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Abstract
(Co)associative submanifolds in aG2-manifold with a freeS1 or T2 action are

characterized by submanifolds in the quotient space. Usingour method, we construct
various examples of (co)associative submanifolds and fibrations on G2-manifolds
with the T2-symmetry such as the cone of the Iwasawa manifold.

1. Introduction

In 1996, Strominger, Yau and Zaslow [23] presented a conjecture explaining mir-
ror symmetry of compact Calabi–Yau 3-folds in terms of dual fibrations by special
Lagrangian 3-tori, including singular fibers. In M-theory, fibrations of coassociative
4-folds in compact manifolds withG2 holonomy are expected to play the same role
as special Lagrangian fibrations in Calabi–Yau manifolds [1], [2] and [15].

In this paper, we focus on (co)associative submanifolds in aG2-manifold Y with
a free S1 or T2-action. Since many known examples ofG2-manifolds such as those
constructed by Bryant and Salamon [10] admitT2-actions which are free on the open
dense subsets, it is natural to consider the case whenS1 or T2 acts onY. Then we
consider (co)associative submanifolds which are invariant under theS1 or T2-action or
perpendicular toS1 or T2-orbits and characterize them by submanifolds in the quo-
tient spaceY=S1 and Y=T2. These are described in Theorems 3.7 and 4.13, which are
our main theorems. Then using our characterization, we construct several examples of
(co)associative submanifolds and fibrations in many cases.

This paper is organized as follows. In Section 2, we review the fundamental facts
of calibrated geometry andG2 geometry.

In Section 3, we study the case when aG2-manifold Y admits a freeS1-action. It
is known that for any Calabi–Yau 3-foldM3, M3

�S1 admits a torsion-freeG2 structure
and its (co)associative submanifolds can be constructed from holomorphic or special
Lagrangian submanifolds inM3 (Example 2.10). On the other hand, it is known ([4])
that for a torsion-freeG2-manifold Y with a free S1-action the quotient spaceY=S1

admits an SU(3)-structure (a generalized notion of a Calabi–Yau structure). Note that
the torsion-free property ofY is not needed to define an SU(3)-structure onY=S1. The
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G2-structure onY is recovered in terms of tensors onY=S1 (Remark 3.6) and similar
to that in Example 2.10. As a generalization of Example 2.10,we can characterize
(co)associative submanifolds inY by submanifolds inY=S1 (Theorem 3.7). We apply
the proof to the case whenY is a (sine) cone and obtain similar results. Bryant [7]
characterized associative cones (R

>0-invariant associative 3-folds) inR7 using pseudo-
holomorphic curves inS6 and studied them in detail via the theory of integrable sys-
tems. Theorem 3.7 is an analogue of this by considering theS1-action instead of the
R

>0-action.
Section 4 is the main section in this paper. We study the case when an almost

G2-manifold Y admits a freeT2-action. As in Section 3, it is known that a torsion-
free G2-manifold and (co)associative submanifolds can be constructed from a Calabi–
Yau 2-fold M2 and its submanifolds (Example 2.11). Using the notion of multi-moment
maps [20], we see the following: there exists a smooth map� W Y=T2

! R whose
fibers are almost hyperkähler 2-folds. In other words,Y=T2 admits three almost CR-
structures satisfying the quaternionic relation. AG2-structure is recovered in terms of
tensors onY=T2 (Remark 4.12) and similar to that in Example 2.11. As a generaliza-
tion of Example 2.11, we can characterize (co)associative submanifolds inY by sub-
manifolds inY=T2.

In Section 5, we give examples of (co)associative submanifolds and fibrations in
G2-manifolds by using our method.

2. Preliminaries

2.1. Calibrated geometry. The notion of the calibration was introduced by
Harvey and Lawson [16]. This is a generalization of the Wirtinger inequality to the ef-
fect that any compact complex submanifold in a Kähler manifold minimizes its volume
in its homology class.

DEFINITION 2.1. Let (M, g) be anm-dimensional Riemannian manifold and'
be a closedk-form on M (1 � k � m). Then ' is called acalibration on M if for
every orientedk-dimensional subspaceV � TpM, p 2 M, we have'jV � volV .

Let N � M be a k-dimensional oriented submanifold ofM. Then N is called a
calibrated submanifold('-submanifold) of M if we have'jN D volN .

By definition, a calibrated submanifold has the homologically minimizing volume.
Calibrations are meaningful when they have many calibratedsubmanifolds. Assuming
that ' is invariant under the holonomy group Hol(g), we can produce various cali-
brations that have many calibrated submanifolds. For instance, we have the following
calibrations and corresponding calibrated submanifolds.
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Hol(g) (�) U(m) SU(m) G2

(M, g) Kähler Calabi–Yau G2

' !

k
=k! Re(e

p

�1�
�) ' 2 �

3

(!: Kähler form) (�: hol. volume form) (�' 2 �4)
(': G2-structure)

'-submanifolds k-dim. complex special Lagrangian (co)associative
submanifolds submanifolds submanifolds

2.2. The holonomy groupG2.

DEFINITION 2.2. Define a 3-form'0 on R7 by

'0 D e123C e1(e45C e67)C e2(e46� e57) � e3(e47C e56),

where (e1, : : : , e7) is the standard dual basis onR7 and wedge signs are omitted. The
stabilizer of'0 is the exceptional Lie groupG2:

G2 D {g 2 GL(7,R) j g�'0 D '0}.

This is a 14-dimensional compact simply-connected semisimple Lie group.

The Lie groupG2 also fixes the standard metricg0 D
P7

iD1 e2
i , the orientation on

R

7, and the 4-form

�'0 D e4567C e23(e67C e45)C e13(e57� e46) � e12(e56C e47).

Note that'0 and�'0 are related by the Hodge�-operator. These tensors are uniquely
determined by'0 via the relation

(2.1) 6g0(v1, v2) volg0 D i (v1)'0 ^ i (v2)'0 ^ '0,

where volg0 is a volume form ofg0, i ( � ) is an interior product, andvi 2 T(R7).

DEFINITION 2.3. LetY be a 7-dimensional oriented manifold and' a 3-form on
Y. We call a 3-form' 2 �3(Y) a G2-structureon Y if for each pointy 2 Y, there exists
an oriented isomorphism betweenTyY andR7 identifying 'y with '0. From (2.1), aG2-
structure' induces the Riemannian metricg on Y, volume form onY and�' 2 �4(Y).

A triple (Y, ', g) is called aG2-manifold if Y is a 7-dimensional oriented mani-
fold, ' 2 �3(Y) is a G2-structure onY and g is an associated metric. AG2-manifold
(Y,',g) is called analmost G2-manifold if ' is closed:d' D 0. A G2-manifold (Y,',g)
is called atorsion-free G2-manifold if ' is closed and coclosed:d' D 0, d � ' D 0.
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Lemma 2.4 ([14]). Let (Y,',g) be a G2-manifold. ThenHol(g) � G2 if and only
if d' D d � ' D 0.

Lemma 2.5 ([16]). Let (Y, ', g) be a G2-manifold. Then for each point p2 Y
and every oriented k-dimensional subspace Vk

� TpY (kD 3,4), we have'jV3
� volV3,

�'jV4
� volV4. If (Y, ', g) is torsion-free, the G2-structure' and its Hodge dual�'

define calibrations on Y .

DEFINITION 2.6 ([16]). Let (Y,',g) be aG2-manifold. An oriented 3-dimensional
submanifoldL3 is called anassociative submanifoldof Y if 'jL3

D volL3. An oriented 4-
dimensional submanifoldL4 is called acoassociative submanifoldof Y if �'jL4

D volL4.

REMARK 2.7. If d' ¤ 0 (resp.d � ' ¤ 0), associative (resp. coassociative) sub-
manifolds need not have the homologically minimizing volume.

Lemma 2.8 ([16]). Let (Y, ', g) be a G2-manifold. A4-dimensional submanifold
L4 is coassociative if and only if'jT L4

D 0.

2.3. Relations to Calabi–Yau manifolds. The only connected Lie subgroups of
G2 which can be the holonomy group of a Riemannian metric on a 7-dimensional
manifold are{1}, SU(2), SU(3) andG2. The inclusions SU(2), SU(3)� G2 imply that
we can make aG2-manifold from a Calabi–Yau 2- or 3-fold with holonomy SU(2)or
SU(3). Showing how to do this, we learn how to construct (co)associative submanifolds
in each case.

