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Abstract
We prove a scale-invariant boundary Harnack principle in inner uniform domains

in the context of non-symmetric local, regular Dirichlet spaces. For inner uniform
Euclidean domains, our results apply to divergence form operators that are not ne-
cessarily symmetric, and complement earlier results by H. Aikawa and A. Ancona.

Introduction

The boundary Harnack principle is a property of a domain thatprovides control
over the ratio of two harmonic functions in that domain near some part of the bound-
ary where the two functions vanish. Whether a given domain satisfies the boundary
Harnack principle depends on the geometry of its boundary and, in fact, there is more
than one kind of boundary Harnack principle. For a Euclideandomain�, two versions
found in the literature are as follows.
(i) We say that theboundary Harnack principleholds on� if, for any domain V
and any compactK � V intersecting the boundary��, there exists a positive constant
AD A(�, V, K ) such that for any two positive functionsu and v that are harmonic in
� and vanish continuously (except perhaps on a polar set) along V \ ��, we have

u(x)

u(x0)
� A

v(x)

v(x0)
, 8x, x0 2 K \�.

(ii) We say that thescale-invariant boundary Harnack principleholds on�, if there
exist positive constantsA0, A1 and R, depending only on�, with the following prop-
erty. Let � 2 �� and r 2 (0, R). Then for any two positive functionsu and v that
are harmonic inB(� , A0r )\� and vanish continuously (except perhaps on a polar set)
along B(� , A0r ) \ ��, we have

u(x)

u(x0)
� A1

v(x)

v(x0)
, 8x, x0 2 B(� , r ) \�.

2010 Mathematics Subject Classification. Primary 31C256, 35K20, 58J35; Secondary 60J60,
31C12, 58J65, 50J45.



620 J. LIERL AND L. SALOFF-COSTE

A third version, important for our purpose and perhaps more natural, would replace
the Euclidean balls in (ii) by the inner balls of the domain�.

A property similar to (i) was first introduced by Kemper ([20]). The scale-invariant
boundary Harnack principle (ii) on Lipschitz domains was proved independently in [4,
5] and [36], a not scale invariant version was proved in [11].

Bass and Burdzy ([9]) used probabilistic arguments to proveproperty (i) on so-
called twisted Hölder domains of order� 2 (1=2, 1]. Aikawa ([1]) proved the scale-
invariant boundary Harnack principle on uniform domains inEuclidean space. This
result was extended to inner uniform domains in [3]. Ancona gave a different proof
for inner uniform domains in [6]. Moreover, Aikawa ([2]) proved that (inner) uniform
domains are in factcharacterizedby the scale-invariant boundary Harnack principle.
Other works on the boundary Harnack principle include [7, 8].

In [15], Gyrya and Saloff-Coste generalized Aikawa’s reasoning to uniform do-
mains in symmetric strongly local Dirichlet spaces of Harnack-type that admit a carré
du champ. Moreover, they deduced that the boundary Harnack principle also holds on
inner uniform domains, by considering the inner uniform domain as a uniform domain
in a different metric space, namely the completion of the inner uniform domain with
respect to its inner metric.

In this paper, we extend the result of [15] in two directions.First, we consider
Dirichlet forms that allow lower order terms and non-symmetry. We do not assume
the existence of a carré du champ. Second, we prove the boundary Harnack principle
directly on inner uniform domains.

We follow Aikawa’s reasoning, but with the Euclidean distance replaced by the
inner distance of the domain. A crucial Lemma in our proof concerns the relation be-
tween balls in the inner metric and connected components of balls in the metric of the
ambient space, see Lemma 3.7. This relation was already usedin [6] to prove a bound-
ary Harnack principle on inner uniform domains in Euclideanspace. Ancona ([6]) also
treated second order uniformly elliptic operators with some lower order terms, under
the additional condition that the domain is uniformly regular. Following Aikawa’s line
of reasoning, we do not need the domain to be uniformly regular.

Our main result is Theorem 4.2. We now explain how it applies to Euclidean
space. Formally, let

(1) L f D
n
X

i , jD1

� j (ai , j �i f ) �
n
X

iD1

bi �i f C
n
X

iD1

�i (di f ) � c f .

Assume that the coefficientsa D (ai , j ), b D (bi ), d D (di ), c are smooth and satisfy
c� div b � 0, c� div d � 0, and,8� 2 Rn,

P

i , j ai , j �i � j � �j� j
2, � > 0.

Theorem 0.1. Let L be the operator defined above and let� � Rn be an inner
uniform domain. There exists CD C(�) > 0 and for each R2 (0, C � diam(�)) there
exist A0, A1 2 (0,1), depending on�, R and on the coefficients a, b, c and d, such
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that the scale-invariant boundary Harnack principle holdsin the following form. For
any � 2 �

Q

�

�, r 2 (0, R) and any two positive functions u andv that are local weak
solutions of LuD 0 in B

Q

�

(� , A0r ) \ � and vanish weakly along B
Q

�

(� , A0r ) \ �
Q

�

�,
we have

u(x)

u(x0)
� A1

v(x)

v(x0)
, 8x, x0 2 B

Q

�

(� , r ).

Moreover, if b D d D cD 0 then the constants A0 and A1 are independent of R.

Here, by alocal weak solution uon a domainU � Rn we mean a function that is
locally in the Sobolev spaceW1(U ) of all functions in L2(U ) whose distributional first
derivatives can be represented by functions inL2(U ), and satisfies

R

Lu  D 0 for all
test functions in W1

0 (U ), the closure ofC1

0 (U ) (the space of all smooth, compactly
supported functions onU ) in the W1-norm k � k22Ckr � k

2
2. A weak solutionu vanishes

weakly along U \ �
Q

�

� if u is locally in W1
0 (�) nearU \ ��. See Section 1.1. The

definition of a ball B
Q

�

in the inner metric is given in Section 3.3,�
Q

�

B
Q

�

denotes the
boundary of the ball with respect to its completion in the inner metric.

In Sections 1 and 2, we review some general properties of Dirichlet spaces and
describe the conditions that we impose on the space. Moreover, we state a localized
version of the parabolic Harnack inequality for local weak solutions of the heat equa-
tion for second-order differential operators with lower order terms. In Section 3 we
prove estimates for the heat kernel on balls and for the capacity of balls. After recall-
ing the definition and some properties of inner uniform domains, we give estimates for
Green functions on inner balls intersected with an inner uniform domain. In Section 4,
we give a proof of the boundary Harnack principle.

1. Preliminaries

1.1. Local weak solutions. Let X be a connected locally compact separable
metrizable space, and let� be a positive Radon measure with full support. Let (E ,F ) be
a strongly local regular symmetric Dirichlet form onL2(X,�). We denote by (L , D(L))
and (Pt )t�0 the infinitesimal generator and the semigroup, respectively, associated with
(E , F ). See [13].

