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Abstract
In this paper, we give a new approach to find a dually flat Finsler metric. As its

application, we produce many new spherically symmetric dually flat Finsler metrics
by using known projective spherically symmetric Finsler metrics.

1. Introduction

A Finsler metricF D F(x, y) on an open subsetU � Rn is dually flat if and only
if it satisfies the following dually flat equations:

(1.1) (F2)xi y j yi
� 2(F2)x j

D 0

wherex D (x1,: : : ,xn) 2 U and yD y j (�=�x j )jx 2 TxU . Such Finsler metrics arise from
�-flat information structures on Riemann–Finsler manifolds[1, 14]. Recently the study
of dually flat Finsler metrics has attracted a lot of attention [2, 3, 9, 14, 15, 16, 17].

In this paper, we give a new approach to find a dually flat Finsler metric. We
establish the relation between the solutions of Hamel equations and ones of dually flat
equations (1.1). Hamel equations are the following partialdifferential equations:

(1.2) 2x j yi y j
D 2xi ,

where2 W TU ! R and U is an open subset inRn. Formula (1.2) was first given by
G. Hamel, in 1903, from the study of projectively flat Finslermetrics on an open subset
U � Rn. By using (1.2), Finsler geometers manufacture projectively flat Finsler metrics.

To study and characterize projectively flat Finsler metricson U � Rn is the Hilbert’s
fourth problem in the smooth case. Funk metrics, Mo–Shen–Yang metrics, Bryant met-
rics with one parameter and Chern–Shen metrics are interesting projectively flat Finsler
metrics [4, 11, 13]. In the words, their geodesics are straight lines. Furthermore, these
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notable Finsler metrics satisfy

(1.3) F(Ax, Ay) D F(x, y)

for all A 2 O(n).
Very recently, Huang and Mo have constructed a lot of new projectively flat Finsler

metrics satisfying (1.3) (see Proposition 4.2 below) [7]. When Æ D 0, these Finsler
metrics, up to a scaling, were constructed in [6, Example 4.48].

According to [5], a Finsler metricF D F(x, y) on an open subsetU � Rn is pro-
jectively flat if and only if it satisfies Hamel equations (1.2). It is natural to study the
relation between PDE (1.1) and (1.2). Moreover, we wonder if the solutions of Hamel
equations (1.2) produce the solutions of dually flat equations (1.1).

In this paper we are going to give a positive answer of this problem. We show
that any solution of dually flat equations produces a solution of Hamel equations and
vice versa (see Theorem 2.3). Using this correspondence, weare able to manufacture
new dually flat Finsler metrics from known projectively flat Finsler metrics.

In the rest of this paper, we investigate how to construct thesolutions of dually flat
equations (1.1) from a projective spherically symmetric Finsler metric and seek condi-
tions of producing Finsler metrics.

Recall that a Finsler metricF D F(x, y) is called to bespherically symmetricif
F satisfies (1.3) for allA 2 O(n), equivalently, the orthogonal groupO(n) act as iso-
metries ofF [9, 12, 19]. Huang–Mo proves that any spherically symmetric Finsler met-
ric F D F(x, y) can be expressed by [8]

F(x, y) D jyj 

�

jxj,
hx, yi

jyj

�

.

Hence all spherically symmetric Finsler metrics are general (�, �)-metrics [18]. First,
we give an explicit expression of the solution of dually flat equations (1.1) correspond-
ing a projectively flat Finsler metric (see Proposition 3.1 below). Next, we produce
many new spherically symmetric dually flat Finsler metric byusing Huang–Mo met-
rics in Proposition 4.2. More precisely, we prove the following:

Theorem 1.1. Let f(�) be a polynomial function defined by

(1.4) f (�) D 1C Æ�C 2n
n�1
X

kD0

(�1)kCk
n�1�

2kC2

(2kC 1)(2kC 2)

where

Ck
m D

m(m� 1) � � � (m� kC 1)

k!
.
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Suppose that f(�1) < 0. Then the following Finsler metric on an open subset in
R

n
n {0}

F D jyj{jxj2n�1[2n� f (�)C (1� �2) f 0(�)]}1=2

is dually flat where� D hx, yi=(jxj jyj).

