THE INVOLUTION MODULE OF $\mathrm{PSU}_{3}\left(2^{2 f}\right)$

Lars PFORTE

(Received May 10, 2013, revised January 29, 2014)

Abstract

For any group G the involutions \mathcal{I} in G form a G-set under conjugation. The corresponding $k G$-permutation module $k \mathcal{I}$ is known as the involution module of G, with k an algebraically closed field of characteristic two. In this paper we discuss the involution module of the projective special unitary group $\operatorname{PSU}_{3}\left(4^{f}\right)$.

1. Introduction

Let \mathcal{I} be the set of all involutions in a group G, that is, the group elements of order two. Then G acts on \mathcal{I} by conjugation. The corresponding $k G$-permutation module $k \mathcal{I}$ is known as the involution module of G. Here k denotes an algebraically closed field of characteristic two. The involution module has been studied in general by G.R. Robinson [8] and J. Murray [4], [5]. Furthermore the author studied the involution module of the special linear group $\mathrm{SL}_{2}\left(2^{f}\right)$ in [6] and the general linear group $\mathrm{GL}_{n}\left(2^{f}\right)$ in [7].

In this paper we investigate the involution module of the projective special unitary group $\operatorname{PSU}_{3}\left(2^{2 f}\right)$. In the following we introduce this group. For details see [3] and [2]. Let $q:=2^{f}$, for some $f \geq 2$. Then $\mathbb{F}_{q^{2}}$ is the finite field with q^{2} elements. For any element $x \in \mathbb{F}_{q^{2}}$ we define $\mathrm{N}(x):=x^{q+1}$ and $\operatorname{tr}(x):=x+x^{q}$, called norm and trace of x, respectively. As is standard $\mathrm{GL}_{3}\left(q^{2}\right)$ denotes the general linear group, that is, the group of invertible 3×3-matrices with entries in $\mathbb{F}_{q^{2}}$. The elements in $\mathrm{GL}_{3}\left(q^{2}\right)$ with determinant one form the special linear group $\mathrm{SL}_{3}\left(q^{2}\right)$. Let $A \in \mathrm{GL}_{3}(q)$. Then \bar{A} denotes the matrix obtained from A by raising each entry of A to the power q. Moreover A^{T} is the transpose of A. Finally A is called hermitian matrix if $A^{T}=\bar{A}$.

Let $A \in \mathrm{GL}_{3}\left(q^{2}\right)$ be hermitian. The set of all $X \in \mathrm{GL}_{3}\left(q^{2}\right)$ so that $X^{T} A \bar{X}=A$ form the unitary group $\mathrm{U}_{3}\left(q^{2}\right)$. Its kernel under the determinant map is the special unitary group $\mathrm{SU}_{3}\left(q^{2}\right)$. We have $\left|\mathrm{SU}_{3}\left(q^{2}\right)\right|=q^{3}\left(q^{2}-1\right)\left(q^{3}+1\right)$. If $\mathrm{Z}\left(\mathrm{SU}_{3}\left(q^{2}\right)\right)$ denotes the center of $\mathrm{SU}_{3}\left(q^{2}\right)$, then we obtain the projective unitary group $\operatorname{PSU}_{3}\left(q^{2}\right) \cong \mathrm{SU}_{3}\left(q^{2}\right) / \mathrm{Z}\left(\mathrm{SU}_{3}\left(q^{2}\right)\right)$. This group is simple, and thus makes an interesting object of study. Even though our main interest lies in $\operatorname{PSU}_{3}\left(q^{2}\right)$ we work with $\mathrm{SU}_{3}\left(q^{2}\right)$ in this paper, as all results can be transfered back via the canonical epimorphism $\mathrm{SU}_{3}\left(q^{2}\right) \rightarrow \operatorname{PSU}_{3}\left(q^{2}\right)$.

Up to isomorphism this construction of $\mathrm{SU}_{3}\left(q^{2}\right)$ is independent of the choice of the Hermitian form A. In the following we set

$$
A:=\left(\begin{array}{lll}
& & 1 \\
& 1 & \\
1 & &
\end{array}\right)
$$

and for the remainder of the paper let $G=\left\{X \in \mathrm{SL}_{3}\left(q^{2}\right): X^{T} A \bar{X}=A\right\}$.
In Section 2 we take a first look at the involution module of G and show that there is one conjugacy class of involutions. We briefly present the irreducible $k N$ and $k G$ modules in Sections 3 and 4, respectively, where N is the normalizer of the centralizer of an involution of G. In Section 5 we determine the components of the $k \mathcal{I}$ and finally in Section 6 we study the composition factors of $k \mathcal{I}$. In Theorem 6.6 provides a formula to calculate the multiplicity of each irreducible $k G$-module in $k \mathcal{I}$. In the remainder of Section 6 we look at a combinatorial method to determine the numbers involved in Theorem 6.6.

2. Local subgroups and involutions in $\mathrm{SU}_{3}\left(q^{\mathbf{2}}\right)$

Let $\alpha, \beta, \gamma \in \mathbb{F}_{q^{2}}$ such that $\alpha \neq 0$. Then

$$
M(\alpha, \beta, \gamma):=\left(\begin{array}{ccc}
\alpha & \beta & \gamma \\
& \alpha^{q-1} & \alpha^{-1} \beta^{q} \\
& & \alpha^{-q}
\end{array}\right)
$$

lies in $\mathrm{SL}_{3}\left(q^{2}\right)$. Furthermore let $L:=\left\{M(\alpha, \beta, \gamma): \alpha \in \mathbb{F}_{q^{2}}^{*}, \beta, \gamma \in \mathbb{F}_{q^{2}}\right\}$. Since

$$
\begin{equation*}
M(\alpha, \beta, \gamma) \cdot M\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)=M\left(\alpha \alpha^{\prime}, \alpha \beta^{\prime}+\beta \alpha^{\prime q-1}, \alpha \gamma^{\prime}+\alpha^{\prime-1} \beta \beta^{\prime q}+\gamma \alpha^{\prime-q}\right) \tag{1}
\end{equation*}
$$

it follows that L is a subgroup of $\mathrm{SL}_{3}\left(q^{2}\right)$. Also it is a straightforward exercise to show that $M(\alpha, \beta, \gamma) \in G$ if and only if $\operatorname{tr}\left(\alpha \gamma^{q}\right)=\mathrm{N}(\beta)$. In particular

$$
N:=G \cap L=\left\{M(\alpha, \beta, \gamma): \alpha \in \mathbb{F}_{q^{2}}^{*}, \beta, \gamma \in \mathbb{F}_{q^{2}}, \quad \operatorname{tr}\left(\alpha \gamma^{q}\right)=\mathrm{N}(\beta)\right\} .
$$

Let us fix elements $\alpha \neq 0$ and β in $\mathbb{F}_{q^{2}}$. Then there are exactly q different $x \in \mathbb{F}_{q^{2}}$ such that $\operatorname{tr}(x)=N(\beta)$. As for each such x there is a unique $\gamma \in \mathbb{F}_{q^{2}}$ such that $\alpha \gamma^{q}=x$, we get that $|N|=q^{3}\left(q^{2}-1\right)$.

Next we present two homomorphisms on N. First consider the map

$$
\begin{equation*}
\varphi_{1}: N \rightarrow N: M(\alpha, \beta, \gamma) \mapsto M(\alpha, 0,0) . \tag{2}
\end{equation*}
$$

Then φ_{1} is a homomorphism by (1). Moreover the kernel of φ_{1} is given by

$$
S:=\left\{M(1, \beta, \gamma): \beta, \gamma \in \mathbb{F}_{q^{2}}, \quad \operatorname{tr}(\gamma)=\mathrm{N}(\beta)\right\} .
$$

Since $|S|=q^{3}$, it follows that S is a Sylow-2-subgroup of both G and N.
Next consider $\varphi_{2}: N \rightarrow N: M(\alpha, \beta, \gamma) \mapsto M(\mathrm{~N}(\alpha), 0,0)$. As the norm is multiplicative, φ_{2} is a homomorphism, by (1). The kernel is

$$
C:=\left\{M(\alpha, \beta, \gamma): \alpha, \beta, \gamma \in \mathbb{F}_{q^{2}}, \mathrm{~N}(\alpha)=1, \operatorname{tr}\left(\alpha \gamma^{q}\right)=\mathrm{N}(\beta)\right\} .
$$

Therefore $N / C \cong C_{q-1}$ and $|C|=q^{3}(q+1)$.
As is common let $\mathrm{N}_{G}(U)$ denote the normalizer of U in G, if $U \leq G$.
Lemma 2.1. Let $g \in G$. Then $S \cap g S g^{-1}=1_{G}$ if and only if $g \in G \backslash N$. In particular, $N=\mathrm{N}_{G}(S)$.

