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Abstract
We establish an estimate on weakjyconvex domains irC" which provides a

unified approach to various existence results for dhgroblem. We also prove a
Diederich—Fornaess type result for weakjyconvex domains.

1. Introduction

Let @ € C" be a pseudoconvex domain and lete C3(2) be a strictly pluri-
subharmonic function. A variant of Hormander's theoremO[]1states that for any
d-closed (0, 1)-formf = f; dzj € LZ (2, loc) there exists a solution ofu = f

satisfying
2 e ¢
et = [112 5,0

where|f|raa¢ = ¢ka T, and @) = (#;0)~". A geometric observation is that

V/—109¢ is the curvature form of the Hermitian metr&® on the trivial line bun-
dle. As proved in [9], the length of the (O, 1)-form could bdccéated w.r.t. another
curvature form. The pointwise norr‘nf|2leaw is used in [9] instead o(f|2ijw

where s is any strictly plurisubharmonic function such thagé™" is plurisubharmonic.
The latter result was then further generalized to non-plilrfiarmonic weights ([7], [8],
[2], [3]), i.e., the curvature of the Hermitian metric onvidl bundle is not necessar-
ily positive. Berndtsson—Btocki—Donnelly—Fefferman ¢ypesults are closely related to
the Ohsawa—Takegoshi extension theorem and Bergman nietec[4], [5], [2], [8]).
We will consider, in the present paper, theproblem ong-convex domains. We
follow [11] in defining the notions ofy-convexity andg-subharmonicity. We begin by
recalling some basic notions and related preliminaries xiarier algebra. We prove
a Diederich—Fornaess type result for wealhconvex domains (Theorem 1). Lete
C>(Q) be ag-subharmonic function and let € C*(Q)) be a function such that the
real (1,1)-forms~/—199¢ —~/—10y A3y is g-positive semi-definite (see Definition 3)
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for some constan € [0, 4), we will establish the following a priori estimate

2_ 2
C= [ (fg. g

(%) 195 _1/2), 9112 + 19911% =
for any (p, g)-form g € Dom(@*) N C,‘;?q(ﬁ) on weaklyg-convex domains with smooth
boundary. Here we have used the notatigh= ¢;i dz; A 9/0Zj.. Whenyr = 0 we
can chooseS = 0, so ¢) generalizes Hormander’'s estimate geconvex domains and
g-subharmonic weight functions. Actuallyx) also implies the following Donnelly—
Fefferman type estimate.

(%) 19540y 9154y + 199N, = 72 /Q(szfg, gle ",

for any g € Dom(@*) N C,(Q) where¢ € C*(Q) is a g-subharmonic functiony €
C>(R) with —e™¥ being g-subharmonic andr € (0, 1/2] is a constant. This esti-
mate implies an existence theorem of Berndtsson—BlockiwiBlly—Fefferman type
(see Corollary 2 below). This kind of theorems may help poeda desired curva-
ture term without the contribution of the metric which hagortant applications (e.g.,
Ohsawa-Takegoshi type extension theorems). The curvapeeator F, of a certain
Hermitian metric will play an important role in our formuieh of main results. Ap-
plications for p-convex Riemannian manifolds can be found in [12].
Here are the main results of the present paper:

Theorem 1. Let @ € C" be a weakly g-convex domain with smooth boundary
and let r e C*(Q) be a defining function fo€. Then for any strictly g-subharmonic
function ¢ € C®(Q), there exist constants K 0, o € (0, 1) such that for anyy €
(0, no) the functionp := —(—re~K?)" is strictly q-subharmonic or2.

Theorem 2. Let Q@ be a weakly g-convex domain @" (1 <q <n) and lety €
C?(Q2) be a g-subharmonic function o2 and ¥ € C1(£2). Assume that the redlL, 1)
form §+/—193¢ —/—19y A3V is g-positive semi-definite for some constar [0, 4).
Then for any3d-closed(p, g)-form f € L%’q(Q, loc) (0< p =< n), if

/(F(p’lf, fle ¥tV < oo,
Q
there exists &p, q — 1)-form u e L%’q_l(sz, ¢ — ) such that

u=f, Jul?

