 for i D 4, 5, 6,

L(hjGi ) D �2(l i C l iC1Cmi CniC2)�1 for i D 7, 8, 9,

L(hjGi ) D �2(l i Cmi Cni Cn1C2)�1 for i D 10, 11, 12,

L(hjGi ) D �2(l i C l iC1Cmi CmiC1CmiC2Cni CniC1)�3 for i D 13, 14, 15,

L(hjGi ) D �2(l i C l iC1Cmi CmiC1CmiC2CniC1CniC2))�3 for i D 16, 17, 18,

L(hjHi ) D �2(l i CmiC2CniC1)�1 for i D 1, 2, 3,

L(hjHi ) D �2(l i Cmi Cni )�1 for i D 4, 5, 6,

L(hjK ) D �2
3
X

iD1

(l i Cmi Cni )�3.

The links in the embeddingh(K3,3,1) are in three forms, see Fig. 10. For the links
we have:

lk(L i ) D l i for i D 1, 2, 3,

lk(L i ) D ni for i D 4, 5, 6,

lk(L i ) D l i Cmi CmiC2C niC2C 1 for i D 7, 8, 9.
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Fig. 10. The three different types of links found in the embedding
h(K3,3,1). All of the subscripts ofl , m, n are given byi C 3D i .
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Together these computations give the desired result.

We have established a relationship between the linking inK3,3,1 and the Wu in-
variant of subgraphs ofK3,3,1 that are isomorphic toK3,3 and its subdivisions. The
following theorem will make use of two relations that are known for the Wu invariant
of K3,3.

Theorem 7. For every embedding f of K3,3,1 into R3 the following holds

X

�203,4(K3,3,1)

lk( f (�))2
D 2

0

B

B

�

X

20H

a2( f ( )) � 2
X

206
A�

a2( f ( )) �
X

205
A2

a2( f ( ))

1

C

C

A

C 1.

Proof. Let f be a embedding ofK3,3,1 into R3. From Lemma 6 we know,

X

203,4(K3,3,1)

lk( f (�))2
D

1

8

X

Gi

L( f jGi )
2
�

1

2
L( f jK )2

�

1

8

X

Hi

L( f jHi )
2.

Then from Proposition 4 we see that:

L( f )2
D 8

 

X

20H

a2( f ( )) �
X

204

a2( f ( ))

!

C 1.

To avoid confusion we note that the application of Proposition 4 to theGi s requires
recognizing that this can be applied to such aK3,3 subdivision as long as the appro-
priate cycles are used. We will for the moment think of theGi s as K3,3 subgraphs,
ignoring the single valance two vertex when describing their cycles. Thus

1

8

X

Gi

L( f jGi )
2
�

1

2
L( f jK )2

�

1

8

X

Hi

L( f jHi )
2

D

0

B

B

�

X

20H (Gi )
Gi2K3,3,1

a2( f ( )) �
X

204(Gi )
Gi2K3,3,1

a2( f ( ))

1

C

C

A

� 4

 

X

20H (K )

a2( f ( )) �
X

204(K )

a2( f ( ))

!

�

0

B

B

�

X

20H (Hi )
Hi2K3,3,1

a2( f ( )) �
X

204(Hi )
Hi2K3,3,1

a2( f ( ))

1

C

C

A

C

18� 4� 6

8
.

So we need only determine which cycles ofK3,3,1 are counted in the above sums, and
how many times each cycle is counted.
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The Gi subgraphs. Recall that theGi s are K3,3 subdivisions formed by taking
K3,3,1 and deleting three of the edges adjacent toA and then deleting the two edges
not adjacent to those already deleted edges. This could alsobe thought of as taking
K3,3 deleting two adjacent edges and then adding a vertexA and edges fromA to
each of the vertices that were incident to at least one of the deleted edges. TheGi s
are subdivisions ofK3,3 where the valence two vertex was ignored when describing
the cycles that were summed. So some of the Hamiltonian cycles counted in the sum
of Gi s are Hamiltonian cycles ofK3,3,1 and some are 6-cycles. Similarly the 4-cycles
will be 5-cycles and 4-cycles inK3,3,1. To count these cycles we will consider different
cycles in K3,3,1 and determine how many of theGi s contain a given cycle.