There exists a measure-valued quadratic formd0 defined by

Z

f d0(u, u) D E(u f, u) �
1

2
E( f, u2), 8 f, u 2 F \ L1(X),

and extended to unbounded functions by setting0(u,u)D limn!1

0(un,un), whereun D

max{min{u, n}, �n}. Using polarization, we obtain a bilinear formd0. In particular,

E(u, v) D
Z

d0(u, v), 8u, v 2 F .
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Let U � X be open. Set

Floc(U ) D { f 2 L2
loc(U ) W 8open rel. compactA � U , 9 f ℄ 2 F

such that f jA D f ℄jA �-a.e.},

whereL2
loc(U ) is the space of functions that are locally inL2(U,�). For f, g 2 Floc(U )

we define0( f, g) locally by 0( f, g)jA D 0( f ℄, g℄)jA, where A � U is open and rela-
tively compact andf ℄, g℄ are functions inF such that f D f ℄, g D g℄ �-a.e. onA.

The intrinsic distance dWD dE induced by (E , F ) is defined as

dE (x, y) WD sup{ f (x) � f (y) W f 2 Floc(X) \ C(X), d0( f, f ) � d�},

for all x, y 2 X, whereC(X) is the space of continuous functions onX. Consider the
following properties of the intrinsic distance that may or may not be satisfied. They
are discussed in [33, 31].

The intrinsic distanced is finite everywhere, continuous, and defines

the original topology ofX.(A1)

(X, d) is a complete metric space.(A2)

Note that if (A1) holds true, then (A2) is by [33, Theorem 2] equivalent to

8x 2 X, r > 0, the open ballB(x, r ) is relatively compact in(X, d).(A20)

Moreover, (A1) and (A2) imply that (X, d) is a geodesic space, i.e. any two points
in X can be connected by a minimal geodesic inX. See [33, Theorem 1]. If (A1)
and (A2) hold true, then by [31, Proposition 1],

d(x, y) WD sup{ f (x) � f (y) W f 2 F \ Cc(X), d0( f, f ) � d�}, x, y 2 X.

It is sometimes sufficient to consider property (A20) only on an open subsetY � X,
that is,

For any ball B(x, 2r ) � Y, B(x, r ) is relatively compact.(A2-Y)

For a domainU in X, define

F (U ) D

�

u 2 Floc(U ) W
Z

U
juj2 d�C

Z

U
d0(u, u) <1

�

,

Fc(U ) D {u 2 F (U ) W The essential support ofu is compact inU },

F0(U ) D the closure ofFc(U ) for the norm

�

E(u, u)C
Z

U
u2 d�

�1=2

.
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Note thatFc(U ) is a linear subspace ofF .
The inner distance dU on U is defined as

dU (x, y) D inf{length( ) j  W [0, 1]! U continuous, (0)D x,  (1)D y},

where

length( ) D sup

(

n
X

iD1

d( (ti ),  (ti�1)) W n 2 N, 0� t0 < � � � < tn � 1

)

.

REMARK 1.1. Suppose (A1), (A2-Y) are satisfied. LetU � Y be open. Then
dU D dED

U
, whereED

U is the Dirichlet-type form onU defined in Definition 3.1 below.
See, e.g., [15].

Let QU be the completion ofU in the inner metric.

DEFINITION 1.2. Let V be an open subset ofU . Set

F0
loc(U, V)

D { f 2 L2
loc(V, �) W 8open A � V rel. compact inU with

dU (A, U n V) > 0, 9 f ℄ 2 F0(U )W f ℄ D f �-a.e. onA},

where

dU (A, U n V) D inf{dU (x, y) W x 2 A, y 2 U n V}.

DEFINITION 1.3. Let V � U be open. A functionu W V ! R is calledharmonic
or a local weak solutionof Lu D 0 in V , if
(i) u 2 Floc(V),
(ii) For any function� 2 Fc(V), E(u, �) D

R

f � d�.
If in addition

u 2 F0
loc(U, V),

thenu is a local weak solution withDirichlet boundary conditionalong QVdU
nU , where

QVdU is the completion ofV underdU .

For a time intervalI and a separable Hilbert spaceH , let L2(I ! H ) be the
Hilbert space of those functionsv W I ! H such that

kvkL2(I!H ) D

�

Z

I
kv(t)k2H dt

�1=2

<1.
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Let W1(I ! H ) � L2(I ! H ) be the Hilbert space of those functionsv W I ! H in
L2(I ! H ) whose distributional time derivativev0 can be represented by functions in
L2(I ! H ), equipped with the norm

kvkW1(I!H ) D

�

Z

I
kv(t)k2H C kv

0(t)k2H dt

�1=2

<1.

Identifying L2(X,�) with its dual space and using the dense embeddingsF � L2(X,�)�
F 0, we set

F (I � X) D L2(I ! F ) \W1(I ! F 0),

F0(I �U ) D L2(I ! F0(U )) \W1(I ! F0(U )0),

whereF 0 andF0(U )0 denote the dual spaces ofF andF0(U ), respectively. It is well-
known thatL2(I ! L2(X, d�)) can be identified withL2(I � X, dt � d�). Let

Floc(I �U )

be the set of all functionsu W I � U ! R such that for any open intervalJ that is
relatively compact inI , and any open subsetA relatively compact inU , there exists a
function u℄ 2 F (I � X) such thatu℄ D u a.e. in J � A.

Let

Fc(I �U ) D {u 2 F (I � X) W There is a compact setK � U that contains

the supports ofu(t, � ) for a.e. t 2 I }.

For an open subsetV � U , let Q D I � V and let

F0
loc(U, Q)

be the set of all functionsuW Q! R such that for any open intervalJ that is relatively
compact inI , and any open setA� V relatively compact inU with dU (A,U nV) > 0,
there exists a functionu℄ 2 F0(I �U ) such thatu℄ D u a.e. in J � A.

DEFINITION 1.4. Let I be an open interval andV � U open. SetQ D I � V .
A function uW Q! R is a local weak solutionof the heat equation�tu D Lu in Q, if
(i) u 2 Floc(Q),
(ii) For any open intervalJ relatively compact inI ,

8� 2 Fc(Q),
Z

J

�

�

�t
u, �

�

F 0,F

dt C
Z

J
E(u(t, � ), �(t, � )) dt D 0.

If in addition

u 2 F0
loc(U, Q),
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then u is a local weak solution withDirichlet boundary conditionalong QVdU
nU .

REMARK 1.5. We will abuse notation in writing
R

�tu� d� for the pairing
h(�=�)u, �iF 0,F .

1.2. Volume doubling, Poincaré inequality, and Harnack inequality. Let
(X, �, E , F ) be as in the previous section. LetY � X be open.