4
o=y S (2_\/3)2/;2

where E;l is defined by(8) and it is required implicitly that Elf is defined almost

everywhere inQ.

—1 _
(F7Lf, fle ™Y,
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Corollary 1. Let 2 be a weakly g-convex domain @" (1 <q <n) and lety
be a g-subharmonic function aR. Then for anyd-closed(p, q)-form f € L%yq(sz, loc)
O=<p=n),if

/(F(;lf, fle™? < oo,
Q
there exists p, q — 1)-form ue L'g]q_l(sz, ¢ — ) such that
u=f, Jul? = /(F;lf, fle™.
Q

Corollary 2. Let @ be a weakly g-convex domain i@" (1 < q < n) and let
¢ be a g-subharmonic function of2, ¥ € C3(2) be a function such thate ¥ is
g-subharmonic. For any constadte [0, 1) and 3-closed(p, g)-form f € L%’q(Q, loc)
O=p=n)),if

/(F;lf, fle vt < o0
Q
then there exists &p, q — 1)-form ue Lqufl(sz, ¢ —8¢) such that

- 4 _ B
u=f, Julz,, < mfQ(lef, fle vV,

Corollary 3. Let 2 be a weakly g-convex domain @" (1 <q < n) and letg
be a g-subharmonic function a2, ¢ € C3(Q) be a strictly plurisubharmonic function
such that—e~" is g-subharmonic. For any constasite [0, 1) and d-closed(p, )-form
f e L34 loc) (0= p=n), if

/ wIk fl,j? f|’We_(p+8¢, < 0
Q
then there exists 4p, q — 1)-form ue Lqufl(sz, ¢ — 8¢) such that
Ju = f 2 < 4 j'kf N —
u=f, ||U||¢75¢_m Qlﬁ 1k fik

where (%) := (y;) %
Corollary 4. Let 2 be a weakly g-convex domain @" (1 <q <n) and letg

be a g-subharmonic function o, v € C3(Q) be a g-subharmonic function such that
—e ¥ is g-subharmonic. For any-closed(p, g)-form f e L2 (2, loc) (0< p <n), if

/(Fl;lf, fle7? < o0
Q
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then there exists &p, q — 1)-form ue L%’qfl(Q, @) such that

u=f, |ul? 54/9(5;11: fle®.

Corollary 5. Let Q be a bounded weakly g-convex domain@Gfi (1 <q <n)
and let ¢ be a g-subharmonic function of. For any d-closed (p, q)-form f e
L24(2, ¢) (0= p =n), there exists ap, q — 1)-form ue L3, (2, ¢) such that

_ 2d
du=f, Jul, < Ellfllw

where d is the diameter af.

Since there are plenty af-subharmonic functions which are not plurisubharmonic
whenq > 2, our results provide more flexibility in choosing weights L2-estimates.
Such flexibility may help us make generalizations and imenognts on existence re-
sults for thed-problem. Letp be the function in Theorem 1 above, then it is easy
to see that-e ¥ is strictly g-subharmonic or©2 wherey := — log(—p), as a conse-
guence, we obtain Theorem 2.4 in [11]. Theorem 1 was orilyirabved by Diederich
and Fornaess ([6]) for pseudoconvex domains, i.e. the casp=ofl. Theorem 2 was
obtained by Btocki ([5]) for (0, 1)-forms on pseudoconvexdins. Corollary 1 is a
strengthen version of Theorem 3.1 in [11]. In the case ef 1, Corollary 2 recovers
a result due to Btocki ([3]). The arguments used in [3] anddb]not indicate the esti-
mates §), (xx). Corollary 3 above improves the main result in [1] and ourdllary 5
improves slightly a result due to Hérmander (Theorem 2.8.310]) whenqg > 2.

2. Weakly g-convex domains

We begin by establishing the basic notation.

