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Abstract
For any groupG the involutionsI in G form a G-set under conjugation. The

correspondingkG-permutation modulekI is known as the involution module ofG,
with k an algebraically closed field of characteristic two. In thispaper we discuss
the involution module of the projective special unitary group PSU3(4 f ).

1. Introduction

Let I be the set of all involutions in a groupG, that is, the group elements of order
two. ThenG acts onI by conjugation. The correspondingkG-permutation modulekI
is known as theinvolution moduleof G. Herek denotes an algebraically closed field of
characteristic two. The involution module has been studiedin general by G.R. Robinson
[8] and J. Murray [4], [5]. Furthermore the author studied theinvolution module of the
special linear group SL2(2 f ) in [6] and the general linear group GLn(2 f ) in [7].

In this paper we investigate the involution module of the projective special unitary
group PSU3(22 f ). In the following we introduce this group. For details see [3] and
[2]. Let q WD 2 f , for some f � 2. ThenFq2 is the finite field withq2 elements. For
any elementx 2 Fq2 we define N(x) WD xqC1 and tr(x) WD x C xq, called norm and
trace of x, respectively. As is standard GL3(q2) denotes thegeneral linear group, that
is, the group of invertible 3� 3-matrices with entries inFq2. The elements in GL3(q2)
with determinant one form thespecial linear groupSL3(q2). Let A 2 GL3(q). Then
A denotes the matrix obtained fromA by raising each entry ofA to the powerq.
Moreover AT is the transpose ofA. Finally A is calledhermitian matrix if AT

D A.
Let A 2 GL3(q2) be hermitian. The set of allX 2 GL3(q2) so thatXT AX D A form

the unitary groupU3(q2). Its kernel under the determinant map is thespecial unitary
groupSU3(q2). We havejSU3(q2)j D q3(q2

�1)(q3
C1). If Z(SU3(q2)) denotes the center

of SU3(q2), then we obtain theprojective unitary groupPSU3(q2)� SU3(q2)=Z(SU3(q2)).
This group is simple, and thus makes an interesting object ofstudy. Even though our main
interest lies in PSU3(q2) we work with SU3(q2) in this paper, as all results can be trans-
fered back via the canonical epimorphism SU3(q2)! PSU3(q2).
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Up to isomorphism this construction of SU3(q2) is independent of the choice of
the Hermitian formA. In the following we set

A WD

0

�

1
1

1

1

A,

and for the remainder of the paper letG D {X 2 SL3(q2) W XT AX D A}.
In Section 2 we take a first look at the involution module ofG and show that there

is one conjugacy class of involutions. We briefly present theirreducible kN and kG-
modules in Sections 3 and 4, respectively, whereN is the normalizer of the centralizer
of an involution of G. In Section 5 we determine the components of thekI and fi-
nally in Section 6 we study the composition factors ofkI. In Theorem 6.6 provides
a formula to calculate the multiplicity of each irreduciblekG-module in kI. In the
remainder of Section 6 we look at a combinatorial method to determine the numbers
involved in Theorem 6.6.

2. Local subgroups and involutions in SU3(q2)

Let �, �,  2 Fq2 such that� ¤ 0. Then

M(�, �,  ) WD

0

�

� � 

�

q�1
�

�1
�

q

�

�q

1

A

lies in SL3(q2). Furthermore letL WD
{

M(�, �,  ) W � 2 F�q2, �,  2 Fq2

}

. Since

(1) M(�, �,  ) � M(�0, � 0,  0) D M(��0, �� 0 C ��0q�1, � 0 C �0�1
��

0q
C �

0�q)

it follows that L is a subgroup of SL3(q2). Also it is a straightforward exercise to show
that M(�, �,  ) 2 G if and only if tr(� q) D N(�). In particular

N WD G \ L D
{

M(�, �,  ) W � 2 F�q2, �,  2 Fq2, tr(� q) D N(�)
}

.

Let us fix elements� ¤ 0 and� in Fq2. Then there are exactlyq different x 2 Fq2 such
that tr(x) D N(�). As for each suchx there is a unique 2 Fq2 such that� q

D x,
we get thatjNj D q3(q2

� 1).
Next we present two homomorphisms onN. First consider the map

(2) '1 W N ! N W M(�, �,  ) 7! M(�, 0, 0).

Then '1 is a homomorphism by (1). Moreover the kernel of'1 is given by

S WD {M(1, �,  ) W �,  2 Fq2, tr( ) D N(�)}.
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Since jSj D q3, it follows that S is a Sylow-2-subgroup of bothG and N.
Next consider'2 W N ! N W M(�, �,  ) 7! M(N(�), 0, 0). As the norm is multi-

plicative, '2 is a homomorphism, by (1). The kernel is

C WD {M(�, �,  ) W �, �,  2 Fq2, N(�) D 1, tr(� q) D N(�)}.

ThereforeN=C � Cq�1 and jCj D q3(qC 1).
As is common let NG(U ) denote the normalizer ofU in G, if U � G.

Lemma 2.1. Let g 2 G. Then S\ gSg�1
D 1G if and only if g 2 GnN. In

particular, N D NG(S).

Proof. SinceS is normal in N it is enough to show thatS\ gSg�1
¤ 1G implies

g 2 N. So let g D (�i j ) 2 G such thatS\ gSg�1
¤ 1G. Then there exists 1G ¤

M(1, �,  ) 2 S\ gSg�1. As N(�) D tr( ) it follows that  ¤ 0. Furthermore there is
1G ¤ M(1,� 0,  0) 2 S such thatM(1,�,  ) � gD g �M(1,� 0,  0). By comparing the first
and second columns on either side we see thatg is an upper triangular matrix. Now
g 2 N can be derived from the fact thatgT Ag D A. (Note that�11�22�33D 1.)

