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Abstract

This paper extends the work of Nikkuni [4] finding an expli@tationship for the
graph K3 3 1 between knotting and linking, which relates the sum of theases of
linking numbers of links in the embedding and the secondfimierfit of the Conway
polynomial of certain cycles in the embedding. Then we us$e dnd other similar
relationships to better understand the relationship betwaotting and linking in the
Petersen family. The Petersen family is the set of minor méiintrinsically linked
graphs. We prove that if such a spatial graph is complexlglatgjcally linked then
it is knotted.

1. Introduction

Throughout this paper we will work with finite simple graphns, the piecewise
linear category. Aspatial graphis an embedding of a grap@ in R3, denotedf (G) or
simply f. This paper focuses on the interaction between knottingliakthg in spatial
graphs. A knot or link is said to be in a spatial graph if the tkoo link appears as
a subgraph. An embedding of a graphG is linked if there is a nontrivial link in
f(G). An embeddingf of a graphG is algebraically linkedif there is a link with
nonzero linking number inf (G). We will say an embedding of a graph éemplexly
algebraically linked(CA linked if the embedding contains a 2-component libkwith
[Ik(L)] > 2 or (at least) two 2-component links; and L, with Ik(L;) # 0, where Ik
denotes the linking number iR3. An embeddingf of a graphG is knottedif there
is a nontrivial knot inf(G). An embedding that is not knotted is call&dotless

A graphG is intrinsically knottedif every embedding of5 into R® contains a non-
trivial knot. A graphG is intrinsically linked if every embedding ofG into R® con-
tains a non-split link. The combined work of Conway and Gaordd], Sachs [7], and
Robertson, Seymour, and Thomas [5] fully characterizenisically linked graphs. They
showed that the Petersen family is the complete set of mininmal intrinsically linked
graphs, i.e. every intrinsically linked graph contains apjr in the Petersen family as a
minor. The Petersen family is a set of seven graphs shownginlFiWe will denote this
set of graphs byP F. They are related by Y-moves (shown in Fig. 11), as indicated by
the arrows in Fig. 1. The set of intrinsically knotted graplas not been fully character-
ized. However it is known that every intrinsically knottedhgh is intrinsically linked.
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Fig. 1. The graphs of the Petersen family. The arrows indieat
VY-move.
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This is a consequence of the work characterizing intritigitiaked graphs [5]. The con-
verse does not hold; there are many graphs that are intlhsiinked graphs that have
knotless embeddings. In particular, none of the graph®BBfare intrinsically knotted.

The study of intrinsically knotted graphs and intrinsigdihked graphs began with
the work of Sachs, and Conway and Gordon. When Conway andoBqutbved that
Kg is intrinsically linked and thaKy is intrinsically knotted, they did this by proving
for every embedding of Kg the following holds, the sum of the linking numbers over
all 2-component links inf (Kg) is odd, and for every embeddinfy of K; the follow-
ing holds, the sum of the second coefficient of the Conway namtyial over all knots
in f(K7) is odd. In the recent work of Ryo Nikkuni, he generalizesstheesults to get
formulae for bothKg and K7 explicitly relating knotting and linking in their embed-
dings, see [4]. Acycley in a graphG is a subgraph of5 homeomorphic to a circle.
In particular,y is called ak-cycleif it consists of exactlyk edges and a Hamiltonian
cycle if it contains all vertices ofs. In keeping with the notation of Nikkuni [4], let
I'(G) denote the set of all cycles i®, let I'y(G) be the set of all Hamiltonian cycles
in G, let I'n(G) be the set of alin-cycles inG, let I‘SQ(G) be the set of all pairs of
disjoint s-cycles andt-cycles, and lef"®(G) be the set of all pairs of disjoint cycles.
Recently, Nikkuni proved the following theorem relatingthinking and knotting in an
embedding ofKe:

Theorem 1 ([4]). For any embedding f of Kinto R® the following holds

3 lk(f(A»Z:z( Y oa(te)- Y az(f(y)))+1,

2eT@(Kg) y€TH(Ke) y€l's(Ke)

where a is the second coefficient of the Conway polynomial.