We say that (X, �) satisfies thevolume doubling propertyon Y, if there exists a
constantDY 2 (0,1) such that for every ballB(x, 2r ) � Y,

V(x, 2r ) � DYV(x, r ),(VD)

where V(x, r ) D �(B(x, r )) denotes the volume ofB(x, r ).
The symmetric Dirichlet space (X, �, E , F ) satisfies thePoincaré inequalityon Y

if there exists a constantPY 2 (0,1) such that for any ballB(x, 2r ) � Y,

8 f 2 F ,
Z

B(x,r )
j f � fBj

2 d� � PYr 2
Z

B(x,2r )
d0( f, f ),(PI)

where fB D
R

B(x,r ) f d�=V(x, r ) is the mean off over B(x, r ).
For anys 2 R, � > 0, Æ 2 (0, 1) andB(x, 2r ) � Y, define

I D (s� �r 2, s),

B D B(x, r, ),

Q D I � B,

Q
�

D

�

s�
(3C Æ)�r 2

4
, s�

(3� Æ)�r 2

4

�

� ÆB,

Q
C

D

�

s�
(1C Æ)�r 2

4
, s

�

� ÆB.

DEFINITION 1.6. The Dirichlet form (E , F ) satisfies theparabolic Harnack in-
equality on Y if, for any � > 0, Æ 2 (0, 1), there exists a constantHY(� , Æ) 2 (0,1)
such that for any ballB(x, 2r ) � Y, any s 2 R, and any positive functionu 2 Floc(Q)
with �tu D Lu weakly in Q, the following inequality holds,

sup
z2Q

�

u(z) � HY inf
z2Q

C

u(z).(PHI)

Here both the supremum and the infimum are essential, i.e. computed up to sets of
measure zero.

The parabolic Harnack inequality implies theelliptic Harnack inequality,

sup
z2B(x,r )

u(z) � H 0

Y inf
z2B(x,r )

u(z),(EHI)
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whereu is any positive function inFloc(Q) that is a local weak solution ofLu D 0 in
B(x, 2r ). Also, (PHI) implies the Hölder continuity of local weak solutions.

Theorem 1.7. Let (X, �, E , F ) be a strongly local regular symmetric Dirichlet
space. Assume that the intrinsic distance dE satisfies(A1) and (A2). Then the follow-
ing properties are equivalent:
(i) (E , F ) satisfies the parabolic Harnack inequality on X.
(ii) The volume doubling condition and the Poincaré inequality are satisfied on X.
(iii) The semigroup(Pt )t>0 admits an integral kernel p(t, x, y), t > 0, x, y 2 X, and
there exist constants c1, c2, c3, c4 > 0 such that

c1

V(x,
p

t)
exp

�

�

dE (x, y)2

c2t

�

� p(t, x, y) �
c3

V(x,
p

t)
exp

�

�

dE (x, y)2

c4t

�

for all x , y 2 X and all t> 0.

Proof. For a detailed discussion see [31], [32], [34], and [30].

The following theorem is a special case of Theorem 2.8 below.

Theorem 1.8. Let (X, �, E , F ) be a strongly local regular symmetric Dirichlet
space and Y� X. Suppose that(E , F ) satisfies(A1), (A2-Y), the volume doubling
property (VD) on Y and the Poincaré inequality(PI) on Y . Then(E , F ) satisfies the
parabolic Harnack inequality on Y . The Harnack constant depends only on DY, PY,
� , Æ.

DEFINITION 1.9. If each pointx 2 X has a neighborhoodYx for which the hy-
potheses of the above theorem are satisfied, then we say that the space islocally of
Harnack-type.

EXAMPLES 1.10. (i) Let (M, g) be a Riemannian manifold of dimensionn.
Since M is locally Euclidean, it is locally of Harnack-type. Suppose the Ricci curva-
ture of M is bounded below, that is, there is a constantK � 0 so that the Ricci tensor
is bounded below byR � �Kg. Then the volume doubling condition and the Poincaré
inequality hold uniformly on all ballsYx D B(x, r ), x 2 M, r 2 (0, R), with constants
DM and PM depending on

p

K R, hence the parabolic Harnack inequality holds. See
[30, Section 5.6.3]. In particular, ifK D 0 then volume doubling and Poincaré inequal-
ity hold true globally with scale-invariant constants.
(ii) Let M be a complete locally compact length-metric space of finite Hausdorff di-
mensionn � 2. M is called anAlexandrov space, if its curvature is bounded below by
someK 2 R in the following sense. For any two pointsx, y 2 M, let xy be a minimal
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geodesic joiningx to y with parameter proportional to the arc-length. Then for anytri-
angle4xyz consisting of the three geodesicsxy, yz, zx, there exists a comparison
triangle4Qx QyQz in a simply connected space of constant curvatureK such that

d(x, y) D d( Qx, Qy), d(y, z) D d( Qy, Qz), d(z, x) D d(Qz, Qx)

and

d(xy(s), xz(t)) � d(
Qx Qy(s), 

QxQz(t)) for any s, t 2 [0, 1].

Alexandrov spaces arise naturally as limits (in the Gromov–Hausdorff topology) of se-
quences of closed Riemannian manifoldsM(n, K , D) of dimensionn, diameter at most
D, and with sectional curvature bounded below byK 2 R.

On any Alexandrov space there is a canonical strongly local regular symmetric
Dirichlet form (E ,F ) on L2(M,Hn), whereHn is the Hausdorff measure in dimension
n, given by

E( f, g) D
Z

M
hr f, rgi dHn,

F D W1
0 (M).

The inner producth � , � i, the gradientr and the Sobolev spaceW1
0 (M) are Riemann-

ian like objects that are provided by the Alexandrov space structure. Concrete descrip-
tions of these objects as well as of the associated infinitesimal generator (Laplacian)
are given in [21].

Let Y � M be open and relatively compact. Like in the case of a manifoldwith
Ricci curvature bounded below, it is proved in [21] that the Dirichlet form (E , F ) sat-
isfies the volume doubling condition and the Poincaré inequality on Y, as well as con-
ditions (A1) and (A2-Y).
(iii) Let � be an open, connected subset ofRn. Let Xi , 0� i � k, be smooth vector
fields on Rn which satisfy Hörmander’s condition, that is, there is an integer N such
that at any pointx in �, the vectorsXi (x) and all their brackets of order less than
N C 1 span the tangent space atx. Let ! be a smooth positive function onRn such
that ! and!�1 are bounded. Then the symmetric Dirichlet form

E( f, g) D
Z

�

k
X

iD1

Xi f Xi g! d�, f, g 2 F ,

where the domainF is the closure ofC1

0 (�) in the (E(�, �)Ck�k2)-norm, is sub-elliptic.
That is, for any relatively compact setU there exist constantsc, � such that

E( f, f ) � ck f k22,� , f 2 C1

0 (�),

wherek f k22,� D
R

j

Of (� )j2(1C j� j2)� d� . See [17].
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The distancedE induced by (E , F ) satisfies conditions (A1) and (A2), see [19].
Moreover, the Poincaré inequality, [18], and the volume doubling condition, [28], hold
true locally.