We will adhere to the summation convention that sum is paréat over strictly in-
creasing multi-indices. The coordinates®@? are chosen such that the standard Kahler
form of C" is given by v/~1dz; AdZ}. Let © be a domain inC" and let¢ € C>®(Q),
we denote byV%1p the (0, 1)-part of the gradier¥¢ of ¢ w.r.t. the standard Kéhler
metric, i.e.V%ip = ¢; 0/0Z;. We use(-, -) to denote the induced (pointwise) Hermit-
ian inner product of |, q)-forms on Q. Following [10], the weighted_? Hermitian
inner product of p, g)-forms will be denoted by <, -); and the corresponding Hilbert
space will be denoted by2 (%2, ¢).

Let @ be a domain inC", 1 < g < n, we recall the notion ofj-subharmonicity
([11], [14] and [13)).

DEFINITION 1. Letg be an upper semi-continuous function €y we saygy is
g-subharmonic o2 if the restriction ofy to anyq dimensional complex submanifold
of © is subharmonic w.r.t. the induced metric.
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REMARK 1. It is easy to show (see [1], [14]) that for amy € C?3(RQ), ¢ is
g-subharmonic if and only if any sum af eigenvalues of the complex Hessian

¢ijdz ® dzj

of ¢ is nonnegative. If any sum af eigenvalues of the complex Hessian is positive,
¢ is then called strictlyg-subharmonic. Moreover, everysubharmonic function could
be approximated by a decreasing sequence of smgahbharmonic functions. It is
easy to see that 1-subharmonicity is equivalent to pluhautonicity.

Following [11] and [13], we introduce the notion gfconvexity.

DEFINITION 2. AssumeS2 is a smooth domain, and a defining function fore,
then we say thaf2 is weakly g-convex if at every poinb € Q2 we have

rij(D) g O = 0
for every (0,g)-form g = g3 dz; such that
rogg =0

for all multi-indices K with |K| = g — 1. For a general domai € C", we call it
weakly g-convex if it could be exhausted by smooth wealhconvex domains.

REMARK 2. It is easy to see thaj-subharmonicity (convexity) impliesg(+ 1)-
subharmonicity (convexity). The notions gfsubharmonicity andj-convexity are both
invariant under a unitary change of coordinates, but nosgmed by biholomorphic
transformations.

Assume2 € C" is a smooth domaijnand r e C*(Q) is a defining function for2.
Let ¢ € C*() andg € C3, (%) satisfy

rgx =0

for all multi-indices K with [I| = p, |[K| = q — 1, then we have the standard Kohn—
Morrey—Ho6rmander identity

13012 + 13301 = [Q 9100691 RO FRe ™




6 Q. J, G. TaN AND G. YU

When Q is g-convex, we obtain the following inequality

1) 1301 + 133017 > [ 9069, = O rRe ™.

We denote by/A\ ™9 the linear space ofg q)-forms, i.e. A9 = span.{dz AdZ7 |
Il =p, |J| =q}. For any real (1, 1)-formp = +—10;; dz; A dZ, we introduce a
self-adjoint linear operator of\ ™% by setting
(2) Fg :QJRdZ_k/\ a—z_jJ

where 4 means the interior product. We also set the notafign:= F 5, for a
smooth functiong.

With the linear operatolF;, we can rewrite the integrand on the right hand side
of (1) as follows

9 [ \
0j0:#9, k91 kx = (¢Jk32J )I K . (3_Zk_lg)| K

0
<¢Jk —0, .= 9Zx g>
= (Fy9, 9)-

®3)

Consequently, we obtain by the Kohn—Morrey—Hoérmander itleand (3)

(4) 1agl3 + 119,91l = /Q(Fw- gle™ := (Fy9, 9)y-
Denote the eigenvalues of the matrixg) by
AL = = An,

after a unitary change of coordinates, we h&e= 1; dzj A 9/9Zj.. For any multi-
indices 1, J with |I| = p, |J| =q, set

(5) A1 322)»1',
jed
it holds that
0
Fydz Adzy = Aj dz /\dZ_j/\ B?sz
j

q
= Ay dz AdZ} A D (“1)P 18, dZ; A- - AdZ, A AdZ
a=1
= Z)\j dZ| /\dZZ)»LJ dZ| /\dE
jed
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where the circumflex over a term means that it is to be omittéehce eigenvalues of
the mapF, are given by

(6) Ay, IMl=p Pl=q.