One can show that alsoN D NG(C). However we do not require this result and omit
a proof here. The following result is a consequence ofG having a BN-pair (for details
see [1]), where ourN and the group generated by the matrixA make up the pair.

Lemma 2.2. There are two(N, N)-double cosets in G, which are N and N AN.
Furthermore N\ AN A�1

D

{

M(�, 0, 0)W � 2 F�q2

}

.

Next we count the involutions inG. Let M(1, �,  ) 2 S. Then M(1, �,  )2
D

M(1, 0, N(�)), by (1). Note that N(�) D tr( ) D 0 iff � D 0 and  2 Fq. Hence
{M(1, 0, ) W  2 F�

q } are all involutions inS. Next take ,  0 2 F�

q and let� 2 F�

q2

such that N(�)D  0 �1. Note that such an� always exists. ThenM(�,0,0)�M(1,0, ) �
M(�, 0,0)�1

D M(1,0, 0), by (1). Hence all involutions inS are G-conjugate, and thus
all involutions in G lie in the same conjugacy class. Moreover Lemma 2.1 implies that
two different Sylow-2-subgroups ofG intersect trivially. As there arejG W NG(S)j D
jG W Nj D q3

C 1 Sylow-2-subgroups ofG we conclude that there are (q3
C 1)(q � 1)

involutions forming one conjugacy class.
We consider the involutionT WD M(1, 0, 1). As usual let CG(T) denote its central-

izer in G and ClG(T) its conjugacy class inG.

Lemma 2.3. We haveI D ClG(T) and CD CG(T). In particular kI � kC"
G.

Proof. It remains to show thatC D CG(T). Using (1) it follows easily thatC �
CG(T). As jCG(T)j D jGj=jClG(T)j D q3(qC 1) the proof is complete.
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Note that sinceS is a trivial intersection group and normal inC, every component
of kI is either projective or has vertexS.

Finally observe that Z(G)D {� � I W � 2 Fq2, �3
D 1D �qC1}. ThereforejZ(G)j D "

and jPSU(3,q2)j D q3(q2
� 1)(q3

C 1)=", where" WD gcd(3,qC 1). In particular Z(G)
is of odd size. As the Z(G) acts trivially on the involutions by conjugation it follows
that the involution module ofG is the inflation of the involution module of PSU3(q2),
w.r.t. the canonical epimorphism SU3(q2) ! PSU3(q2). Hence in order to understand
the latter it is sufficient to study the former.

3. The irreducible kN-modules

Recall thatS is normal in N. By Clifford theory the irreduciblekN-modules are
inflated from the irreduciblekN=S-module w.r.t. the epimorphismN ! N=S induced
by '1 as given in (2). SinceN=S� H WD {M(�, 0, 0)W � 2 F�q2} is cyclic of order

q2
� 1 we can describe the irreduciblekN-modules as follows.

For j 2 {0, 1, : : : , q2
� 2} let Vj be a one-dimensionalk-vector space where

(3) M(�, �,  ) � ! D M(�, 0, 0)� ! WD � j
� !,

for all M(�, �,  ) 2 N and! 2 Vj . The variousVj give all irreduciblekN-modules.
Often we use an alternative representation of the irreducible kN-modules. LetF WD

{0, 1, : : : , 2 f � 1}. Then for I � F we define

(4) n(I ) WD
X

t2I

2t .

Note the bijectionI $ n(I ), between the subsetsI of F and{0,1,:::,q2
�1}. We define

VJ WD Vn(J), for all J � F . Sincen(F) � 0 mod (q2
� 1), we haveVF D V

;

D kN .
Overall the irreduciblekN-modules are given byVJ WD Vn(J), for all J ¨ F .

Let �J or �n(J) denote the Brauer character andV�

J the dual ofVJ . Observe that
VJ 
 VFnJ � kN , and thus

(5) V�

J � VJ , where J WD FnJ.

4. The irreducible kG-modules

In this section we focus on the irreduciblekG-modules. They are described in
detail in [2]. Still let F WD {0, 1, : : : , 2 f � 1} and taket 2 F . Let M � k3 with the
natural G-structure. Next we defineMt � k3 as thekG-module, whereX acts onMt

as X(t) acts onM. By X(t) we denote the matrix that derives fromX by raising each
entry to the power 2t . Next, for t D 0, : : : , f � 1, we have

Mt 
 MtC f � kG � M(t,tC f ), as kG-modules,(6)
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where M(t,tC f ) is irreducible and has dimension 8.
For every I � F we define the sets

I p WD {t 2 {0, 1, : : : , f � 1} W t, t C f 2 I },

Is WD {t 2 I W t C f � I },

f (I ) WD {t C f W t 2 I },

R(I ) WD {t 2 F W t 2 I or t C f 2 I }.

It helps to think ofF as two rows, with the top row ranging from 0 tof � 1 and the
bottom row ranging fromf to 2 f �1. Given I � F the setI p contains those integerst
from the top row whose counterparttC f in the bottom row also belongs toI . Hence
{t, t C f } form a “pair” in I . On the other hand the setIs gives the “single” elements
in I , that is, those integerst in both rows wheret C f is not contained inI . Here
t C f is to be taken modulo 2f . Furthermore f (I ) is the set of all counterparts of
elements inI , whereasR(I ) is the union ofI and f (I ).