Consider an arbitrary Hamiltonian cycle� of K3,3,1, to have� be in Gi all of the
edges of� must be inGi . In particular, the two edges incident toA must be inGi , for
this to happen the edge between these two edges, call ite, must be deleted. In addition,
another edge which is not incident toA but is adjacent toe must be deleted, there are
two such edges which are not in�. Thus two of the eighteenGi graphs contain� as
one of their Hamiltonian cycles. The 6-cycles inK3,3,1 can be broken into two sets the
ones that contain the vertexA and those that do not. Since two adjacent edges neither
of which are incident toA must be deleted to form aGi , the latter 6-cycle cannot
occur. For a 6-cycle inK3,3,1 that containsA the two vertices adjacent toA, call them
v and w, must be in the same partite set. Thus the two deleted adjacent edges not
incident to A must go betweenv and w. There is one way for this to happen, thus
each 6-cycle that containsA appears in one of theGi s as a Hamiltonian cycle.

Every 5-cycle inK3,3,1 contains A. To have the edges to the vertexA, the edge
between the adjacent vertices must be deleted. As with the Hamiltonian cycles there are
two ways to deleted two adjacent edges (not incident toA) and delete the said edge.
Thus there are twoGi graphs that contain a given 5-cycle, as a 4-cycle. Next the 4-
cycles of K3,3,1 can be put into two groups: 4-cycles that containA and 4-cycles that
do not containA. By similar reasoning one can see that 4-cycles that containA will
appear in two of theGi s and 4-cycles that do not containA appear in six of theGi s.

The K subgraph. Recall that the subgraphK is the K3,3 subgraph obtained by
deleting the vertexA. So the Hamiltonian cycles ofK are the 6-cycles ofK3,3,1 that
do not containA. The 4-cycles ofK are the 4-cycles ofK3,3,1 which do not containA.

The Hi subgraphs. Recall that theHi subgraphs are theK3,3 subgraphs that are
obtained fromK3,3,1 by deleting one vertexv ¤ A and the two edges that are adjacent
to A as well as those vertices in the same partite set as the vertexv. The Hamiltonian
cycles of Hi are all 6-cycles inK3,3,1 which containA, as theHi are K3,3 subgraphs
with one vertexv ¤ A deleted. Letc be an arbitrary 6-cycle that containsA and does
not contain the vertexv. The cyclec will appear in one of theHi s, that is in theHi

which does not contain the vertexv. Next, those 4-cycles that do not containA will
appear in two of theHi , one for each of the vertices that is notA and is not in the
said 4-cycle. In theHi s the vertexA can be thought of as replacing the vertexv that
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is deleted in the originalK3,3 subgraph. Now the 4-cycles that containA, also contain
two vertices from one partite set and one from the partite setthat A has now joined.
Thus there are twoHi graphs that contain each 4-cycle.

All together this gives:

1

8

X

Gi

L( f jGi )
2
�

1

2
L( f jK )2

�

1

8

X

Hi

L( f jHi )
2

D

0

B

B

�

2
X

20H

a2( f ( ))C
X

206
A2

a2( f ( ))

� 2
X

205
A2

a2( f ( )) � 2
X

204
A2

a2( f ( )) � 6
X

204
A�

a2( f ( ))

1

C

C

A

� 4

0

B

B

�

X

206
A�

a2( f ( )) �
X

204
A�

a2( f ( ))

1

C

C

A

�

0

B

B

�

X

206
A2

a2( f ( )) � 2
X

204
A�

a2( f ( )) � 2
X

204
A2

a2( f ( ))

1

C

C

A

C 1

D 2

0

B

B

�

X
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a2( f ( )) � 2
X

206
A�

a2( f ( )) �
X

205
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a2( f ( ))

1

C

C

A

C 1.

The relationship between CA linking and knotting inK3,3,1 is an immediate
corollary.

Corollary 8. If an embedding f of K3,3,1 is CA linked then f is knotted.