We have the following two interesting special cases:
(a) Whenn D 1, then

F D

p

Æhx, yi2C 4jxj jyjhx, yi C Æjxj2jyj2hx, yi2

jxj1=2

is dually flat whereÆ > 2.
(b) Whenn D 2, then

F D

p

Æjxj3jyj3C 8jxj2jyj2hx, yi C 3Æjxj jyjhx, yi2C (8=3)hx, yi3

jyj1=2

is dually flat whereÆ > 8=3.
Finally we should point out that the notions of dual flat and projectively flat are

not equivalent. For example, the following Finsler metric on B

n
� R

n is projectively
flat [10],

F D

q

p

AC B

where

A WD
jyj4C (jxj2jyj2 � hx, yi2)2

4(1C jxj4)2
, B WD

(1C jxj4)jxj2jyj2C (1� jxj4)hx, yi2

2(1C jxj4)2
,

but F is not dually flat. This fact follows from Cheng–Shen–Zhou’sProposition 2.6
in [2] (if a Finsler metric is dually flat and projectively flat, then it is of constant flag
curvature) and the classification theorem of projective spherically symmetric Finsler
metrics of constant flag curvature due to L. Zhou and Mo–Zhu [19, 12]. Very recently,
C. Yu has constructed the following new dually flat Finsler metrics [17]

F(x, y) D (1C jxj2)1=4
jyj � (1C jxj2)�1=4

hx, yi.

Based on the above arguments, we obtainF is not projectively flat.

2. Dually flat equations

In this section we are going to explore some nice properties of dually flat equa-
tions. In particular, we show any solution of Hamel equations produces a solution of
dually flat equations (see Theorem 2.3 below).
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Lemma 2.1. Let U be an open subset inRn. Suppose that FW TU ! R is a
function which is positively homogeneous of degree one. Then F is a solution of dually
flat equations(1.1) if and only if it satisfies the following equations:

(2.1) Lxi y j
D Lx j yi ,

where LWD F2
=2.

Proof. A function� defined onTU can be expressed as� (x1, : : : , xn
I y1, : : : , yn).

We use the following notation

�0 WD
��

�xi
yi .

Then

(2.2) (L0)yi
D (Lx j y j )yi

D Lx j yi y j
C Lxi .

Note that L is positively homogeneous of degree two. So doesLxi , i.e. Lxi (x, �y) D
�

2Lxi (x, y). It follows that

(2.3) Lxi y j y j
D 2Lxi .

First suppose thatF satisfies (1.1). Combining (1.1) with (2.2), we get

2Lxi
D (L0)yi

� Lxi ,

that is

(2.4) (L0)yi
D 3Lxi .

Differentiating (2.4) with respect toy j , we obtain

(2.5) Lxi y j
D

1

3
(L0)yi y j

D

1

3
(L0)y j yi

D Lx j yi .

Thus we obtain (2.1).
Conversely, suppose that (2.1) holds. Together with (2.3) we have (1.1).

Lemma 2.2. If F W TU ! R is a solution of (1.1) whereU is an open subset in
R

n, then there exists a function2 such that

(2.6) 2xi
D F Fyi .

Proof. Let

(2.7) pi D

�

F2

2

�

yi

D L yi .
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Using (2.1), one obtains

(2.8) (p j )xi
D L y j xi

D L yi x j
D (pi )x j .