DEFINITION 2.9. A quintuple (M, h, J, !, �) is called aCalabi–Yau m-foldif
• A quadruple (M,h, J,!) is anm-dimensional Kähler manifold with a Kähler metric
h, a complex structureJ, and an associated Kähler form!.
• � is a nowhere vanishing holomorphic (m, 0)-form on M.
• !

m
=m! D (�1)m(m�1)=2(

p

�1=2)m� ^ N�.

Then for any� 2 R, Re(e�
p

�1�
�) defines a calibration onM. A real orientedm-

dimensional submanifold ofM is called aspecial Lagrangian submanifoldof M with

phasee
p

�1� if it is a Re(e�
p

�1�
�)-submanifold.

By definition, the following examples appear immediately.

EXAMPLE 2.10. Let (M, h, J, !,�) be a Calabi–Yau 3-fold,I be a circleS1 or
R and x be a coordinate onI. Then (Y, ', g) WD (I � M, dx^ !CRe�, dx2

C h) is
a torsion-freeG2-manifold with �' D !2

=2� dx^ Im�. Suppose that
• 6 is a holomorphic curve inM (i.e. 6 is a !-submanifold),

• Le
p

�1� is a special Lagrangian submanifold ofM with phasee
p

�1� ,
• S is a holomorphic surface inM (i.e. S is a !2

=2-submanifold).
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Then with an appropriate orientation,
1. I �6 is an associative 3-fold inY,
2. I � L

�

p

�1 is a coassociative 4-fold inY,
3. {x} � L1 is an associative 3-fold inY (x 2 I),
4. {x} � S is a coassociative 4-fold inY (x 2 I).
Signs of the phases of special Lagrangian submanifolds depend on the orientation.

EXAMPLE 2.11. Let (M, h, J, !, �) be a Calabi–Yau 2-fold and (x1, x2, x3) be
a coordinate onI3. Then Y D I3

� M is a torsion-freeG2-manifold with a 3-form'
and a metricg defined by

' D dx1 ^ dx2 ^ dx3C dx1 ^ !C dx2 ^ Re� � dx3 ^ Im�,

g D dx2
1 C dx2

2 C dx2
3 C h,

�' D

!

2

2
C dx2 ^ dx3 ^ ! � dx1 ^ dx3 ^ Re� � dx1 ^ dx2 ^ Im�.

Since SU(2)D Sp(1), a Calabi–Yau 2-foldM is hyperkähler. So we have complex
structuresJ0, J1, J2 on M satisfying J0J1J2 D �idT M associated withh and Im�,
!, Re�, respectively. For (x1, x2, x3) 2 I3, m 2 M, if
• O � I is an open interval andUM � M is an open set (i.e.UM is a !2

=2-
submanifold),
• 6i is a Ji -holomorphic curve (i.e.60 is an Im�-submanifold, 61 is a
!-submanifold and62 is a Re�-submanifold),
then with an appropriate orientation,
1. I2

� (O � {m}) is an associative 3-fold inY.
2. I2

� ({x3} �60) is a coassociative 4-fold inY.
3. I � {x2} � ({x3} �61) is an associative 3-fold inY.
4. I � {x2} � (O �62) is a coassociative 4-fold inY.
5. {(x1, x2)} � (O �60) is an associative 3-fold inY.
6. {(x1, x2)} � ({x3} �UM ) is a coassociative 4-fold inY.

In next sections we generalize Examples 2.10, 2.11 toG2-manifolds on whichS1

or T2 acts freely.

3. S1 reduction of G2-manifolds

3.1. Calibrated submanifolds in theS1 quotient spaces. Let (Y, Q', Qg) be aG2-
manifold and suppose thatS1 acts freely onY preserving theG2-structure. In this
section, we discuss calibrated submanifolds inY invariant under theS1-action in terms
of submanifolds inY=S1.

From [4], we know that the quotient spaceY=S1 admits an SU(3)-structure, a re-
duction of the total coframe bundle to an SU(3)-bundle. It isa generalization of the
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Calabi–Yau structure (that is, the torsion-free SU(3)-structure). We define an SU(3)-
structure in terms of tensors here.

DEFINITION 3.1 ([11], [12]). A quintuple (g, J, � ,  �) on a real 6-dimensional
manifold N is called an SU(3)-structure if
• A quadruple (N, g, J, � ) is an almost Hermitian manifold with a Hermitian metric
g, an almost complex structureJ and an associated Kähler form� .
•  

�

2 �

3(N) are 3-forms on N with norms k �

k D 2 satisfying  �

D

 

C(J � , J � , J � ) and9 WD  C

C

p

�1 � is a (3, 0)-form w.r.t.J.

REMARK 3.2. The forms C and � are (3, 0)- and (0, 3)-forms with respect to
J so that �(J � , J � , � ) D � �. These forms are subject to the following compati-
bility relations:

� ^  

�

D 0,  

C

^  

�

D

2

3
�

3.

The former is equivalent to saying that� is a (1, 1)-form with respect toJ. The latter
is equivalent to� 3

=3! D (�1)3(3�1)=2(
p

�1=2)39 ^ N9. Therefore if� is closed, J is
integrable, and9 is a holomorphic (3, 0)-form, then the SU(3)-structure is a Calabi–
Yau structure.

REMARK 3.3. For any� 2 R, p 2 N and oriented 3-dimensional subspaceV �

TpN, we have Re(e�
p

�1�
9)jV � volV . As in the Calabi–Yau case, an oriented

3-dimensional submanifoldL � N is called aspecial Lagrangian submanifoldof N

with phasee
p

�1� if Re(e�
p

�1�
9)jL D volL .

Proposition 3.4 ([4]1). Let (Y, Q', Qg) be a G2-manifold and suppose that S1 acts
freely on Y preserving the G2-structure. Then Y=S1 admits an SU(3)-structure
(g, J1, �1,  �).

REMARK 3.5. The torsion-free property ofY assumed in [4] is not needed to
define an SU(3)-structure onY=S1. If Y is torsion-free,Y=S1 admits symplectic struc-
ture. For a Kähler manifoldN of real dimension 6, the conditions are given in [4] to
be N D Y=S1 for some torsion-freeG2-manifold Y with a free S1-action.

The tensors defining an SU(3)-structure onY=S1 can be described as follows: Let
X�

1 2 X(Y) be a vector field generated by theS1-action, and let�1 W Y! Y=S1 be the

1An SU(3)-structure onY=S1 introduced in [4] seems to be different from ours. In fact, for any
SU(3)-structure (g, J, � ,  C) and any positive smooth functionr W Y=S1

! R

>0, (g0, J 0, � 0,  C

0

) WD
(r 2g, J, r 2

� , r 3
 

C) also defines an SU(3)-structure onY=S1. So we can define the SU(3)-structure on
Y=S1 as above.
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projection. Define a functionQt1 D Qg(X�

1 , X�

1)�1=2
2 C1(Y), a 1-form Q�1 D Qg( � , Qt2

1 X�

1) 2

�

1(Y), a 2-form Q�1 D i (X�

1) Q' 2 �2(Y) and a 3-form Q9�

D �i (X�

1)(� Q') 2 �3(Y).
The 1-form Q�1 is a connection 1-form of�1 W Y ! Y=S1 since Q�1 is S1-invariant

and satisfiesQ�1(X�

1) D 1. The tensorsQt1, Q�1, Q9� induce a functiont1 2 C1(Y=S1), a
2-form �1 2 �

2(Y=S1) and a 3-form9�

2 �

3(Y=S1). Then
• g D (�1)

�

Qg, the pushforward ofQg,
• �1 D t1�1,
• J1: an almost complex structure satisfyingg(J1 � , � ) D �1,
•  

�

D t19�,
•  

C

D � 

�(J1 � , J1 � , J1 � ) D  �(J1 � , � , � ).

REMARK 3.6. We can recover the metricQg and theG2-structureQ' on Y as follows:

Qg D ��1 gC Qt�2
1 Q�1
 Q�1,

Q' D

Qt�1
1 Q�1 ^ �

�

1 �1C �
�

1 
C,

� Q' D

1

2
�

�

1 �
2
1 � Qt

�1
1 Q�1 ^ �

�

1 
�.