Due the nature of th&Y-moves, Nikkuni's result forKg implies there are similar re-
lations between knotting and linking for all of the graphsittltan be obtained from
Ke by VY-moves. This left a single grapKs ;1 of PF for which it was unknown if
there was such a relationship. We prove for every embeddiraf K3 that

Y k(=2 T atto) -2 afe) - Y alfe) | + 1
1€T34(K33,1) yely Jfél;e }/A'Eel;s

where A is the single vertex of valance 6 i3 31 This gives an explicit connection
between linking and knotting in embeddings K% 3 1, completely our understanding of
the PF.

In Section 2, we define the Wu invariant and give backgroundhenkey ingredi-
ents that go into such results. In Section 3, we prove Thedfemsbtaining the above
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stated relationship for the graps s 1. In Section 4, we further examine the relation-
ship between knotting and linking in the Petersen family.

One might expect that a knotted embedding would be an embgdaith more
complex linking. However there are knotted embeddingKegfthat contain only a sin-
gle Hopf link, see Fig. 12. The question of when complexityliitking of an embed-
ding can guaranty that the embedding is knotted, is much riraréul. We prove:

Theorem 2. If f is a CA linked embedding of @ P.F, then f is knotted.

This result gives an algebraic linking condition on the eddieg that will result in
a knotted embedding. Another natural question is whetherptiesences of additional
links with linking number 0, or more complex links with linkg number+1 would
guarantee knotting in the embedding. We give examples ofednihgs ofKg suggest-
ing that such geometric linking will not guarantee a knottedbedding.

2. Background on graph homologous embeddings and the Wu inviant

This sections contains a brief description of the Wu invariand graph-homologous
embeddings, along with useful relationships between theiwariant, thea-invariant,
and the second coefficient of the Conway polynomial.

Let V(G) and E(G) be the set of all vertices and the set of all edges of a graph
G, respectively. LetG be a graph withV(G) = {vy, ..., vm} (fixed ordering),E(G) =
{e1, ..., e} and a fixed orientation on each of the edges. N@eis a finite one-
dimensional simplicial complex. For a simplicial compl&x let

P(X)={sixs|s, e X, s1Ns =0}

be thepolyhedral residual spacef X. Let o be the involution onP,(X), i.e. o(s1 x
$) =S x §. Let f be an embedding o6 into R3. The second skew-symmetric
cohomology group of the pairPe(G), o) is denoteL(G). It is known thatL(G) is
a free abelian group and the Wu invariant f denotedZ(f) is in L(G). Next we
will focus on computations for graphs. For more backgroundtee Wu invariant and
a more general approach see [3, 8, 10, 12].

Following [10], Section 2, there is explicit presentatioh lo(G). An orientation
of a 2-cellg x ej € P,(G) is given by the ordered pair of orientations &f and e;.
Let Eqe, = & x € + € x & € Cy(Px(G)) fore ne; =0 (1 <i < j <n). The set
{Eee | 1=i < j=n, e ne =0} is a free basis foCy(P,(G), o). Now the set of
dual element§ES® |1 <i < j <n, g Ne; =@} generateL (G). The relations on the
generators are given by the coboundary applied to thg\é&ts | 1 <i <n, 1<s<
m, vs ¢ §}. The coboundary is defined by:

s1(Vev) = Z gree) _ Z Er@e)

I(e)=vs T(ej)=vs
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where | (&) is the initial vertex ofej, T(gj) is the terminal vertex ok; and p(e €j)
is the standard orderinge; if i < j andejg if j <i. The Wu invariantZ(f) can
be calculated from a projection: R® — R? where o f is a regular projection with
finitely many multiple points all of which are transverse Hwupoints that occur away
from vertices. Leta;j(f) be the sum of the signs of the crossings that occur between
Lo f(g) andro f(gj). Let W =} &;(f)E®® summed over all pairs of disjoint edges
of G. The Wu invariantZ(f) is the coset of the suriV in L(G).