Set M
;

WD kG, and for I ¤ ; we define

MI WD
O

t2I p

M(t,tC f ) 

O

t2Is

Mt .

As explained in [2] this gives allq2 irreducible, pairwise non-isomorphickG-modules.
Recall that the involution module ofG is inflated from the involution module of

G WD G=Z(G). Hence if MI appears inkI then Z(G) acts trivially on MI . So let
� � I 2 Z(G) D {� � I W � 2 Fq2, �3

D 1D �qC1}. Then (� � I ) � ! D �2t
� !, for ! 2 Mt

and (� � I ) �! D �2t
C2tC f

�!, for ! 2 M(t,tC f ). Hence, if we usen(I ) as defined in (4),
we obtain

Corollary 4.1. Let I � F such that MI appear in the involution module kI.
Then"jn(I ), where" D gcd(3,qC 1).

Let 'I denote the Brauer character ofMI , for I � F , and for everyt 2 F set
't WD '{t}. We aim to express't#N as a linear combination of the irreducible Brauer
characters{�J W J ¨ F} of N. With respect to the basis{e1, e2, e3} the action of any
M(�, �,  ) 2 N on Mt is given by

0

�

�

2t
�

2t


2t

(�q�1)2t
(��1

�

q)2t

(��q)2t

1

A.

Hence

(7) 't#N D �2t
C �2tC f

�2t
C �

�2tC f .
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Also one checks easily that the socle ofMt#N coincides withV{t}. This leads to

Lemma 4.2. Let I � F. Then MI#N has VI in its socle.

Finally let M� denote the dual of somekG-module M. Then for everyt 2 F , we have

(8) M�

t � MtC f and M�

(t,tC f ) � M(t,tC f ).

5. The components ofkI

In this section we provide a complete decomposition of the involution modulekI
of G. By Lemma 2.3 we havekI � kC"

G. Furthermore recall thatC is normal in N,
where N=C is a cyclic group of orderq� 1. HencekC"

N
� kN=C is a direct sum of

all irreduciblekN-modules on whichC acts trivially.
In Section 3 we described the irreduciblekN-modules. By (3) we know that

M(�, �,  ) � ! D �

n(J)
� !, for all M(�, �,  ) 2 C and ! 2 VJ . HenceC acts triv-

ially on VJ if Js D ;, as thenn(J) D
P

t2J 2t
D (q C 1) �

P

t2Jp
2t . Since there are

exactly q � 1 different J ¨ F with Js D ; we conclude thatkC"
N
�

L

J¨F,JsD;
VJ .

In particular

(9) kC"
G
�

M

J¨F,JsD;

VJ"
G.

Moreover we haveV
;

"

G
D kN"

G
D kG� X, whereX is a q3-dimensionalkG-module.

Hence there are at leastq indecomposable summands inkC"
G. Furthermore observe

that kN appears in the socle ofMF#N , by Lemma 4.2. HenceMF appears in the head
of kN"

G. ConsequentlyX D MF . Using Lemma 2.2 we see thatMF#N D kH"
N ,

whereH D {M(�,0,0)W � 2 F�q2}. SinceH is a 20-group we know thatkH"
N is project-

ive. Then, asN contains a Sylow-2-subgroup ofG, we conclude thatMF is projective.
In fact MF is known as theSteinberg module.

In the following we show that ourq summands ofkI are all indecomposable.

Lemma 5.1. Let J ¨ F so that Js D ;. Then HomkG(VJ"
G, VJ"

G) is one-
dimensional, unless JD ; in which case it is two-dimensional. In particular, VJ"

G

is indecomposable if J¤ ;, and V
;

"

G
� kG � MF .

Proof. By Lemma 2.2 we know that the (N, N)-double cosets inG are given by
{N, N AN}, and furthermoreN\AN A�1

D H D
{

M(�,0,0)W � 2 F�q2

}

. Now let J ¨ F .
Then, by Mackey’s lemma,

(VJ"
G)#N D

M

s2NnG=N

(s(VJ)N\sNs�1)"N
D VJ � (A � VJ)H"

N .
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We claim that A � VJ � VJ as kH-modules, whereJ WD FnJ. Let ! 2 A � VJ and
� 2 F�

q2. Then

M(�, 0, 0)� ! D (A � M(��q, 0, 0)� A�1) � ! D ��qn(J)
� ! D �

n(J)
� !,

since�qn(J) D �q
P

t2J 2t
D

P

t2J �2tC f
� n(J) mod (q2

� 1). Therefore

(10) (VJ"
G)#N D VJ � (VJ)H"

N .

Next let I ¨ F such thatVI appears in the socle of (VJ)H"
N . Then by Frobenius

reciprocity it follows thatVJ � VI , askH-modules, and thus askN-modules. Therefore

(11) soc((VJ)H"
N) D VJ .

As dimk HomkG(VJ"
G,VJ"

G)D dimk HomkN(VJ ,(VJ"
G)#N) the statement follows from

(10) and (11).

The following proposition summarizes the complete decomposition of kC"
G into

indecomposable modules.

Proposition 5.2. The involution module kI has q components and its decompos-
ition is

kI � kC"
G
� kG � MF �

M

;¤J¨F,JsD;

VJ"
G.

Next we want to investigate the structure of the head and socle of VJ"
G, for ; ¤

J ¨ F such thatJs D ;.

