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Abstract
We introduce generalized almost contact structures whilchitathe B-field trans-

formations on odd dimensional manifolds. We provide theiamoiof generalized
Sasakian structures from the view point of the generalizethst contact structures.
We obtain a generalized Sasakian structure on a non-compeaaifold which does
not arise as a pair of ordinary Sasakian structures. Howseeshow that a general-
ized Sasakian structure on a compact 3-dimensional mdnigoéquivalent to a pair
of Sasakian structures with the same metric.

1. Introduction

Both generalized complex structures and generalized K&ldectures are geomet-
ric structures on even dimensional manifolds which havenbedensively studied in
differential geometry and mathematical physics [5, 7]. sltnatural to ask what is an
analog of generalized geometry on odd dimensional mamifoldaisman introduced
generalized F-structures and generalized almost contacttgres [9, 10]. He also de-
fined generalized Sasakian structures from the view poirgesferalized Kahler struc-
tures. Poon and Wade studied integrability conditions afiegalized almost contact
structures and gave nontrivial examples on the three-ddiaeal Heisenberg group and
its cocompact quotients [8]. Vaisman showed that a geredlBasakian structure ap-
pears as a pair of almost contact structures [9]. Howeveameles of generalized
Sasakian structures which do not arise as a pair of Sasatkistuses were not known.

The purpose of this paper is to investigate generalized gagnon odd dimen-
sional manifolds. We introduce the new notion of generdliaénost contact structures
which includes the one in [9], [8] as special cases. We useseationsE, and E_ of
TM @ T*M to define generalized almost contact structures which aéafield trans-
formations naturally. An almost contact structure is alérify, &, ), whereg is an
endomorphism off M, £ e TM andn € T*M which satisfies

nE)=1 gop=—-id+n®E,

whereid denotes the identity map of M. An almost contact structure gives rises to
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an almost complex structure on the coneC(M) = M x R.,

| =¢+ ®r8 ldr®é
R PR ’

wherer denotes the coordinate d®.o. We define a generalized almost contact struc-
ture to be a triple ®,E.,E_) by replacingg with an endomorphisn® of TM& T*M
and &, n with sections,, E_ of TM & T*M, respectively which satisfy

® 4+ d* =0,
2(E;, E.) =1, (Ey, Ei)=0,
Pod=—-id+E, E_+E_Q®E,

(see Definition 3.1 for more detail). By an analogue to theecaf almost contact
structures, we define bundle endomorphisms to constructrgired complex struc-
tures on the con€(M). We define a bundle endomorphisenE. , E_) of TC(M) &
T*C(M) by

0 0 1 1
VY(E,,E)=E_Qr——-r—QE_+E —dr—-dr ® E,,

then it follows that
®+Y(E,,E)

is a generalized almost complex structure @fM). In Sasakian geometry, the
Riemannian cone metri§ = dr? 4+ r?g on C(M) is, by definition, a K&hler metric.
This suggests that

R(® + W(E,, E.)R?

is more important generalized almost complex structuréiserathan® + W(E,, E_)
when we pursue an analogy of Sasakian geometry, wRedenotes an element of the
special orthogonal group SOM & T*M) given by

RX+a)=r*X+ra, XeTM, a e T*M.

From the view point of generalized almost contact strugtusee define a general-
ized Sasakian structure. We show that on a compact conn8etiithensional mani-
fold a generalized Sasakian structure is equivalent to mgigbasakian structures with
the same metric (Theorem 4.6). We obtain a non-compact deaofpa generalized
Sasakian structure which does not arise as a pair of Sasskistures (Theorem 4.2).

2. Generalized complex structures

In this section we give a brief explanation of generalizechplex structures. Let
M be an even dimensional smooth manifold. The space of ssctibthe vector bundle
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TM & T*M — M is endowed with the followindR-bilinear operations.
e A symmetric bilinear form(—, ) is defined by

(X+a,Y+B)= %(Lxﬂ + ya).

e The Courant bracket [-, —] is a skew-symmetric bracket,

DX+ @Y + Bl = X, Y]+ Lxf — Lyoc— 50(x — ),

where X, Y € TM anda, 8 € T*M.
A subbundle is Courant involutive if the space of sectionsth® subbundle is
closed under the Courant bracket.