A spatial graph-homologyor just homology is an equivalence relation on spatial
graphs introduced by Taniyama, see [9] for the precise diefni A result that will be
central to obtaining our results is:

Theorem 3 ([10]). Two embeddings f and g of a simple graph GRA are
homologous if and only iL(f) = £(g).

Another key insight is that, if two embeddings are spati@pyrhomologous then
the subgraphs are also spatial graph-homologous. Botlinginkumber and the Wu
invariant are spatial graph-homology invariants.

The Wu invariant off (K3 3) can be expressed in this simple combinatorial form [10]:

L(F) =) e(x, YI(F(x), F(y)),

(x,y)

the sum over all unordered disjoint pairs of edge&Ginwherel (f(x), f(y)) is the sum
of the signs of the crossing betwedifx) and f(y), ande(x,y) is a weighting defined,

on= il G T e

where the edges K3 3 are labeled as indicated in Fig. 2. This makes sense because
the L(K3,3) = Z. There is a similar formula foKs, but it is omitted because it will

not be used here. These explicit calculations for kg subgraphs of a graps are

what make it possible to relate the Wu invariaf{f) and linking in the given em-
bedding f. Then theL(f) also needs to be related to the second coefficient of the
Conway polynomiala,. This is done via another invariant known as thénvariant of

f [8]. For a spatial embedding of K33 or Ks:

a(f):= D" a(f)— ) alf()).

y€ln yely

There is the following relationship between thenvariant and £(f):
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Fig. 2. On the left The graphK; 31 with edges oriented and the
edges and vertices labele®n the right The graphKs 3 with
edges oriented and labeled in the standard convention o\
invariant.

Proposition 4 ([2]). Let f be a spatial embedding of;K or Ks then

L(f2—1

o(f) = =5

Together this gives the relationship betweg(f) and a, of certain cycles in embed-
dings of K3 3 and Ks.

3. Conway-Gordon theorem forKs 31

In this section we prove the before mentioned relationstépvben the linking
number anda, of cycles in embeddings dk3 3 1. In the following proposition we de-
termine a standard embedding 6% 3 1, which given the correct choice of nine integers
is graph-homologous to any other given embeddingkef ;. We prove this by find-
ing a basis forL (K3 3 1). Throughout this paper we indicate the number of half twvist
between two edges with a box and integer as shown in Fig. 8, thé handedness of
the crossings is as shown.

Proposition 5. Given an embedding f of 451 there exist a choice of the nine
integers |, m;, n; for i =1, 2, 3,such that h is spatial graph-homologous to the em-
bedding f. The embedding h is shownFiy. 4.

Proof. We will use the edge and vertex labeling, as well asaalgentation in-
dicated in Fig. 2. The order on the setsB$K331) = {a1,..., 8, b1, b2, b3, Cq, ..., Cs}
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2 (k=0)
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—k crossings

Fig. 3. Crossings between two edges.

Fig. 4. An embeddind of K3 31 where the integers in the boxes
indicate the number of half twists between the two edges, as
shown in Fig. 3.
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andV(Kz31) = {1,2,3,4,5,6A}. Let S= (EPb2 EPibs EPDs EDiC EDiCs Ebei EDoCs
EPsCs, EPs%), In the following we will show thatS is a basis forL(Ks 3 1). The set
of dual elements to the basis elementsSrtome from the pairs of edges with cross-
ings in h. Thus, Theorem 3 implies for an§ that £(f) = £(h) for some choice of
li,m,n e€Zfori=1,2,3.

In the following the coboundary is applied to different sefsVé' to obtain the
relations and express all of the othEf® in terms of the elements d&. If we con-
sider the coboundary for elemen&* we find

81(vb12) — Eb1Cz + Eazb1 _ Eb1b3 — 0,

51(Vb13) — Ebibe _ pasbh _ phice 0,

81(Vb15) — Eb1(>3 + Eb1b3 _ Ea5b1 — 0,

SHVPE) = E%P — EP2 — EM% = 0.
One can solve foE*™ in each of the above. So we see the elemé&#& (for i such
thatb; N g = @) can all be expressed as linear combinations elementS. dfhis is
consistent with the additional relation given BY(V4). Similarly, all those elements
of the form E&, and E&" (for appropriatea;) can be expressed as linear combina-

tions elements ofs. In the same way, if we consider the coboundary for elem¥#ts
we find