Proof. If f (K3,3,1) is CA linked then
P

03,4(K3,3,1) lk( f (�))2
> 1. Thus at least one

of the a2( ) ¤ 0 for  2 0H [ {06 j A �  } [ {05 j A 2  }. So f is knotted.

4. Connections between knotting and linking in the Petersenfamily

In this section we prove, givenG 2 PF , if f (G) is CA linked, then f (G) is knot-
ted. We also answer a number of other questions in the negative, showing how unique
the first result is. We consider the questions about embeddings of the graphs of the
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Fig. 11. TherY-moves.

Petersen family: If f is knotted can that imply a level of complexity in the linking?
If an embedding is not CA linked but contains more than one link or contains a link
that is not the Hopf link would this imply the embedding is knotted? So we show the
converse of Theorem 2 does not hold and that more geometric complexity in linking
does not guaranty knotting.

To simplify our discussion we will call a graphG K-linked when it has the follow-
ing property: if an embeddingf of G is CA linked, then f is knotted. So the main
theorem can be restated as: All of the graphs of the Petersen family are K-linked. Re-
call different abstract graphs can be related byrY-moves (see Fig. 11). In this move
three edges that form a cycle (a triangle) are deleted and a vertex is a added along
with three edges between the new vertex and the original triangle. Before proving this
we need the following lemma.

Lemma 9. Let G0 be obtained from G by arY-move. If G is K-linked then G0

is K-linked.

Proof. Let4 denote the 3-cycle deleted fromG in the rY-move, and Y denote
the set of three edges and vertex added toG0. Let the subgraphs where the two graphs
agree be denotedE and E0, respectively.

Now consider an embeddingf of G0 which is CA linked. Define an embeddingNf
of G, where Nf (E) D f (E0) and4 is mapped onto a tubular neighborhood off (Y) �
f (G0). So cycles of Nf (G) are the same simple closed curves as the embedded cycles
as f (G), with the addition of Nf (4) which bounds an embedded disk. Sincef (G0) is
CA linked, Nf (G) is also CA linked. By assumption this implies thatNf (G) is knotted.
Thus there is some simple closed curve 2 Nf (G) which is nontrivially knotted. The
curve  cannot be Nf (4) since Nf (4) bounds an embedded disk. Sof (G0) is knotted.
ThereforeG0 is K-linked.

Having now amassed all the tools needed we will prove:

Theorem 2. If f is a CA linked embedding of G2 PF , then f(G) is knotted.
Which can be restated as: All of the graphs of the Petersen family are K-linked.
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Fig. 12. The standard embedding of the complete graph on six
vertices,s(K6), and two different knotted embeddingsk(K6) and
l (K6).

Proof. Let G 2 PF . If G D K6 then for any embeddingf (K6), by Theorem 1
[4] that,

X

�23(K6)

lk( f (�))2
D 2

 

X

20H

a2( f ( )) �
X

205

a2( f ( ))

!

C 1.

If f (K6) is CA linked then
P

�23(K6) lk( f (�))2
> 1. Thus at least one of thea2( ) ¤

0 for  2 0H [ 05. So f is knotted. Next, ifG D K3,3,1 then G is K-linked by
Corollary 8. If G ¤ K6 or K3,3,1 the G can be obtained fromK6 or K3,3,1 by a series
of rY-moves, see Fig. 1. Thus by Lemma 9,G is K-linked.

Now we will examine other ways that knotting and linking in graph embeddings
could be related. We will see through a series of examples that none of these other
relationships occur for the graphs of the Petersen family. Let the cycle that is made
of the edgesv1v2, v2v3, : : : , vi�1vi and v1vi be denotedv1v2v3 � � � vi . We will look
first at knotting implying a greater level of complexity in linking, and next consider
other kinds of complexity in linking that could lead to knotting in the embeddings. Our
counterexamples come from making changes to a standard embedding of K6, which
we will call s(K6). See Fig. 12. The embeddings(K6) contains a single Hopf link in
s(146[ 235), all other links are trivial, and all cycles are unknots.

Consider the converse of Theorem 2. Iff (G) for G 2 PF is knotted, then isf (G)
CA linked? This is not the case. The simplest way to produce a counterexample is by
having an embedding with a knot that is in one of the edges.