These descriptions generalize Example 2.10. In fact, a similar statement holds for
(co)associative submanifolds inY invariant under theS1-action.

Theorem 3.7. Let (Y, Q', Qg) be a G2-manifold with a free S1-action preserving the
G2-structure. Let�1 W Y ! Y=S1 be the natural projection. ByProposition 3.4,Y=S1

admits anSU(3)-structure (g, J1, �1,  �).
If L k

S1 � Y is an oriented k-dimensional submanifold invariant underthe S1-action,
then with respect to an appropriate orientation the following properties hold:
1. L3

S1 � Y is an associative3-fold if and only if�1(L3
S1)� Y=S1 is a J1-holomorphic

curve (i.e. T(�1(L3
S1)) is J1-invariant).

2. L4
S1 � Y is a coassociative4-fold if and only if �1(L4

S1) � Y=S1 is a special

Lagrangian submanifold with phase�
p

�1.
If L k

p � Y is an oriented k-dimensional submanifold perpendicular to the S1-orbits
(kD 3,4), then with respect to an appropriate orientation the following properties hold:
3. L3

p � Y is an associative3-fold if and only if�1(L3
p)� Y=S1 is a special Lagrang-

ian submanifold with phase1.
4. L4

p � Y is a coassociative4-fold if and only if�1(L4
p)� Y=S1 is a J1-holomorphic

surface.

Corollary 3.8. There is a one to one correspondence between S1-invariant asso-
ciative 3-folds (resp. S1-invariant coassociative4-folds) in Y and J1-holomorphic curves
(resp. special Lagrangian submanifolds with phase�

p

�1) in Y=S1.



100 K. K AWAI

REMARK 3.9. It is known that there is one to one correspondence between asso-
ciative cones (R

>0-invariant associative 3-folds) inR7 and pseudoholomorphic curves
in S6 (cf. [7]). The standardR

>0-action onR7 preserves theG2-structure onR7 up
to constant. Considering theS1-action instead of theR

>0-action, we can regard Corol-
lary 3.8 as an analogue of this fact.

It is known that 4-dimensional almost complex manifolds arefibrated locally by
pseudoholomorphic discs (cf. [3]). From 1 of Theorem 3.7, wesee the following.

Corollary 3.10. A G2-manifold with a free S1-action which preserves the G2-
structure is locally fibrated by S1-invariant associative3-folds.

REMARK 3.11 (Relations to evolution equations). Consider the case1 of
Theorem 3.7. Let W 6! Y=S1 be a smooth immersion of a surface6. Let (U, (s, t))
be a local conformal coordinate of6. Then from the local triviality of�1W Y! Y=S1,
there exists a local liftQ W U ! Y of  on a small open setU � 6 which is transverse
to S1-orbits.

The differential equation ofJ1-holomorphic curve is� =�sC J1 � =�t D 0. By
the definition of J1, this equation can be described as

�

� Q

�s

�d

D �Q'abc

�

X�

1

kX�

1k

�a�
� Q

�t

�b

Qgcd.

So the differential equation ofJ1-holomorphic curve is considered as the special
case of the evolution equations in [17], [18]. Lotay [17], [18] constructed examples of
(co)associative submanifolds inR7 by evolution equations.

Proof of Theorem 3.7. The proof is implied from Example 2.10.Fix one of the
orientations of submanifolds. The same proof is valid for another orientation.

Proof of 1. Take anyx 2 L3
S1 and choose an arbitrary oriented orthonormal basis

{Qt1(X�

1)x, Qv1, Qv2} of Tx L3
S1. Then {v1, v2} D {�1� Qv1, �1� Qv2} is an oriented orthonormal

basis ofT
�1(x)(�1(L3

S1)). Thus L3
S1 is associative if and only ifQ'(Qt1(X�

1)x, Qv1, Qv2)D 1. By
Remark 3.6, this condition is equivalent tog(J1v1,v2)D 1, and hencev2D J1v1 follows
from the Cauchy–Schwarz inequality. SoT(�1(L3

S1)) is J1-invariant and�1(L3
S1) is a

J1-holomorphic curve.

Proof of 2. Take anyx 2 L4
S1 and choose an arbitrary oriented orthonormal basis

{Qt1(X�

1)x, Qv1, Qv2, Qv3} of Tx L4
S1 andvi D �1� Qvi 2 T

�1(x)(�1(L4
S1)). Then L4

S1 is coassociative
if and only if � Q'(Qt1(X�

1)x, Qv1, Qv2, Qv3) D 1. This is equivalent to� �(v1, v2, v3) D 1.

Namely,�1(L4
S1) � Y=S1 is a special Lagrangian submanifold with phase�

p

�1. Note

that for another orientation ofL4
S1, we see that�1(L4

S1) � Y=S1 is a special Lagrangian

submanifold with phase
p

�1.
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Proof of 3. Take anyx 2 L3
p and choose an arbitrary oriented orthonormal basis

{Qv1, Qv2, Qv3} of Tx L3
p and vi D �1� Qvi 2 T

�1(x)(�1(L3
p)). By definition, we haveQ�1(Qvi )D 0.

Then L3
p is associative if and only if Q'(Qv1, Qv2, Qv3) D 1. This is equivalent to

 

C(v1, v2, v3) D 1.

Proof of 4. We follow the proof of the Wirtinger inequality in[5]. Similarly
to the former proof, we seeL4

p is coassociative if and only if� 2
1=2jT�1(x)(�1(L4

p)) D

volT
�1(x)(�1(L4

p)) for any x 2 L4
p. By the spectral decomposition of the skew-symmetric

2-form �1jT
�1(x)(�1(L4

p)), we know that there exists an oriented orthonormal basis

{w1, w2, w3, w4} � T
�1(x)(�1(L4

p)) and its dual basis{�1, �2, �3, �4} � T�

�1(x)(�1(L4
p))

satisfying

�1jT
�1(x)(�1(L4

p)) D �1�1 ^ �2C �2�3 ^ �4

for some�i 2 R. Then � 2
1=2jT�1(x)(�1(L4

p)) D �1�2�1 ^ �2 ^ �3 ^ �4 D �1�2 volT
�1(x)(�1(L4

p))

follows. On the other hand,�i D �1(w2i�1, w2i ) D g(J1w2i�1, w2i ) � 1 holds by the
Cauchy–Schwarz inequality, where the equality holds if andonly if w2i D J1w2i�1.

Since � 2
1=2jT�1(x)(�1(L4

p)) D volT
�1(x)(�1(L4

p)), we have�1 D �2 D 1. This implies that

T(�1(L4
p)) is J1-invariant and hence�1(L4

p) is a J1-holomorphic surface.

3.2. Application to cones and sine cones.The similar statement holds when a
G2-manifold is a (sine) cone. First, we introduce the notion ofnearly Kähler manifolds.

DEFINITION 3.12 ([11], [12], [24]). Let (g, J,� , �) be an SU(3)-structure on a
6-dimensional manifoldN. An SU(3)-structure satisfyingd� D 3 C andd �

D �2� 2

is callednearly Kähler.

REMARK 3.13 ([24]1). Let (N, g, J) be a 6-dimensional almost Hermitian mani-
fold. Then the following are equivalent:
• N admits a nearly Kähler structure,
• (rX J)X D 0 for every vector fieldX on N andrX J ¤ 0 for every 0¤ X 2 T N,
wherer is the Levi-Civita connection ofg.

Lemma 3.14 ([12], [24]). Let (N,g, J,� , �) be a nearly Kähler manifold. Then
C(N) D N � R

>0 admits a torsion-free G2-structure defined by

Qg D dr2
C r 2g, Q' D r 2 dr ^ � C r 3

 

C

D

1

3
d(r 3

� ),

� Q' D r 3
 

�

^ dr C
1

2
r 4
�

2
D �

1

4
d(r 4

 

�).

1Our definition of nearly Kähler manifolds corresponds to that of “strictly” nearly Kähler ones
in [24].
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The metric is just the cone metric onC(N). Thus nearly Kähler manifolds are
analogue of Sasakian manifolds whose cones are Kähler manifolds.