Proposition 5.3. For every; ¤ J ¨ F so that Js D ; we havehd(VJ"
G) D MJ

and soc(VJ"
G) D MJ .

Proof. AssumeMI , for I � F , appears in the socle ofVJ"
G. Then soc(MI#N)

is a direct summand of soc((VJ"
G)#N). The latter equalsVJ � VJ by (10) and (11).

Now it follows from Lemma 4.2 thatI D J or I D J. FurthermoreMI appears exactly
once in the socle ofVJ"

G.
We claim thatMI#N is indecomposable. SinceIs D ; we haveMI 
 MI D MF .

Then MI#N 
 MI#N D MF#N and therefore it is enough to show thatMF#N is in-
decomposable. ButMF#N � kH"

N , whose socle iskN , by (11). That proves the claim.
As (VJ"

G)#N D VJ�(VJ)H"
N , by (10), it follows thatMI#N appears in (VJ)H"

N .
However that forcesI D J and thus soc(VJ"

G) D MJ .
The statement about the head follows from hd(VJ"

G)D (soc(V�

J "
G))� and the facts

M�

J D MJ and V�

J D VJ , given by (8) and (5), respectively.
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6. The composition factors ofkI

In this section we investigate the composition factors ofkI. In Theorem 6.6 we
present a formula to calculate the multiplicity of each irreducible kG-module in kI.
Finally we study a combinatorial method to determine the numbers involved in The-
orem 6.6.

First we look at the components of the projective moduleMF 
 MI , for I � F . In
[2] Burkhardt determines these components. Consider the following properties (P1)–(P5).
Let I , J � F and setX WD f (I ) \ J:
(P1) f (I ) [ J D F ,
(P2) Xs ¤ ;,
(P3) R(X) D F ,
(P4) between any two elements ofXs there is an even number of elements inR(Xp),
(P5) between any element ofXs and any element off (Xs) there is an odd number of
elements inR(Xp).

DEFINITION 6.1. Let I , J � F . We say J is of type I , if I and J satisfy the
properties (P1)–(P5). Furthermore byT (I ) we mean the set of all setsJ � F that are
of type I .

Lemma 6.2. Let I, J � F such that J is of type I . Then
(Q1) R(I ) D F D R(J),
(Q2) R(Is) � J,
(Q3) I ¤ F or J ¤ F ,
(Q4) j( f (I ) \ J)pj is odd.

Proof. Observe that (P3) implies (Q1). AsIs � J, by (P1) and f (Is) � J, by
(P3), we obtain (Q2). Next (Q3) follows from (P2), and (Q4) isa consequence of (P2)
and (P5).

Before we present Burkhardt’s result on the components ofMF
MI , we need the
following lemma. ForI � F we defineN(I ) WD R(I ), that is, N(I ) D {t 2 F W t, t C
f � I }.

Lemma 6.3. Let I, J � F. Then f(I )[ J D F and ( f (I )\ J)s D ; if and only
if there is some A� I p such that JD Is[N(I )[R(A). Also in this case AD I p\ Jp.

Proof. Observe thatF is the disjoint union ofIs, f (Is), R(I p) and N(I ). Also
note that f (I )[ J D F implies Is[ N(I ) � J. Since; D ( f (I )\ J)s D ( f (Is)\ J)s[

(R(I p)\ J)s D ( f (Is)\ J)[ (R(I p)\ Js) we obtain f (Is)\ J D ; and R(I p)\ Js D ;.
The former givesJ D Is[N(I )[ (R(I p)\ J), while the latter implies thatR(I p)\ J D
R(I p)\R(Jp)D R(I p\ Jp). Overall we getJ D Is[N(I )[R(A), where A WD I p\ Jp.
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Now suppose thatJ D Is[N(I )[R(A), for someA� I p. Then clearly f (I )[ J D
F , and since f (I ) \ J D R(A), we obtain (f (I ) \ J)s D ;.

For any I � F , let PI denote the projective cover ofMI . Then the following
corollary is a consequence of [2, (31)] and Lemma 6.3.

Corollary 6.4. Let I ¨ F. Then

MF 
 MI D
M

A�I p

2jAjPIs[N(I )[R(A) �
M

J2T (I )

2jI p\JpjPJ ,

MF 
 MF D m � MF �
M

A�Fp

2jAjPR(A) �
M

J2T (F)

2jJpjPJ

where mD 1 if f is even and mD 2 fC1
C 1 if f is odd.

For I � F we define the Brauer character�I WD 'I#N . Then for t 2 F , we have
�t WD �{t} D �2t

C �2tC f
�2t
C �

�2tC f , by (7), and�t,tC f WD �{t,tC f } D �t � �tC f � �0,
by (6). Hence the multiplicity of�0 in �t,tC f equals 2, and thus we can define�t WD

�t,tC f � 2�0. For non-emptyI � Fp we define�I WD
Q

t2I �t , while �
;

WD �0. Then

('F'I )#N D �F � �Is �

Y

t2I p

(�t C 2�0) D
X

A�I p

2jAj � �F � �Is � �I pnA.(12)

Furthermore, for everyI � F , we denote the Brauer character ofPI#N by �I .

Lemma 6.5. Let ; ¤ I � F. Then

�I D �F � �Is � �N(I )p �

X

J2T (Is[N(I ))

2jN(I )p\Jpj
� �J ,

�

;

D �F � �Fp �m � �F �
X

J2T (F)

2jJpj
� �J ,

where mD 1 if f is even and mD 2 fC1
C 1 if f is odd.