61(Va12) — Ea102 _ Ealbf!,

(Sl(Va14) — Ea104 _ Ealcii,

Sl(Valﬁ) — _Ealcs _ Ealbz'

81(v313) — Ea1b2 + E31C3 _ Eal‘:Z7

51(Va15) — Ea105 + Ea1b3 _ Ea1C4.
Thus, all of the elements of the frole®% (for i such thata; N ¢ = @) can be ex-
pressed as a linear combination Bf® and E2P, which can in turn be expressed
as a linear combination of the elements $h Similarly, those elements of the form

E3% can be expressed as a linear combinationEdf« for thosel and k such that
a N b = @. Finally, if we consider the coboundary for elemem$%* we find

81(\/013) = E%% 4 Eb201 _ E&?Cly
81(Vcl4) — Ea401 + E01C4 _ EClC3,
81(vC15) — E0105 _ EC104 _ Ea5C1,
81(V016) — Ea601 _ EC1C5 _ Eszll

So the element&®% (for i such thatc; N ¢ = @) can be written as a linear combin-
ation of E®P and E%¢ (for j such thata; N ¢, = @), which can be written as linear
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combinations of those elements $ Similarly, all the remaining element&%, can
be written as linear combinations of the elementsSin
In [3], Nikkuni shows for a graph in a class containikg s ; that

rank(L(G)) = %(ﬁf +BL+4EG) - Y (val(v»z)

veV(G)

where B, is the first Betti number ofG, and valf) is the valency ofv. So we see
rank(L(K3z,3,1)) = 9. ThusS is a basis forL (G). ]

The following lemma is about the relationship between them @f the square of
the linking number of all of the links irK3 31 and the sums of the squares of the Wu
invariant of subgraphs oK3 3 ; that are isotopic tK3 3 and K3 3 subdivisions. Let the
valence 6 vertex oKz 31 be labeledA.

Let G; fori =1,...,18 be the subdivisions df3 3 obtained by deleting three of
the edges adjacent t& and then deleting the two edges not adjacent to those already
deleted edges, see Figs. 5, 6, and 7. In deleting three edijpseat to A, the cases
where the edge sefd A, 3A, 5A} or {2A, 4A, 6A} are deleted must be excluded. Let
Hi fori =1,...,6 be theKs;3 subgraphs that are obtained by deleting one vertex
v # A and deleting the two appropriate additional edges that djacant to A, see
Fig. 8. LetK be theKj 3 subgraph obtained by deleting the vertdx see Fig. 9.

Lemma 6. For any embedding f of g 1 into R3 the following holds

> K0P = g LI~ SE(T )~ § 3 £(f Y
Gi Hi

v€lsa(Kzs,1)

where G, K, H; are the above described subgraphs.

Proof. From Proposition 5 we know there exists nine intediers, n; for i =
1, 2, 3, such that the embeddimgof K331 is spatial graph-homologous tb. If two
embeddings are spatial graph-homologous then the sulmraghalso spatial graph-
homologous. Both linking number and the Wu invariant aretiapbgraph-homology
invariants. Thus we need only show:

1 1 1
> Ik(h(n)? = 5 > L(hle)* - E.C(h|.<)2 -3 > L(hlw)
'3,4(Ks 3,0 Gi Hi

Let the embedding oh(G;) be as indicated in Figs. 5, 6, and 7. Let the embedding
of h(H;) be as indicated in Fig. 8. Using the formula give in Sectiowe find the
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G, (i=1,2,3) G; (i=4,5,6)

Fig. 5. Theh embeddings of th&; subgraphs oKs3 3, for i =
1,...,6. All of the subscripts of, m, n are given byi + 3 =1.