Lemma 3.15 ([6]). Let (N, g, J, � ,  �) be a nearly Kähler manifold. Then
Cs(N)D N�(0,�) (a sine cone of N) admits a nearly parallel G2-structure( Q', Qg) with

Qg D dt2
C sin2 tg,

Q' D sin2 t dt ^ � C cost sin3 t C

� sin4 t �,

� Q' D

1

2
sin4 t� 2

C sin3 t cost �

^ dt � sin4 t dt ^  C.

Here, a G2-manifold (Y, Q', Qg) is said to benearly parallelif d Q' D 4� Q', d � Q' D 0.

REMARK 3.16. SinceC(N) is a torsion-freeG2-manifold, C(Cs(N))� R�C(N)
admits a torsion-free Spin(7)-structure. The nearly parallel G2-structure onCs(N) is
induced from the torsion-free Spin(7)-structure onC(Cs(N)).

REMARK 3.17 ([19]). There are no coassociative submanifolds of a nearly par-
allel G2-manifold.

Proof. If L is a coassociative submanifold of a nearly parallelG2-manifold
(Y, Q', Qg), then Q'jL D 0, which implies that 4� Q' D d Q'jL D 0. This contradicts the
assumption thatL is coassociative.

We can prove the results similar to Theorem 3.7 as follows.

Proposition 3.18. Let (N, g, J, � ,  �) be a nearly Kähler manifold. From
Lemma 3.14,the cone C(N) D N �R

>0 admits a torsion-free G2 structure. If Lk
� N

is an oriented k-dimensional submanifold(k D 2, 3, 4) and r 2 R
>0, then with respect

to an appropriate orientation the following properties hold:
1. C(L2) D L2

� R

>0 � C(N) is an associative3-fold if and only if L2 is a
J-holomorphic curve.
2. C(L3) D L3

�R

>0 � C(N) is a coassociative4-fold if and only if L3 is a special
Lagrangian submanifold with phase�

p

�1.
3. L3

� {r } � Y is an associative3-fold if and only if L3 is a special Lagrangian
submanifold with phase1,
4. L4

�{r } � Y is a coassociative4-fold if and only if L4 is a J-holomorphic surface.

Proposition 3.19. Let (N, g, J, � ,  �) be a nearly Kähler manifold. From
Lemma 3.15,the sine cone Cs(N) D N � (0, �) admits a nearly parallel G2 struc-
ture. If Lk

� N be an oriented k-dimensional submanifold(k D 2, 3) and t 2 (0, �),
then with respect to an appropriate orientation the following properties hold:
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1. Cs(L2) D L2
� (0, �) � Cs(N) is an associative3-fold if and only if L2 is a

J-holomorphic curve,
2. L3

�{�=2} � Cs(N) is an associative3-fold if and only if L3 is a special Lagrang-
ian submanifold with phase�

p

�1.

REMARK 3.20. If L3
� {t} � Cs(N) is associative for somet 2 (0, �), we have

t D �=2.

Proof. Suppose thatL3
� {t} � Cs(N) is associative for somet 2 (0, �). Then

we easily see that� jL3
D 0, Im(e�

p

�1t ( C

C

p

�1 �))jL3
D 0, and Re(e�

p

�1t ( C

C

p

�1 �))jL3
D volL3, which imply that C

jL3
D (1=3) d� jL3

D 0, cost �  �

jL3
D 0.

Hence if t ¤ �=2, we have ( C

C

p

�1 �)jL3
D 0, which is a contradiction.

4. T2 reduction of almost G2-manifolds

Let (Y, Q', Qg) be an almostG2-manifold on which a 2-torusT2 acts preserving
the G2-structure. As in the former section, we discuss the geometry of the quotient
space “Y=T2”.

4.1. Multi-moment maps and reduced spaces.We use a notion of the multi-
moment map introduced by Madsen and Swann [20], which is a generalization of the
moment map in symplectic geometry.

DEFINITION 4.1. Let (Y, Q', Qg) be an almostG2-manifold on which a 2-torusT2

acts preserving theG2-structure. Fix vector fieldsX�

1 , X�

2 2 X(Y) generated by a basis
{X1, X2} of the Lie algebrat2 of T2. A T2-invariant function Q� W Y ! R is called a
multi-moment mapfor the T2-action if we have

Q'(X�

1 , X�

2 , � ) D d Q�.

The multi-moment map is defined for any Lie groupG in [20]. We focus here on
the caseG D T2. There are results on the existence for the multi-moment map, which
correspond to those of the moment map in symplectic geometry.

Proposition 4.2 ([20]). The multi-moment map for a T2-action exists if either of
the following conditions holds:
• b1(Y) D 0, where b1(Y) is the first Betti number of Y .
• Q' D d Q� with a 2-form Q� 2 �2(Y) preserved by the T2-action.

Proposition 4.3. For y 2 Y, the following conditions are equivalent:
• (d Q�)y D 0.
• (X�

1)y and (X�

2)y are linearly dependent.
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• dim(T2-orbit through y) < 2.

Madsen and Swann [20] considered a “T2-reduction” of a torsion-freeG2-manifold
and show that the reduced space admits a “coherently tri-symplectic” structure, which
consists of three symplectic structures satisfying some conditions, but not necessarily
satisfy the hyperkähler relation as follows: We can show that reduced space admits
three 2-forms which are not necessarily closed, but satisfythe hyperkähler relation.

Proposition 4.4. Let (Y, Q', Qg) be an almost G2-manifold on which a2-torus T2

acts preserving the G2-structure. Suppose that there exists a multi-moment mapQ� W Y!
R, and that T2 acts freely onQ��1(�) for a regular value� of Q�. Then M

�

WD Q�

�1(�)=T2

(a T2-reductionof Y at level�) is a smooth4-manifold.
On the reduced space M

�

, there exists a metric g
�

induced from Qg. Define three

nondegenerate2-forms �0,�, �1,�, �2,� 2 �
2(M

�

) as those induced from2-forms Q�0 D

�i (X�

0

2 )i (X�

0

1 )� Q', Q�1D i (X�

0

1 ) Q', Q�2D i (X�

0

2 ) Q' 2�2(Y), respectively. Here{X�

0

1 ,X�

0

2 } are
orthonormal vector fields on Y obtained from{X�

1 , X�

2} via the Gram–Schmidt process.
If Ji ,� is an almost complex structure associated with g

�

and �i ,� (0 � i � 2), then
we have
• A quintuple (M

�

, J0,�, J1,�, J2,�, g
�

) is an almost hyperkähler manifold,
(i.e. J0,� J1,� J2,� D �idT M

�

and g
�

is Hermitian w.r.t. each Ji ,�.)
• �i ,� D g

�

(Ji ,� � , � ), for 0� i � 2.

The proof is given by a local argument, which follows from thenext lemma.

Lemma 4.5. Choose any y2 Y, where(X�

1)y and (X�

2)y are linearly independent.
Let {Ei }1�i�7 be the standard basis ofR7 and {ei }1�i�7 be its dual.

Since G2 acts transitively on the Grassmannian of oriented2-planes inR7 [8] and
by the definition of G2-structure, there exists an oriented isomorphism between TyY
and R7 identifying Q'y, (X�

0

1 )y, (X�

0

2 )y and '0, E1, E2, respectively. Via this identifica-
tion, we see the following:
• d Q� D (1=h)e3,
• T M

�

� span
R

{E4, E5, E6, E7},
• g

�

D

P7
iD4(ei )2,

• Q�0 D e56C e47, Q�1 D e23C e45C e67, Q�2 D �e13C e46� e57,
• �0,� D e56C e47, �1,� D e45C e67, �2,� D e46� e57,

where 1=h D kX�

1 ^ X�

2k D
p

kX�

1k
2
kX�

2k
2
� g(X�

1 , X�

2)2. With respect to{E4, E5,



SUBMANIFOLDS IN G2-MANIFOLDS 105

E6, E7}, we can express

J0,� D

0

B

B

�

�1
�1

1
1

1

C

C

A

, J1,� D

0

B

B

�

�1
1

�1
1

1

C

C

A

,

J2,� D

0

B

B

�

�1
1

1
�1

1

C

C

A

.