2. The Dirichlet form (E , D(E))

2.1. Non-symmetric forms.

DEFINITION 2.1. Let (E , F ) be a bilinear form onL2(X, �). Let Esym(u, v) D
(1=2)(E(u, v)C E(v, u)) be its symmetric part andEskew(u, v) D (1=2)(E(u, v)� E(v, u))
its skew-symmetric part. Then (E , F ) is a coercive closed form, if
(i) F is a dense linear subspace ofL2(X, �),
(ii) (Esym, F ) is a positive definite, closed form onL2(X, �),
(iii) ( E , F ) satisfies thesector condition, i.e. there exists a constantC0 > 0 such that

jEskew(u, v)j � C0(E1(u, u))1=2(E1(v, v))1=2,

for all u, v 2 F , whereE1( f, g) D E( f, g)C
R

X f g d�.

Coercive closed forms are discussed in [25]. Every coerciveclosed form (E , F ) is
associated uniquely with an infinitesimal generator (L , D(L)) and a strongly continuous
contraction semigroup (Pt )t>0. Furthermore, the form

E�( f, g) WD E(g, f ),

D(E�) WD F .

is also a coercive closed form. Its infinitesimal generator (L�, D(L�)) is the adjoint
operator of (L , D(L)), and for its semigroup (P�

t )t>0, P�

t is the adjoint ofPt for each
t > 0. If these semigroups admit continuous kernelsp� and p, respectively, then the
kernels are related by

p�(t, x, y) D p(t, y, x), 8t > 0, 8x, y 2 X.

Throughout the paper we will use the notationa _ b D max{a, b} and a ^ b D
min{a,b} for a,b 2 R. For any f 2 L2(X,�), let f C Dmax{ f,0} and f ^1Dmin{ f,1}.

DEFINITION 2.2. A Dirichlet form (E ,F ) is a coercive closed form such that for
all u 2 F we haveuC ^ 1 2 F and the following two inequalities hold,

(2)
E(uC uC ^ 1, u � uC ^ 1)� 0,

E(u � uC ^ 1, uC uC ^ 1)� 0.

This definition is equivalent to the property that the semigroup (Pt )t>0 associated with
the coercive closed form (E , F ) and its adjoint (P�

t )t>0 are both sub-Markovian.
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The symmetric partEsym of a local, regular Dirichlet form can be written uniquely as

Esym( f, g) D Es( f, g)C
Z

f g d�, for all f, g 2 F ,

where Es is strongly local and� is a positive Radon measure. Let0 be the energy
measure of the strongly local partEs.

EXAMPLE 2.3. On Euclidean space, consider the form

E( f, g)D
Z n
X

i , jD1

ai , j �i f � j g dxC
Z n
X

iD1

bi �i f g dxC
Z n
X

iD1

f di �i g dxC
Z

c f g dx,

where the coefficientsaD (ai , j ), bD (bi ), dD (di ), c are bounded and measurable with
c� div b � 0 andc� div d � 0 in the distribution sense, and,8� 2 Rn,

P

i , j ai , j �i � j �

�j� j

2, � > 0. Then (E , F ) with domainF D W1
0 (Rn) is a Dirichlet form.

Set Qai , j WD (ai , j Ca j ,i )=2 and Lai , j D (ai , j �a j ,i )=2. Then the symmetric part ofE is

Esym( f, g) D
Z n
X

i , jD1

Qai , j �i f � j g dxC
Z n
X

iD1

bi C di

2
�i f g dx

C

Z n
X

iD1

f
bi C di

2
�i g dxC

Z

c f g dx,

while the skew-symmetric part ofE is

Eskew( f, g) D
Z n
X

i , jD1

Lai , j �i f � j g dxC
Z n
X

iD1

bi � di

2
�i f g dx

C

Z n
X

iD1

f
�bi C di

2
�i g dx.

The symmetric partEsym can be decomposed into its strongly local part

Es( f, g) D
n
X

i , jD1

Z

Qai , j �i f � j g dx

and its killing part, where� is given by

Z

 d� D
1

2

Z

(c� div bC c� div d) dx,  2 C1

0 (Rn).
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2.2. Assumptions on the forms. We fix a symmetric strongly local regular
Dirichlet form (OE , F ) on L2(X, �) with energy measureO0. Let Y � X and assume
that the intrinsic metricd D d

OE
satisfies (A1)–(A2-Y).

Let (E , D(E)) be a (possibly non-symmetric) local bilinear form onL2(X, �).

ASSUMPTION 1. (i) (E , D(E)) is a local, regular Dirichlet form. Its domainD(E)
is the same as the domain of the form (OE ,F ), that is,D(E) D F . Let C0 be the constant
in the sector condition for (E , F ).
(ii) There is a constantC1 2 (0,1) so that for all f, g 2 Floc(Y) with f g 2 Fc(Y),

C�1
1

Z

f 2 d O0(g, g) �
Z

f 2 d0(g, g) � C1

Z

f 2 d O0(g, g),

where0 is the energy measure ofEs.
(iii) There are constantsC2, C3 2 [0,1) so that for all f 2 Floc(Y) with f 2

2 Fc(Y),

Z

f 2 d� � 2

�

Z

f 2 d�

�1=2�

C2

Z

d O0( f, f )C C3

Z

f 2 d�

�1=2

(iv) There are constantsC4, C5 2 [0,1) such that for all f 2 Floc(Y) \ L1

loc(Y), g 2
Fc(Y) \ L1(Y),

�

�Eskew( f, f g2)
�

�

� 2

�

Z

f 2 d O0(g, g)

�1=2�

C4

Z

g2 d O0( f, f )C C5

Z

f 2g2 d�

�1=2

.

ASSUMPTION 2. There are constantsC6, C7 2 [0,1) such that

jEskew( f, f �1g2)j � 2

�

Z

d O0(g, g)

�1=2�

C6

Z

g2 d O0(log f, log f )

�1=2

C 2

�

Z

d O0(g, g)C
Z

g2 d O0(log f, log f )

�1=2�

C7

Z

g2 d�

�1=2

,

for all 0� f 2 Floc(Y) with f C f �1
2 L1

loc(Y), and all g 2 Fc(Y) \ L1(Y).