G; (i=7,8,9) G; (i=10,11,12)

Fig. 6. Theh embeddings of th&; subgraphs oKs3 3, for i =
7,...,12. All of the subscripts of, m, n are given byi +3 =.
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G, (i=13,14,15) G, (i=16,17,18)

Fig. 7. Theh embeddings of th&; subgraphs oKz 3, for i =
13,...,18. All of the subscripts of,m,n are given byi +3 =1.

H. (i=1,2,3) H. (i=4,5,6)

Fig. 8. Theh embeddings of théd; subgraphs oKz 3, for i =
1,...,6. All of the subscripts of, m, n are given byi + 3 =1.
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Fig. 9. Theh embedding of theK subgraphs ofK3 31 All of
the subscripts of, m, n are given byi + 3 =.

Wu invariants are as follows, where all subscriptsl o, n, are given byi + 3 =i:

L(hlg) = =20 +Mij2+niy1+ni2)—1 for i=1,23,

L(hlg) =-2(0; +liy1+m +n)—1 for i =4,5,86,

L(hlg) =-2(i +liza+mi+n;2)—1 for i =7,8,9,

L(hlg,) =20 +m; +n; +ng42)—1 for i =10, 11, 12,

L(hl|g) = =20 +lig1+m+mp1+mo+n +n41)—3 for i =13, 14, 15,
L(hlg) = =20; +liza+mi+ M1+ M +ni1+ni42)—3 for i =16,17,18,
L(ln)=-20i +mij2+ni;1)—1 for i =1,2,3,

L(M|ny)=-20+m+n)—-1 for i =4,5,6,
3
L(hlk) = =2 (i +m +n;) -3,

i=1

The links in the embedding(K3 3 1) are in three forms, see Fig. 10. For the links
we have:

k(Li)=1; for i=1,2,3,
Ik(Li)=n; for i=4,5,6,
k(iLi)=1li +m +mi2+n,2+1 for i =7,8,09.
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L;(i=4,5.6) L;(i=7.8,9)

Fig. 10. The three different types of links found in the entdiad
h(Ks 3,1). All of the subscripts of, m, n are given byi +3 =1.
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Together these computations give the desired result. L]

We have established a relationship between the linking<irs 1 and the Wu in-
variant of subgraphs oKj3 31 that are isomorphic t&K3 3 and its subdivisions. The
following theorem will make use of two relations that are Wmofor the Wu invariant
of K3’3.

Theorem 7. For every embedding f of 4 into R the following holds

Do k(FOZ =2 Y a(t) -2 alf) - Y al(f()|+1.
2€T3,4(Ks3,2) y€lH )j;;;/e J;\GEI;/S

Proof. Letf be a embedding oKz 31 into R3. From Lemma 6 we know,
2 1 2 1 2 1 2
> k(PP =g D0 L(Hle ) — SL(FI)? — g 2 £(Fln)?
y €l 4Kz 3,1 Gj Hi
Then from Proposition 4 we see that:
L(f)? = 8(2 a(f)— ) az(f(V))> +1.
yely yely

To avoid confusion we note that the application of Proposit# to theG;s requires
recognizing that this can be applied to suclKas; subdivision as long as the appro-
priate cycles are used. We will for the moment think of Bes as K3 3 subgraphs,
ignoring the single valance two vertex when describingrtiegcles. Thus

3 LI~ SE(T )~ g 3 £(F 1Y
Gi Hi

= > afe)- Y alf@) —4< Do afo) - Y az(f(V))>

v €y (Gi) y€l4(Gi) yelru(K) yelry(K)
GieKsgs1 GieKsgs1
18—4—-6
| X aten- X aton |+
y€lu(Hi) y €lq(Hi)
HieKsz1 HieKsz1

So we need only determine which cycles 4 5 ; are counted in the above sums, and
how many times each cycle is counted.
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The G; subgraphs. Recall that theG;s are K3 3 subdivisions formed by taking
K3 3,1 and deleting three of the edges adjacentAt@nd then deleting the two edges
not adjacent to those already deleted edges. This couldbasthought of as taking
K3 3 deleting two adjacent edges and then adding a veAeand edges fromA to
each of the vertices that were incident to at least one of t#etedd edges. Th&;s
are subdivisions ofKz 3 where the valence two vertex was ignored when describing
the cycles that were summed. So some of the Hamiltonian £yaented in the sum
of Gjs are Hamiltonian cycles o331 and some are 6-cycles. Similarly the 4-cycles
will be 5-cycles and 4-cycles i3 3 1. To count these cycles we will consider different
cycles inK3 31 and determine how many of th®;s contain a given cycle.

