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Abstract
A general construction of braid group actions on cohereptgts via M. Saito’s
theory of mixed Hodge modules is given.

1. Introduction

Examples of braid group actions on derived categories okmoit sheaves are
abundant in the literature. Much of the interest in these stéwm the relation with
homological mirror symmetry, see [15]. The purpose of thigenis to give a con-
struction of braid group actions on coherent sheaves (eggbvia actions on derived
categories ofconstructible sheave@opological). The bridge between these worlds is
provided by M. Saito’s theory of mixed Hodge modules.

In 83 we review the construction of the main play®®(B\G/B), the Borel equi-
variant derived category of mixed Hodge modules on the flagetyaG/B associated
to a reductive groupgs. The key points are Proposition 3.3 (braid relations) ané-Th
orem 3.8 (invertibility of the objects giving the braid ritas). The contents of this
section can be found in various forms in the literature, fstance see [16].

Underlying a mixed Hodge modul® on a smooth varietyX is a filtered D-
module. The associated graded isCé-equivariant coherent she@ft M on the co-
tangent bundler * X. This brings us to the main result, Theorem 4.8, which expgi
to obtain a monoidal functor fronD2(B\G/B) to an appropriate category of coher-
ent sheaves” on the Steinberg variety. In view of Proposition 3.3 and Teev 3.8,
this realizes our goal. Via standard Fourier—Mukai fornmajis#’ acts on auxilliary
categories of coherent sheaves giving braid group actionthese too.

The idea to exploifft in this fashion comes from T. Tanisaki’s beautiful papEf][
This theme was also explored by I. Grojnowski [6]. |. Grojstwand T. Tanisaki work
at the level of Grothendieck groups, we insist on workingheg tategorical level. Re-
gardless, all the key ideas are contained in [17]. Furtheemihe key technical result
(Theorem 4.5) that is used to prove Theorem 4.8 is due to Gmbau[11].

A variant of Theorem 4.8 has also been obtained by R. Beznikav and S. Riche
[4]. Further, R. Bezrukavnikov and S. Riche were certairyae of such a result long
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before this note was born (see [3]). Thus, experts in gedcnsgpresentation theory
have known that such a result must hold for a long time. QagtaV. Ginzburg (see
[5]), I. Grojnowski (see [6]), M. Kashiwara (see [7]), D. Katdn (see [8]), G. Lusztig
(see [8]), R. Rouquier (see [13]), and of course T. Tanisake([17]) must have also
known. Undoubtedly this list is woefully incomplete.

2. Conventions

Throughout ‘variety’= ‘separated reduced scheme of finite type over Spec@
variety can and will be identified with its set of geometridrgs. If X is a variety, set
dx = dimc(X). If Y is another variety, sely,y = dx — dy.

Write MHM(X) for the abelian category of mixed Hodge modulesXarand D2 (X)
for its bounded derived category. The constant (mixed Hpdbeaf is denoteX. Tate
twist is denoted by (1).

Let G be a linear algebraic group acting of (action will always mean left ac-
tion). Write D (G\ X) for the G-equivariant derived category (in the sense of [1]) of
mixed Hodge modules oX. Write For. D (G\X) — DP(X) for the forgetful functor.

We write Ox for the structure sheaf ok, D®(Ox) for the (bounded) derived cat-
egory of Ox-coherent sheaves and C@l) € DP(Oy) for the abelian subcategory
of coherent sheaves. If an algebraic groBpacts on X, we write D¢(Ox) for the
(bounded) derived category d@B-equivariantOx-coherent sheaves and Cidx) <
DS(0Oy) for the abelian subcategory @-equivariant coherent sheaves.

Let f: X — Y be a morphism of varieties. For coherent sheaves, wirité for
the ordinary pullback of sheaves, so that the pullbdék D°(Oy) — DP(Ox) is given
by f*M = Oy ®%,1OX f~IM. If X is smooth, writeQx for the cotangent sheaf and
setwy = /\GIX Qx. If f: X =Y is a morphism between smooth varieties, ety =
wx Qf-10y fﬁla)gl.

Write Dy for the sheaf of differential operators 0. A Dx-module will always
mean a coherent lefPx-module which is quasi-coherent as @x-module.

We write mx: T*X — X for the cotangent bundle to a smooth variety We
identify T*(X x X) with T*X x T*X. However, we do this via the usual isomorphism
T*(X x X) >~ T*X x T*X composed with the antipode map on the right. This is dic-
tated by requiring that the conormal bundle to the diagonaX ik X be identified with
the diagonal inT*X x T*X.

3. Convolution

Let G be a connected reductive group. Fix a Borel subgr@&ug G. Then B
acts onG via b-g = gb™'. The quotient under this action is the flag variedy B.
Clearly, B acts onG/B on the left, and we may form the equivariant derived category
D2 (B\G/B).