Take fixedx0 2 U and put

(2.9) 2(x, y) D
Z

x0x
p1(u, y) du1

C � � � C pn(u, y) dun

whereu D x0C t(x � x0) and u D (u1, : : : , un). It follows that

du j
D (x j

� x j
0 ) dt, j D 1, : : : , n

where x D (x1, : : : , xn) and x0 D (x1
0, : : : , xn

0 ). Together with (2.9), we have

2(x, y) D
Z 1

0
[(x1
� x1

0)p1(t(x � x0)C x0, y)C � � �

C (xn
� xn

0 )pn(t(x � x0)C x0, y)] dt.

It follows that2 is differentiable with respect toy. Moreover we have

�2

�xi
D

�

�xi

Z 1

0

n
X

jD1

(x j
� x j

0)p j (t(x � x0)C x0, y) dt

D

Z 1

0

�

�xi

"

n
X

jD1

(x j
� x j

0)p j (t(x � x0)C x0, y)

#

dt

D

Z 1

0

n
X

jD1

�

�xi
[(x j
� x j

0 )p j (t(x � x0)C x0, y)] dt

D

Z 1

0

n
X

jD1

[Æ j
i p j (t(x � x0)C x0, y)C t(x j

� x j
0)(p j )ui (t(x � x0)C x0, y)] dt

D

Z 1

0

"

pi (t(x � x0)C x0, y)C t
n
X

jD1

(x j
� x j

0 )(p j )ui (t(x � x0)C x0, y)

#

dt

D

Z 1

0

d

dt
[tpi (t(x � x0)C x0, y)] dt D tpi (t(x � x0)C x0, y)j10 D pi (x, y)

where we have used (2.8). Then we complete the proof of the Lemma 2.2.

Theorem 2.3. Let U be an open subset inRn. Suppose that FW TU ! R is a
function which is positively homogeneous of degree one. Then F D F(x,y) is a solution
of (1.1) if and only if

(2.10) F2
D 2xi yi
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where2 W TU ! R satisfies the following Hamel’s equations

(2.11) 2x j yi y j
D 2xi .

Proof. First suppose thatF is a solution of (1.1). According to Lemma 2.2, there
exists a function2 such that (2.6) holds. Contracting (2.6) withyi gives

(2.12) 2xi yi
D F Fyi yi

D F2
D 2L.

Differentiating (2.12) with respecty j , we obtain

(2.13) 2L y j
D (2xi yi )y j

D 2xi y j yi
C2x j .

Together with (2.6) yields (2.11).
Conversely, suppose that (2.10) holds, where2 D 2(x, y) satisfies (2.11). Differ-

entiating (2.10) with respect tox j , we have

Lx j
D

�

F2

2

�

x j

D

1

2
2xi x j yi .

It follows that

(2.14) Lx j yk
D

1

2
(I )C

1

2
2xkx j

where

(I ) WD 2xi x j yk yi
D 2xi ykx j yi

D (2xi yk yi )x j
D 2xkx j(2.15)

where we have used (2.11). Plugging (2.15) into (2.14) yields

Lx j yk
D 2xkx j .

Note that

2x j xk
D 2xkx j .

Hence we obtain (2.1). Combining this with Lemma 2.1 we obtain F is a solution of
dually flat equations (1.1).

Theorem 2.3 tells us that there is a bijection between solutions2 of projectively
flat equations (i.e. Hamel equations) and solutionsF of dually flat equations, which
are positively homogeneous of degree one, given by (2.10) and (2.9).

By definition, a Minkowski normon a vector spaceV is a nonnegative function
F W V ! [0,1) with the following properties:
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(i) F is positively y-homogeneous of degree one, i.e., for anyy 2 V and any� > 0,

F(�y) D �F(y),

(ii) F is C1 on V n {0} and for any tangent vectory 2 V n {0}, the following bilinear
symmetric formgy(u, v) W V � V ! R is positive definite,

gy(u, v) WD
1

2

�

2

�s�t
[F2(yC suC tv)]sDtD0.