Proof. Let; ¤ I � F . Then

(13)

 

X

;¤A�N(I )p

2jAj � �I[R(A)

!

C �I C
X

J2T (Is[N(I ))

2jN(I )p\Jpj
� �J

D ('F � 'Is[N(I ))#N D
X

A�N(I )P

2jAj � �F � �Is � �N(I )pnA,

where the equalities follows from Corollary 6.4 and (12), respectively. Next take; ¤
A� N(I )p, and letX WD Is[N(I )nR(A). Then Xp D N(I )pnA, Xs D Is and N(X) D
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R(I p)[ R(A). FurthermoreR(X) ¤ F , and consequently there is no set of typeX, as
property (Q1) is violated. Applying both Corollary 6.4 and (12) to ('F'X)#N we get

X

B�N(I )pnA

2jBj � �I[R(A)[R(B) D
X

B�N(I )pnA

2jBj � �F � �Is � �N(I )pn(A[B).

Now by induction overjN(I )pnAj we conclude that�F ��Is ��N(I )pnA D �I[R(A). There-
fore (13) reduces to

�F � �Is � �N(I )p D �I C
X

J2T (Is[N(I ))

2jN(I )p\Jpj
� �J .

This proves the first part of the lemma. The second part is proven similarly.

For two characters'1 and'2 let #('1,'2) denote the multiplicity of'1 in '2. Like-
wise for modulesM1 and M2 let #(M1, M2) denote the multiplicity ofM1 in M2. For
I � F we define

mI WD
X

K¨F,KsD;

#(�K , �Is � �I p).

Theorem 6.6. Let ; ¤ I � F and mD 1 if f is even and mD 2 fC1
C 1 if f is

odd. Then

#(MI , kC"
G) D mIs[N(I ) �

X

J2T (Is[N(I ))

2jN(I )p\Jpj
�mJs,

#(M
;

, kC"
G) D mF �m�

X

J2T (F)

2jJpj
�mJs.

Proof. First let J � F be of some typeL � F . We claim that�J D �F � �Js.
By (Q1) we haveR(J) D F . HenceN(J) D ; and J ¤ ;. Also T (Js [ N(J)) D ;.
This is true sinceJs [ N(J) D Js and (f (Js) \ K )p D ;, for any K � F , which then
violates property (Q4). Overall the claim now follows from Lemma 6.5.

Next let ; ¤ I � F . By Lemma 6.5 and the above paragraph we obtain

�I D �F �

 

�Is � �N(I )p �

X

J2T (Is[N(I ))

2jN(I )p\Jpj
� �Js

!

,

�

;

D �F �

 

�Fp �m � �
;

�

X

J2T (F)

2jJpj
� �Js

!

.

Now let K ¨ F so that Ks D ;. Then #(MI , VK"
G) coincides with the dimension of

HomkG(VK"
G, PI )� HomkN(VK , PI#N). As MF#N
VK is the projective cover ofVK
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we get that #(MI , VK"
G) equals the multiplicity ofMF#N 
 VK as a direct summand

of PI#N . The Brauer character ofMF#N
VK is given by�F � �K , and thus we obtain

#(MI , VK"
G) D #

 

�K , �Is � �N(I )p �

X

J2T (Is[N(I ))

2jN(I )p\Jpj
� �Js

!

,

#(M
;

, VK"
G
D #

 

�K , �Fp �m � �
;

�

X

J2T (F)

2jJpj
� �Js

!

.

As #(MI , kC"
G) D

P

K¨F,KsD;
#(MI , VK"

G) the proof is complete.

In the following we wish to calculate the numbermI combinatorically.

DEFINITION 6.7. Let I � F . A map & W I ! {1, 2, 3} is called asolution of I if
(S1) I1 \ f (I3) D I2 \ f (I2) D I3 \ f (I1) D ;,
(S2)

P

t2I1[I3
2t
C

P

t2I2
2tC1C f

� 0 mod (qC 1),
where I j WD {t 2 I W &(t) D j }, for j D 1, 2, 3.

Furthermore a solution& of I with I3 D ; is called abasic solutionof I .

Let I � F . Every solution& of I can be associated to a basic solution ofI , by
composing& with the map� W {1, 2, 3} ! {1, 2, 3} such that� (1) D 1 D � (3) and
� (2) D 2. Note that two solutions&1 and &2 of I are associated to the same basic
solution if and only if&1 and &2 map the same elements ofI onto 2.

Now we can also determine how many solutions ofI are associated to a given
basic solution& of I . Note that every time we change certain 10s in the image of&
to 30s we obtain a new solution, as long as we make sure to treat pairs{t, t C f } � I
that are both mapped onto 1 equally. Hence if we defineT

&

WD {t 2 {0, 1, : : : , f �
1} W {t, t C f } \ I1 ¤ ;}, then for every subsetP � T

&

we obtain a solution ofI that
is associated to& . Overall a basic solution& has 2jT& j solutions associated to it.

Lemma 6.8. Let I � F. Then mI equals the number of solutions of I, that is,

mI D
X

2jT& j,

where the sum is taken over all basic solutions& of I .

Proof. It is enough to show thatmI equals the number of solutions ofI , as the
rest of the statement then follows from the previous paragraph.