Proof. Since S is normal in N it is enough to show that $S \cap g S g^{-1} \neq 1_{G}$ implies $g \in N$. So let $g=\left(\alpha_{i j}\right) \in G$ such that $S \cap g S g^{-1} \neq 1_{G}$. Then there exists $1_{G} \neq$ $M(1, \beta, \gamma) \in S \cap g S g^{-1}$. As $\mathrm{N}(\beta)=\operatorname{tr}(\gamma)$ it follows that $\gamma \neq 0$. Furthermore there is $1_{G} \neq M\left(1, \beta^{\prime}, \gamma^{\prime}\right) \in S$ such that $M(1, \beta, \gamma) \cdot g=g \cdot M\left(1, \beta^{\prime}, \gamma^{\prime}\right)$. By comparing the first and second columns on either side we see that g is an upper triangular matrix. Now $g \in N$ can be derived from the fact that $g^{T} A \bar{g}=A$. (Note that $\alpha_{11} \alpha_{22} \alpha_{33}=1$.)

One can show that also $N=\mathrm{N}_{G}(C)$. However we do not require this result and omit a proof here. The following result is a consequence of G having a BN-pair (for details see [1]), where our N and the group generated by the matrix A make up the pair.

Lemma 2.2. There are two (N, N)-double cosets in G, which are N and $N A N$. Furthermore $N \cap A N A^{-1}=\left\{M(\alpha, 0,0): \alpha \in \mathbb{F}_{q^{2}}^{*}\right\}$.

Next we count the involutions in G. Let $M(1, \beta, \gamma) \in S$. Then $M(1, \beta, \gamma)^{2}=$ $M(1,0, \mathrm{~N}(\beta))$, by (1). Note that $\mathrm{N}(\beta)=\operatorname{tr}(\gamma)=0$ iff $\beta=0$ and $\gamma \in \mathbb{F}_{q}$. Hence $\left\{M(1,0, \gamma): \gamma \in F_{q}^{*}\right\}$ are all involutions in S. Next take $\gamma, \gamma^{\prime} \in F_{q}^{*}$ and let $\alpha \in F_{q^{2}}^{*}$ such that $\mathrm{N}(\alpha)=\gamma^{\prime} \gamma^{-1}$. Note that such an α always exists. Then $M(\alpha, 0,0) \cdot M(1,0, \gamma)$. $M(\alpha, 0,0)^{-1}=M\left(1,0, \gamma^{\prime}\right)$, by (1). Hence all involutions in S are G-conjugate, and thus all involutions in G lie in the same conjugacy class. Moreover Lemma 2.1 implies that two different Sylow-2-subgroups of G intersect trivially. As there are $\left|G: \mathrm{N}_{G}(S)\right|=$ $|G: N|=q^{3}+1$ Sylow-2-subgroups of G we conclude that there are $\left(q^{3}+1\right)(q-1)$ involutions forming one conjugacy class.

We consider the involution $T:=M(1,0,1)$. As usual let $\mathrm{C}_{G}(T)$ denote its centralizer in G and $\mathrm{Cl}_{G}(T)$ its conjugacy class in G.

Lemma 2.3. We have $\mathcal{I}=\mathrm{Cl}_{G}(T)$ and $C=\mathrm{C}_{G}(T)$. In particular $k \mathcal{I} \cong k_{C} \uparrow^{G}$.
Proof. It remains to show that $C=\mathrm{C}_{G}(T)$. Using (1) it follows easily that $C \leq$ $\mathrm{C}_{G}(T)$. As $\left|\mathrm{C}_{G}(T)\right|=|G| /\left|\mathrm{Cl}_{G}(T)\right|=q^{3}(q+1)$ the proof is complete.

Note that since S is a trivial intersection group and normal in C, every component of $k \mathcal{I}$ is either projective or has vertex S.

Finally observe that $Z(G)=\left\{\alpha \cdot I: \alpha \in \mathbb{F}_{q^{2}}, \alpha^{3}=1=\alpha^{q+1}\right\}$. Therefore $|Z(G)|=\varepsilon$ and $\left|\operatorname{PSU}\left(3, q^{2}\right)\right|=q^{3}\left(q^{2}-1\right)\left(q^{3}+1\right) / \varepsilon$, where $\varepsilon:=\operatorname{gcd}(3, q+1)$. In particular $\mathrm{Z}(G)$ is of odd size. As the $\mathrm{Z}(G)$ acts trivially on the involutions by conjugation it follows that the involution module of G is the inflation of the involution module of $\operatorname{PSU}_{3}\left(q^{2}\right)$, w.r.t. the canonical epimorphism $\mathrm{SU}_{3}\left(q^{2}\right) \rightarrow \mathrm{PSU}_{3}\left(q^{2}\right)$. Hence in order to understand the latter it is sufficient to study the former.

3. The irreducible $k N$-modules

Recall that S is normal in N. By Clifford theory the irreducible $k N$-modules are inflated from the irreducible $k N / S$-module w.r.t. the epimorphism $N \rightarrow N / S$ induced by φ_{1} as given in (2). Since $N / S \cong H:=\left\{M(\alpha, 0,0): \alpha \in \mathbb{F}_{q^{2}}^{*}\right\}$ is cyclic of order $q^{2}-1$ we can describe the irreducible $k N$-modules as follows.

For $j \in\left\{0,1, \ldots, q^{2}-2\right\}$ let V_{j} be a one-dimensional k-vector space where

$$
\begin{equation*}
M(\alpha, \beta, \gamma) \cdot \omega=M(\alpha, 0,0) \cdot \omega:=\alpha^{j} \cdot \omega \tag{3}
\end{equation*}
$$

for all $M(\alpha, \beta, \gamma) \in N$ and $\omega \in V_{j}$. The various V_{j} give all irreducible $k N$-modules.
Often we use an alternative representation of the irreducible $k N$-modules. Let $F:=$ $\{0,1, \ldots, 2 f-1\}$. Then for $I \subseteq F$ we define

$$
\begin{equation*}
n(I):=\sum_{t \in I} 2^{t} \tag{4}
\end{equation*}
$$

Note the bijection $I \leftrightarrow n(I)$, between the subsets I of F and $\left\{0,1, \ldots, q^{2}-1\right\}$. We define $V_{J}:=V_{n(J)}$, for all $J \subseteq F$. Since $n(F) \equiv 0 \bmod \left(q^{2}-1\right)$, we have $V_{F}=V_{\emptyset}=k_{N}$. Overall the irreducible $k N$-modules are given by $V_{J}:=V_{n(J)}$, for all $J \subsetneq F$.

Let τ_{J} or $\tau_{n(J)}$ denote the Brauer character and V_{J}^{*} the dual of V_{J}. Observe that $V_{J} \otimes V_{F \backslash J} \cong k_{N}$, and thus

$$
\begin{equation*}
V_{J}^{*} \cong V_{J}, \quad \text { where } \quad \bar{J}:=F \backslash J . \tag{5}
\end{equation*}
$$

4. The irreducible $\boldsymbol{k} \boldsymbol{G}$-modules

In this section we focus on the irreducible $k G$-modules. They are described in detail in [2]. Still let $F:=\{0,1, \ldots, 2 f-1\}$ and take $t \in F$. Let $M \cong k^{3}$ with the natural G-structure. Next we define $M_{t} \cong k^{3}$ as the $k G$-module, where X acts on M_{t} as $X^{(t)}$ acts on M. By $X^{(t)}$ we denote the matrix that derives from X by raising each entry to the power 2^{t}. Next, for $t=0, \ldots, f-1$, we have

$$
\begin{equation*}
M_{t} \otimes M_{t+f} \cong k_{G} \oplus M_{(t, t+f)}, \quad \text { as } \quad k G \text {-modules } \tag{6}
\end{equation*}
$$

where $M_{(t, t+f)}$ is irreducible and has dimension 8 .
For every $I \subseteq F$ we define the sets

$$
\begin{aligned}
& I_{p}:=\{t \in\{0,1, \ldots, f-1\}: t, t+f \in I\} \\
& I_{s}:=\{t \in I: t+f \notin I\} \\
& f(I):=\{t+f: t \in I\} \\
& R(I):=\{t \in F: t \in I \text { or } t+f \in I\}
\end{aligned}
$$

It helps to think of F as two rows, with the top row ranging from 0 to $f-1$ and the bottom row ranging from f to $2 f-1$. Given $I \subseteq F$ the set I_{p} contains those integers t from the top row whose counterpart $t+f$ in the bottom row also belongs to I. Hence $\{t, t+f\}$ form a "pair" in I. On the other hand the set I_{s} gives the "single" elements in I, that is, those integers t in both rows where $t+f$ is not contained in I. Here $t+f$ is to be taken modulo $2 f$. Furthermore $f(I)$ is the set of all counterparts of elements in I, whereas $R(I)$ is the union of I and $f(I)$.