REMARK 2.4. (i) Assumptions 1 and 2 are more restrictive than Assumptions 1
and 2 in [23]. Here, we assume in addition that (E ,F ) is a time-independent Dirichlet
form. In particular, (E , F ) is positive definite and Markovian.
(ii) Assumption 1 (ii) holds if and only if for all f 2 Fc(Y),

C�1
1
OE( f, f ) � Es( f, f ) � C1 OE( f, f ).

See, e.g., [27].
(iii) E satisfies the above assumptions if and only if the adjointE�( f, g) WD E(g, f )
satisfies them.
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(iv) If Assumption 1 (iv) is satisfied withC4 D 0, then Assumption 2 is satisfied with
C6 D 0. To see this, apply Assumption 1(iv) toEskew

t ( f, f �1g2) D Eskew
t ( f, f ( f �1g)2).

(v) Assumptions 1 and 2 are satisfied by the classical forms onEuclidean space asso-
ciated with the example given in the introduction. The constantsC4, C6 can be taken
to be equal to 0 only ifai , j is symmetric for alli , j , and C2, C5, C7 can be taken to
be equal to 0 only ifbi D di D 0 for all i (i.e., if there is no drift term).

Let

C8 WD C2C C1=2
3 C C5C C7.

2.3. Parabolic Harnack inequality. Let (X,�, OE ,F ) be a strongly local regular
symmetric Dirichlet space andY � X. Assume (A1)-(A2-Y). Let (E , F ) satisfy As-
sumptions 1 and 2. Let (L , D(L)) be the infinitesimal generator associated with (E ,F ).

DEFINITION 2.5. Let V � U � X be open subsets. A functionu W V ! R is a
local weak solutionof Lu D 0 in V , if
(i) u 2 Floc(V),
(ii) for any function � 2 Fc(V), E(u, �) D 0.
If in addition

u 2 F0
loc(U, V),

then u is a local weak solution withDirichlet boundary conditionalong QVdU
nU .

DEFINITION 2.6. Let I be an open interval andV � U open. SetQ D I � V .
A function uW Q! R is a local weak solutionof the heat equation�tu D Lu in Q, if
(i) u 2 Floc(Q),
(ii) For any open intervalJ relatively compact inI ,

8� 2 Fc(Q),
Z

J

Z

V

�

�t
u� d� dt C

Z

J
E(u(t, � ), �(t, � )) dt D 0.

If in addition

u 2 F0
loc(U, Q),

then u is a local weak solution withDirichlet boundary conditionalong QVdU
nU .

Analogously to Definition 1.6, we can describe the elliptic and parabolic Harnack
inequalities for local weak solutions ofLu D 0 and�tu D Lu, respectively.

Lemma 2.7. Suppose(E ,F ) satisfies(A1), (A2). A function uW I ! F is a local
weak solution of�tu D Lu on QD I �U if and only if
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(i) u 2 L2(I ! F ),
(ii)

�

Z

I

�

�

�t
�, u

�

F 0,F

dt C
Z

I
E(u(t, � ), �(t, � )) dt D 0,(3)

for all � 2 F (Q) with compact support in I�U.

Proof. See [12, Lemma 5.1].

Theorem 2.8. Let (X,�, OE ,F ) and (E ,F ) be as above and Y� X. Suppose that

(E , F ) satisfiesAssumptions 1, 2,and ( OE , F ) satisfies(A1), (A2-Y), the volume dou-
bling property(VD) on Y and the Poincaré inequality(PI) on Y . Then(E ,F ) satisfies
the parabolic Harnack inequality(PHI) on Y . The Harnack constant depends only on
DY, PY, � , Æ, C1–C7 and an upper bound on C8r 2.

Proof. See [23].

Corollary 2.9. Let (X, �, OE , F ), (E , F ) and Y� X be as inTheorem 2.8. Fix
� > 0 and Æ 2 (0, 1). Then there exist� 2 (0, 1) and H 2 (0,1) such that for any
B(x, 2r ) � Y, s> 0, any local weak solution of�tu D Lu in QD (s� �r 2, s)� B(x, r )
has a continuous representative which satisfies

sup
(t,y),(t 0,y0)2Q

�

�

ju(t, y) � u(t 0, y0)j

[jt � t 0j1=2C dE (y, y0)� ]

�

�

H

r �
sup

Q
juj

where Q
�

D (s� (3C Æ)�r 2
=4, s� (3� Æ)�r 2

=4)� B(x, Ær ). The constant H depends
only on DY, PY, � , Æ, C1–C7 and an upper bound on C8r 2.

Proof. See, e.g., [30].

3. Green functions estimates and inner uniformity

3.1. Dirichlet-type form. For the rest of the paper, we fix a symmetric strongly
local regular Dirichlet space (X, �, OE , F ) and an open subsetY � X. Suppose (A1)–
(A2-Y), the volume doubling condition (VD) onY and the Poincaré inequality (PI) on
Y hold. Let (E ,F ) be a bilinear form which satisfies Assumptions 1 and 2. Recall that
by Theorem 2.8,L and L� satisfy (PHI) onY.

DEFINITION 3.1. Let U be an open subset ofX. The Dirichlet-type form onU
is defined as

ED
U ( f, g) WD E( f, g), f, g 2 F0(U ).
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The form (ED
U , F0(U )) is associated with a semigroupPD

U (t), t > 0. Using the
reasoning in [32, Section 2.4], one can show that, ifU � Y, then the semigroupPD

U (t)
admits a continuous integral kernelpD

U (t, x, y). Moreover, the mapy 7! pD
U (t, x, y) is

in F0(U ).
The extended Dirichlet spaceF0(U )e is defined as the family of all measurable, al-

most everywhere finite functionsu such that there exists an approximating sequence (un) 2
F0(U ) that is a Cauchy sequence with respect to the normk f kF0(U )e

WD ED
U ( f, f )1=2, and

u D lim un �-almost everywhere. If (ED
U ,F0(U )) is transient thenF0(U )e is complete by

[13, Lemma 1.5.5].
The Green function onU is defined as

GD
U (x, y) WD

Z

1

0
p(t, x, y) dt, x, y 2 U .

3.2. Capacity. The potential theory for symmetric regular Dirichlet formsis de-
veloped in [13, Chapter 2]. The potential theory of non-symmetric Dirichlet forms is
treated in [25]. In this section, we recall some definitions and facts that we are going
to use.

Let U � Y be open. Assume that (ED
U ,F0(U )) is transient. For any open setA�U

define

LA,U D {w 2 D(ED
U ) W w � 1 a.e. onA}.

If LA,U ¤ ;, then there exist unique functionseA,1, OeA,1 2 LA,U such that for allw 2
LA,U it holds

(4) E1(eA,1, w) � E1(eA,1, eA,1) and E1(w, OeA,1) � E1( OeA,1, OeA,1).