Let M be a manifold. LetT M D
S

x2M Tx M be the tangent bundle ofM, where
Tx M is the tangent space atx 2 M. We setT Mo WD T M n {0} where {0} stands for
{(x, 0) j x 2 M, 02 Tx M}. A Finsler metricon M is a functionF W T M! [0,1) with
the following properties
(a) F is C1 on T Mo;
(b) At each pointx 2 M, the restrictionFx WD F jTx M is a Minkowski norm onTx M.

For instance, let� D �(y) be a Minkowski norm onRN . Define

8(x, y) WD �(y), y 2 TxR
N
� R

N .

Then8 D 8(x, y) is a Finsler metric. We call8 the Minkowski metricon RN [4, 11].
A Finsler metricF D F(x, y) on an open subsetU � Rm is dually flat if and only

if it satisfies (1.1) wherex D (x1, : : : , xm) 2 U and y D y j (�=�x j )jx 2 TxU [2].

3. Solutions from projectively flat metrics

In this section, we give an approach to manufacture solutions of (1.1) from pro-
jectively flat Finsler metrics in the form

8(x, y) D jyj

�

� C �

�

jxj,
hx, yi

jyj

��

where� > 0.
Recall that a Finsler metricF D F(x, y) on an open subsetU � Rn is said to be

projectively flat if all geodesics are straight inU .

Proposition 3.1. Let 8(x, y) WD jyj[� C �(jxj, hx, yi=jyj)] be a projectively flat
Finsler metric on an open subsetU � Rn. Then the following function on TU

(3.1) F(x, y) D jyj

�

 

�

jxj,
hx, yi

jyj

��1=2

is a solution of (1.1), where is given in (3.7).
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Proof. By Hamel Lemma (see (1.2) or [11]),8 is projectively flat if and only if
it satisfies8x j yi y j

D 8xi . Together with Theorem 2.3 we have

(3.2) 2L WD F2
D 8x j y j

satisfies (1.1).
Now let us compute80 WD 8xi yi and F . Denote8 by

8 D 8(r, s),

where

(3.3) r D jxj, sD
hx, yi

jyj
.

By straightforward computations one obtains

(3.4)
�r

�xi
D

xi

r
,

�s

�xi
D

yi

jyj
.

It follows that

(3.5)

8xi
D

�

�xi

�

jyj�

�

jxj,
hx, yi

jyj

��

D jyj

�

��

�r

�r

�xi
C

��

�s

�s

�xi

�

D jyj

�

xi

r

��

�r
C

yi

jyj

��

�s

�

.

Contracting (3.5) withyi yields

8xi yi
D jyj2 

�

jxj,
hx, yi

jyj

�

,(3.6)

where we have used (3.2) and is defined by

 (r, s) WD
��

�s
C

s

r

��

�r
.(3.7)

From (3.2), (3.6) and (3.7), one obtains

(3.8)

F D
p

2L

D

�

jyj2
�

��

�s
C

s

r

��

�r

��1=2

D jyj

�

 

�

jxj,
hx, yi

jyj

��1=2

which completes the proof of Proposition 3.1.
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Taking �(r, s) D � C r � f (s=r ) in Proposition 3.1 where� and � are constants,
we have

��

�s
D r ��1 f 0(�),(3.9)

��

�r
D �r ��1 f (�) � sr��2 f 0(�),(3.10)

where

(3.11) � D

s

r
D

hx, yi

jxj jyj
.

Plugging (3.9) and (3.10) into (3.8) we obtain the followingformula for F

F D jyj

�

��

�s
C �

��

�r

�1=2

D jyj{jxj��1[�� f (�)C (1� �2) f 0(�)]}1=2.

Hence we obtain the following:

Corollary 3.2. Let 8(x, y) WD jyj[�Cjxj� f (hx, yi=(jxj jyj))] be a projectively flat
Finsler metric on an open subsetU � Rn

n {0}. Then the following function on TU

F(x, y) WD jyj{jxj��1[�� f (�)C (1� �2) f 0(�)]}1=2

is a solution of (1.1) where� D hx, yi=(jxj jyj).