Set $M_{\emptyset}:=k_{G}$, and for $I \neq \emptyset$ we define

$$
M_{I}:=\bigotimes_{t \in I_{p}} M_{(t, t+f)} \otimes \bigotimes_{t \in I_{s}} M_{t}
$$

As explained in [2] this gives all q^{2} irreducible, pairwise non-isomorphic $k G$-modules.
Recall that the involution module of G is inflated from the involution module of $\bar{G}:=G / Z(G)$. Hence if M_{I} appears in $k \mathcal{I}$ then $\mathrm{Z}(G)$ acts trivially on M_{I}. So let $\alpha \cdot I \in Z(G)=\left\{\alpha \cdot I: \alpha \in \mathbb{F}_{q^{2}}, \alpha^{3}=1=\alpha^{q+1}\right\}$. Then $(\alpha \cdot I) \cdot \omega=\alpha^{2^{t}} \cdot \omega$, for $\omega \in M_{t}$ and $(\alpha \cdot I) \cdot \omega=\alpha^{2^{t}+2^{t+f}} \cdot \omega$, for $\omega \in M_{(t, t+f)}$. Hence, if we use $n(I)$ as defined in (4), we obtain

Corollary 4.1. Let $I \subseteq F$ such that M_{I} appear in the involution module $k \mathcal{I}$. Then $\varepsilon \mid n(I)$, where $\varepsilon=\operatorname{gcd}(3, q+1)$.

Let φ_{I} denote the Brauer character of M_{I}, for $I \subseteq F$, and for every $t \in F$ set $\varphi_{t}:=\varphi_{\{t\}}$. We aim to express $\varphi_{t} \downarrow_{N}$ as a linear combination of the irreducible Brauer characters $\left\{\tau_{J}: J \subsetneq F\right\}$ of N. With respect to the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ the action of any $M(\alpha, \beta, \gamma) \in N$ on M_{t} is given by

$$
\left(\begin{array}{ccc}
\alpha^{2^{t}} & \beta^{2^{t}} & \gamma^{2^{t}} \\
& \left(\alpha^{q-1}\right)^{2^{t}} & \left(\alpha^{-1} \beta^{q}\right)^{2^{t}} \\
& & \left(\alpha^{-q}\right)^{2^{t}}
\end{array}\right)
$$

Hence

$$
\begin{equation*}
\varphi_{t} \downarrow_{N}=\tau_{2^{t}}+\tau_{2^{t+f}-2^{t}}+\tau_{-2^{t+f}} \tag{7}
\end{equation*}
$$

Also one checks easily that the socle of $M_{t} \downarrow_{N}$ coincides with $V_{\{t\}}$. This leads to
Lemma 4.2. Let $I \subseteq F$. Then $M_{I} \downarrow_{N}$ has V_{I} in its socle.
Finally let M^{*} denote the dual of some $k G$-module M. Then for every $t \in F$, we have

$$
\begin{equation*}
M_{t}^{*} \cong M_{t+f} \text { and } M_{(t, t+f)}^{*} \cong M_{(t, t+f)} . \tag{8}
\end{equation*}
$$

5. The components of $k \mathcal{I}$

In this section we provide a complete decomposition of the involution module kI of G. By Lemma 2.3 we have $k \mathcal{I} \cong k_{C} \uparrow^{G}$. Furthermore recall that C is normal in N, where N / C is a cyclic group of order $q-1$. Hence $k_{C} \uparrow^{N} \cong k N / C$ is a direct sum of all irreducible $k N$-modules on which C acts trivially.

In Section 3 we described the irreducible $k N$-modules. By (3) we know that $M(\alpha, \beta, \gamma) \cdot \omega=\alpha^{n(J)} \cdot \omega$, for all $M(\alpha, \beta, \gamma) \in C$ and $\omega \in V_{J}$. Hence C acts trivially on V_{J} if $J_{s}=\emptyset$, as then $n(J)=\sum_{t \in J} 2^{t}=(q+1) \cdot \sum_{t \in J_{p}} 2^{t}$. Since there are exactly $q-1$ different $J \subsetneq F$ with $J_{s}=\emptyset$ we conclude that $k_{C} \uparrow^{N} \cong \bigoplus_{J \subsetneq F, J_{s}=\emptyset} V_{J}$. In particular

$$
\begin{equation*}
k_{C} \uparrow^{G} \cong \bigoplus_{J \subsetneq F, J_{s}=\emptyset} V_{J} \uparrow{ }^{G} \tag{9}
\end{equation*}
$$

Moreover we have $V_{\emptyset} \uparrow^{G}=k_{N} \uparrow^{G}=k_{G} \oplus X$, where X is a q^{3}-dimensional $k G$-module. Hence there are at least q indecomposable summands in $k_{C} \uparrow{ }^{G}$. Furthermore observe that k_{N} appears in the socle of $M_{F} \downarrow_{N}$, by Lemma 4.2. Hence M_{F} appears in the head of $k_{N} \uparrow^{G}$. Consequently $X=M_{F}$. Using Lemma 2.2 we see that $M_{F} \downarrow_{N}=k_{H} \uparrow^{N}$, where $H=\left\{M(\alpha, 0,0): \alpha \in \mathbb{F}_{q^{2}}^{*}\right\}$. Since H is a 2^{\prime}-group we know that $k_{H} \uparrow^{N}$ is projective. Then, as N contains a Sylow-2-subgroup of G, we conclude that M_{F} is projective. In fact M_{F} is known as the Steinberg module.

In the following we show that our q summands of $k \mathcal{I}$ are all indecomposable.
Lemma 5.1. Let $J \subsetneq F$ so that $J_{s}=\emptyset$. Then $\operatorname{Hom}_{k G}\left(V_{J} \uparrow^{G}, V_{J} \uparrow^{G}\right)$ is onedimensional, unless $J=\emptyset$ in which case it is two-dimensional. In particular, $V_{J} \uparrow^{G}$ is indecomposable if $J \neq \emptyset$, and $V_{\emptyset} \uparrow^{G} \cong k_{G} \oplus M_{F}$.

Proof. By Lemma 2.2 we know that the (N, N)-double cosets in G are given by $\{N, N A N\}$, and furthermore $N \cap A N A^{-1}=H=\left\{M(\alpha, 0,0): \alpha \in \mathbb{F}_{q^{2}}^{*}\right\}$. Now let $J \subsetneq F$. Then, by Mackey's lemma,

$$
\left(V_{J} \uparrow^{G}\right) \downarrow_{N}=\bigoplus_{s \in N \backslash G / N}\left(s\left(V_{J}\right)_{N \cap s N s^{-1}}\right) \uparrow^{N}=V_{J} \oplus\left(A \cdot V_{J}\right)_{H} \uparrow^{N} .
$$

We claim that $A \cdot V_{J} \cong V_{\bar{J}}$ as $k H$-modules, where $\bar{J}:=F \backslash J$. Let $\omega \in A \cdot V_{J}$ and $\alpha \in F_{q^{2}}^{*}$. Then

$$
M(\alpha, 0,0) \cdot \omega=\left(A \cdot M\left(\alpha^{-q}, 0,0\right) \cdot A^{-1}\right) \cdot \omega=\alpha^{-q n(J)} \cdot \omega=\alpha^{n(\bar{J})} \cdot \omega,
$$

since $-q n(J)=-q \sum_{t \in J} 2^{t}=\sum_{t \in J}-2^{t+f} \equiv n(\bar{J}) \bmod \left(q^{2}-1\right)$. Therefore

$$
\begin{equation*}
\left(V_{J} \uparrow^{G}\right) \downarrow_{N}=V_{J} \oplus\left(V_{\bar{J}}\right)_{H} \uparrow^{N} \tag{10}
\end{equation*}
$$

Next let $I \subsetneq F$ such that V_{I} appears in the socle of $\left(V_{\bar{J}}\right)_{H} \uparrow^{N}$. Then by Frobenius reciprocity it follows that $V_{\bar{J}} \cong V_{I}$, as $k H$-modules, and thus as $k N$-modules. Therefore

$$
\begin{equation*}
\operatorname{soc}\left(\left(V_{\bar{J}}\right)_{H} \uparrow^{N}\right)=V_{\bar{J}} . \tag{11}
\end{equation*}
$$

As $\operatorname{dim}_{k} \operatorname{Hom}_{k G}\left(V_{J} \uparrow^{G}, V_{J} \uparrow^{G}\right)=\operatorname{dim}_{k} \operatorname{Hom}_{k N}\left(V_{J},\left(V_{J} \uparrow{ }^{G}\right) \downarrow_{N}\right)$ the statement follows from (10) and (11).

The following proposition summarizes the complete decomposition of $k_{C} \uparrow^{G}$ into indecomposable modules.