Proof. We can denoteX�

0

1 D aX�

1 , X�

0

2 D bX�

1 C cX�

2 , where 1=a D kX�

1k, b D
�ahg(X�

1 , X�

2), c D h=a. Then we may considerX�

1 D (1=a)E1, X�

2 D (a=h)E2 �

(b=h)E1. Henced Q� D Q'(X�

1 , X�

2 , � ) D (1=h)'0(E1, E2, � ) D (1=h)e3. Other formulas
follow similarly.

4.2. Coassociative submanifolds in the reduced space.In this subsection, we
consider coassociative submanifolds in almostG2-manifolds using the multi-moment
map and the reduced space.

Lemma 4.6. Let (Y, Q', Qg) be an almost G2-manifold with a T2-action on Y pre-
serving the G2-structure. Suppose that there exists a multi-moment mapQ� W Y ! R

for the T2-action. Then for every connected T2-invariant coassociative4-fold L, there
exists� 2 R satisfying

L � Q��1(�).

Proof. SinceL is T2-invariant, for anyp 2 L, (X�

1)p, (X�

2)p 2 TpL. Moreover,L
is a coassociative 4-fold if and only ifQ'jL D 0. Then

d Q�jTpL D Q'((X�

1)p, (X�

2)p, � )jTpL D 0.

So d Q�jT L D 0 and this implies the lemma becauseL is connected.

Theorem 4.7. Let (Y, Q') be an almost G2-manifold with a T2-action preserving
the G2-structure. Suppose that there exists a multi-moment mapQ� W Y ! R for the T2-
action and that for a regular value� of Q�, T2 acts freely onQ��1(�). Let�2,� W Q�

�1(�)!
Q�

�1(�)=T2
D M

�

be the projection. ByProposition 4.4,M
�

admits an almost hyper-
kähler structure(J0,�, J1,�, J2,�, g

�

).
Then for an oriented2-dimensional submanifold6 � M

�

, the following are
equivalent:
1. �

�1
2,�(6) is a T2-invariant coassociative4-fold of Y,

2. �1,�j6 D �2,�j6 D 0,
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3. 6 is a J0,�-holomorphic curve.

Proof. First, we prove the equivalence of 1 and 2. Take anyx 2 ��1
2,�(6) and

choose an arbitrary basis{(X�

0

1 )x, (X�

0

2 )x, Qv1, Qv2} of Tx(��1
2,�(6)). Then {v1, v2} D

{�2� Qv1, �2� Qv2} is a basis ofT
�2,� (x)6. So ��1

2,�(6) is coassociative if and only if

d Q�( Qvi ) D Q'(X�

1 , X�

2 , Qvi ) D 0 (i D 1, 2), Q'(X�

0

j , Qv1, Qv2) D 0 ( j D 1, 2).

The first condition is always satisfied since��1
2,�(6) � Q��1(�). The second condition is

equivalent to� j ,�(v1, v2) D 0. This implies the equivalence of 1 and 2.

Next, we prove the equivalence of 2 and 3.
Take anyp 2 6 and choose any orthonormal basis{v1, v2} of Tp6. We can take

{v1, J0,�v1, J1,�v1, J2,�v1} as an orthonormal basis ofTpM
�

. Then the statement 3 holds
if and only if �k,�(v1, v2) D g

�

(Jk,�v1, v2) D 0 (k D 1, 2), which is equivalent tov2 D

�J0,�v1, namely6 is a J0,�-holomorphic curve.

Corollary 4.8. As in Corollary 3.10,we see thatQ��1(�) (� Y) is locally fibrated
by T2-invariant coassociative4-folds fromTheorem 4.7.

4.3. Calibrated submanifolds in the T2 quotient spaces. Let (Y, Q', Qg) be an
almostG2-manifold on whichT2 acts freely preserving theG2-structure. Consider the
quotient spaceY=T2. As in the S1 case (Theorem 3.7), we see the relation between
submanifolds ofY and Y=T2. First, we introduce the generalized notion of “pseudo-
holomorphic curves” from [9].

DEFINITION 4.9. An almost CR-structureon a smooth manifoldM is a sub-
bundle E � T M of even rank equipped with a bundle mapJ W E! E of J2

D �idE.
A (real) submanifoldS � M is said to beE-holomorphicor CR J-holomorphicif
T S� EjS and T S is J-invariant. An almost CR structure (E, J) is said to be aCR
structure if the Nijenhuis tensor ofJ vanishes.

Proposition 4.10. Let (Y, Q', Qg) be an almost G2-manifold with a free T2-action
preserving the G2-structure. Let�2W Y! Y=T2 be the natural projection. Suppose that
there exists a multi-moment mapQ� W Y! R for the T2-action. Let� W Y=T2

! R be a
map induced fromQ� and put QD ker(d�) � T(Y=T2).

Then there exist bundle maps Ji W Q! Q (i D 0, 1, 2) satisfying J0J1J2 D �idQ

and each(Q, Ji ) is an involutive almost CR-structure on Y=T2.

Proof. Since theT2-action is free,d Q� ¤ 0 holds everywhere and soQ D kerd�
is a rank 4 involutive subbundle. For an arbitrary pointq 2 Y=T2, we see

Qq D Tq(��1(�(q))) D Tq(M
�(q)).
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From Proposition 4.4, we can define an almost complex structure Ji on Q by

(Ji )q D Ji ,�(q). Thus we see that (Q, Ji ) is an almost CR-structure onY=T2.

DecomposeT2
D S1

1 � S1
2, and suppose theS1

i -action generates the vector field
X�

i . Let �1 W Y ! Y=S1
1, �2,1W Y=S1

1 ! Y=T2 and �2 W Y ! Y=T2 be the projections

satisfying�2 D �2,1 Æ �1. If tensors Q� on Y induces tensors onY=S1
1 and Y=T2, we

denote these by� on Y=S1
1 and � on Y=T2, respectively.

REMARK 4.11 (Relations betweenS1 and T2 reductions). By Propositions 3.4
and 4.10, we see that there exists an SU(3)-structure (g, J1,�1, �) on Y=S1

1 and almost

CR structures (Q D kerd�, Ji ) on Y=T2 (i D 0, 1, 2). Define 1-formsQ� 0i D Qg(X�

0

i , � ) 2

�

2(Y) (i D 1, 2) and 2-forms� i D g(Ji �, �) 2 �2(Y=T2) (i D 0, 1, 2). Then we have

g D ��2,1gC �
0

2
 �
0

2,

�1 D �
�

2,1�1C h� 02 ^ �
�

2,1d�,

(�2,1)� Æ J1 D J1 Æ (�2,1)� C h � grad(�)
 � 02,

 

C

D �

�

2,1(hd� ^ �0),

 

�

D �

�

2,1(hd� ^ �2).

REMARK 4.12. As in theS1 case, we can recover theG2-structure onY. In the
pointwise coordinate of Lemma 4.5,Q� 01 D e1, Q� 02 D e2. Then

Qg D Q�
02
1 C
Q

�

02
2 C �

�

2 g,

Q' D

Q

�

0

1 ^
Q

�

0

2 ^ �
�

2 (h d�)C Q� 01 ^ �
�

2 �1C Q�
0

2 ^ �
�

2 �2 � �
�

2 (h d� ^ �0),

� Q' D

1

2
�

�

2 �
2
0C
Q

�

0

2 ^ �
�

2 (h d�) ^ ��2 � 1 �
Q

�

0

1 ^ �
�

2 (h d�) ^ ��2 � 2 �
Q

�

0

1 ^
Q

�

0

2 ^ �
�

2 � 0.

Proof of Remark 4.11. Choose an arbitrary pointy 2 Y and a pointwise coordi-
nate as in Lemma 4.5. ThengD ��2,1gC�

0

2
�
0

2D
P7

iD2e2
i , �1D �

�

2,1�1Ch� 02^�
�

2,1d� D

e23Ce45Ce67,  C

D �

�

2,1(h d�^�0)D e3(e56Ce47),  �

D �

�

2,1(h d�^�2)D e3(e46�e57)
follow. With respect to{E2, E3, E4, E5, E6, E7}, we have

J1 D

0

B

B

B

B

B

B

B

�

�1
1

�1
1

�1
1

1

C

C

C

C

C

C

C

A

.