Let §: G x G/B — G/B be the projection onG composed with the quotient
map G — G/B. Let p: G x G/B — G/B denote projection ors/B. Further, write
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g:GxG/B—>G 3 G/B for the quotient map. Lein: G % G/B — G/B denote the
map induced by the action @& on G/B.

. GxG/B—Y> GXG/B "> G/B
Lq/ p
G/B T G/B

The convolution bifunctor — - —: DP(B\G/B) x D?(B\G/B) — DP(B\G/B) is de-
fined by the formula

M-N=m(MX N),

whereM X N denotes the descent §fM ® p*N[dg] to DR (B\G 3 G/B). This is an
associative operation and endo®$,(B\G/B) with a monoidal structure. Convolution
adds weights and commutes with Verdier duality, sintés proper.

3.1. Another description. The groupG acts onG/B x G/B diagonally. The
map G x G/B — G/B x G/B, (g, X) — (G(g), g - X) induces aG-equivariant iso-
morphism

G/BxG/B > G % G/B.

Under this isomorphisrm: G % G/B — G/B corresponds to projection on the second
factor p,: G/B x G/B — G/B. Definei: G/B — G/B x G/B, x — (§(1), x). Using
equivariant descent (see [12, Lemma 1.4]) we infer

(3.1.1) i*[~de/s]: Dp(G\(G/B x G/B)) — D{(B\G/B)

is a t-exact equivalence. IM € DP(G\(G/B x G/B)) is pure of weightn, then
i*M[—dg,g] is pure of weight—dg/g.

Letr =idg,g x A xidg,s, WhereA: G/B — G/B x G/B is the diagonal embed-
ding. Define a monoidal structure - — on D2(G\(G/B x G/B)) by

(3.1.2) M- N = piar“(M X N)[-dg/g],

where p13: G/BxG/BxG/B — G/B x G/B denotes projection on the first and third
factor. A diagram chase (omitted) shows that the equivalgcl.1) is monoidal. We
will constantly go back and forth between these two desornigt

3.2. Braid relations. Fix a maximal torusT C B. Let W = Ng(T)/T be the
Weyl group. Writel: W — Z-¢ for the length function. TheB-orbits in G/B are
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indexed byW. Further, writing X,, for the orbit corresponding ta € W, we have
X, ~ C'™  For eachw € W, leti,: X, < G/B be the inclusion map. Set

Tw = iw!&
and
Cu = 1C(Xy, Xy)[—I(w)].

Then T, is the unit for convolution and will be denoted Wy Both T,[l(w)] and
Cyll(w)] are in MHM(B\G/B).

Write Y,, for the image ofG % Xy under the isomorphism (3.1.1). Then thg,
w € W, are theG-orbits in G/B x G/B. Furthermore,T,, = i*j,1Y, and C, =
i*1C(Yw, Yu)[—I(w)], where j,: Y, < G/B x G/B is the inclusion map.

Proposition 3.3. If I(ww') = [(w) + (w’), thenT,, - Ty = Tyu-

Proof. If l(ww) = [(w) + I (w’), then Yy, =Y, xg,;8 Yy, Where the fibre prod-
uct is over the projection mapg, — G/B andY,, — G/B on the first and second
factor respectively. Now an application of proper base gkaand the description of
convolution onDP(G\(G/B x G/B)) yields the result. O

Lemma 3.4. T,[l(w)]-— is left t-exact and (DT ,)[—I(w)] - — is right t-exact.

Proof. It suffices to showl ,[I(w)] - — is left t-exact, since Verdier duality com-
mutes with convolution. Consider the diagram

BwBx G/B —* BwB % G/B -™> G/B

Puw
Xu . i G/B

where §,, is the the evident quotient map on the first factor followed gdogjection,
p.: BwB x G/B — G/B is projection on the second factay,, is the restriction of

g, andm,, is the restriction ofm. ThenT, - — = m,(X,, & -), where X,, ¥ — is the
descent off% X, ® pi(—)[ds] to DE(B\BwB x G/B). Now X,,[I (w)] B — is t-exact.
This implies the result, since,, is affine. O

Proposition 3.5. Let se W be a simple reflection and /&5 the corresponding
partial flag variety. Letrs: G/B — G/Ps be the projection. Thes- M = 7ims. M,
for all M € 7.