Proposition 5.2. The involution module $k \mathcal{I}$ has q components and its decomposition is

$$
k \mathcal{I} \cong k_{C} \uparrow{ }^{G} \cong k_{G} \oplus M_{F} \oplus \bigoplus_{\emptyset \neq J \subseteq F, J_{s}=\emptyset} V_{J} \uparrow^{G} .
$$

Next we want to investigate the structure of the head and socle of $V_{J} \uparrow^{G}$, for $\emptyset \neq$ $J \subsetneq F$ such that $J_{s}=\emptyset$.

Proposition 5.3. For every $\emptyset \neq J \subsetneq F$ so that $J_{s}=\emptyset$ we have $\operatorname{hd}\left(V_{J} \uparrow{ }^{G}\right)=M_{J}$ and $\operatorname{soc}\left(V_{J} \uparrow^{G}\right)=M_{\bar{J}}$.

Proof. Assume M_{I}, for $I \subseteq F$, appears in the socle of $V_{J} \uparrow{ }^{G}$. Then $\operatorname{soc}\left(M_{I} \downarrow_{N}\right)$ is a direct summand of $\operatorname{soc}\left(\left(V_{J} \uparrow^{G}\right) \downarrow_{N}\right)$. The latter equals $V_{J} \oplus V_{J}$ by (10) and (11). Now it follows from Lemma 4.2 that $I=J$ or $I=\bar{J}$. Furthermore M_{I} appears exactly once in the socle of $V_{J} \uparrow^{G}$.

We claim that $M_{I} \downarrow_{N}$ is indecomposable. Since $I_{s}=\emptyset$ we have $M_{I} \otimes M_{\bar{I}}=M_{F}$. Then $M_{I} \downarrow_{N} \otimes M_{\bar{I}} \downarrow_{N}=M_{F} \downarrow_{N}$ and therefore it is enough to show that $M_{F} \downarrow_{N}$ is indecomposable. But $M_{F} \downarrow_{N} \cong k_{H} \uparrow^{N}$, whose socle is k_{N}, by (11). That proves the claim.

As $\left(V_{J} \uparrow^{G}\right) \downarrow_{N}=V_{J} \oplus\left(V_{\bar{J}}\right)_{H} \uparrow^{N}$, by (10), it follows that $M_{I} \downarrow_{N}$ appears in $\left(V_{J}\right)_{H} \uparrow^{N}$. However that forces $I=\bar{J}$ and thus $\operatorname{soc}\left(V_{J} \uparrow^{G}\right)=M_{\bar{J}}$.

The statement about the head follows from $\operatorname{hd}\left(V_{J} \uparrow^{G}\right)=\left(\operatorname{soc}\left(V_{J}^{*} \uparrow^{G}\right)\right)^{*}$ and the facts $M_{J}^{*}=M_{J}$ and $V_{J}^{*}=V_{J}$, given by (8) and (5), respectively.

6. The composition factors of $k \mathcal{I}$

In this section we investigate the composition factors of $k \mathcal{I}$. In Theorem 6.6 we present a formula to calculate the multiplicity of each irreducible $k G$-module in $k \mathcal{I}$. Finally we study a combinatorial method to determine the numbers involved in Theorem 6.6.

First we look at the components of the projective module $M_{F} \otimes M_{I}$, for $I \subseteq F$. In [2] Burkhardt determines these components. Consider the following properties (P1)-(P5). Let $I, J \subseteq F$ and set $X:=f(I) \cap J$:
(P1) $f(I) \cup J=F$,
(P2) $X_{s} \neq \emptyset$,
(P3) $R(X)=F$,
(P4) between any two elements of X_{s} there is an even number of elements in $R\left(X_{p}\right)$, (P5) between any element of X_{s} and any element of $f\left(X_{s}\right)$ there is an odd number of elements in $R\left(X_{p}\right)$.

Definition 6.1. Let $I, J \subseteq F$. We say J is of type I, if I and J satisfy the properties (P1)-(P5). Furthermore by $\mathcal{T}(I)$ we mean the set of all sets $J \subseteq F$ that are of type I.

Lemma 6.2. Let $I, J \subseteq F$ such that J is of type I. Then
(Q1) $R(I)=F=R(J)$,
(Q2) $R\left(I_{s}\right) \subseteq J$,
(Q3) $I \neq F$ or $J \neq F$,
(Q4) $\left|(f(I) \cap J)_{p}\right|$ is odd.
Proof. Observe that (P3) implies (Q1). As $I_{s} \subseteq J$, by (P1) and $f\left(I_{s}\right) \subseteq J$, by $(\mathrm{P} 3)$, we obtain $(\mathrm{Q} 2)$. Next $(\mathrm{Q} 3)$ follows from $(\mathrm{P} 2)$, and $(\mathrm{Q} 4)$ is a consequence of $(\mathrm{P} 2)$ and (P5).

Before we present Burkhardt's result on the components of $M_{F} \otimes M_{I}$, we need the following lemma. For $I \subseteq F$ we define $N(I):=\overline{R(I)}$, that is, $N(I)=\{t \in F: t, t+$ $f \notin I\}$.

Lemma 6.3. Let $I, J \subseteq F$. Then $f(I) \cup J=F$ and $(f(I) \cap J)_{s}=\emptyset$ if and only if there is some $A \subseteq I_{p}$ such that $J=I_{s} \cup N(I) \cup R(A)$. Also in this case $A=I_{p} \cap J_{p}$.

Proof. Observe that F is the disjoint union of $I_{s}, f\left(I_{s}\right), R\left(I_{p}\right)$ and $N(I)$. Also note that $f(I) \cup J=F$ implies $I_{s} \cup N(I) \subseteq J$. Since $\emptyset=(f(I) \cap J)_{s}=\left(f\left(I_{s}\right) \cap J\right)_{s} \cup$ $\left(R\left(I_{p}\right) \cap J\right)_{s}=\left(f\left(I_{s}\right) \cap J\right) \cup\left(R\left(I_{p}\right) \cap J_{s}\right)$ we obtain $f\left(I_{s}\right) \cap J=\emptyset$ and $R\left(I_{p}\right) \cap J_{s}=\emptyset$. The former gives $J=I_{s} \cup N(I) \cup\left(R\left(I_{p}\right) \cap J\right)$, while the latter implies that $R\left(I_{p}\right) \cap J=$ $R\left(I_{p}\right) \cap R\left(J_{p}\right)=R\left(I_{p} \cap J_{p}\right)$. Overall we get $J=I_{s} \cup N(I) \cup R(A)$, where $A:=I_{p} \cap J_{p}$.

Now suppose that $J=I_{s} \cup N(I) \cup R(A)$, for some $A \subseteq I_{p}$. Then clearly $f(I) \cup J=$ F, and since $f(I) \cap J=R(A)$, we obtain $(f(I) \cap J)_{s}=\emptyset$.

For any $I \subseteq F$, let P_{I} denote the projective cover of M_{I}. Then the following corollary is a consequence of $[2,(31)]$ and Lemma 6.3.

Corollary 6.4. Let $I \subsetneq F$. Then

$$
\begin{aligned}
& M_{F} \otimes M_{I}=\bigoplus_{A \subseteq I_{p}} 2^{|A|} P_{I_{s} \cup N(I) \cup R(A)} \oplus \bigoplus_{J \in \mathcal{T}(I)} 2^{\left|I_{p} \cap J_{p}\right|} P_{J}, \\
& M_{F} \otimes M_{F}=m \cdot M_{F} \oplus \bigoplus_{A \subseteq F_{p}} 2^{|A|} P_{R(A)} \oplus \bigoplus_{J \in \mathcal{T}(F)} 2^{\left|J_{p}\right|} P_{J}
\end{aligned}
$$

where $m=1$ if f is even and $m=2^{f+1}+1$ if f is odd.
For $I \subseteq F$ we define the Brauer character $\alpha_{I}:=\varphi_{I} \downarrow_{N}$. Then for $t \in F$, we have $\alpha_{t}:=\alpha_{\{t\}}=\tau_{2^{t}}+\tau_{2^{t^{+f}-2^{t}}}+\tau_{-2^{t+f}}$, by (7), and $\alpha_{t, t+f}:=\alpha_{\{t, t+f\}}=\alpha_{t} \cdot \alpha_{t+f}-\tau_{0}$, by (6). Hence the multiplicity of τ_{0} in $\alpha_{t, t+f}$ equals 2 , and thus we can define $\beta_{t}:=$ $\alpha_{t, t+f}-2 \tau_{0}$. For non-empty $I \subseteq F_{p}$ we define $\beta_{I}:=\prod_{t \in I} \beta_{t}$, while $\beta_{\emptyset}:=\tau_{0}$. Then

$$
\begin{equation*}
\left(\varphi_{F} \varphi_{I}\right) \downarrow_{N}=\alpha_{F} \cdot \alpha_{I_{s}} \cdot \prod_{t \in I_{p}}\left(\beta_{t}+2 \tau_{0}\right)=\sum_{A \subseteq I_{p}} 2^{|A|} \cdot \alpha_{F} \cdot \alpha_{I_{s}} \cdot \beta_{I_{p} \backslash A} . \tag{12}
\end{equation*}
$$