Comparing with Lemma 4.5, we obtain the equations desired.
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Theorem 4.13. Let (Y, Q', Qg) be an almost G2-manifold with a free T2-action pre-
serving the G2-structure. Let�2 W Y ! Y=T2 be the projection. Suppose that there
exists a multi-moment mapQ� W Y! R for the T2-action. Let� W Y=T2

! R be the map
induced fromQ� By Proposition 4.10,there exist almost CR-structures(Q D ker(d�), Ji )

(i D 0, 1, 2) on Y=T2 satisfying J0J1J2 D �idQ.

Decomposing T2 D S1
1 � S1

2, let �1W Y! Y=S1
1, �2,1W Y=S1

1 ! Y=T2 and �2W Y!
Y=T2 be the projections satisfying�2 D �2,1Æ�1. Then fromPropositions 3.4and 4.10,
we see that there exists anSU(3)-structure (g, J1, �1,  �) on Y=S1

1 and CR structures
(Q D kerd�, Ji ) with induced2-forms �i on Y=T2 (i D 0, 1, 2).

If L k
T2 � Y is an oriented k-dimensional submanifold invariant underthe T2-action

(kD 3,4), then with respect to an appropriate orientation the following properties hold:
1. L3

T2 � Y is an associative3-fold if and only if �2(L3
T2) � Y=T2 is contained in

the integral curve ofgrad(�),
2. L4

T2 � Y is a coassociative4-fold if and only if �2(L4
T2) � Y=T2 is a CR J0-

holomorphic curve.
If L k

S1
1 , p
� Y is an oriented k-dimensional submanifold invariant underthe S1

1-

action with Q� 02
�

T Lk
S1

1 , p

�

D 0 (Q� 02 is defined in Remark4.11) (k D 3, 4), then with respect

to an appropriate orientation the following properties hold:
3. L3

S1
1 , p
� Y is an associative3-fold if and only if �2

�

L3
S1

1 , p

�

� Y=T2 is a CR J1-

holomorphic curve,
4. L4

S1
1 , p
� Y is a coassociative4-fold if and only if for each� 2 R, �2

�

L4
S1

1 , p

�

\

�

�1(�) � Y=T2 is either an empty set or a CR J2-holomorphic curve and

grad(�)j
�2

�

L4
S1
1, p

� is tangent to�2
�

L4
S1

1 , p

�

.

If L k
p, p � Y is an oriented k-dimensional submanifold perpendicular to T2-orbits

(kD 3,4), then with respect to an appropriate orientation the following properties hold:
5. L3

p, p � Y is an associative3-fold if and only if for each� 2 R, �2(L3
p, p)\��1(�)�

Y=T2 is either an empty set or a CR J0-holomorphic curve withgrad(�)j
�2(L3

p, p) tangent

to �2(L3
p, p).

6. L4
p, p � Y is a coassociative4-fold if and only if �2(L4

p, p) � Y=T2 is a CR J0-
holomorphic surface.

REMARK 4.14. This theorem is a generalization of Example 2.11.T2-orbits and
the “�-direction” correspond toI2 and x3-direction in Example 2.11, respectively.

Corollary 4.15. If L 3
p, p � Y is an associative3-fold, then for any� 2 R sat-

isfying �2(L3
p, p) \ ��1(�) ¤ �, ��1

2 (�2(L3
p, p) \ ��1(�)) D �

�1
2 (�2(L3

p, p)) \ Q��1(�) D

T2
� L3

p, p \ Q�
�1(�) is a T2-invariant coassociative4-fold of Y .

Corollary 4.16. There is one to one correspondence between T2-invariant asso-
ciative 3-folds (resp. T2-invariant coassociative4-folds) in Y and 1-dimensional
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submanifolds of the integral curve ofgrad(�) (resp. CR J0-holomorphic curves) in Y=T2.

REMARK 4.17 (Relations to evolution equations). Consider the case2 of
Theorem 4.13. Let W 6! Y=T2 be a smooth immersion of a surface6 and (U, (s, t))

be a local conformal coordinate of6. Then from the local triviality of�2W Y! Y=T2,
there exists a local liftQ W U ! Y of  on a small open setU � 6 which is transverse

to T2-orbits.
The differential equation ofJ0-holomorphic curve is� =�sC J0 � =�t D 0. By

the definition of J0, this equation can be described as

�

� Q

�s

�e

D (� Q')abcd(X
�

0

1 )a(X�

0

2 )b

�

� Q

�t

�c

Qgde.

Thus the differential equation ofJ0-holomorphic curve is considered as the special case
of the evolution equations in [17], [18]. Lotay [17], [18] constructed examples of
(co)associative submanifolds inR7 by evolution equations.

Proof of Theorem 4.13. We fix one of the orientations of submanifolds. The same
proof is valid for another orientation.

Proof of 1. Take any p 2 L3
T2 and choose an oriented orthonormal basis

{(X�

0

1 )p, (X�

0

2 )p, Qv} of TpL3
T2. Thenv D �2�(Qv) is a basis ofT

�2(p)(�2(L3
T2)). Now, L3

T2

is associative if and only ifQ'((X�

0

1 )p, (X�

0

2 )p, Qv) D 1. By Remark 4.12, this condition
is equivalent toh d�(v) D 1, which implies that�2(L3

T2) is contained in the integral
curve of grad(�).

The claim 2 follows from Theorem 4.7.

Proof of 3. By Theorem 3.7,L3
S1

1 , p
� Y is associative if and only if�1

�

L3
S1

1 , p

�

is

a J1-holomorphic curve. By Remark 4.11, we see that this is equivalent to saying that
�2
�

L3
S1

1 , p

�

is a CR J1-holomorphic curve. Actually, if�1
�

L3
S1

1 , p

�

is a J1-holomorphic

curve, then it follows that

J1(�2)
�

�

T L3
S1

1 , p

�

D {(�2,1)�J1 � h � grad(�)
 � 02}(�1)
�

�

T L3
S1

1 , p

�

D (�2)
�

�

T L3
S1

1 , p

�

.

Thus �2
�

L3
S1

1 , p

�

is a CR J1-holomorphic curve. Conversely, if�2
�

L3
S1

1 , p

�

is a CR J1-

holomorphic curve, we obtain (�2,1)�(J1
�

�1)
�

�

T L3
S1

1 , p

��

D (�2,1)�
�

(�1)
�

�

T L3
S1

1 , p

��

. On

the other hand, since�2
�

L3
S1

1 , p

�

is a CR J1-holomorphic curve, we see

d�
�

(�2)
�

�

T L3
S1

1 , p

��

D 0.
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This is equivalent tog
�

(�1)
�

�

T L3
S1

1 , p

�

, grad(�)
�

D 0. Since g is Hermitian, we have

g
�

J1(�1)
�

�

T L3
S1

1 , p

�

, J1(grad(�))
�

D 0.

Using a pointwise coordinate of Lemma 4.5, we seeg( � , J1(grad(�))) D
(�1=h)� 02. Hence we have� 02

�

(�1)
�

�

T L3
S1

1 , p

��

D �

0

2

�

J1(�1)
�

�

T L3
S1

1 , p

��

D 0, which means

that (�1)
�

�

T L3
S1

1 , p

�

and J1(�1)
�

�

T L3
S1

1 , p

�

are horizontal. ThenJ1(�1)
�

�

T L3
S1

1 , p

�

D

(�1)
�

�

T L3
S1

1 , p

�

and so�1
�

L3
S1

1 , p

�

is a J1-holomorphic curve.

Proof of 4. Suppose thatL4
S1

1 , p
� Y is coassociative and�2

�

L4
S1

1 , p

�

\ �

�1(�) ¤

�. By Theorem 3.7,L4
S1

1 , p
is coassociative if and only if� �

j

�1

�

L4
S1
1, p

�

D vol
�1

�

L4
S1
1, p

�

which is equivalent to�hd� ^ �2j
�1

�

L4
S1
1, p

�

D vol
�2

�

L4
S1
1, p

� by Remark 4.11.

Fix an arbitrary pointq 2 �2
�

L4
S1

1 , p

�

\ �

�1(�) and choose an oriented orthonor-

mal basis{v1, v2} � Tq
�

�2
�

L4
S1

1 , p

�

\ �

�1(�)
�

. There existsv03 2 Tq
�

�2
�

L4
S1

1 , p

��

with

d�(v03)¤ 0. Via the Gram–Schmidt process, we have an orthonormal basis {v1,v2,v3} �

Tq
�

�2
�

L4
S1

1 , p

��

. Then we have

�hd�(v3) � �2(v1, v2) D 1.