Notice that this implies thatE1(eA,1, OeA,1)D E1(eA,1,eA,1)D E1( OeA,1, OeA,1). Moreover, for
any openA � U such thatLA,U ¤ ;, eA,1 is the smallest functionu on U such that
u^1 is a 1-excessive function inD(ED

U ) andu � 1 on A. See [25, Proposition III.1.5].
The 1-capacity (with respect to (E , F )) of A in U is defined by

CapU,1(A) D

�

E1(eA,1, eA,1), LA,U ¤ ;,
C1, LA,U D ;.

The 1-capacity is extended to non-open setsA � U by

CapU,1(A) D inf{CapU,1(B) W A � B � U, B open}.

The 0-capacity is defined similarly, withE1 replaced byE andF0(U ) replaced by
the extended Dirichlet spaceF0(U )e.



634 J. LIERL AND L. SALOFF-COSTE

Now assumeA � X is closed. By [10, Proposition VI.4.3],eA,0 D GU�A is a po-
tential. Hence, for the equilibrium measure�A it holds

CapU,0(A) D E(eA,0, eA,0) D E(GU�A, eA,0) D
Z

eeA,0 d�A D �A(U ).

Let eCapU,1(A) D Es
1(es

A,1, es
A,1) be the 1-capacity with respect to the strongly local

part Es of the symmetric partEsym.

Lemma 3.2. For any subset A� U � Y,

eCapU,1(A) � CapU,1(A) � CeCapU,1(A),

where CD (1C C0)2(2C C1C2C 2C1=2
3 ).

Proof. It suffices to consider an open setA � U . By (4), the Cauchy–Schwarz
inequality, the sector condition and Assumption 1,

E1(eA,1, eA,1) � E1(eA,1, es
A,1)

� (1C C0)(E1(es
A,1, es

A,1))
1=2(E1(eA,1, eA,1))

1=2

� (1C C0)((2C C1C2C 2C1=2
3 )Es

1(es
A,1, es

A,1))
1=2(E1(eA,1, eA,1))

1=2.

Hence,

CapU,1(A) D E1(eA,1, eA,1) � CEs
1(es

A,1, es
A,1) D CeCapU,1(A),

whereC D (1C C0)2(2CC1C2C 2C1=2
3 ), On the other hand, by (4) and the Cauchy–

Schwarz inequality,

Es
1(es

A,1, es
A,1) � Es

1(eA,1, es
A,1) � (Es

1(es
A,1, es

A,1))
1=2(Es

1(eA,1, eA,1))
1=2

� (Es
1(es

A,1, es
A,1))

1=2(E1(eA,1, eA,1))
1=2.

Therefore,

eCapU,1(A) D Es
1(es

A,1, es
A,1) � E1(eA,1, eA,1) D CapU,1(A).

For a ball B(x, 2R) � Y, let

�R WD inf
0¤ f 2F0(B(x,R))

ED
B(x,R)( f, f )
R

f 2 d�
> 0

be the lowest Dirichlet eigenvalue of�Lsym on B(x, R). Note that�R � C=R2 for
some constantC > 0 depending onDY and PY (see, e.g., [16, Theorem 2.6]). For any
f 2 F0(B(x, R)), we have

ED
B(x,R)( f, f ) � ED

B(x,R),1( f, f ) � (1C ��1
R )ED

B(x,R)( f, f ).(5)
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Let f 2F0(B(x, R))e. Then there is an approximating sequence (fn) in F0(B(x, R)) such
that ED

B(x,R)( fn� fm, fn� fm)!0 asn, m!1, and fn! f almost everywhere. Thus,

ED
B(x,R),1( fn � fm, fn � fm) � (1C ��1

R )ED
B(x,R)( fn � fm, fn � fm)! 0,

henceF0(B(x, R))e D F0(B(x, R)). In particular,eB(x,R),0 2 F0(B(x, R)).

Theorem 3.3. Suppose(X, �, OE , F ) satisfies(A1)–(A2-Y), (VD) on Y and(PI)
on Y, and (E ,F ) satisfiesAssumptions 1and 2. Then there are constants a, A 2 (0,1)
such that for any r2 (0, R) and any ball B(x, 2R) � Y we have

(6) A�1
Z R

r

s

V(x, s)
ds� (CapB(x,R),0(B(x, r )))�1

� A
Z R

r

s

V(x, s)
ds.

The constant A depends only on DY, PY, C0, C1C2 C 2C1=2
3 and an upper bound on

�

�1
R , where�R is the smallest Dirichlet eigenvalue of�Lsym on B(x, R).

Proof. Let r 2 (0, R) and B D B(x, r ). First, consider the estimate

(7) A�1
Z R

r

s

V(x, s)
ds� (eCapB(x,R),0(B(x, r )))�1

� A
Z R

r

s

V(x, s)
ds.

The lower bound is proved in [33, Theorem 1] using the strong locality of Es. The
upper bound can be proved as in [14, Lemma 4.3] using the heat kernel estimates of
Theorem 3.9 below.

If (E , F ) is symmetric and strongly local, then CapB(x,R),0(B) is the same as
eCapB(x,R),0(B), hence the assertion follows. Otherwise, we show that the two
0-capacities are comparable. In view of Lemma 3.2, it suffices to show that

1

C
CapB(x,R),0(B) � CapB(x,R),1(B) � C CapB(x,R),0(B)

and
1

C0

eCapB(x,R),0(B) �eCapB(x,R),1(B)C0

eCapB(x,R),0(B)

for some constantsC, C0

2 (0,1).

E(eB,0, eB,0) � E(eB,0, eB,1) � (1C C0)E1(eB,0, eB,0)
1=2E1(eB,1, eB,1)

1=2

� (1C C0)(1C ��1
R )1=2E(eB,0, eB,0)

1=2E1(eB,1, eB,1)
1=2.

Hence,

CapB(x,R),0(B) � (1C C0)2(1C ��1
R ) CapB(x,R),1(B).
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Similarly, we get

E1(eB,1, eB,1) � (1C C0)2E1(eB,0, eB,0) � (1C C0)2(1C ��1
R )E(eB,0, eB,0),

and hence,

CapB(x,R),1(B) � (1C C0)2(1C ��1
R ) CapB(x,R),0(B).

By similar arguments, it follows thateCapB(x,R),0(B) andeCapB(x,R),1(B) are comparable.

From now on, we only consider the 0-capacity, and thus drop the index 0.

3.3. (Inner) uniformity. Let � � X be open and connected. Recall that the
inner metricon � is defined as

d
�

(x, y) D inf{length( ) j  W [0, 1]! � continuous, (0)D x,  (1)D y},

and Q� is the completion of� with respect tod
�

. Whenever we consider an inner ball
B
Q

�

(x, R) WD {y 2 Q� W d
�

(x, y) < R} or B
�

(x, R) WD B
Q

�

(x, R) \�, we assume that its
radius is minimal in the sense thatB

Q

�

(x, R) ¤ B
Q

�

(x, r ) for all r < R.