Consider an arbitrary Hamiltonian cycleof K334, to haven be in G; all of the
edges ofyp must be inG;. In particular, the two edges incident ¥ must be inG;, for
this to happen the edge between these two edges, @limust be deleted. In addition,
another edge which is not incident # but is adjacent t@ must be deleted, there are
two such edges which are not in Thus two of the eighteefs; graphs contaim as
one of their Hamiltonian cycles. The 6-cyclesk 3 1 can be broken into two sets the
ones that contain the vertekX and those that do not. Since two adjacent edges neither
of which are incident toA must be deleted to form &;, the latter 6-cycle cannot
occur. For a 6-cycle irKs 3 1 that containsA the two vertices adjacent t8, call them
v and w, must be in the same partite set. Thus the two deleted adjackyes not
incident to A must go betweernv and w. There is one way for this to happen, thus
each 6-cycle that containd appears in one of th&;s as a Hamiltonian cycle.

Every 5-cycle inKg 31 containsA. To have the edges to the vertéx the edge
between the adjacent vertices must be deleted. As with timeilté@ian cycles there are
two ways to deleted two adjacent edges (not incidenAjaand delete the said edge.
Thus there are twd; graphs that contain a given 5-cycle, as a 4-cycle. Next the 4-
cycles of K331 can be put into two groups: 4-cycles that cont@irand 4-cycles that
do not containA. By similar reasoning one can see that 4-cycles that corainill
appear in two of theG;s and 4-cycles that do not contaf appear in six of thes;s.

The K subgraph. Recall that the subgrapK is the K33 subgraph obtained by
deleting the vertexA. So the Hamiltonian cycles oK are the 6-cycles 0K3 31 that
do not containA. The 4-cycles oK are the 4-cycles oK3 3 1 which do not contairA.

The H; subgraphs. Recall that theH; subgraphs are thKj 3 subgraphs that are
obtained fromK3 3 1 by deleting one vertex # A and the two edges that are adjacent
to A as well as those vertices in the same partite set as the vert€ke Hamiltonian
cycles of H; are all 6-cycles inK3 31 which containA, as theH; are K33 subgraphs
with one vertexv # A deleted. Letc be an arbitrary 6-cycle that contais and does
not contain the vertex. The cyclec will appear in one of theH;s, that is in theH;
which does not contain the vertex Next, those 4-cycles that do not contatnwill
appear in two of theH;, one for each of the vertices that is nAtand is not in the
said 4-cycle. In theH;s the vertexA can be thought of as replacing the vertexhat
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is deleted in the originaK; 3 subgraph. Now the 4-cycles that contai also contain
two vertices from one partite set and one from the partitettsgt A has now joined.
Thus there are twdd; graphs that contain each 4-cycle.

All together this gives:

1 1 1
5 ;c(ﬂei)z—zﬁ(fmz— 5 ;c(w

=12 Z a(f(y)) + Z a(f(y))

y€Ely y€ls
Aey

—2) a(f(y) -2 a(f(¥) -6 a(f(y))
y€l's yely yely
Acy Aey Agy

_4 Z a(f(y)) — Z a(f(y)
h e

— D a(fr) -2 a(f()-2) alf()|+1

v€le yely yely
Aey Ay Acy
=2 Y a(fo)-2) a(f()- D a(f()|+1. O
y€eln y€els y€ls
Agy Aey

The relationship between CA linking and knotting k331 IS an immediate
corollary.

Corollary 8. If an embedding f of K31 is CA linked then f is knotted.