Sincejhd�(v3)j � 1 andj�2(v1,v2)j � 1 hold, we obtainjhd�(v3)j D 1 andj�2(v1,v2)j D
1, respectively. The first equation implies thatv3 D h � grad(�), and grad(�)jL4

S1
1, p

is tan-

gent to L4
S1

1 , p
. In the same way as the proof of 1 in Theorem 3.7, the second equation

implies that�2
�

L4
S1

1 , p

�

\ �

�1(�) is a CR J2-holomorphic curve.

Conversely, fixingq 2 �1
�

L4
S1

1 , p

�

, take{v1, v2 D J2v1, v3 D h �grad(�)} as an ortho-

normal basis ofT
�2,1(q)(�2

�

L4
S1

1 , p

�

), wherev1, v2 2 T
�2,1(q)(�2

�

L4
S1

1 , p

�

\ �

�1(�(�2,1(q)))).

Define {v1, v2, v3} � Tq(Y=S1) as horizontal lifts of{v1, v2, v3} by � 02.

Then{v1,v2,v3} is an orthonormal basis ofTq
�

�1
�

L4
S1

1 , p

��

satisfying �(v1,v2,v3)D

�1. From Theorem 3.7, we see thatL4
S1

1 , p
is coassociative.

Proof of 5. Suppose thatL3
p, p is associative and�2(L3

p, p) \ ��1(�) ¤ �. Since
Q

�i jL3
p, p
D 0 (i D 1, 2), we see from Remark 4.12,���2 (h d� ^ � 0)jL3

p, p
D volL3

p, p
.

Fix an arbitrary pointy 2 L3
p, p and choose an oriented orthonormal basis{Qv1, Qv2} �

Ty(L3
p, p\ Q�

�1(�)). There existsQv03 2 Ty(L3
p, p) with d Q�(Qv03) ¤ 0. Via the Gram–Schmidt

process, we have an orthonormal basis{Qv1, Qv2, Qv3} � Ty(L3
p, p). If we definevi D �2�(vi ),

we have�h d�(v3) � �0(v1, v2) D 1.

Similarly to the proof of 4, we see that grad�j
�2(L3

p, p) is tangent to�2(L3
p, p). Thus

�2(L3
p, p)\ ��1(�) is a CR J0-holomorphic curve. The converse follows similarly to the

proof of 4.
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Proof of 6. Suppose thatL4
p, p is associative. SinceQ�i jL4

p, p
D 0 (i D 1, 2), we see

from Remark 4.12, (1=2)� 0j�2(L4
p, p) D vol

�2(L4
p, p). We can prove 6 as in the proof of 4

in Theorem 3.7.

5. Examples

Basic examples of calibrated submanifolds are given in Examples 2.10, 2.11. We
provide more examples on (sine) cones andT2 bundles by using our method.

5.1. Examples of nearly Kähler manifolds.

EXAMPLE 5.1 ([21]). Let (N, g, J) be a real 6-dimensional Kähler manifold and
(B,h) an even dimensional Riemannian manifold. Suppose that there exists a Riemann-
ian submersion with totally geodesic fibers

$ W (N, g)! (B, h).

Let T ND V�H be the corresponding splitting ofT N, whereV is a vertical subbundle
andH is a horizontal subbundle such thatJ preservesV andH.

If we define a Riemannian metricOg and an almost complex structureOJ as

OgjV D
1

2
gjV , OgjH D gjH, OJjV D �JjV , OJjH D JjH,

then (N, Og, OJ) is a nearly Kähler manifold.

Each fiber of$ W (N,g)! (B,h) is OJ-holomorphic. Hence if dim
R

BD 4, N�R
>0

(or N � (0, �)) 3 (x, r ) 7! $ (x) 2 B is an associative fibration. (i.e. each fiber is an
associative 3-fold.) If dim

R

B D 2, N � R
>0 3 (x, r ) 7! ($ (x), r ) 2 B � R

>0 is a
coassociative fibration.

Next, we give examples of homogeneous nearly Kähler manifolds which are clas-
sified by Butruille [11].

Lemma 5.2 ([11]). Any6-dimensional compact homogeneous nearly Kähler mani-
fold is isomorphic to a finite quotient of a homogeneous spacebelonging to the follow-
ing list:

SU(3)=T2, CP3, S3
� S3, S6.

The spaces SU(3)=T2, CP3 are the twistor spaces ofCP2 and S4, respectively.
They satisfy the condition of Example 5.1 so those (sine) cones admit associative fi-
brations. Moreover, in Theorem 1.3.1 of [24], by using a real structure onCP3 it
is shown thatRP3

� CP3 is a special Lagrangian submanifold with phase 1. Hence
RP3

� {r } � CP3
� R

>0 is an associative 3-fold for anyr 2 R
>0.
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The cone ofS6 is R7
�{0} so this case is well-studied. Pseudoholomorphic curves

in S6 andCP3 are investigated in [7] and [25], respectively.
In the case ofS3

�S3, define mapspr1W S3
3 (z1, z2) 7! [z1 W z2] 2 CP1, pr2W S3

3

(z1, z2) 7! [z1 �
p

�1z2 W z1 �
p

�1z2] 2 CP1 and pr3 W S3
3 (z1, z2) 7! [z1C z2 W z1 �

z2] 2 CP1, where we considerS3
� C

2. The mappr1 is a slight modification of the
Hopf fibration.

Proposition 5.3. For each iD 1, 2, 3, the map$i D pri � pri W S3
� S3

! CP1
�

CP1 is a pseudoholomorphic fibration, and so induce associative fibrations S3
� S3

�

R

>0! S2
� S2 and S3

� S3
� (0, �)! S2

� S2.

Proof. Note that each fiber ofpr1, pr2 and pr3 is of the form{(e
p

�1�z1,e�
p

�1�z2) j
� 2 R} � S3, {(z1 cos� C z2 sin� , �z1 sin� C z2 cos�) j � 2 R} � S3 and{(z1 cos� C
p

�1z2 sin� ,
p

�1z1 sin� C z2 cos�) j � 2 R} � S3 for some (z1, z2) 2 S3.
By using the notation in [11], each fiber of$i is an integral submanifold of

the distribution span
R

{X�

i , Y�

i } D span
R

{X�

i , J X�

i } since we can takeX1, Y1 D

(1=2)

�

p

�1 0
0 �

p

�1

�

, X2, Y2 D (1=2)
�

0 1
�1 0

�

, X3, Y3 D (1=2)

�

0
p

�1
p

�1 0

�

2 su(2)

and the almost complex structureJ on S3
� S3 preserves span

R

{X�

i , Y�

i }. Here X�

means the vector field onS3
� S3 generated byX 2 su(2)� su(2). Hence each fiber

of $i is pseudoholomorphic.

REMARK 5.4. Define the inclusion� W S6
� (0, �) 3 (� , t) 7! (cost, � sin t) 2 S7,

where we considerS6
� R

7 and S7
� R�R

7. It is known thatS7 admits a nearly par-
allel G2-structure induced from a Spin(7)-structure onR8. The inclusion� preserves the
G2-structure from their constructions. Hence, ifLk

� S6 is an orientedk-dimensional
submanifold (k D 2, 3) andt 2 (0, �), then
• �(L2

� (0, �)) � S7 is an associative 3-fold iffL2 is a J-holomorphic curve,
• �(L3

� {�=2}) � S7 is an associative 3-fold iffL3 is a special Lagrangian sub-
manifold with phase�

p

�1.
This result is known by Lotay [19].

5.2. Cone of the Iwasawa manifold. For x, y, z 2 C, denote

A(x, y, z) D

0

�

1 x z
0 1 y
0 0 1

1

A.