DerINITION 2.1 ([5]). A generalized almost complex structure Mnis an endo-
morphism of the direct sunf M & T*M which satisfies two conditions,

J+J*=0, J*=-id,

where 7* is defined by(J A, B) = (A, J*B) forany A, Be I'(TM & T*M). Let L
be the++/—1-eigenspace off in TM @ T*M. If L is Courant involutive, theny is
called a generalized complex structure.

The following are well known.

Lemma 2.1 ([5]). L is a maximal isotropic subspace.

Proposition 2.2 ([5]). Let L be a maximal isotropic subbundle of T#MT*M.
Then the following three conditions are equivatent
e L is Courant involutive
e Nij|. =0,
° Jadﬂ_ =0,
where Nij and Jacare given by

Nij(A, B, C) = %((I[A, Bl. C) + ([B. C]. A) +(IC, Al. B)),
JacA, B,C)=[[A, B], C1 +[[B,Cl Al +IIC, Al BI,
forany AB,Cel'(TMa@ T*M).

Let B be a smooth 2-form. Then the invertible bundle map given by,

1 0
eBz(B 1):X+ou—>X+a—|—LxB

is orthogonal.
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Lemma 2.3([5]). A map & is an automorphism of the Courant bracket if and
only if B is closedi.e. dB= 0.

DEFINITION 2.2 ([5]). A generalized Kahler structure is a paifi(J,) of com-
muting generalized complex structures such Bat — 7,7, gives a positive definite
metric onTM @& T*M.

Lemma 2.4 ([5]). A generalized K&hler metric is uniquely determined by a
Riemannian metric g together with Z2form b as follows

_ —g7b gt _(1 0\/0 gt 1 0
G(g.b) = (g—bg—lb bgt) T \b 1)\g o J\-b 1)
Let C, be a positive definite subbundle &M & T*M andC_ a negative definite
subbundle with respect to the inner product which are giwen b

Ci={X=£g(X, -)+b(X, -); X € TM}.

By the projection fromC. to T M, J; induces two almost complex structurds on
T M. If both (g, J;) and @, J_) are Hermitian structuresg{(J..) is called a bi-Hermitian
structure.

Theorem 2.5([5]). A generalized Kéhler structur&7:, J>) is equivalent to a bi-
Hermitian structure(g, b, J.) which satisfies the following condition.
e For all vector fields XY, Z,

db(X,Y, Z) =dw, (. X, 1.V, 1, Z) = —dw_(I_X, 1Y, J_2),
wherew. (X, Y) = g(X, J.Y).

3. Generalized almost contact structures

An almost contact structure on an odd dimensional manifdlds a triple ¢, &, 1),
where ¢ is an endomorphism off M, & is a vector field andy is a 1-form which
satisfies

né)=1 g¢gop=—-id+n®E.

We replacey by an endomorphismb of TM @& T*M and &, n by sectionsE.. of
TM® T*M respectively. We define a generalized almost contact sirerct

DEFINITION 3.1. A generalized almost contact structure on a smooth foldni
M is a triple @, E,, E_), where® is an endomorphism of M&® T*M and E. are
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sections ofTM & T*M which satisfy
4 d* =0,
2(E.,E_) =1, (E4, Ei) =0,
Pod=—-id+E, ®E_+E_Q®E,.

Let Ex = &1 + n+ Whereé&y are vector fields ang. are 1-forms. Then we have

q>oq>=_id+("+®5—+'7—®%‘+ £, ®E +E Q& )
Ny ®n-+n-Q®ny & 0N +& ®ny

REMARK 3.1. Vaisman, Poon and Wade discussed the restrictive dage &
ny = 0 [8, 9, 10]. However, their definition is not compatible withe B-field trans-
formations. Note that a generalized almost contact stractdi Definition 3.1 satisfies
the condition of generalize -structure [10].

ExampPLE 3.1 ([8]). Let (p, &, n) be an almost contact structure. Then we have
a generalized almost contact structure by setting

_(¢ O _ _
(I)_ (O _(p*)’ E+_$! E——77.

where @*a)(X) = a(pX), X e TM, a € T*M.

ExampLE 3.2 ([8]). A (2n + 1)-dimensional manifoldM is a contact manifold
if there exists a 1-fornm such that

n A (dn)" # 0

everywhere onM. A 1-form p is called a contact 1-form. Then there is a unique
vector field¢ satisfying the two conditions

dn =0, n()=1.