4. New dually flat Finsler metrics

In this section we are going to produce new dually flat Finslermetrics from a
given projectively flat Finsler metric.

Lemma 4.1. Let 8(x, y) WD jyj[� C jxj� f (hx, yi=(jxj jyj))] be a projectively flat
Finsler metric on an open subsetU � Rn

n {0}. Suppose that f(�1)< 0. Then

F(x, y) WD jyjjxj(��1)=2[�� f (�)C (1� �2) f 0(�)]1=2

is dually flat Finsler metric where� > 0.

Proof. In fact,F is expressed in the form

F D jyj�(r, s), r D jxj, sD
hx, yi

jyj
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where

(4.1) � D r (��1)=2
p

�� f (�)C (1� �2) f 0(�),

and� satisfies (3.11). Further,F satisfies (1.1) by Corollary 3.2. It is known thatF D
jyj�(r,s) is a Finsler metric withr < b0 if and only if � is a positive function satisfying

�(s) � s�s(s) > 0, �(s) � s�s(s)C (r 2
� s2)�ss(s) > 0, jsj � r < b0

wheren � 3 or

�(s) � s�s(s)C (r 2
� s2)�ss(s) > 0, jsj � r < b0

wheren D 2 [18, Proposition 3.3]. Note that8 is projectively flat. From [7], we have

(4.2) (�2
� 1) f 00 � �� f 0 C � f D 0

and

(4.3) f 00(�) D �(1� �2)�=2�1.

Differentiating (4.1) with respect tos, we obtain

2��s D r ��1��

�s
[� f C �� f 0 � 2� f 0 C (1C �2) f 00]

D r ��2[� f C �� f 0 � 2� f 0 C �( f � � f 0)] D 2r ��2(� f � � f 0)

where we have used (3.11) and (4.2). It follows that

(4.4) �s D
r ��2(� f � � f 0)

�

.

Together with (4.1) and (3.11), we have

(4.5) � � s�s D
1

�

[�2
� sr��2(� f � � f 0)] D

r ��1

�

f 0.

Differentiating (4.4) with respect tos and using (4.4) one deduces

�ssD
(� � 1)r ��3

�

f 0 �
�r ��3

�

f 00 �
r 2��4

�

3
(� f � � f 0)2.

Together with (3.11) and (4.2), we obtain

(r 2
� s2)�ssD

r ��1

�

[� � (1� �2)] f 0 � ��
r ��1

�

f �
r 2��2

�

3
(1� �2)(� f � � f 0)2.
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Combining this with (4.5), we get

(4.6)

�(s) � s�s(s)C (r 2
� s2)�ss(s)

D

r ��1

�

[(�C �2) f 0 � �� f ] �
r 2��2

�

3
(1� �2)(� f � � f 0)2

D

r 2��2

�

3
� (I )

where

(4.7)

(I ) D [�� f C (1� �2) f 0][(�C �2) f 0 � �� f ]

� (1� �2)(�2 f 2
� 2�� f f 0 C �2 f 02)

D �[(1 � �2) f 0 f 0 C (1C �)� f f 0 � � f 2].

Plugging (4.7) into (4.6) yields

(4.8)

�(s) � s�s(s)C (r 2
� s2)�ss(s)

D

�r 2��2

�

3
[(1 � �2) f 0 f 0 C �(1C �) f f 0 � � f 2].

By (4.1), (4.5) and (4.8),F D jyj�(r, s) is a Finsler metric if and only if

f 0 > 0,(4.9)

g WD �� f C (1� �2) f 0 > 0,(4.10)

h WD (1� �2) f 0 f 0 C �(1C �) f f 0 � � f 2
> 0(4.11)

where n � 3 or, (4.10) and (4.11) hold whenn D 2. By using (3.11) and Cauchy–
Buniakowski inequality we are going to find conditions onf for (4.9), (4.10) and
(4.11) to hold in [�1, 1].