Proof. The closurés of Ys in G/BxG/B is smooth (it is isomorphic t&*xP?).
Hence,IC(Ys, Ys) = i Y[dy], wherei: Y — G/B x G/B is the inclusion. Furtherrs
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is a Zariski locally trivial P!-fibration. Using proper base change we deduce
(JaxYs[dy, = 1]) - N = (idg/B x 7s)*(idg/B x 7s)«N

for all N € DR(G\(G/B x G/B)). Further, if M € D2(G\(G/B x G/B)) is such that
i*M[—dg/s] = M, then

i*(idg/s X 7s)* (idg B X 7s)s M[—dg 8] = 73 7 M. O
Corollary 3.6. Let se W be a simple reflection. The®y-Cq = Cs® Cs[—2](—1).

Let
i: D2(B\G/B) — DE(B\G/B)

denote the auto-equivalence induced by the automorphis@®/&x G/B that switches
the factors. Theri(M - N) =iN-iM, for all M, N € D2(B\G/B). Further, ifs e W
is a simple reflection, theiilr ¢ = Ts. ConsequentlyjT,, = T, andiC, = C, for
all weW.

Proposition 3.7. Let se W be a simple reflection. Then
() Cs-Ts=0Cs[-2](-1) =Ts-Cs;
(i) Ts-DTs=1=DTs-Ts.

Proof. Proposition 3.5 gives the first equality in (i), anglgmng the involutioni
gives the second equality. Convolve the distinguisheagt@DTg — 1[1] — C[3](1)~
with T, and use (i) along with Lemma 3.4 to get a short exact sequence

0— Ts:-DTs — Tg[1l] - Cs[1] - O

in MHM(B\G/B). This impliesTs-DTs = 1. ThatDTs- T = 1 follows from Verdier
duality. ]

Combining Proposition 3.3 with Proposition 3.7 (ii) yields
Theorem 3.8. EachT,, w € W, is invertible under convolution.

4. Action on coherent sheaves

Let X be a smooth variety andy: T*X — X its cotangent bundle.
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4.1. Filtered D-modules. Let F(Dx) denote the sub-sheaf @k consisting of
differential operators of degree at mastThis defines a filtration oDx. Write grDx
for the associated graded sheaf of rings. Then we have a icah@somorphism

gr Dx =~ wx«Ot1+x.

Identify grDx with mx.O7«x via this isomorphism. Afiltered Dx-moduleis a pair
(M, F), where M is a Dx-module andF is an exhaustive filtration oM by sub-
sheaves such thd; (Dx)FjM C F ;M. The filtration F is a good filtration if gr(M)
is coherent as a gpx-module. The support 0Or7:x ®;-14p, 9r(M) is the character-
istic variety of M.

A mixed Hodge moduleM € MHM( X) is a tuple M, F, rat(M), W), whereM is
a regular holonomicDyx-module, F is a good filtration onM (the Hodge filtration),
rat(M) is a perverse sheaf oK with Q-coefficients (therational structur§ such that
P#(M) = C ®q rat(M), where 2% is the de Rham functor, an@/ is the weight
filtration on (M, F,rat(M)). This data is required to satisfy several compatib#gitighich
we only recall as needed. Morphisms in MHX) respect the filtrationd= and W
strictly. Given M, F, rat(M), W) € MHM( X),

M(n) = (M, Fs_n, Q(n) ®q rat(M), W, .2n),

where Q(n) = (27 ~/—1)"Q.

The weight filtrationW and rational structure rd¥() are not particularly relevant
for us in this section. Consequently, we omit them from ouiation from here on and
focus on the filtered>-module structure underlying a mixed Hodge module.

4.2. The functor gf. Let (M,F) e MHM(X). Taking the associated graded with
respect toF gives a coherent gf{x)-module griM). Hence, we obtain an exact func-
tor from MHM(X) to graded coherent gix)-modules. We haveC* acting onT*X
via dilation of the fibres ofrx. As x is affine,mx, gives an equivalence betwe&li-
equivariant quasi-coherer: x-modules and graded quasi-coheregt O1:x-modules.
Thus, we obtain an exact functor

gf: MHM(X) — Cot" (O1+x), M > Orex @1 gy T 9H(M),
with C* action ongr(M) defined by
z-(f(x, ) @m) = f(x, 2 %) @z 'm;,
wherez € C*, f(x, &) € O1«x, andm; is in thei-th component of giy).

4.3. Tate twist andGf. Forn € Z let g" € Cotl* (pt) be the one dimensional
C*-module with the action o € C* given by multiplication byz". Leta: T*X — pt
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be the obvious map. Fa¥l € D€ (O7-x), setM(n) = a*q™" ®oq.x M. Evidently, if
N e DE(X), then
gr(N(n)) = gr(N)(n).

4.4. Correspondences. Let f: X — Y be a morphism of smooth varieties. As-
sociated tof we have the diagram

T*X < THY xy X 25 T*Y,

where f, is the base change of along T*Y — Y, and fq is the map dual to the
derivative. LetTy X € T*X denote the zero section. Set

TXY = f (T X).