This vector field is called the Reeb field of the contact faymSincen is a contact
1-form, the map

p(X) := txdn —n(X)n

is an isomorphism from the tangent bundle to the cotangemdlbu We define a bivec-
tor field = by

(@, B) == dn(p~*(a), p~H(B)).
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Then we have a generalized almost contact structure bygetti

0 =x
(b_(dn 0), E,.=n E_ =¢.

Lemma 3.1. Let (¥, E.) be a generalized almost contact structure. Then we
have the following identities

®(EL) = 0.
Proof. Since® + ®* = 0, we have
(PE4, E4) = (E4, —PE4) = —(PE4, Ey).

Thus it follows that we have

(q)E+, E+> == 0
From (@ o ®)(E,) = 0, we obtain

0=®o(Pod)E;) = (Pod)od(E;)
(3.1) = —®FE, +2(E,, ®E,)E_ + 2(E_, ®E,)E,
= —®FE, +2(E_, ®E,)E,.

We also obtain
3.2 0=®o(Pod)od(E,)=2(E_, PE,)DE,.

From (3.1) and (3.2), we have
¢E+ == 0

Similarly, we have

PE_=0. O
By a simple calculation, we have

Lemma 3.2. Let (@, E.) be a generalized almost contact structure and B a
smooth2-form. Then(eBoe B, eBE.) is a generalized almost contact structure.

By Definition 3.1, we have

@+ =0.
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Thus @ has three eigenvalues, namely-By/—1, —+/—1. The kernel of® is given by
Le, ®Le,
whereLg, are line bundles generated I, = &+ + n., respectively. We define
ECO = (X + o —vV=1&(X +a); X € TM, @ € T*M, (X +a, E4) = 0},

EOD = (X +a+ V-10(X +a); X e TM, @ € T*M, (X +a, Ex) = 0}.

Then E®9 js +./—1-eigenbundle an&E®?Y is —/—1-eigenbundle. We consider the
following four different complex vector bundles,

LT = Le, @ E®O, L+ =Lg, @ EOY,

(3.3) _
L-=Le @ EAO, [-=Lg @ EOY.

Lemma 3.3. Bundles E-9, EQ@D, L* L+ are isotropic.

Proof. LetA, B are sections oE®?9. By our definition, we havd A, E.) = 0.
It follows from & + &* = 0 that

(DA, ®B) = (V—1A, vV/—1B) = —(A, B),
(DA, ®B) = (A, —d?B) = (A, B).

ThereforeE™?) is isotropic. Similarly,E@Y, L*, L* are isotropic sincéE.,E.) = 0.
O

According to [8], we define

DEFINITION 3.2. Let @, EL) be a generalized almost contact structure. If either
of L* is Courant involutive, it is called a generalized contacticgure. If bothL* are
Courant involutive, it is called a strong generalized con&tructure.

An almost contact metric structure v is (g, ¢, &,n), where {,&,n) is an almost
contact structure angd is a Riemannian metric which satisfies

dleX, oY) =g(X,Y) =n(X)n(Y), VX, YeTM.

We define a generalized almost contact metric structure:

DEFINITION 3.3. Let @, EL) be a generalized almost contact structure. |If
G:TM®T*M ->TM@®& T*M is a generalized Riemannian metric which satisfies

—(I)G(D:G_E+®E+_E,®E7,
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then G, @, E.) is a generalized almost contact metric structure.

This definition satisfies the condition of generalized neeffi-structure without a
signature [10].

From Definition 3.3, it follows thaiG® = G, G(E.) = E; and we have that
(G, G® = 9G, GE, = E) is also a generalized almost contact metric structure.

4. Generalized Sasakian structure

There is the intriguing correspondence between the gegroatthe coneC(M) =
M xR.o and the geometry oM [3]. In fact, an almost contact structure,€,n) gives
rises to an almost complex structureon C(M);

ad
| = — —dt ,
0+n® ot ®E&
wheree' =r denotes the coordinate @®w.o. If | is integrable, an almost contact struc-
ture is called a normal almost contact structure. l&fE. = &1 + n.) be a general-
ized almost contact structure avi. we recall a bundle mag: TC(M)® T*C(M) —
TC(M) e T*C(M) by

0 0
V(E,, E_)=E_®a—a®E_+E+®dt—dt® E.
B 0 d
_® — —dt _® — — — _
n ®3t ®E& & ®3t 8t®§

ad
Ny @dt—dt®n, §+®dt—a®n_

Then it follows that
@+ W(Ey, E)

is a generalized almost complex structures@(M).