For an open setB � � let �
Q

�

B D B
d
�

n B be the boundary ofB with respect
to its completion for the metricd

�

. This should not be confused with the boundary
�X B D B n B in (X, d). Let �

�

B D � \ �
Q

�

B be the part of the boundary that lies in
�. If x is a point in�, denote byÆ

�

(x) D d(x, X n �) the distance fromx to the
boundary of�. For a subsetA � Q�, let diam

�

(A) be its diameter in (Q�, d
�

).

DEFINITION 3.4. (i) Let  W [�, �] ! � be a rectifiable curve in� and letc 2
(0, 1), C 2 (1,1). We call  a (c, C)-uniform curve in� if

(8) Æ

�

( (t)) � c �min{d( (�),  (t)), d( (t),  (�))}, for all t 2 [�, �],

and if

length( ) � C � d( (�),  (�)).

The domain� is called (c, C)-uniform if any two points in� can be joined by a
(c, C)-uniform curve in�.
(ii) Inner uniformity is defined analogously by replacing the metricd on X with the
inner metricd

�

on �.
(iii) The notion of (inner) (c, C)-length-uniformityis defined analogously by replacing
d( (a),  (b)) by length( j[a,b]).

The next proposition is taken from [15, Proposition 3.3]. See also [26, Lemma 2.7].
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Proposition 3.5. Assume that(X, d) is a complete, locally compact length metric
space with the property that there exists a constant D such that for any r > 0, the
maximal number of disjoint balls of radius r=4 contained in any ball of radius r is
bounded above by D. Then any connected open subset U� X is uniform if and only
if it is length-uniform.

Let � be a (cu, Cu)-inner uniform domain in (X, d).

Lemma 3.6. For every ball BD B
Q

�

(x, r ) in ( Q�, d
�

) with minimal radius, there
exists a point xr 2 B with d

�

(x, xr ) D r =4 and d(xr , X n�) � cur =8.

Proof. This is immediate, see [15, Lemma 3.20].

The following lemma is crucial for the proof of the boundary Harnack principle
on inner uniform domains, rather than uniform domains. Similar results were already
used in [3] and [6] to prove a boundary Harnack principle on inner uniform domains
in Euclidean space.

Let p W Q� ! � be the natural projection, namely the unique continuous mapsuch
that pj

�

is the identity map on�. For anyx 2 Q� and any ballD D B(p(x), r ), let D0

be the connected component ofp�1(D \ �) that containsx. It follows that D0

\ � is
the connected component ofD \� whose closure inQ� containsx.

Lemma 3.7. Suppose� has the volume doubling property on Y� X. Then there
exists a positive constant C

�

such that for any ball DD B(p(x), r ) with x 2 Q� and
B(p(x), 4r ) � Y,

B
Q

�

(x, r ) � D0

� B
Q

�

(x, C
�

r ).

The constant C
�

depends only on DY and the inner uniformity constants cu, Cu of �.

REMARK 3.8. (i) For anyx 2 �, r > 0,

D0

\� D {y 2 � W ddiam(x, y) � r },

where theinner diameter metric ddiam is defined as

ddiam(x, y) WD inf{diam( ) W  path from x to y in �},

and the diameter is taken in the metricd of the underlying space (X, d).
In the context of Euclidean space, [35, Theorem 3.4] states that the inner diameter

metric and the inner (length) metric are equivalent, a statement that is slightly stronger
than the conclusion of Lemma 3.7. The proof given in [35] extends to the present
setting. We include a proof of Lemma 3.7 for the convenience of the reader.
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(ii) The hypothesis that� is inner uniform can be relaxed to the hypothesis that any
two points in B

�

(x, C
�

r ) can be connected by a path that is inner uniform in�.

Proof of Lemma 3.7. Clearly,B
�

(x, r ) � D0. To show the second inclusion, we
follow the line of reasoning given in [35, Proof of Theorem 3.4]. Replacingr by a
slightly larger radius, we may assume thatx 2 �. Let y 2 D0

\ � and let � be a
path in D0

\ � connectingx to y. Note that this path does not need to be an inner
uniform path. Nevertheless, there exist finitely many points x D x1, x2, : : : , xN D y
on the path� so thatd

�

(x j�1, x j ) D d(x j�1, x j ) for all 2 � j � N. Let M � 2r be
the diameter of� in (X, d). By Lemma 3.6 eachx j can be joined to a pointy j 2 �

with d
�

(y j , � Q
�

�) � cuM=4 by an inner uniform path� j of length at mostM=2. Set
U�

D {y j W 1� j � N} and

U D
[

j

B
�

�

y j ,
cuM

4

�

.

Let w be the number of connected components ofU . There exists a constantC D
C(DY, cu) such that for eachj , we have

�

�

B
�

�

y j ,
cuM

4

��

D �

�

B

�

y j ,
cuM

4

��

� C�

�

B

�

y j ,
3M

2

��

� C�(B(x, M)).

Hencew � C�(B(x, M)) � �(U ) � �(B(x, 2M)) and

w � C0.

We claim that if z, z
�

2 U� are in the same connected componentW of U , then
there exists a path� connectingz to z

�

in W such that length(�) � c1M for some
constantc1 > 0 depending only oncu and DY. SinceW is a connected component of
U , there is a finite sequencezD z0, : : : , zk D z

�

of points in U� such thatB
�

(zi�1)\
B
�

(zi ) ¤ ; for all 1� i � k, where B(zi ) WD B(zi , cuM=4)D B
�

(zi , cuM=4). We may
assume that the ballsB(zi ) with even i are disjoint (otherwise consider a subsequence
of (zi )). Since there arebk=2 of these balls and, for eachi , �(B(zi )) � �(B(z)),
we get

�

k

2

�

�(B(z)) � C00

X

1� j�k=2

�(B(z2 j )) � �(W) � �(U ) � �(B(x, 2M)),

so k � C000. For eachi , we can connectzi�1 to zi by a path�i in � of length at most
cuM=2. Now the conjunction of the paths�i is a path� of length at most

length(�) �
kcuM

2
� c1M.(9)
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We define integers 0D j0 < j1 < � � � < js D N and distinct connected components
W1, : : : , Ws of U as follows. LetW1 be the connected component that containsy1.
Assuming that jn�1 and Wn�1 are defined, we iteratively definejn to be the largest
number j such thaty j 2 Wn�1, and letWn be the component that containsy jnC1.