By definition mI counts the occurrences of characters of the form�K in �Is�I p ,
where K ¨ F so that Ks D ;. Recall that�t D �2t

C �2tC f
�2t
C �

�2tC f and �t D

�t�tC f � 3�0, for t 2 F . In particular note that in�t�tC f the three occurrences of the
trivial characters�0, derive from multiplying the first summand of�t with the third
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summand of�tC f , the second summand of�t with the second summand of�tC f and
the third summand of�t with the first summand of�tC f . Hence for every summand
�K in �Is�I p we have a disjoint unionI1[ I2[ I3 of I , where I1\ f (I3)D I2\ f (I2)D
I3 \ f (I1) D ;, such that

X

t2K

2t
�

X

t2I1

2t
C

X

t2I2

(2tC f
� 2t )C

X

t2I3

�2tC f mod (q2
� 1).

On the other hand for every such disjoint union we get a summand �K in �Is�I p . However
we are only interested in thoseK ¨ F with Ks D ;, that is,

P

t2K 2t
� 0 mod (qC 1).

Observe that
P

t2I3
�2tC f

�

P

t2I3
2t mod (qC 1) and

P

t2I2
(2tC f

� 2t ) �
P

t2I2
2tC1C f

mod (q C 1). Therefore we only count those disjoint unionsI1 [ I2 [ I3 of I , where
I1 \ f (I3) D I2 \ f (I2) D I3 \ f (I1) D ; and

X

t2I1[I3

2t
C

X

t2I2

2tC1C f
� 0 mod (qC 1).

As those correspond to the solutions ofI , the proof is complete.

Hence in order to determinemI we need to find all basic solutions ofI . First
observe the following

Lemma 6.9. Let I � F. A map& W I ! {1, 2} is a basic solution if and only if
(BS1) I2 \ f (I2) D ;,
(BS2)

P

t2Is
2t
� 3 �

P

t2I2
2t mod (qC 1),

where I2 D {t 2 I W &(t) D 2}.

Proof. For a basic solution property (S1) can be replaced by (BS1), sinceI3 D ;.
Next observe that

X

t2I2

2tC1C f
� 2 � q �

X

t2I2

2t
� �2 �

X

t2I2

2t mod (qC 1).

Thus (S2) becomes
P

t2I 2t
� 3 �

P

t2I2
2t mod (qC 1). But as

P

t2I 2t
D

P

t2Is
2t
C

P

t2I p
(2t
C 2tC f ) D

P

t2Is
2t
C (qC 1) �

P

t2I p
2t it follows that for basic solutions (S2)

and (BS2) are equivalent.

Observe that we have confirmed Corollary 4.1. Let" D gcd(3,qC 1) and suppose
MI appears inkC"

G, for some I � F . Then by Theorem 6.6, we havemIs[N(I ) � 1.
Thus by Lemma 6.8 there is a basic solution ofIs[N(I ). But now Lemma 6.9 (ii) im-
plies that" divides n(Is). As n(I ) and n(Is) are congruent moduloqC1, they are also
congruent modulo". Consequently" j n(I ), which is the statement of Corollary 4.1.
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In the following we explain how to find all basic solution for agiven I � F using
Lemma 6.9. For instance letf D 5, and considerF as two rows

0 1 2 3 4
5 6 7 8 9

Next let I D {0, 1, 2, 3, 4, 5, 8, 9}, which is given by

0 1 2 3 4
5 � � 8 9

By Lemma 6.9 our aim is to find subsetsI2 of I such that
P

t2Is
2t
� 3 �

P

t2I2
2t

mod (q C 1), where I2 contains from each column at most one element. Since in our
example

P

t2Is
2t
D 2C 22

D 6, we are looking for solutions of the linear congruence
6� 3x mod 33. The following image shows the powers of 2 moduloq C 1 that can
be obtained

20 21 22 23 24

�20
� � �23

�24

As x is the sum of at most one entry from each column, we get the upper bound
M D 20

C 21
C 22

C 23
C 24

D 31 and the lower boundm D �20
� 23

� 24
D �25

for x. One checks easily that 6� 3x mod 33 has five solutions between�25 and 31,
which are�20, �9, 2, 13 and 24. However it is difficult to see if we have found all
possibilities of writing, say�20, as a sum of the available powers of two. Thus we
propose the following technique.

We start by allocating all entries of the lower row toI2, that is, {5, 8, 9} in our
case. Thenx D �25, which is not what we want. Now every time we remove an entry
from I2 we have to add the respective power of 2 to�25. For instance if we remove
9 we have to add 24. Likewise we may include entries form the first row. For instance
2, which means we have to add 22. We could also wish to include 4. As this would
also force us to remove 9 first we have to add 24 for the removal of 9 and 24 for the
inclusion of 4, that is, 25 altogether. The following table shows the change we cause
to x by including elements of the top row or removing elements from the bottom row.

21 21 22 24 25

20
� � 23 24

So let us start withx0 D �20. Initially we haveI2 D {5, 8, 9}. In order to get form
�25 to �20 we need to add 5D 20

C 22. Observe that the only way to get 20 is to
remove 5 fromI2, (and not include 0). Now the only way to get 22 is by including 2.
We get I2 D {2, 8, 9}, which we represent as follows

1 1 2 1 1
1 � � 2 2
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Next let x0 D �9. The difference 16D 24 can be obtained in three different ways.
Firstly by including 3, which involves the removal of 8. Secondly by removing 9 and
thirdly by removing 8 and including 0, 1, 2, since 24

D 23
C 22

C 21
C 21. Overall we

have three basic solutions as follows

1 1 1 2 1
2 � � 1 2

1 1 1 1 1
2 � � 2 1

2 2 2 1 1
1 � � 1 2

Now let x0 D 2. Then j � 25� 2j D 27D 20
C 21

C 23
C 24. Here there is only one

basic solution, which is

1 2 1 1 1
1 � � 1 1

For x0 D 13 we havej�25�13j D 38D 21
C22
C25. There are two possibilities of 21.