Note that� > 0. Together with (4.3) we get

(4.12) f 00(�) > 0

where � 2 (�1, 1). It follows that f 0(�) is a monotonically increasing function on
[�1, 1]. Thus

(4.13) f 0(�1)> 0

implies that (4.9) holds in [�1, 1]. Plugging (4.3) into (4.2) yields

�( f � � f 0) D (1� �2) f 00 D (1� �2)�(1� �2)�=2�1
D �(1� �2)�=2.
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It follows that

f � � f 0 D (1� �2)�=2,

which immediately implies that

(4.14) f (1)D f 0(1), f (�1)D � f 0(�1).

This means that (4.9) holds in [�1, 1] if f (�1)< 0.
Next, we are going to a find condition onf for (4.10) to hold in [�1,1]. By using

(4.2) and (4.10), we have

g0(�) D 2[� f (�) � � f 0(�)].

It follows that g0(�) D 0 if and only if

(4.15) � f (�) D � f 0(�).

Suppose that�0 2 [�1, 1] such thatg0(�0) D 0. Combining this with (4.15), we have

(4.16) � f (�0) D �0 f 0(�0).

Together with (4.10) we get

(4.17) g(�0) D ��0 f (�0)C (1� �2
0) f 0(�0) D f 0(�0).

On the other hand, from (4.10) and (4.14), we obtain

(4.18) g(1)D � f 0(1), g(�1)D � f 0(�1).

It is known that the minimum ofg satisfies the following

min
�2[�1,1]

g(�) D min{g(�0), g(�1) j g0(�0) D 0}.

It is easy to see that (4.10) holds for� 2 [�1, 1] if and only if

(4.19) min
�2[�1,1]

g(�) > 0.

By (4.17) and (4.18), (4.19) holds if and only if

(4.20) min{� f 0(�1), f 0(�0), � f 0(1)} > 0

where�0 2 [�1, 1] satisfyingg0(�0) D 0. Note that� > 0 and f 0 is a monotonically
increasing function. Together with the second equation of (4.14), we obtain that (4.20)
holds if and only if f (�1)< 0.
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Finally, we are going to find a condition onf for (4.11) to hold in [�1, 1]. Using
(4.2) and (4.11) we get

(4.21)

h0(�) D (1� �) f 0( f � � f 0)C (1C �)� f f 00 C 2(1� �2) f 0 f 00

D (1� �) f 0
(1� �2) f 00

�

C (1C �)� f f 00 C 2(1� �2) f 0 f 00

D

�C 1

�

f 00[�� f C (1� �2) f 0].

By (4.11) and the second equation of (4.14), we see that

(4.22) h(�1)D �(1C �) f (�1) f 0(�1)� �[ f (�1)]2 D [ f (�1)]2.

Suppose thatf (�1)< 0. Together with (4.22) yields

(4.23) h(�1)> 0.

Moreover, (4.10) holds where� 2 [�1, 1]. Combining this with (4.12) and (4.21),
we have

h0(�) > 0, � 2 (�1, 1).

It follows that h(�) is a monotonically increasing function. Together with (4.23) ones
obtain that (4.11) is true.

In [7], authors gave an explicit construction of projectively flat spherically sym-
metric Finsler metric. Precisely, they have proved the following:

Proposition 4.2. Let f(�) be a polynomial function defined by

f (�) D 1C Æ�C 2n
n�1
X

kD0

(�1)kCk
n�1�

2kC2

(2kC 1)(2kC 2)
.(4.24)

Then the following Finsler metric on open subset inRn
n {0}

8 D jyj

�

� C jxj2n f

�

hx, yi

jxj jyj

��

is projectively flat where� > 0.

Proof of Theorem 1.1. Combine Lemma 4.1 with Proposition 4.2.

REMARK . We also obtain some other dually flat Finsler metrics by Proposition 4.5
and Theorem 1.1 in [7] and Lemma 4.1.
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