Proposition 4.1. There is a one-to-one correspondence between generalized a
most contact structureéd, EL) on M and generalized almost complex structuggs
on C(M) such that

Lyand =0,
a
jﬁ eTMOT*M, JdteTMDT*M.
Proof. LetJ be a generalized almost complex structure which satisfieveab
conditions. Since7 = —J%, if L5 J = 0 then we can write

d

ol 0 0
J=jM+A®———®A+B®dt—dt®B+ha®dt—hdt®§

ot ot



GENERALIZED ALMOST CONTACT AND SASAKIAN STRUCTURES 51

where /y: TM@T*M > TM @ T*M, A, Be TM&@ T*M andh € C*(M). From
Jdte TM@®T*M, we haveh = 0. 72 = —id implies that (7y, B, A) is a generalized
almost contact structure.

® + V(E,, E_) is clearly a generalized almost complex structure whidiisfas
above conditions. O

The integrability condition ofb +W(E.,E_) is given by the following proposition.

Proposition 4.2. A generalized almost complex structupet+ W(E,,E_) on C(M)
is integrable if and only if a generalized almost contacusture is a strong generalized
almost contact structure anflE,, E_] = 0.

Proof. Since E®9 is 4./—1-eigenbundle of®, ++/—1-eigenbundle ofd +
W(E,, E_) is generated by

3
EGO E, — \/—15, E. —+v/—1dt.

By simple calculations, we have

[ ad
X+C(, E+_V_1ﬁ}] =|[X+Ol, E+]I,

[ x +a, E — \/—_:Ldt] =[X+a E]

E,— \/—_1% E. — \/—_].dtiﬂ =[E,, E_],

where X + « € T(E®9). Since [E., E_] is a real section,++/—1-eigenbundle of
® + W(E,, E_) is Courant involutive if and only if boti* are Courant involutive
and [E., E_] =0. 0

Let R be an endomorphism of M & T*M given by
rt o et 0
R= ( 0 r ) N ( 0 ¢ )

R(® 4+ W(E,, E)))R?

Then the adjoints

is also a generalized almost complex structuresCghl). Let g be a Riemannian met-
ric on M. In Sasakian geometry, the Riemannian cone metri€COM) is

g=dr2+r?g.
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Since R(® + W(E,, E_))R™ correspond to the cone metri®(® + ¥(E,, E_))R?

is more important thard + W(E,, E_) when we consider about Sasakian structures.
The integrability condition ofR(® + W(E,, E_))R™! is given by the following

theorem.

Theorem 4.3. A generalized almost complex structur¢dR- W(E,, E_))R™* on
C(M) is integrable if and only if the Nijenhuis operator on M sé#s

Nij,, (A, B, C)
= 2/-1((E_, A)(B, C)_ + (E_, B)(C, A)\_ + (E_, C)(A, B)_)

for any A B,C e '(EXO @ Lg, & Lg ), where
1
(X+o,Y+B) = E(G(Y) — B(X)).

Proof. Let L be ++/—1-eigenbundle ofR(® + W(E,, E.))RL R(® +
W(E.,E_)R ! is integrable if and only if Nij(,|L = 0. Since thet+v/—1-eigenbundle
L is isotropic, Nig,|L is a trilinear operator. Thus we only need to consider elem-
ents iNE®Y E, andE_. Let X +a,Y + B, Z + y be elements oE®Y., Then we
have from Definition 3.1
[R(X + ), R(YY + B)1

=e'R[X +a,Y + B] + («(Y) — B(X)) dt.

Similarly, we have
3
|[R(x + ), R(E+ - \/—_15)]
= e'R[X +a, E4] — V=1 X + vV—la + (a(£4) — n4 (X)) dt,
[R(X + &), R(E_ — v/=1d1t)]

= e 'R[X+a, E_] + («() —n(X)) dt,
|[R(E+ - \/—_1%) R(E_ — x/—_ldt)]l
—e'R[E,, E ] +v—-1e2e —v—1n + (i () —n () dt.