EXAMPLE 1. The embeddingk(K6) is obtained by replacing the edge 26 ins(K6)
with a knotted edge as shown in Fig. 12. The embeddingk(K6) contains a number of
knotted cycles, all those cycles that contain the edge 26 areknotted. It is easy to see that
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k(K6) is not CA linked because it is based on the embeddings(K6). It contains a single
link with nonzero linking number, the Hopf linkk(146[ 235). It does however contain
additional nontrivial links, the four linksk(126[ 345), k(236[ 145), k(246[ 135) and
k(256[ 134), which are each the split link of a trivial knot and a trefoil.

While the example ofk(K6) is not CA linked it still has more nontrivial links
than that of our standard embeddings(K6). It should be noted, that the existence of
Example 1 and others like it, where the embedding is not CA linked, but at least one
of the components of one of the links is knotted, follows immediately from work of
Taniyama and Yasuhara. In [11], they showed that there exists an embedding ofK6 that
realizes a given set of ten link typesL i as the sublinks if and only if

P

i lk(L i ) � 1
(mod 2). So next we consider iff (G) for G 2 PF is knotted, then will f (G) contain
more than one nontrivial link with no knotted components? This is also not the case.

EXAMPLE 2. In the slightly more complicated counterexample ofl (K6), the edges
13 and 25 ofs(K6) are replaced as shown in Fig. 12. This is an example of a spatial
graph that is knotted but does not contain any more complicated linking than a single
Hopf link. This embedding ofK6 contains a single nontrivial linkl (146[ 235). While
all of the 3-cycles are trivial knots, it contains a number ofknotted cycles. Many of
the knots are the connected sum of two trefoils, an example isl (1265). Thus having a
knotted embedding does not imply any increased complexity in the linking.

Next, we consider the possibility that there is some other complexity in the linking
in a given embedding that would lead to knotting. The embedding must not be CA
linked, so we will look at embeddings where it contains a single link with non zero
linking number which is�1. We will look at two embeddings ofK6 which are not CA
linked but contain links other than the Hopf link and do not contain a nontrivial knot.

EXAMPLE 3. The embeddingf (K6), shown in Fig. 13, contains a Hopf link
f (146[235), and the algebraically split linkL in f (135[246). The 2-component link
L has unknotted components, and linking number 0, but is nontrivial. See Fig. 13. It
can be verified thatL is nontrivial with the Conway polynomial,rL (z) D 2z5

C z7.
(This was calculated with the assistance of the Mathematica package KnotTheory`.)

Claim 1. The spatial graph f(K6) is not knotted.

Proof. The embeddingf (K6) can be obtained from the embeddings(K6) in
Fig. 12, by replacing the links(135[246) with the link L, where L is placed below
the other edges. The embeddings(K6) is not knotted. So for there to be a knot in
f (K6) it must contain some of the edges ofL because that is where the embeddings
differ. Next the link L was obtained by modifying a 6-component Brunnian link. If
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Fig. 13. The embeddingf (K6) which contains both a Hopf link
( f (146[ 235)) and the linkL, but is not knotted. The linkL.
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Fig. 14. The embeddingg(K6) which contains linkL 0, but is not
knotted. The linkL 0.

any of the edges ofL are deleted the remaining edges can be isotoped with the ver-
tices fixed and without moving the edges over or around the vertices, to a projection
there are no crossings in the remaining edges. So the only wayto have additional
crossings from those edges inL is to have all of them, but together all of the edges
make the linkL.

EXAMPLE 4. The second embeddingg(K6), shown in Fig. 14, contains a single
nontrivial link L 0 in g(135[246). The 2-component linkL 0 has unknotted components,
and linking number�1, but is not the Hopf link. See Fig. 14. It can be verified that
L 0 is not the Hopf link with the Conway polynomial,rL 0(z) D �zC 2z5

C z7
� z9.

(This was calculated with the assistance of the Mathematica package KnotTheory`.) In
a similar way, it can be seen thatg(K6) is not knotted.

These two examples show embeddings where there is more complex linking but there
is not higher linking number, however neither are knotted. Thus the addition of com-
plexity in these embeddings is not enough to result in a knotted embedding.
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