Also with one 21 gone there is only one possibility to obtain 22. Finally 25
D 24

C 24

can be obtained in two different ways, leading to the four basic solutions

2 1 2 1 2
1 � � 2 1

2 1 2 2 1
1 � � 1 1

1 2 2 1 2
2 � � 2 1

1 2 2 2 1
2 � � 1 1

Finally let x0 D 24. Thenj�25� 24j D 49D 20
C 24

C 25. There is only one way to
obtain this sum and we get

1 1 1 2 2
1 � � 1 1

Hence we have found all basic solutions ofI . Finally the number of solutions associ-
ated to each basic solution depends on the number of columns that contain a 1, as in
each such column all the 10s may be changed to 30s. Going through all basic solutions
given above we obtain

(14) mI D 24
C 25

C 25
C 23

C 24
C 24

C 24
C 23

C 23
C 25

D 184.

In the above example we haveIs D {1, 2}. Next let I 0 � F such thatI 0s D {1, 2}.
Note that thenI 0 � I . We can use the above results to calculatemI 0 . Take for instance
I 0 D {0, 1, 2, 5}. A basic solution forI 0 becomes a basic solution forI , by sending all
elements inI nI 0 onto one. The only basic solution forI where{3, 4, 8, 9} is mapped
onto one is whenx D 2. Hence the only basic solution forI 0 is

1 2 1 � �

1 � � � �
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Consequently we havemI 0 D 22
D 4.

Finally let us characterize those setsI � F that have a basic solution.

DEFINITION 6.10. LetU � F . We call U a U-form
1. of length zero, ifU D {t, t C f }, for somet 2 F ,
2. of length one, ifU D {t, t C 1}, for somet 2 F ,
3. of length n � 2, if there is H � H (t, n)n{t}, for some t 2 F , such thatU D
(H (t, n)nH ) [ ( f (H ) � 1) is a disjoint union, whereH (t, n) D {t, t C n} [ {t C 1C
f, : : : , t C n� 1C f }.

Theorem 6.11. Let I � F. Then I has a basic solution if and only if I is the
disjoint union of U-forms.

Proof. First suppose thatI has a basic solution& . We argue by induction onjI j
that I is a disjoint union ofU-forms. This is clear ifjI j D 0, and thus in the following
let jI j � 1.

Define X WD I1[ ( f (I2)C 1) andY WD I1\ ( f (I2)C 1). By property (S2) there is
someK � F , such thatKs D ; and

X

t2K

2t
�

X

t2I1

2t
C

X

t2I2

2tC1C f
�

X

t2X

2t
C

X

t2Y

2t mod (q2
� 1).

First suppose thatY D ;. Then X D K . If I2 D ;, then there is somet 2 I1 so that
U D {t, tC f } � I . If I2 ¤ ;, then there is somet 2 I2 such thattC1 2 K . Note that
by (S1) we havet C 1 2 I1 and thusU D {t, t C 1} � I . In both casesU is a U-form
such that& is a basic solution onI nU . Now by induction I nU is a disjoint union of
U-forms, and thus so isI . Hence we may assume thatY ¤ ;.

SetT WD f (Y)�1D {t1,:::,tr }, that is,T contains allt 2 I2 such thattC1C f 2 I1.
For eachi 2 {1,: : : ,r } let ni � 2 be maximal such that{ti C2C f, : : : , ti Cni �1C f } �

XnY. We setSi WD {ti C 1C f, : : : , ti C ni � 1C f }. Then Si � X.
Next we claim thatSi \ Sj D ;, for all i ¤ j . Assume otherwise. Then there is

a 2 Si \ Sj so thata � 1 2 (Si [ Sj )n(Si \ Sj ). Without loss of generality leta � 1 2
Si nSj . Then t j D a�1C f and thusa 2 Y, contradictinga 2 Si . That proves the claim.

Let SD
Sr

iD1 Si . Since 2tiC1C f
C

P

t2Si
2t
� 2tiCniC f mod (q2

� 1), we get

X

i2K

2i
�

X

i2I1nS

2i
C

X

i2( f (I2nT)C1)nS

2i
C

r
X

iD1

2tiCniC f mod (q2
� 1).

Note that the maximality ofT ensures that the first two sums have no power of 2 in
common, and the maximality ofni ensures that the last sum has no power of 2 in
common with the first two sums. Hencet1C n1C f 2 K , and thusa WD t1C n1 2 K .
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Assumea 62 X. Thena D ti C ni C f , for somei 2 {2, : : : , r }. Note thatn1 ¤ ni ,
as otherwiset1 D ti C f 2 I2 \ f (I2), in contradiction to (S1). Ifn1 < ni , then t1 D
ti C ni � n1 C f . As n1 � 2, we havet1 C 1 2 Si � X. But t1 C 1 62 f (I2) C 1, by
(S1), and thust1C 1 2 I1. HenceU D {t1, t1C 1} is a U-form such that& is a basic
solution on I nU . Likewise if ni < n1, then ti C1 2 I1 andU D {ti , ti C1} is a U-form
such that& is a basic solution onI nU . Hence in the following we may assume that
t1C n1 2 X.