Proof. If f(Ks331) is CA linked thenZF“(K”ﬂ Ik( f(1))? > 1. Thus at least one
of theay(y) #0 fory e 'y U{l's| A¢ y} U{l's| Ae y}. So f is knotted. O

4. Connections between knotting and linking in the Peterserfiamily

In this section we prove, give® € PF, if f(G) is CA linked, thenf(G) is knot-
ted. We also answer a number of other questions in the negatiowing how unique
the first result is. We consider the questions about embgddaf the graphs of the
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Fig. 11. TheVY-moves.

Petersen family: Iff is knotted can that imply a level of complexity in the linking
If an embedding is not CA linked but contains more than onk 6n contains a link
that is not the Hopf link would this imply the embedding is ked? So we show the
converse of Theorem 2 does not hold and that more geometmplesity in linking
does not guaranty knotting.

To simplify our discussion we will call a grap8 K-linkedwhen it has the follow-
ing property: if an embedding of G is CA linked, thenf is knotted. So the main
theorem can be restated as: All of the graphs of the Petesseityfare K-linked. Re-
call different abstract graphs can be related\by-moves (see Fig. 11). In this move
three edges that form a cycle (a triangle) are deleted andrtaxves a added along
with three edges between the new vertex and the originaigiga Before proving this
we need the following lemma.

Lemma 9. Let G be obtained from G by &Y-move. If G is K-linked then G
is K-linked.

Proof. LetA denote the 3-cycle deleted frofd in the VY-move, and Y denote
the set of three edges and vertex adde&toLet the subgraphs where the two graphs
agree be denotet and E’, respectively.

Now consider an embeddiny of G’ which is CA linked. Define an embeddinf
of G, where f(E) = f(E’) and A is mapped onto a tubular neighborhood ofY) c
f(G’). So cycles off(G) are the same simple closed curves as the embedded cycles
as f(G), with the addition of f (A) which bounds an embedded disk. Sint&G’) is
CA linked, f(G) is also CA linked. By assumption this implies th&{G) is knotted.
Thus there is some simple closed cunves f(G) which is nontrivially knotted. The
curve y cannot bef(A) since f(A) bounds an embedded disk. S¢G’) is knotted.
ThereforeG’ is K-linked. O

Having now amassed all the tools needed we will prove:

Theorem 2. If f is a CA linked embedding of @ PF, then f(G) is knotted.
Which can be restated a®\ll of the graphs of the Petersen family are K-linked.



1096 D. O’DoNNOL

1 2 ) 1 2

J

5 6

W) S

Fig. 12. The standard embedding of the complete graph on six
vertices,s(Kg), and two different knotted embeddingéKs) and
[(Keg).

Proof. LetG € PF. If G = Kg then for any embedding (Kg), by Theorem 1
[4] that,

3 K(F()? = 2(2 a(fo) -3 az(f()/))> + 1.

reA(Kg) yely yels

If f(Kg) is CA linked thenZAeA(Ks) Ik( f(1))? > 1. Thus at least one of thay(y) #
0 for y e 'y UTs. So f is knotted. Next, ifG = K333 then G is K-linked by
Corollary 8. If G # Kg or K331 the G can be obtained froniKs or K3 31 by a series
of VY-moves, see Fig. 1. Thus by Lemma@,is K-linked. 0

Now we will examine other ways that knotting and linking inagh embeddings
could be related. We will see through a series of examplesrthae of these other
relationships occur for the graphs of the Petersen familgt the cycle that is made
of the edgesvivy, vovg, ..., vi_1v; and viv; be denotedvivovz---vi. We will look
first at knotting implying a greater level of complexity imking, and next consider
other kinds of complexity in linking that could lead to kring in the embeddings. Our
counterexamples come from making changes to a standarddeingeof Kg, which
we will call s(Kg). See Fig. 12. The embeddirgfKs) contains a single Hopf link in
s(146U 235), all other links are trivial, and all cycles are unknots

Consider the converse of Theorem 2.flIfG) for G € PF is knotted, then isf (G)
CA linked? This is not the case. The simplest way to produceumterexample is by
having an embedding with a knot that is in one of the edges.