Furthermore, for every $I \subseteq F$, we denote the Brauer character of $P_{I} \downarrow_{N}$ by χ_{I}.
Lemma 6.5. Let $\emptyset \neq I \subseteq F$. Then

$$
\begin{aligned}
& \chi_{I}=\alpha_{F} \cdot \alpha_{I_{s}} \cdot \beta_{N(I)_{p}}-\sum_{J \in \mathcal{T}\left(I_{s} \cup N(I)\right)} 2^{\left|N(I)_{p} \cap J_{p}\right|} \cdot \chi_{J}, \\
& \chi_{\emptyset}=\alpha_{F} \cdot \beta_{F_{p}}-m \cdot \chi_{F}-\sum_{J \in \mathcal{T}(F)} 2^{\left|J_{p}\right|} \cdot \chi_{J},
\end{aligned}
$$

where $m=1$ if f is even and $m=2^{f+1}+1$ if f is odd.
Proof. Let $\emptyset \neq I \subseteq F$. Then

$$
\begin{align*}
& \left(\sum_{\emptyset \neq A \subseteq N(I)_{p}} 2^{|A|} \cdot \chi_{I \cup R(A)}\right)+\chi_{I}+\sum_{J \in \mathcal{T}\left(I_{s} \cup N(I)\right)} 2^{\left|N(I)_{p} \cap J_{p}\right|} \cdot \chi_{J} \tag{13}\\
& =\left(\varphi_{F} \cdot \varphi_{I_{s} \cup N(I)}\right) \downarrow_{N}=\sum_{A \subseteq N(I)_{p}} 2^{|A|} \cdot \alpha_{F} \cdot \alpha_{I_{s}} \cdot \beta_{N(I)_{p} \backslash A},
\end{align*}
$$

where the equalities follows from Corollary 6.4 and (12), respectively. Next take $\emptyset \neq$ $A \subseteq N(I)_{p}$, and let $X:=I_{s} \cup N(I) \backslash R(A)$. Then $X_{p}=N(I)_{p} \backslash A, X_{s}=I_{s}$ and $N(X)=$
$R\left(I_{p}\right) \cup R(A)$. Furthermore $R(X) \neq F$, and consequently there is no set of type X, as property (Q1) is violated. Applying both Corollary 6.4 and (12) to $\left(\varphi_{F} \varphi_{X}\right) \downarrow_{N}$ we get

$$
\sum_{B \subseteq N(I)_{p} \backslash A} 2^{|B|} \cdot \chi_{I \cup R(A) \cup R(B)}=\sum_{B \subseteq N(I)_{p} \backslash A} 2^{|B|} \cdot \alpha_{F} \cdot \alpha_{I_{s}} \cdot \beta_{N(I)_{p} \backslash(A \cup B)} .
$$

Now by induction over $\left|N(I)_{p} \backslash A\right|$ we conclude that $\alpha_{F} \cdot \alpha_{I_{s}} \cdot \beta_{N(I)_{p} \backslash A}=\chi_{I \cup R(A)}$. Therefore (13) reduces to

$$
\alpha_{F} \cdot \alpha_{I_{s}} \cdot \beta_{N(I)_{p}}=\chi_{I}+\sum_{J \in \mathcal{T}\left(I_{s} \cup N(I)\right)} 2^{\left|N(I)_{p} \cap J_{p}\right|} \cdot \chi_{J}
$$

This proves the first part of the lemma. The second part is proven similarly.
For two characters φ_{1} and φ_{2} let \# $\left(\varphi_{1}, \varphi_{2}\right)$ denote the multiplicity of φ_{1} in φ_{2}. Likewise for modules M_{1} and M_{2} let $\#\left(M_{1}, M_{2}\right)$ denote the multiplicity of M_{1} in M_{2}. For $I \subseteq F$ we define

$$
m_{I}:=\sum_{K \subsetneq F, K_{s}=\emptyset} \#\left(\tau_{K}, \alpha_{I_{s}} \cdot \beta_{I_{p}}\right) .
$$

Theorem 6.6. Let $\emptyset \neq I \subseteq F$ and $m=1$ if f is even and $m=2^{f+1}+1$ if f is odd. Then

$$
\begin{aligned}
& \#\left(M_{I}, k_{C} \uparrow{ }^{G}\right)=m_{I_{s} \cup N(I)}-\sum_{J \in \mathcal{T}\left(I_{s} \cup N(I)\right)} 2^{\left|N(I)_{p} \cap J_{p}\right|} \cdot m_{J_{s}}, \\
& \#\left(M_{\emptyset}, k_{C} \uparrow^{G}\right)=m_{F}-m-\sum_{J \in \mathcal{T}(F)} 2^{\left|J_{p}\right|} \cdot m_{J_{s}} .
\end{aligned}
$$

Proof. First let $J \subseteq F$ be of some type $L \subseteq F$. We claim that $\chi_{J}=\alpha_{F} \cdot \alpha_{J_{s}}$. By (Q1) we have $R(J)=F$. Hence $N(J)=\emptyset$ and $J \neq \emptyset$. Also $\mathcal{T}\left(J_{s} \cup N(J)\right)=\emptyset$. This is true since $J_{s} \cup N(J)=J_{s}$ and $\left(f\left(J_{s}\right) \cap K\right)_{p}=\emptyset$, for any $K \subseteq F$, which then violates property (Q 4$)$. Overall the claim now follows from Lemma 6.5.

Next let $\emptyset \neq I \subseteq F$. By Lemma 6.5 and the above paragraph we obtain

$$
\begin{aligned}
& \chi_{I}=\alpha_{F} \cdot\left(\alpha_{I_{s}} \cdot \beta_{N(I)_{p}}-\sum_{J \in \mathcal{T}\left(I_{s} \cup N(I)\right)} 2^{\left|N(I)_{p} \cap J_{p}\right|} \cdot \alpha_{J_{s}}\right), \\
& \chi_{\emptyset}=\alpha_{F} \cdot\left(\beta_{F_{p}}-m \cdot \tau_{\emptyset}-\sum_{J \in \mathcal{T}(F)} 2^{\left|J_{p}\right|} \cdot \alpha_{J_{s}}\right) .
\end{aligned}
$$

Now let $K \subsetneq F$ so that $K_{s}=\emptyset$. Then $\#\left(M_{I}, V_{K} \uparrow^{G}\right)$ coincides with the dimension of $\operatorname{Hom}_{k G}\left(V_{K} \uparrow^{G}, P_{I}\right) \cong \operatorname{Hom}_{k N}\left(V_{K}, P_{I} \downarrow_{N}\right)$. As $M_{F} \downarrow_{N} \otimes V_{K}$ is the projective cover of V_{K}
we get that $\#\left(M_{I}, V_{K} \uparrow^{G}\right)$ equals the multiplicity of $M_{F} \downarrow_{N} \otimes V_{K}$ as a direct summand of $P_{I} \downarrow_{N}$. The Brauer character of $M_{F} \downarrow_{N} \otimes V_{K}$ is given by $\alpha_{F} \cdot \tau_{K}$, and thus we obtain

$$
\begin{aligned}
& \#\left(M_{I}, V_{K} \uparrow^{G}\right)=\#\left(\tau_{K}, \alpha_{I_{s}} \cdot \beta_{N(I)_{p}}-\sum_{J \in \mathcal{T}\left(I_{s} \cup N(I)\right)} 2^{\left|N(I)_{p} \cap J_{p}\right|} \cdot \alpha_{J_{s}}\right), \\
& \#\left(M_{\emptyset}, V_{K} \uparrow^{G}=\#\left(\tau_{K}, \beta_{F_{p}}-m \cdot \tau_{\emptyset}-\sum_{J \in \mathcal{T}(F)} 2^{\left|J_{p}\right|} \cdot \alpha_{J_{s}}\right) .\right.
\end{aligned}
$$

As $\#\left(M_{I}, k_{C} \uparrow^{G}\right)=\sum_{K \subsetneq F, K_{s}=\emptyset} \#\left(M_{I}, V_{K} \uparrow^{G}\right)$ the proof is complete.
In the following we wish to calculate the number m_{I} combinatorically.