Then it follows that

Nijcomy(R(X + @), R(Y + B), R(Z + 7))
=e'Nijy(X+a,Y+8,Z+7y).
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Similarly, we have
.. d
NUC(M)(R(X + ), R(Y + B), R(E+ — \/—1&))

— e Nijy (X +a, Y + B, E) + %J—_le’t(ﬂ(x) — a(Y)),

Nijcuy (ROX + @), R(Y + ), R(E- — v/—1d1))
=e 'Nijy(X+a,Y + 8, E),

Niqu)(R(x +a), R(E+ _ \/—_1%) R(E_ — x/—_ldt))
= & Nijy (X + 0, By, B )~ 2V-Te 'y (X) —a(e ).

Thus we obtain
Nijcqu)(A, B, C)
= e 'Nijy (A, B,C)—2v/—-1e Y(E_, A)(B, C)_
—2v/—-1eY(E_, B)(C, A)_ —2v/—1eY(E_, C)(A, B)_

for any A, B,C € I'(E®9 @ Lg, & Le ). Therefore the integrability condition is
given by

Nij (A, B, C)
= 2v/=1((E_, A)(B, C)_ + (E_, B)(C, A)_ + (E_, C)(A, B).)

for any A, B,C e '(E®O @ Lg, & Lg). O
An immediate corollary of Theorem 4.3 is

Corollary 4.4. Let (®, EL) be a generalized almost contact structure. IfdR+
W(E,, E_))R! is a generalized complex structure on(\), then EYO @ Lg is
Courant involutive. Thereforéd, E..) is a generalized contact structure.

Proof. It follows from Theorem 4.3 that
Nijy(A, B,C)=0, A BCecEgqLg.
ThereforeEX9 @ Lg is Courant involutive. O

DEFINITION 4.1. Let @,E.) be a generalized almost contact structure. If a gen-
eralized almost complex structuie(® + W(E,, E_))R™! is integrable, a generalized
almost contact structure is a called normal generalizedstiroontact structure.
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Note that this definition differs from a Vaisman’s definitig®]. We define a gen-
eralized Sasakian structure in terms of a generalized &lowgact metric structure.

DEFINITION 4.2. A generalized Sasakian structure Mnis a generalized almost
contact metric structure, ®, E.) such thatR(® + V(E,, E ))R! and R(G® +
V(GE,, GE_))R™! are generalized complex structures G(M).

A generalized Sasakian structurg,(®, E.) on M induces a generalized Kéahler
structure R(® + W(E,, E_))R™!, R(G® + ¥(GE,, GE_)R™) on C(M).

REMARK 4.1. Definition 4.2 coincides with Vaisman’'s definition inetltase of
« = 0 under a modification of degree[9, 10] (also see Proposition 4.1). The Sasakian
structure due to Vaisman allows transformations by 2-foBmdr A« (x € T*M), how-
ever the one by our definition does not admit sucB-field transformation. General-
ized almost contact structures admBitfield transformations by 2-forms ol. However,
Lemma 2.3 and

d(r?a) #0, Va e A’T*M
show that our definition of generalized Sasakian structdmes not admit anyB-field
transformation. If (x, E+) = 0, there exists a generalized almost contact structure
(®*, EL) such that

1 0 1 0

D+ W(Ey, E_ = ®“ + W(E!, EL).
240 pe 1 | VESED + W(EL E)

2
—Fdr/\l(' 1

However G, ®“, EY) is not a generalized almost contact metric structure.

ExAamMPLE 4.1. Let @, ¢, &, n) be a Sasakian structure. If we set

0 gt 0
-3 %) +=(5 %) mm e

then G, &, E.) becomes a generalized Sasakian structure.
The next theorem corresponds to Theorem 2.5.

Theorem 4.5([9]). A generalized Sasakian structure on a manifold M is equiva-
lent to a pair (¢4, £+, n+, g) of normal almost contact metric structures with the same
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metric g which satisfies the following conditions

(41) £5+9+ = _55797,
1
(4.2) 61— dng + 7 Lc, Le.0x =0,
1
(4.3) d0s —ns A Le, 02 — S(dLe,04)% =0,

where® = g(-, ¢) and the upper indices.cdenote
o (Xq, ..., Xi) = algeXa, ..., 9L Xi), Ya € QX(M).