DEFINITION 3. Letf = v/—10;,dz; AdZ be areal (1,1)-form o€", 1=q =n.
0 is said to beg-positive semi-definite-positive) if 11 + --- + A4 > 0 (> 0) where
A1 =--- = An are the eigenvalues of the matrig;y).

REMARK 3. By formula (6),0 is g-positive semi-definite if and only if the op-
erator Fp: AP9 — APY9is a positive semi-definite for any € p < n. We have the
following criterion for g-subharmonicity of a smooth functiap.

¢ is g-subharmonic (strictlyg-subharmonic) orf2 if and only if Fy is g-positive
semi-definite (definite) at each point &f.

Since Fy: APY — APY is self-adjoint, we have the following orthogonal
decomposition
p.g

@) /\ =KerF, & ImFy,

which implies thatF, induces an isomorphisriy|im,: Im F; — Im F,. We can there-
fore define

8 Fti=(Folme) ™ IMFy > Im Fy

for any real (1, 1)-form9. Notice thatF, itself is not required to be invertible in the
above definition.
When 6 is g-positive, we know by (6)

9) (F7'9)15 = 21501 5

holds for anyg = g, 5dz A dZ; € APY and any given multi-indiced, J satisfying
IH=p, J=0q.

) If the function ¢ is further assumed to be strictly plurisubharmonic, we dery
(¢'%) the inverse matrix of the complex Hessian matuxj, then we have

(F5'9.9) = 415lg 5l
-1
= (ZAJ) 9.5°
jed

1
<7 > aiten sl

jed

(10)

@6 1 I
= §¢Jk9|,jT<9|,W
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for arbitraryg = g, 5dz Adzz e AP%.
We conclude this section by proving a Diederich—Fornaeps tesult for smooth
bounded weaklyg-convex domains.

Proof of Theorem 1. By Remark 3, it suffices to show tli&tg, g) > O for any
0#¢g¢e /\O'q. A direct computation gives

(Fo9. 9) = n(-r)""%e"? - [Kr*((Fy9, 9) — nK|V*'¢.g|)
(11) —1((Frg, 9) — 2nKR (Vg VO'r .g))
+ (L )|V g
Throughout the proof, we denote By, A,,... various constants which are independent
of n, K.

Since the boundary af is assumed to be smooth, for any sufficiently smeat 0
there is a smooth map: N, — 92 such that

(12) distl, 9Q2) = |z—7(2)|, z< N,

where N, := {z € Q| r(2) > —e}. As the functionr € C*(Q) is a defining function
for Q, there exists a constam®; > 0 which only depends on such that

(13) diste, 9Q) < —Ar(2), AL <|Vr(@)|, ze N..

For anyg € A°%, ze N,, set

(2 = Vo (@ar()ng, %@ = or(2) A V' (2),

1
[VO1r (2)]2 [VO1r (2)]2

then we havey = 01(2) + 92(2), [91* = |91(2)|* + 192(2)|* and

(14) Vol (2).01(2) = 0, 1g(2)] = Vo (2)9]

1
VoI (@)

for everyz € N,. From (12) and the first inequality in (13), there is a constan> 0
such that

1d
I(Fr o1, 91)(2) — (Fr 91, 01)((2))| = ‘/(; &(Frgln )tz + (1—t)=(2)) dt

< —Ax(2)|gl?