Definition 6.7. Let $I \subseteq F$. A map $\varsigma: I \rightarrow\{1,2,3\}$ is called a solution of I if (S1) $I_{1} \cap f\left(I_{3}\right)=I_{2} \cap f\left(I_{2}\right)=I_{3} \cap f\left(I_{1}\right)=\emptyset$,
(S2) $\sum_{t \in I_{1} \cup I_{3}} 2^{t}+\sum_{t \in I_{2}} 2^{t+1+f} \equiv 0 \bmod (q+1)$,
where $I_{j}:=\{t \in I: \varsigma(t)=j\}$, for $j=1,2,3$.
Furthermore a solution ς of I with $I_{3}=\emptyset$ is called a basic solution of I.
Let $I \subseteq F$. Every solution ς of I can be associated to a basic solution of I, by composing ς with the map $\tau:\{1,2,3\} \rightarrow\{1,2,3\}$ such that $\tau(1)=1=\tau(3)$ and $\tau(2)=2$. Note that two solutions ς_{1} and ς_{2} of I are associated to the same basic solution if and only if ς_{1} and ς_{2} map the same elements of I onto 2 .

Now we can also determine how many solutions of I are associated to a given basic solution ς of I. Note that every time we change certain $1^{\prime} s$ in the image of ς to $3^{\prime} s$ we obtain a new solution, as long as we make sure to treat pairs $\{t, t+f\} \subseteq I$ that are both mapped onto 1 equally. Hence if we define $T_{\varsigma}:=\{t \in\{0,1, \ldots, f-$ $\left.1\}:\{t, t+f\} \cap I_{1} \neq \emptyset\right\}$, then for every subset $P \subseteq T_{\varsigma}$ we obtain a solution of I that is associated to ς. Overall a basic solution ς has $2^{\left|T_{\varsigma}\right|}$ solutions associated to it.

Lemma 6.8. Let $I \subseteq F$. Then m_{I} equals the number of solutions of I, that is,

$$
m_{I}=\sum 2^{\left|T_{\varsigma}\right|}
$$

where the sum is taken over all basic solutions ς of I.

Proof. It is enough to show that m_{I} equals the number of solutions of I, as the rest of the statement then follows from the previous paragraph.

By definition m_{I} counts the occurrences of characters of the form τ_{K} in $\alpha_{I_{s}} \beta_{I_{p}}$, where $K \subsetneq F$ so that $K_{s}=\emptyset$. Recall that $\alpha_{t}=\tau_{2^{t}}+\tau_{2^{t+f}-2^{t}}+\tau_{-2^{t^{t} f}}$ and $\beta_{t}=$ $\alpha_{t} \alpha_{t+f}-3 \tau_{0}$, for $t \in F$. In particular note that in $\alpha_{t} \alpha_{t+f}$ the three occurrences of the trivial characters τ_{0}, derive from multiplying the first summand of α_{t} with the third
summand of α_{t+f}, the second summand of α_{t} with the second summand of α_{t+f} and the third summand of α_{t} with the first summand of α_{t+f}. Hence for every summand τ_{K} in $\alpha_{I_{s}} \beta_{I_{p}}$ we have a disjoint union $I_{1} \cup I_{2} \cup I_{3}$ of I, where $I_{1} \cap f\left(I_{3}\right)=I_{2} \cap f\left(I_{2}\right)=$ $I_{3} \cap f\left(I_{1}\right)=\emptyset$, such that

$$
\sum_{t \in K} 2^{t} \equiv \sum_{t \in I_{1}} 2^{t}+\sum_{t \in I_{2}}\left(2^{t+f}-2^{t}\right)+\sum_{t \in I_{3}}-2^{t+f} \quad \bmod \left(q^{2}-1\right)
$$

On the other hand for every such disjoint union we get a summand τ_{K} in $\alpha_{I_{s}} \beta_{I_{p}}$. However we are only interested in those $K \subsetneq F$ with $K_{s}=\emptyset$, that is, $\sum_{t \in K} 2^{t} \equiv 0 \bmod (q+1)$. Observe that $\sum_{t \in I_{3}}-2^{t+f} \equiv \sum_{t \in I_{3}} 2^{t} \bmod (q+1)$ and $\sum_{t \in I_{2}}\left(2^{t+f}-2^{t}\right) \equiv \sum_{t \in I_{2}} 2^{t+1+f}$ $\bmod (q+1)$. Therefore we only count those disjoint unions $I_{1} \cup I_{2} \cup I_{3}$ of I, where $I_{1} \cap f\left(I_{3}\right)=I_{2} \cap f\left(I_{2}\right)=I_{3} \cap f\left(I_{1}\right)=\emptyset$ and

$$
\sum_{t \in I_{1} \cup I_{3}} 2^{t}+\sum_{t \in I_{2}} 2^{t+1+f} \equiv 0 \quad \bmod (q+1) .
$$

As those correspond to the solutions of I, the proof is complete.
Hence in order to determine m_{I} we need to find all basic solutions of I. First observe the following

Lemma 6.9. Let $I \subseteq F$. A map $\varsigma: I \rightarrow\{1,2\}$ is a basic solution if and only if (BS1) $I_{2} \cap f\left(I_{2}\right)=\emptyset$,
(BS2) $\sum_{t \in I_{s}} 2^{t} \equiv 3 \cdot \sum_{t \in I_{2}} 2^{t} \bmod (q+1)$,
where $I_{2}=\{t \in I: \varsigma(t)=2\}$.
Proof. For a basic solution property (S1) can be replaced by (BS1), since $I_{3}=\emptyset$. Next observe that

$$
\sum_{t \in I_{2}} 2^{t+1+f} \equiv 2 \cdot q \cdot \sum_{t \in I_{2}} 2^{t} \equiv-2 \cdot \sum_{t \in I_{2}} 2^{t} \quad \bmod (q+1)
$$

Thus (S2) becomes $\sum_{t \in I} 2^{t} \equiv 3 \cdot \sum_{t \in I_{2}} 2^{t} \bmod (q+1)$. But as $\sum_{t \in I} 2^{t}=\sum_{t \in I_{s}} 2^{t}+$ $\sum_{t \in I_{p}}\left(2^{t}+2^{t+f}\right)=\sum_{t \in I_{s}} 2^{t}+(q+1) \cdot \sum_{t \in I_{p}} 2^{t}$ it follows that for basic solutions (S2) and (BS2) are equivalent.

Observe that we have confirmed Corollary 4.1. Let $\varepsilon=\operatorname{gcd}(3, q+1)$ and suppose M_{I} appears in $k_{C} \uparrow^{G}$, for some $I \subseteq F$. Then by Theorem 6.6, we have $m_{I_{s} \cup N(I)} \geq 1$. Thus by Lemma 6.8 there is a basic solution of $I_{s} \cup N(I)$. But now Lemma 6.9 (ii) implies that ε divides $n\left(I_{s}\right)$. As $n(I)$ and $n\left(I_{s}\right)$ are congruent modulo $q+1$, they are also congruent modulo ε. Consequently $\varepsilon \mid n(I)$, which is the statement of Corollary 4.1.

In the following we explain how to find all basic solution for a given $I \subseteq F$ using Lemma 6.9. For instance let $f=5$, and consider F as two rows

0	1	2	3	4
5	6	7	8	9

Next let $I=\{0,1,2,3,4,5,8,9\}$, which is given by

0	1	2	3	4
5	\cdot	\cdot	8	9

By Lemma 6.9 our aim is to find subsets I_{2} of I such that $\sum_{t \in I_{s}} 2^{t} \equiv 3 \cdot \sum_{t \in I_{2}} 2^{t}$ $\bmod (q+1)$, where I_{2} contains from each column at most one element. Since in our example $\sum_{t \in I_{s}} 2^{t}=2+2^{2}=6$, we are looking for solutions of the linear congruence $6 \equiv 3 x \bmod 33$. The following image shows the powers of 2 modulo $q+1$ that can be obtained

2^{0}	2^{1}	2^{2}	2^{3}	2^{4}
-2^{0}	\cdot	\cdot	-2^{3}	-2^{4}

As x is the sum of at most one entry from each column, we get the upper bound $M=2^{0}+2^{1}+2^{2}+2^{3}+2^{4}=31$ and the lower bound $m=-2^{0}-2^{3}-2^{4}=-25$ for x. One checks easily that $6 \equiv 3 x \bmod 33$ has five solutions between -25 and 31 , which are $-20,-9,2,13$ and 24 . However it is difficult to see if we have found all possibilities of writing, say -20 , as a sum of the available powers of two. Thus we propose the following technique.

We start by allocating all entries of the lower row to I_{2}, that is, $\{5,8,9\}$ in our case. Then $x=-25$, which is not what we want. Now every time we remove an entry from I_{2} we have to add the respective power of 2 to -25 . For instance if we remove 9 we have to add 2^{4}. Likewise we may include entries form the first row. For instance 2 , which means we have to add 2^{2}. We could also wish to include 4 . As this would also force us to remove 9 first we have to add 2^{4} for the removal of 9 and 2^{4} for the inclusion of 4 , that is, 2^{5} altogether. The following table shows the change we cause to x by including elements of the top row or removing elements from the bottom row.