ExamMPLE 1. The embeddingi(Ke) is obtained by replacing the edge 26s{Ks)
with a knotted edge as shown in Fig. 12. The embeddifi{s) contains a number of
knotted cycles, all those cycles that contain the edge 2&rasted. It is easy to see that
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k(Keg) is not CA linked because it is based on the embeddjiig). It contains a single
link with nonzero linking number, the Hopf link(146U 235). It does however contain
additional nontrivial links, the four link&(126 U 345), k(236U 145), k(246U 135) and
k(256U 134), which are each the split link of a trivial knot and a dikf

While the example ofk(Kg) is not CA linked it still has more nontrivial links
than that of our standard embeddisfKe). It should be noted, that the existence of
Example 1 and others like it, where the embedding is not CRelilh but at least one
of the components of one of the links is knotted, follows indmaéely from work of
Taniyama and Yasuhara. In [11], they showed that thereseaistembedding oKg that
realizes a given set of ten link typds as the sublinks if and only i}, Ik(L;) =1
(mod 2). So next we consider if(G) for G € PF is knotted, then will f (G) contain
more than one nontrivial link with no knotted components?sTik also not the case.

ExAMPLE 2. In the slightly more complicated counterexampld (¢€s), the edges
13 and 25 ofs(Kg) are replaced as shown in Fig. 12. This is an example of aapati
graph that is knotted but does not contain any more complichbking than a single
Hopf link. This embedding oKy contains a single nontrivial link(146U 235). While
all of the 3-cycles are trivial knots, it contains a numberkabtted cycles. Many of
the knots are the connected sum of two trefoils, an exampl€l&65). Thus having a
knotted embedding does not imply any increased complerityé linking.

Next, we consider the possibility that there is some othenplexity in the linking
in a given embedding that would lead to knotting. The embmgldhust not be CA
linked, so we will look at embeddings where it contains a kingk with non zero
linking number which ist1. We will look at two embeddings dkg which are not CA
linked but contain links other than the Hopf link and do nohtin a nontrivial knot.

ExampLE 3. The embeddingf(Kg), shown in Fig. 13, contains a Hopf link
f(146U235), and the algebraically split link in f(135U246). The 2-component link
L has unknotted components, and linking number 0O, but is ivialtr See Fig. 13. It
can be verified thal is nontrivial with the Conway polynomialy, (z) = 22° + Z'.
(This was calculated with the assistance of the Mathematickgge KnotTheory'.)

Claim 1. The spatial graph {Kg) is not knotted.

Proof. The embeddingf (Kg) can be obtained from the embeddirsgKs) in
Fig. 12, by replacing the linls(135U 246) with the link L, whereL is placed below
the other edges. The embeddis(Ke) is not knotted. So for there to be a knot in
f(Kg) it must contain some of the edges bfbecause that is where the embeddings
differ. Next the link L was obtained by modifying a 6-component Brunnian link. If
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Fig. 13. The embeddind (Kg) which contains both a Hopf link
(f(146U 235)) and the linkL, but is not knotted. The link.
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Fig. 14. The embedding(Kg) which contains linkL’, but is not
knotted. The linkL’.

any of the edges of. are deleted the remaining edges can be isotoped with the ver-
tices fixed and without moving the edges over or around thé&ces; to a projection
there are no crossings in the remaining edges. So the only twadyave additional
crossings from those edges Inis to have all of them, but together all of the edges
make the linkL. ]

EXAMPLE 4. The second embeddirgKg), shown in Fig. 14, contains a single
nontrivial link L’ in g(135U246). The 2-component link” has unknotted components,
and linking number—1, but is not the Hopf link. See Fig. 14. It can be verified that
L’ is not the Hopf link with the Conway polynomiaV.(z) = —z + 22° + 2/ — 2°.
(This was calculated with the assistance of the Mathematckgge KnotTheory™.) In
a similar way, it can be seen thg{Kg) is not knotted.

These two examples show embeddings where there is more ewripking but there
is not higher linking number, however neither are knottelud the addition of com-
plexity in these embeddings is not enough to result in a kdogmbedding.
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