(15)

holds for anyz € N,. By (3), the identity in (14) and Definition 2, we get

(Fro, 91)(7(2)) =20, ze€N..
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Therefore, for anyz € N,, the following estimate follows from (15)

(Frow 91)(2) = Ar (29

Taking into account of the inequality in (14) angi(z)| < |g|, the above estimate im-
plies that

Az

Vo,l
—|V°'1r(z)|| r(2)9ll9l

(16) (Frg,9)(2 = Ar(2)|g> -

holds for anyz € N, where Az > 0 is another constant.
Since ¢ is strictly g-subharmonic org2, there is a constant > 0 such that

17 (Fs9, 9)(2) — nK|V*1$(2) 101> = (0 — AmK)|gl?

holds for anyz € Q where A; := sup,|V%p[2. From (11) and (17), there exists a
constantAs > 0 such that

1) (Fa 0@ = i) e ki) - o AK) - Ao

holds for anyz € Q.
When K > 4As/(c¢?) andn € (0, 0/(2A4K + o)), (18) implies that

1
(19) (Fp0.0) = ;1'7(—|r)'772€37”'<“’KSZO"Igl2

holds on2 \ N,.

Similarly, for any constantg € (0,0/(2A4K)) and K > (4/0)(Az + (62/(4As)) +
2A2 + 02), As := Ag/(2A), from (11), (16) and (17) it follows that the following
inequality holds onN;

(F,0, g) = n(—r)"2e7"?[K (0 — AanK) — Ag]r?|g?
+ 2(As + AanK) |V Lgrg|
+ (1 —n)|Vohr g

2A% + 2A5n°K?

(20) > n(—r)"ze"“[K(o — AK) = Ap = =

}rzlgl2
K
> n(-r)"2e e (—2“ — Ay — 4N - 02)r2|9|2

1
> Zn(—r)"’ze’”K¢Kr20|g|2.

By combining (19) and (20), we know Theorem 1 is true for anynstant K >
(4/0) (A2 + 02/(4As) + As/e? + 2A% + 0%) and ng := 0/(2AsK + o). O
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3. Donnelly—Fefferman type estimate

We will prove, in this section, the existence results in tmespnt paper. The key
for our proofs is to establish an a priori estimate of DonndHefferman type from
which we get the existence theorem 1. Since the congtantolved in this estimate
would be allowed to have value zero, we also obtain an existeasult of Donnelly—
Fefferman type and Homander type (with one weight functioh® first recall a basic
lemma from functional analysis which is due to Hoérmandee (7).

Lemma. Let H; l> H, —S> H3 be a complex of closed and densely defined opera-
tors between Hilbert spaces. For anyefKerS and any constant G 0, the following
conditions are equivalent.

1. There exists some @ H; such that Tu= f and |Ju|u, < C.
2. |(f, 9m,|> < CA(IIT*gllZ, + IISd|%,) holds for each ge Dom(T*) N Dom(S).

Proof of Theorem 2. We consider first the case wheres a bounded domain in
C" with smooth boundary ang, ¥ € C®(Q)

We will apply the above lemma to following weighted?-spaces of differential
forms

1 1 :
Hy = L%’q_l(Q, ¢ — 51”)’ H, = L3, (SZ ¢ = El/f), Hs = L%,q+1(9’ ¢- EW)

and the operators
T=34o0 87(1/4)'1/, S= 67(1/4)‘0 09.

In order to use the above lemma, we need to show that the fiolpestimate

I(f, 9)¢7(1/2)w|2
(21) - 4(F 7L, F)pey
@2— oy

(|| eCY4w 5; e W4 5g ||$

2
—w2yy oy + |l ~w2)

holds for arbitraryg € Dom(@*) N Cgf’q(ﬁ).
Let g € Domd* N Cp, (%), from

* a%* 1
9,9 =0, (1/2,9 + EVO'H//JQ,

by using Cauchy’s inequality witla, it follows that

- 14+¢€ - 1+€
l6;gl3 < T||3$—(1/2)¢9||5 + THVO'legHi
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for any positive constant. For anye € [0, 4), let