2^{1}	2^{1}	2^{2}	2^{4}	2^{5}
2^{0}	\cdot	\cdot	2^{3}	2^{4}

So let us start with $x_{0}=-20$. Initially we have $I_{2}=\{5,8,9\}$. In order to get form -25 to -20 we need to add $5=2^{0}+2^{2}$. Observe that the only way to get 2^{0} is to remove 5 from I_{2}, (and not include 0). Now the only way to get 2^{2} is by including 2 . We get $I_{2}=\{2,8,9\}$, which we represent as follows

1	1	2	1	1
1	\cdot	\cdot	2	2

Next let $x_{0}=-9$. The difference $16=2^{4}$ can be obtained in three different ways. Firstly by including 3 , which involves the removal of 8 . Secondly by removing 9 and thirdly by removing 8 and including $0,1,2$, since $2^{4}=2^{3}+2^{2}+2^{1}+2^{1}$. Overall we have three basic solutions as follows

1	1	1	2	1
2	\cdot	\cdot	1	2

1	1	1	1	1
2	\cdot	\cdot	2	1

2	2	2	1	1
1	\cdot	\cdot	1	2

Now let $x_{0}=2$. Then $|-25-2|=27=2^{0}+2^{1}+2^{3}+2^{4}$. Here there is only one basic solution, which is

1	2	1	1	1
1	\cdot	\cdot	1	1

For $x_{0}=13$ we have $|-25-13|=38=2^{1}+2^{2}+2^{5}$. There are two possibilities of 2^{1}. Also with one 2^{1} gone there is only one possibility to obtain 2^{2}. Finally $2^{5}=2^{4}+2^{4}$ can be obtained in two different ways, leading to the four basic solutions

2	1	2	1	2
1	\cdot	\cdot	2	1

2	1	2	2	1
1	\cdot	\cdot	1	1

1	2	2	1	2
2	\cdot	\cdot	2	1

1	2	2	2	1
2	\cdot	\cdot	1	1

Finally let $x_{0}=24$. Then $|-25-24|=49=2^{0}+2^{4}+2^{5}$. There is only one way to obtain this sum and we get

1	1	1	2	2
1	\cdot	\cdot	1	1

Hence we have found all basic solutions of I. Finally the number of solutions associated to each basic solution depends on the number of columns that contain a 1 , as in each such column all the $1^{\prime} s$ may be changed to $3^{\prime} s$. Going through all basic solutions given above we obtain

$$
\begin{equation*}
m_{I}=2^{4}+2^{5}+2^{5}+2^{3}+2^{4}+2^{4}+2^{4}+2^{3}+2^{3}+2^{5}=184 \tag{14}
\end{equation*}
$$

In the above example we have $I_{s}=\{1,2\}$. Next let $I^{\prime} \subseteq F$ such that $I_{s}^{\prime}=\{1,2\}$. Note that then $I^{\prime} \subseteq I$. We can use the above results to calculate $m_{I^{\prime}}$. Take for instance $I^{\prime}=\{0,1,2,5\}$. A basic solution for I^{\prime} becomes a basic solution for I, by sending all elements in $I \backslash I^{\prime}$ onto one. The only basic solution for I where $\{3,4,8,9\}$ is mapped onto one is when $x=2$. Hence the only basic solution for I^{\prime} is

1	2	1	\cdot	\cdot
1	\cdot	\cdot	\cdot	\cdot

Consequently we have $m_{I^{\prime}}=2^{2}=4$.
Finally let us characterize those sets $I \subseteq F$ that have a basic solution.

Definition 6.10. Let $U \subseteq F$. We call U a U-form

1. of length zero, if $U=\{t, t+f\}$, for some $t \in F$,
2. of length one, if $U=\{t, t+1\}$, for some $t \in F$,
3. of length $n \geq 2$, if there is $H \subseteq H(t, n) \backslash\{t\}$, for some $t \in F$, such that $U=$ $(H(t, n) \backslash H) \cup(f(H)-1)$ is a disjoint union, where $H(t, n)=\{t, t+n\} \cup\{t+1+$ $f, \ldots, t+n-1+f\}$.

Theorem 6.11. Let $I \subseteq F$. Then I has a basic solution if and only if I is the disjoint union of U-forms.

Proof. First suppose that I has a basic solution ς. We argue by induction on $|I|$ that I is a disjoint union of U-forms. This is clear if $|I|=0$, and thus in the following let $|I| \geq 1$.

Define $X:=I_{1} \cup\left(f\left(I_{2}\right)+1\right)$ and $Y:=I_{1} \cap\left(f\left(I_{2}\right)+1\right)$. By property (S2) there is some $K \subseteq F$, such that $K_{s}=\emptyset$ and

$$
\sum_{t \in K} 2^{t} \equiv \sum_{t \in I_{1}} 2^{t}+\sum_{t \in I_{2}} 2^{t+1+f} \equiv \sum_{t \in X} 2^{t}+\sum_{t \in Y} 2^{t} \quad \bmod \left(q^{2}-1\right) .
$$

First suppose that $Y=\emptyset$. Then $X=K$. If $I_{2}=\emptyset$, then there is some $t \in I_{1}$ so that $U=\{t, t+f\} \subseteq I$. If $I_{2} \neq \emptyset$, then there is some $t \in I_{2}$ such that $t+1 \in K$. Note that by (S1) we have $t+1 \in I_{1}$ and thus $U=\{t, t+1\} \subseteq I$. In both cases U is a U-form such that ς is a basic solution on $I \backslash U$. Now by induction $I \backslash U$ is a disjoint union of U-forms, and thus so is I. Hence we may assume that $Y \neq \emptyset$.

Set $T:=f(Y)-1=\left\{t_{1}, \ldots, t_{r}\right\}$, that is, T contains all $t \in I_{2}$ such that $t+1+f \in I_{1}$. For each $i \in\{1, \ldots, r\}$ let $n_{i} \geq 2$ be maximal such that $\left\{t_{i}+2+f, \ldots, t_{i}+n_{i}-1+f\right\} \subseteq$ $X \backslash Y$. We set $S_{i}:=\left\{t_{i}+1+f, \ldots, t_{i}+n_{i}-1+f\right\}$. Then $S_{i} \subseteq X$.

Next we claim that $S_{i} \cap S_{j}=\emptyset$, for all $i \neq j$. Assume otherwise. Then there is $a \in S_{i} \cap S_{j}$ so that $a-1 \in\left(S_{i} \cup S_{j}\right) \backslash\left(S_{i} \cap S_{j}\right)$. Without loss of generality let $a-1 \in$ $S_{i} \backslash S_{j}$. Then $t_{j}=a-1+f$ and thus $a \in Y$, contradicting $a \in S_{i}$. That proves the claim.

Let $S=\bigcup_{i=1}^{r} S_{i}$. Since $2^{t_{i}+1+f}+\sum_{t \in S_{i}} 2^{t} \equiv 2^{t_{i}+n_{i}+f} \bmod \left(q^{2}-1\right)$, we get

$$
\sum_{i \in K} 2^{i} \equiv \sum_{i \in I_{1} \backslash S} 2^{i}+\sum_{i \in\left(f\left(I_{2} \backslash T\right)+1\right) \backslash S} 2^{i}+\sum_{i=1}^{r} 2^{t_{i}+n_{i}+f} \bmod \left(q^{2}-1\right) .
$$

Note that the maximality of T ensures that the first two sums have no power of 2 in common, and the maximality of n_{i} ensures that the last sum has no power of 2 in common with the first two sums. Hence $t_{1}+n_{1}+f \in K$, and thus $a:=t_{1}+n_{1} \in K$.

Assume $a \notin X$. Then $a=t_{i}+n_{i}+f$, for some $i \in\{2, \ldots, r\}$. Note that $n_{1} \neq n_{i}$, as otherwise $t_{1}=t_{i}+f \in I_{2} \cap f\left(I_{2}\right)$, in contradiction to (S1). If $n_{1}<n_{i}$, then $t_{1}=$ $t_{i}+n_{i}-n_{1}+f$. As $n_{1} \geq 2$, we have $t_{1}+1 \in S_{i} \subseteq X$. But $t_{1}+1 \notin f\left(I_{2}\right)+1$, by (S1), and thus $t_{1}+1 \in I_{1}$. Hence $U=\left\{t_{1}, t_{1}+1\right\}$ is a U-form such that ς is a basic solution on $I \backslash U$. Likewise if $n_{i}<n_{1}$, then $t_{i}+1 \in I_{1}$ and $U=\left\{t_{i}, t_{i}+1\right\}$ is a U-form such that ς is a basic solution on $I \backslash U$. Hence in the following we may assume that $t_{1}+n_{1} \in X$.