Define G D {A(x, y, z) j x, y, z 2 C}, 0 D {A(�, �,  ) j �, �,  2 Z[
p

�1]}. Let
N6
D 0 n G be the space of right cosets, which is called the Iwasawa manifold. It is

a principal T2-bundle overT4 (the generic element is mapped to (x, y) C Z2). The
Iwasawa manifold is a compact complex manifold which is not Kähler. (It is known
that h1,0(N, C) D 3, h0,1(N, C) D 2, b1(N) D 4).
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First, we show thatY D N � R
>0 admits a torsion-freeG2-structure (Q', Qg) with

Hol( Qg) D G2. Define 1-formsQei 2 �
1(N) (i D 1, 2, 4, 5, 6, 7) by

8

<

:

dx D Qe4 �
p

�1Qe7,
dyD Qe6C

p

�1Qe5,
�dzC x dyD Qe1 �

p

�1Qe2.

Left hand sides are0-invariant forms onG so they induce 1-forms onN D 0 n G.
HenceN is a nilmanifold with a global basis of 1-forms such that

d Qei D

8

<

:

Qe46� Qe57 (i D 1),
�Qe45� Qe67 (i D 2),
0 (i D 4, 5, 6, 7).

We also define vector fields{ QEi } 2 X(N) dual to { Qei }. If we write x D x1 C
p

�1x2,
y D y1C

p

�1y2, zD z1C
p

�1z2, we can describe{ QEi } explicitly as

QE1 D �
�

�z1
, QE2 D

�

�z2
, QE4 D

�

�x1
, QE7 D �

�

�x2
,

QE5 D
�

�y2
� x2

�

�z1
C x1

�

�z2
, QE6 D

�

�y1
C x1

�

�z1
C x2

�

�z2
.

Extending Qei and QEi on Y, define 1-formsQe0i 2 �
1(Y) by

( Qe01, Qe02, Qe03, Qe04, Qe05, Qe06, Qe07) D

�

1

s
Qe1,

1

s
Qe2, s2 ds, sQe4, sQe5, sQe6, sQe7

�

,

whereR
>0 is parametrized bys. We write QE3 D �=�s. Define a metric Qg on Y, a

3-form Q' 2 �3(Y) and its Hodge dual� Q' 2 �4(Y) by

Qg D
7
X

iD1

(e0i )
2,

Q' D Qe0123C Qe
0

1( Qe045C Qe
0

67)C Qe
0

2( Qe046� Qe
0

57) � Qe
0

3( Qe047C Qe
0

56),

� Q' D Qe04567C Qe
0

23( Qe
0

67C Qe
0

45)C Qe
0

13( Qe
0

57� Qe
0

46) � Qe
0

12( Qe
0

56C Qe
0

47).

Then (Y, Q', Qg) is a torsion-freeG2-manifold with Hol(Qg) D G2. For more details,
see [22]1.

T2-action on Y. Identifying T2
D {A(0, 0,w) j w 2 C=Z[

p

�1]}, T2 acts onY
freely by right multiplication. Vector fields{X�

1 , X�

2} � X(Y) generated by theT2-

action are given byX�

1 D �=�z1 D � QE1, X�

2 D �=�z2 D QE2.

1Note that the notation in [22] differs from ours. The basis (e1,e2,e3,e4,e5,e6,e7) in [22] corresponds
to (Qe4, Qe5, Qe6, �Qe7, Qe1, Qe2, Qe3) in our notation.
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Since Q'(X�

1 , X�

2 , � ) D �ds, there exists a multi-moment mapQ� D �sW Y ! R

<0

for the T2-action.
Geometry of Y=T2. SinceN is a T2-bundle overT4 and sinceT2 acts fiberwise,

we haveY=T2
D T4

� R

>0, where we denote the projection by�2 W Y ! T4
� R

>0.
Define vector fields byEi D (�2)

�

( QEi ) 2 X(Y=T2) (i D 4, 5, 6, 7), namely,

�

�

�x1
,
�

�x2
,
�

�y1
,
�

�y2

�

D (E4, �E7, E6, E5).

Then with respect to{�=�x1, �=�x2, �=�y1, �=�y2} we have

J0 D

0

B

B

�

�1
1

�1
1

1

C

C

A

, J1 D

0

B

B

�

1
1

�1
�1

1

C

C

A

,

J2 D

0

B

B

�

�1
1

1
�1

1

C

C

A

.

(J0, J1, J2) is a standard hyperkähler structure onT4 induced by the left multiplication
of (i , �k, j ) on the quaternionH.

Calibrated submanifolds in Y.
T2-invariant case. Since (J0, J1, J2) is a standard hyperkähler structure onT4,

there are many holomorphic curves. IfC � T4 is a J0-holomorphic curve ands 2

R

>0, then��1
2 (C � {s}) is a T2-invariant coassociative 4-fold, which is compact ifC

is compact.T4 is fibrated by J0-holomorphic curves soY is fibrated byT2-invariant
coassociative 4-folds.

For the associative case, the integral curve of grad(Q�) in Y is R
>0 � Y. If x 2 T4

andO � R
>0 is an open interval,��1

2 ({x} �O) is a T2-invariant associative 3-folds.
S1

1-invariant and perpendicular to S1
2-orbits case. DecomposingT2

D S1
1 � S1

2,
let X�

i be the vector field generated by theS1
i -action. A submanifoldL � Y is perpen-

dicular to S1
2-orbits if and only if Qe2jL D 0. Then we have

ker(Qe2) D span
R

{ QE1, QE3, QE4, QE5, QE6, QE7}.

An S1
1-invariant submanifold containsQE1 in its tangent space. IfL1 and L2 are integral

submanifolds of the involutive distributions span
R

{ QE1, QE3, QE4, QE6} and span
R

{ QE1, QE3,
QE5, QE7}, respectively, eachL i is a coassociative 4-fold perpendicular to theS1

2-orbits. If
L i is maximal,L i is an S1

1-invariant coassociative 4-fold perpendicular to theS1
2-orbits

becauseS1
1 � L i is an integral submanifold of the same distribution containing L i . We
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see thatY is foliated by these coassociative 4-folds. They can be described as follows.

L1 D {[( A(x1C
p

�1x0
2, y1C

p

�1y0
2, z1C

p

�1(x0
2 y1C z0

2)))] j x1, y1, z1 2 R>0}

� R

>0,

L2 D {[( A(x0
1 C
p

�1x2, y0
1 C
p

�1y2, z1C
p

�1(x0
1 y2C z0

2)))] j x2, y2, z2 2 R>0}

� R

>0,

where x0
i , y0

i , z0
i 2 R. These areS1-bundle overT2. Moreover, we have

(�2)
�

{ QE4, QE6} D {E4, J2E4}, (�2)
�

{ QE5, QE7} D {E5, �J2E5},

and so�2(L) \ {� D const.} � T4 is a J2-holomorphic curve with grad(�)j
�2(L) D

�(1=s4)(�=�s)j
�2(L) D �(1=s4) QE3j�2(L) 2 T(�2(L)), which corresponds to 4 of

Theorem 4.13.
Perpendicular to T2-orbits case. A submanifoldL � Y is perpendicular toT2-

orbits if and only if Qe1jL D Qe2jL D 0. Then we obtain

ker(Qe1) \ ker(Qe2) D span
R

{ QE3, QE4, QE5, QE6, QE7}.

If L is an integral submanifold of the involutive distribution span
R

{ QE3, QE4, QE7},
L is an associative 3-fold perpendicular to theT2-orbits. L is described asL D
{[( A(x, y0, z0))] j x 2 C} � R

>0, where y0, z0
2 C. We see thatY is foliated by these

associative 3-folds. Moreover, we have (�2)
�

{ QE4, QE7} D {E4, �J0E4}, and so�2(L) \

{� D const.} � T4 is a J0-holomorphic curve with grad(�)j
�2(L) D �(1=s4)(�=�s)j

�2(L) D

�(1=s4) QE3j�2(L) 2 T(�2(L)), which corresponds to 5 of Theorem 4.13.

5.3. Further examples. In [20], it it shown that for a hyperkähler 2-foldM
whose Kähler forms have integral periods, there exists aT2-bundleX0 over M and an
open intervalI � R such thatX0 � I admits a torsion-freeG2-structure.

Especially if M is a toric hyperkähler 2-fold, it is shown in [13] thatM is fibrated
by complex Lagrangian submanifolds (pseudoholomorphic curves in dimension 4) whose
generic fibers are diffeomorphic toT1

�R. Using this fibration, we see that aG2-manifold
X0 � I is fibrated byT2-invariant coassociative 4-folds.
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