2
€= ——1,
NS
then the above inequality becomes
(22) 132912 < —2— 157 OI12 + ——= IV g2,
4 2_\/5 4 4 2\/3 4

Since §+/—180¢ — ~/—13y A 3y is g-positive semi-definite, we get the following
inequality

(23) 5(F,g, 9) = [V*y g

Substituting (22) and (23) into Hormander's estimate (4 ¢-subharmonicity of
@ gives

—=19;_,,9ll; + 1391 = 15,9117 + 1991l — =—=IIV>*v gl

2— f vz 2f

2 —
=20 [ (Rg g

which further implies the desired estimate) @s follows

14 L4 5 (12 3 2 1 115g|l?
le=/ N'a(p (1/2)¢g||¢ e @ )wag”(p—(l/z)lﬁ = 195_1/2), 9ll; + 11991l
NG

= ||5$_(1/2)¢9||§; + T”ég”i

_ 2
= @/ﬂ(ﬁpg, ge”

Sinceg is g-subharmonic, the Cauchy—Schwarz inequality applied ¢optbsitive semi-
definite Hermitian form &, -, -), gives

I(f, 9)p-14 1> = |(F, o F ™2V £, g),
< (€W f, VW E 1), (Fu0, ),

AF LS, f
< M(” oW/

(1/4)¢ 5
+ e a
(2 \/3)2 (p(l/z)‘/,g” ” g” (1/2)|//)

where Fggl is defined by (8). Thus the estimate (21) has been proved obomd* N
Cgf‘q(ﬁ). By using the density lemma (Proposition 1.2.4 in [10]), kreow that (22)
holds for anyg € Dom(T*) N Dom(S). Consequently, by the lemma we mentioned at
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the beginning of this section, there exists some Lfmfl(sz, ¢ — (1/2)y) such that

4 .
To="f, vl gz < m(':«zlf’ Doy

Setu = e ™y, then we geu € LE . ,(2, ¢ — ) and

_ 4
_ 2 _ 2 -1
(24) ou=f, Jullg_y, = llvllo_@/zy = 2_ Vi) ﬁ)z(F¢ f, oy

Theorem 2 now follows, in its full generality, from (24), tls¢andard argument of
smooth approximation and taking weak limit (see e.g. [10]). ]

Proof of Corollary 1. Corollary 1 follows from Theorem 2 by adsings = 0
andy = 0. ]

Proof of Corollary 2. Letgs = ¢ + ¢ and ¥1 = (1 + 8y, then ¢ is
g-subharmonic. Since

(14 8)*V=100¢1 — vV=139y1 A 9Y1 = (1 + 8)’[vV—130¢ + v —1e” do(—e V)],
the assumption thatp and —e ¥ are both g-subharmonic functions implies that

(14 8)>V/=103¢1 — /=131 A Yy is g-positive semi-definite. Applying Theorem 2
to the weightsp; and y;, we obtain Corollary 2. O

Proof of Corollary 3. Corollary 3 follows directly from Cdfary 2 and the point-
wise inequality (10). 0

Proof of Corollary 4. Corollary 4 follows directly from Cdtary 2 by choosing the
constan® to be 0. O

Proof of Corollary 5. Without loss of generality, we assurhati2 contains the

origin of C". Let ¢ = qz|?/d?, then (9) implies thaF,* = (d*/g®)ld on (p,q)-forms.
Since the complex Hessian efe™” is given by
%e“’(dzi ®dz — %zi dz ® z; dz_,-),

we know that any sum af eigenvalues of the complex Hessian-eé ¥ is no less than

q q q° z?
2° ‘”|:(1—¥|z|2) +q—1} = ¢ "’(1—|d—|2) > 0.
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So —e ¥ is, by definition, ag-subharmonic function o (but not plurisubharmonic).
Applying Corollary 4 with the weighty = q|z|?/d?, we obtain the following estimate
for the solutionu

442
2 2
fully = e 115

This completes the proof of Corollary 5. ]
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