Note that a pair of Sasakian structures with the same medtisfies these con-
ditions. In the case of a compact connected 3-dimensionalifald, a generalized
Sasakian structure is equivalent to a pair of Sasakiantates with the same metric.
In fact, we have

Theorem 4.6. Let M be a compact connecte&idimensional manifold. Then a
pair (¢+, £+, n+, g) of normal almost contact metric structures corresponds tgea-
eralized Sasakian structure if and only if both structures &asakian.

Proof. A normal almost contact metric structute §,7n,9) is a Sasakian structure
if and only if 6 = dn, wheref = g(-, ¢) (cf. Definition 6.4.4 and Definition 6.5.13 in
[3]). Thus it is sufficient to show that, = dn.. SinceM is 3-dimensional, we have

N4 AN d£g+9+ = 0
The inner product by, yields
Ny A ‘CE+‘C5+9+ = d£5+9+'

From (4.2) and Stokes’ theorem, we have

1
076/’7+ NO, =/’7+/\(d’)+—zﬁaﬁé+9+) =/U+/\dﬂ+-

Let U be the open set given by
U ={xeM: (ny Adny)x # 0}

Then U is not empty. It follows from Darboux’s theorem that we haeedl coordi-
nates X, y, z) such that

d
=dz—ydx = —.
N+ z—ydx, &4 97
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Since, 0, = 0, there exits a functiorf # 0 such that

0, = fdxandy= fdn,.
From (4.1), we have

of
0= —L57£579, = L57£g+9+ = lg_ (E dx A dy)

Let V be the open set given by
of
V = U; —#0
{x € 57 # }

We assume thaV is not empty. Then we have; = £ on V. Since 6_ = 0,
we obtain

6_ =hdn_. = +£hdpy,

whereh is a function. From (4.1), we have

of oh
—dn, = ——dn,.
37 N+ 97 N+

Then, from (4.2), we have

192f
(f —1+-—) dn, =0,

4 972
162f
+{h-1--—)dn,. =0.
( 4822) s
Thus it follows that
f—1=—(h-1).

Thus, for X, Y € TM, we obtain

9(Y, g_X) = 6_(Y, X) = i(% - 1)9+(Y, X) = g(Y, i(% - 1)(p+X).

2
S i(; - 1)<p+-

Since¢? = —id + n+ ® £+, we havef = 1. However this is a contradiction because
df/9z # 0. Therefored f /0z =0 on U, we havel¢ 6, =0 andfy = dny on U.
Sincen, A, #0 on M, we haveU c U. SinceM is connected antll is not empty,
we haveU = M and 6, = dns on M. O

Thus it follows that
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On a compact 3-dimensional manifold, a generalized Sasaltiacture is equiva-
lent to a pair of Sasakian structures. However, there exstoon-compact example
which is not a pair of Sasakian structures.

EXAMPLE 4.2. Let M’,d,J/, ") be a Kahler manifold and! = M’ x (0,7/2).
To construct normal almost contact metric structures, wiaee

7 . a .
QD—J, é_Er r’_dzl
g=-sin(2)g +dz®r dz

wherez denotes the coordinate on £0/2). Then §,+¢,&,n) are normal almost contact
metric structures but not Sasakian structures.
On C(M) = M’ x (0, 7/2) x R.p, we define complex structures and a metric by

1 0 0
Ji=Fd¢——-dr® — +dzr—,
£ =Ee - pAr® o Hdzero

g=r?g+dr®dr.

Then @, J+) is a bi-Hermitian structure and

wr =§(-, Ji-) = +r?sin(2)e’ + 2r dr Adz,
dws = +2r sin(2) dr Ao’ £ 2r2cos(Z)dzA o'
Thus

dwos(ds -, Jp -, Jx )

1
= 42r sin(2)(r d2) A o' £ 2r2 cos(Z) (—r— dr) NS
= +2r2sin(2) dzA o F 2r cos(Z) dr A o'

= +d(—r? cos(2)e').

Therefore §, —r? cos(2)w’, J:) is a generalized Kahler structure and induces a gener-
alized Sasakian structure. If we set= (')t on M’, we have

¢= ( - cosl(z)w’ g ) ( 8 g: ) ( Cos(l?z)‘”/ g )

1

3 1 0 0 ——p 1 0
O = ( _ cos(2)w/ 1)  sinze sm(O&) (COS(Z)a)’ 1).

“ (o (i) = (o D)
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