If f is the inclusion of a closed subvariety, th&gY is the conormal bundle tX in
T*Y. Let A C T*Y be a conic (i.eC*-stable) subvariety. Thef is non-characteristic
for A if

fHA)NTEY S TyY xy X,

This is equivalent tofy|-1(a) being finite. We sayf is non-characteristic foM €
MHM( X) if f is non-characteristic for the characteristic variety\of

f : - .
Let X < Z > Y be a diagram of smooth varieties such that the canonical map
Z — X xY is a closed immersion. We call such a diagramoarespondencéetween
X andY. Associated to a correspondence we have a functor

Dypy: DR(X) — DY), M > g.f*M.

We also have a commutative diagram

T (X xY)

— ™~
fa Qd
—~L — B
with middle square cartesian. So we obtain a correspondence

TX < T2(X x Y) 2 Ty,
For M € D€ (Or-x) set

Dxv(M) = Ayu (A% M ® 0y, . £ @2/¥)dz/x](—dzv),
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wherep: T;(X xY) — Z is the evident map.

f
Theorem 4.5([11, Théoréme 3.1.1]) Let X« Z %Y bea correspondence with
g projective. If f is non-characteristic for M DP(X), then

gfo @y (M) = @y o Gr(M).

REMARK 4.6. Letf: X — Y be a morphism between smooth varieties, and write
't € XxY for the graph off. Let px: '+ - X and py: 't — Y be the projection
maps. Then we have the correspondence

X & By,

and &xyy = f.. If f is projective, then Theorem 4.5 implies

gr fo = o fg GF[dx/v](—dx v).
Similarly, for the correspondence
vy & Box
one hasdyx = f*. If f is smooth, then Theorem 4.5 implies
gr f* = fq. £ gr[dx,v].

Although we have obtained the above formulae as consegsiafc&éheorem 4.5, the
proof of Theorem 4.5 proceeds by first obtaining these foasulFurther, in [10] and
[11] the formulae do not keep track of tH&*-equivariant structure. Regardless, the
(equivariant) formula for non-characteristic pullbackinsmediate from the definitions.
The (equivariant) formula for proper pushforward requiadst more work which is done
in [17, Lemma 2.3]. With these in hand the proof of Theorem gré&ceeds exactly as
that of [11, Théoréme 3.1.1]. We also note that [10] and [I#&]written purely in the
context of filteredD-modules. In this generality [11, Théoréme 3.1.1] does néteq
hold - a crucial ‘strictness’ assumption that is requiredtfe formula forgr f, is miss-
ing. However, this is not a problem for us: if the filterédmodule structure is one un-
derlying a mixed Hodge module, then this strictness assompbplds [14, Théoreme 1].

4.7. The Steinberg variety. Let 7: .# — G/B denote the cotangent bundle of
G/B. ThenG x C* acts onAN (the mapr is G-equivariant andC* acts via dilations
of the fibres ofz). Under our conventions,#” x .4 is the cotangent bundle @/B x
G/B. Further,G x C* acts on.# x .4 via the diagonal action. Th8teinberg variety
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Z < . x4 is defined by

z= ) Ty (G/BxG/B).
weWw

It is a closedG x C* stable subvariety of#” x .#. The projectionZ — .4 to either
of the two factors is projective.

Denote by ps: A x A x N — A x & the projection on the first and third
factor, and letp,: .4 x A x .# — 4 be projection on the second factor. Define
Frl X N XN > NxNxNxN by

F=id ; x Axid z,

where A: 4 — . x 4 is the diagonal embedding. Le¥” € D€ (O ., ;) be the
full subcategory consisting of complexes whose cohomolsigyaves are supported on
Z. Define a bifunctor— - —: % x J# — 4 by the formula

M-N = P f*(M K N).

This endowss# with a monoidal structu~re. The unit i8,04.
Define y: D?(G\(G/B x G/B)) — ¢ by

y(M) = gr For(M) ®o . . A*”*wa}s(_dG/B)-
Theorem 4.8. y is monoidal.

Proof. Thaty preserves the unit object can be seen directly. Now apply The
orem 4.5 to the correspondence

G/BxG/BxG/BxG/B< G/BxG/BxG/B 2 G/BxG/B.

The G-equivariance ofM and N implies that the characteristic variety & X N is
contained inZ. Further,r is non-characteristic foM X N. Consequently,

y(M-N) = y(M)-y(N).

To complete the proof we need to argue that the associatiaibgtraints on both sides
are compatible. The associativity constraint on eithee si@ddefined via the usual ad-
junction maps and base change (iso)morphisms. These arpatibie with each other
by [11, 8§2.6]. O
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