Now let $t=t_{1}$ and $n=n_{1}$. Set $H:=(H(t, n) \backslash\{t, t+1+f\}) \cap\left(f\left(I_{2}\right)+1\right)$. Then $H \subseteq H(t, n) \backslash\{t\}$. We claim that $(H(t, n) \backslash H) \cap(f(H)-1)=\emptyset$. Note that $f(H)-1=$ $I_{2} \cap\{t+1, \ldots, t+n-2, t+n-1+f\}$. Hence $t+n-1+f$ is the only possible element in $H(t, n) \cap(f(H)-1)$. In this case we have $t+n-1+f \in I_{2}$. In particular $t+n-1+f \notin I_{1}$ and so $t+n-1+f \neq t+f+1$. Also recall that $t+n-1+f \in X \backslash Y$. Hence $t+n-1+f \in f\left(I_{2}\right)+1$. Therefore $t+n-1+f \in H$, which proves the claim.

Thus $U=(H(t, n) \backslash H) \cup(f(H)-1)$ is a U-form. Also $U \subseteq I$, which is clear since all $x \in H(t, n) \backslash\{t\}$ either belong to I_{1} or to $f\left(I_{2}\right)+1$. Finally $U \cap I_{1}=H(t, n) \backslash(H \cup\{t\})$ and $U \cap I_{2}=(f(H)-1) \cup\{t\}$. Since

$$
\begin{aligned}
& \sum_{k \in I_{1} \cap U} 2^{k}+\sum_{k \in I_{2} \cap U} 2^{k+1+f} \\
& \equiv 2^{t+1+f}+\sum_{k \in H(t, n) \backslash(H \cup\{t\})} 2^{k}+\sum_{k \in f(H)-1} 2^{k+1+f} \\
& \equiv 2^{t+1+f}+\sum_{k \in H(t, n) \backslash\{t\}} 2^{k} \equiv 2^{t+n}+2^{t+n+f} \equiv 0 \quad \bmod (q+1),
\end{aligned}
$$

we see that ς is still a basic solution on $I \backslash U$. Thus, by induction, I is a disjoint union of U-forms.

Now suppose that $I=U_{1} \cup \cdots \cup U_{r}$ is a disjoint union of U-forms. We define a map ς on each U_{i}. If $U_{i}=\{t, t+f\}$ is of length zero, then set $\varsigma(t)=1=\varsigma(t+f)$. If $U_{i}=\{t, t+1\}$ is of length one, then $\varsigma(t)=2$ and $\varsigma(t+1)=1$. Finally, if U_{i} is of length $n \geq 2$, that is, $U=(H(t, n) \backslash H) \cup(f(H)-1)$, for some $H \subseteq H(t, n) \backslash\{t\}$, then $\varsigma(x)=1$, for all $x \in H(t, n) \backslash(H \cup\{t\})$ and $\zeta(x)=2$, for all $x \in(\{t\} \cup(f(H)-1))$. We claim that in each case property (S2) is satisfied on U_{i}. This is straightforward if U is of length zero or one. So let U be of length $n \geq 2$. Then

$$
\begin{aligned}
& \sum_{k \in I_{1} \cap U_{i}} 2^{k}+\sum_{k \in I_{2} \cap U_{i}} 2^{k+f+1} \\
& \equiv \sum_{k \in H(t, n) \backslash(H \cup\{t\})} 2^{k}+\sum_{k \in H \cup\{t+1+f\}} 2^{k} \\
& \equiv 2^{t+f+1}+\sum_{k \in H(t, n) \backslash\{t\}} 2^{k} \equiv 2^{t+f+n}+2^{t+n} \equiv 0 \quad \bmod (q+1) .
\end{aligned}
$$

Hence (S2) holds on each U_{i}, and thus on I.

However note that $I_{2} \cap f\left(I_{2}\right)$ may not be empty, and thus property (S1) fails to hold. Thus for each $t \in I_{2} \cap f\left(I_{2}\right)$ we set $\varsigma(t)=1=\varsigma(t+f)$. Since $2^{t}+2^{t+f} \equiv 2^{t+1}+$ $2^{t+f+1} \bmod (q+1)$, this does not effect the validity of property (S2). In particular we have constructed a basic solution of I.

We can now construct irreducible M_{I} that have basic solutions. Take for instance $f=13$ and consider the union of the following U-forms of
(a) length zero,
(b) length one,
(c) length four, with $H=\emptyset$ and
(d) length five, with H containing the two d^{\star}.

a	c	b	b	\cdot	c	\cdot	\cdot	d	\cdot	\cdot	d	\cdot
a	\cdot	c	c	c	\cdot	\cdot	d	d^{\star}	d^{\star}	\cdot	\cdot	d

In particular $M_{\{0,1,2,3,5,8,11,13,15,16,17,20,21,22,25\}}$ has basic solutions.
We conclude this paper by calculating the multiplicity of certain irreducible modules in the involution module of $\operatorname{PSU}_{3}\left(q^{2}\right)$. Let $f=5$ and take $I=\{1,2\}$. We use Theorem 6.6. Observe that $K:=I_{s} \cup N(I)=\{0,1,2,3,4,5,8,9\}$, and $m_{K}=184$, by (14). It remains to calculate $m_{J_{s}}$, for all $J \in \mathcal{T}(K)$. So let J be of type K. Then $R\left(K_{s}\right)=\{1,2,6,7\} \subseteq J$, by $(\mathrm{Q} 2)$. Next set $X:=f(K) \cap J$. Observe that $X_{p} \subseteq\{0,3,4\}$. Moreover by (Q4) we know that $\left|X_{p}\right|$ is odd. This either implies $\left|X_{p}\right|=3$, in which case $J=F$ and thus $m_{J_{s}}=0$, or $\left|X_{p}\right|=1$, in which case J_{s} contains exactly two elements. Assuming $m_{J_{s}} \neq 0$, it follows from Theorem 6.11 that J_{s} is a union of U forms. Hence J_{s} is a U-form of length one, and thus it is one the four possible sets $\{3,4\},\{4,5\},\{8,9\}$ and $\{0,9\}$. Since $X_{s}=f\left(K_{s}\right) \cup J_{s}=\{6,7\} \cup J_{s}$, we conclude from (P4) and (P5) that $J_{s}=\{8,9\}$ or $J_{s}=\{4,5\}$. One checks easily that $m_{J_{s}}=2$ in either case. Furthermore $\left|N(I)_{p} \cap J_{p}\right|=\left|X_{p}\right|=1$. Overall we get

$$
\#\left(M_{I}, k_{C} \uparrow^{G}\right)=m_{K}-2 \cdot m_{\{8,9\}}-2 \cdot m_{\{4,5\}}=184-2 \cdot 2-2 \cdot 2=176 .
$$

Hence $M_{\{1,2\}}$ appears 176 times in the involution module of $\operatorname{PSU}_{3}\left(4^{5}\right)$.
Next we choose $I=\{1,2,3,4,8,9\}$. Then $I_{s} \cup N(I)=\{0,1,2,5\}$. Since $R\left(I_{s} \cup\right.$ $N(I)) \neq F$, there is no set of type $I_{s} \cup N(I)$. Hence $\#\left(M_{I}, k_{C} \uparrow{ }^{G}\right)=m_{\{0,1,2,5\}}$. Before Definition 6.10 we found that $m_{\{0,1,2,5\}}=4$. Hence $M_{\{1,2,3,4,8,9\}}$ appears 4 times in the involution module of $\mathrm{PSU}_{3}\left(4^{5}\right)$.

Acknowledgements. I wish to thank the anonymous referee for some very constructive input towards the final version of this paper.

References

[1] J.L. Alperin and R.B. Bell: Groups and Representations, Graduate Texts in Mathematics 162, Springer, New York, 1995.
[2] R. Burkhardt: Über die Zerlegungszahlen der unitären Gruppen $\operatorname{PSU}\left(3,2^{2 f}\right)$, J. Algebra 61 (1979), 548-581.
[3] L.C. Grove: Classical Groups and Geometric Algebra, Graduate Studies in Mathematics 39, Amer. Math. Soc., Providence, RI, 2002.
[4] J. Murray: Projective modules and involutions, J. Algebra 299 (2006), 616-622.
[5] J. Murray: Components of the involution module in blocks with cyclic or Klein-four defect group, J. Group Theory 11 (2008), 43-62.
[6] L. Pforte: On the involution module of $\mathrm{SL}_{2}\left(2^{f}\right)$, J. Group Theory 14 (2011), 709-725.
[7] L. Pforte: On the involution module of $\mathrm{GL}_{n}\left(2^{f}\right)$, J. Algebra 396 (2013), 151-168.
[8] G.R. Robinson: The Frobenius-Schur indicator and projective modules, J. Algebra 126 (1989), 252-257.

Department of Mathematics
National University of Ireland, Maynooth
Co. Kildare,
Ireland
e-mail: lars.pforte@nuim.ie