Now let t D t1 and n D n1. Set H WD (H (t, n)n{t, t C 1C f })\ ( f (I2)C 1). Then
H � H (t, n)n{t}. We claim that (H (t, n)nH )\ ( f (H )� 1)D ;. Note that f (H )� 1D
I2 \ {t C 1, : : : , t C n � 2, t C n � 1C f }. Hencet C n � 1C f is the only possible
element inH (t, n)\ ( f (H )� 1). In this case we havet C n� 1C f 2 I2. In particular
tCn�1C f 62 I1 and sotCn�1C f ¤ tC f C1. Also recall thattCn�1C f 2 XnY.
HencetCn�1C f 2 f (I2)C1. ThereforetCn�1C f 2 H , which proves the claim.

ThusU D (H (t,n)nH )[ ( f (H )�1) is aU-form. Also U � I , which is clear since
all x 2 H (t,n)n{t} either belong toI1 or to f (I2)C1. Finally U\ I1D H (t,n)n(H[{t})
and U \ I2 D ( f (H ) � 1)[ {t}. Since

X

k2I1\U

2k
C

X

k2I2\U

2kC1C f

� 2tC1C f
C

X

k2H (t,n)n(H[{t})

2k
C

X

k2 f (H )�1

2kC1C f

� 2tC1C f
C

X

k2H (t,n)n{t}

2k
� 2tCn

C 2tCnC f
� 0 mod (qC 1),

we see that& is still a basic solution onI nU . Thus, by induction,I is a disjoint union
of U-forms.

Now suppose thatI D U1 [ � � � [Ur is a disjoint union ofU-forms. We define a
map & on eachUi . If Ui D {t, t C f } is of length zero, then set&(t) D 1D &(t C f ).
If Ui D {t, t C 1} is of length one, then&(t) D 2 and&(t C 1)D 1. Finally, if Ui is of
length n � 2, that is,U D (H (t, n)nH )[ ( f (H )� 1), for someH � H (t, n)n{t}, then
&(x) D 1, for all x 2 H (t, n)n(H [ {t}) and &(x) D 2, for all x 2 ({t} [ ( f (H ) � 1)).
We claim that in each case property (S2) is satisfied onUi . This is straightforward if
U is of length zero or one. So letU be of lengthn � 2. Then

X

k2I1\Ui

2k
C

X

k2I2\Ui

2kC fC1

�

X

k2H (t,n)n(H[{t})

2k
C

X

k2H[{tC1C f }

2k

� 2tC fC1
C

X

k2H (t,n)n{t}

2k
� 2tC fCn

C 2tCn
� 0 mod (qC 1).

Hence (S2) holds on eachUi , and thus onI .
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However note thatI2 \ f (I2) may not be empty, and thus property (S1) fails to
hold. Thus for eacht 2 I2\ f (I2) we set&(t)D 1D &(tC f ). Since 2tC2tC f

� 2tC1
C

2tC fC1 mod (qC1), this does not effect the validity of property (S2). In particular we
have constructed a basic solution ofI .

We can now construct irreducibleMI that have basic solutions. Take for instance
f D 13 and consider the union of the followingU-forms of
(a) length zero,
(b) length one,
(c) length four, withH D ; and
(d) length five, withH containing the twod?.

a c b b � c � � d � � d �

a � c c c � � d d? d? � � d

In particular M{0,1,2,3,5,8,11,13,15,16,17,20,21,22,25} has basic solutions.
We conclude this paper by calculating the multiplicity of certain irreducible mod-

ules in the involution module of PSU3(q2). Let f D 5 and takeI D {1, 2}. We use
Theorem 6.6. Observe thatK WD Is [ N(I ) D {0, 1, 2, 3, 4, 5, 8, 9}, and mK D 184,
by (14). It remains to calculatemJs, for all J 2 T (K ). So let J be of type K . Then
R(Ks)D {1,2,6,7} � J, by (Q2). Next setX WD f (K )\ J. Observe thatXp � {0,3,4}.
Moreover by (Q4) we know thatjXpj is odd. This either impliesjXpj D 3, in which
case J D F and thusmJs D 0, or jXpj D 1, in which caseJs contains exactly two
elements. AssumingmJs ¤ 0, it follows from Theorem 6.11 thatJs is a union ofU-
forms. HenceJs is a U-form of length one, and thus it is one the four possible sets
{3, 4}, {4, 5}, {8, 9} and{0, 9}. SinceXs D f (Ks)[ Js D {6, 7}[ Js, we conclude from
(P4) and (P5) thatJs D {8, 9} or Js D {4, 5}. One checks easily thatmJs D 2 in either
case. FurthermorejN(I )p \ Jpj D jXpj D 1. Overall we get

#(MI , kC"
G) D mK � 2 �m{8,9} � 2 �m{4,5} D 184� 2 � 2� 2 � 2D 176.

HenceM{1,2} appears 176 times in the involution module of PSU3(45).
Next we chooseI D {1, 2, 3, 4, 8, 9}. Then Is [ N(I ) D {0, 1, 2, 5}. Since R(Is [

N(I )) ¤ F , there is no set of typeIs [ N(I ). Hence #(MI , kC"
G) D m{0,1,2,5}. Before

Definition 6.10 we found thatm{0,1,2,5} D 4. HenceM{1,2,3,4,8,9} appears 4 times in the
involution module of PSU3(45).
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