For each 1� i � s we have shown above that there exists a path� ji connect-
ing y ji�1C1 to y ji . Let  be the conjunction of these paths, of the geodesic segments
[x ji ,x jiC1], 1� i � s�1, and of the paths�m for mD 1, j1, j1C1, j2, j2C1,: : : , js D N.

Then  is path in Q� that connectsx to y and has length

length( ) � sc1M C sMC
sM

2
� C0

�

c1C
3

2

�

M.

This means thatD0

� B
Q

�

(x, C
�

r ) with C
�

D C0(2c1C 3).

3.4. Green function estimates. Recall that for an open setU � X, GU is the
Green function andpD

U is the heat kernel associated with (ED
U , F0(U )).

Theorem 3.9. Suppose(X, �, OE , F ) satisfies(A1)–(A2-Y), (VD) on Y and(PI)
on Y, and (E , F ) satisfiesAssumptions 1and 2. Let BD B(a, R) with B(a, 2R) � Y .
(i) For any fixed� 2 (0, 1) there are constants c, C 2 (0,1) such that for any x, y 2
B(a, (1� �)R) and 0< �t � R2, the Dirichlet heat kernel pDB is bounded below by

pD
B (t, x, y) �

c

V(x,
p

t ^ Rx)
exp

�

�C
d(x, y)2

t

�

,

where Rx D d(x, �X B)=2.
(ii) For any fixed� 2 (0,1) there are constants c,C 2 (0,1) such that for any x, y 2 B,
t � (�R)2, the Dirichlet heat kernel pDB is bounded above by

pD
B (t, x, y) �

C

V(a, R)
exp

�

�

ct

R2

�

.

(iii) There exist constants c, C 2 (0,1) such that for any x, y 2 B, t > 0, the Dirichlet
heat kernel pDB is bounded above by

(10) pD
B (t, x, y) � C

exp(�c(d(x, y)2
=t)C C8t)

V(x,
p

t ^ R)1=2V(y,
p

t ^ R)1=2
.

All the constants c, C above depend only on DY, PY, C1–C7 and an upper bound
on C8R2.

Proof. See [23].
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Lemma 3.10. Let B(a, 2R) � Y . Then for any relatively compact, open set V�
B(a, R), the Green function y7! GV (x, y) is in F0

loc(V, V n {x}) for any fixed x2 V .

Proof. We follow [15, Lemma 4.7]. Recall that the mapy 7! pD
V (t, x, � ) is in

F0(V). The heat kernel upper bounds of Theorem 3.9 imply that GV (x, �) 2 L2(X,�)
for any continuous function with compact supportK in X n {x}. Indeed, by the
set monotonicity of the kernel and Theorem 3.9, there are constantsc, C 2 (0,1),
depending onR, such that for allt � R2 and z, y 2 V ,

pD
V (t, z, y) � Ce�ct=R2

,(11)

and there are constantsc0, C0

2 (0,1) depending onR such that for allt > 0 and
z, y 2 V ,

pD
V (t, z, y) � C0e�c0=t .(12)

This shows that the integral GV (x, � ) D
R

1

0  pD
V (t, x, � ) dt converges at 0 and1

in L2(X, �). Hence GV (x, � ) is in L2(X, �).
Next, we show that the integral also converges inF0(V). Let  be as above with

the additional property thatd0( ,  ) � d� on X. For fixed 0< a < b < 1, set

g D
R b

a pD
V (t, x, � ) dt and observe that g,  2g 2 F0(V). By the Cauchy–Schwarz

inequality and Assumption 1,

E( g,  g) �
Z

V
g2 d0( ,  )C

Z

V
d0(g,  2g)C

Z

V
 

2g2 d�

� C
Z

V
(�Lg)g d�C C

Z

K\V
g2 d�

D C
Z

K\V
 

2g(pD
V (a, x, � ) � pD

V (b, x, � )) d�C C
Z

K\V
g2 d�

� C
Z

K\V
gpD

V (a, x, � ) d�C C
Z

K\V
g2 d�.

for some constantC > 0 depending on sup 2. Now, observe that (11) and (12)
imply that

Z

K\V
g2 d� D

Z

K\V

�

Z b

a
pD

V (t, x, � ) dt

�2

d�

tends to 0 whena, b tend to infinity or whena, b tend to 0 (this is indeed the ar-
gument we used above to show thatGV (x, � ) is in L2(X, d�)). The same estimates
(11) and (12) imply that

R

K\V gpD
V (a, x, � ) d� tends to 0 whena, b tend to infinity or

when a, b tend to 0. This implies that the integral GV (x, y) D  
R

1

0 pD
V (t, x, � ) dt

converges inF0(V) as desired.
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Lemma 3.11. (i) There is a constant C depending only on DY, PY, C1–C7 and
an upper bound on C8R2, such that for any ball B(z, 2R) � Y,

(13) 8x, y 2 B(z, R), GB(z,R)(x, y) � C
Z 2R2

d(x,y)2
=2

ds

V(x,
p

s)
.

(ii) Fix � 2 (0, 1). There is a constant C depending only on� , DY, PY, C1–C7 and
an upper bound on C8R2, such that for any ball B(z, 2R) � Y,

(14) 8x, y 2 B(z, �R), GB(z,R)(x, y) � C
Z 2R2

d(x,y)2
=2

ds

V(x,
p

s)
.

Proof. See [15, Lemma 4.8] and use the estimates of Theorem 3.9.

Recall that for an open setU � X, BU (x, r ) D {y 2 U W dU (x, y) < r }, wheredU

is the inner metric of the domainU . Let GBU (x,r ) be the Green function onBU (x, r ).

Lemma 3.12. Fix � 2 (0, 1). Let U � X be an open set.
(i) There is a constant C depending only on� , DY, PY, C1–C7 and an upper bound
on C8R2 such that for any B(z, 2R) � Y,

(15) GBU (z,R)(x, y) � GU\B(z,R)(x, y) � C
R2

V(x, R)
,

for all x , y 2 U \ B(z, R) with d(x, y) � �R.
(ii) Let U be an open subset so thatU � Y . Consider a ball BU (z, 2R) � Y and
suppose that any two points in BU (z,ÆR) can be connected by a(cu,Cu)-inner uniform
curve in U, for someÆ < 1=3. Then there is a constant C depending only on� , DY,
PY, cu, Cu, C1–C7 and an upper bound on C8R2, such that

(16) GBU (z,R)(x, y) � C
R2

V(x, R)
,

for all x , y 2 BU (z,ÆR) with d(x, X nU ), d(y, X nU ) 2 (�R,1) and dU (x, y) � ÆR=Cu.

Proof. We follow the line of reasoning of [15, Lemma 4.9]. SetB D B(z, R),
W D U \ B(z, R). The upper bound (15) follows easily from Lemma 3.11 and the
monotonicity inequalityGW � GB. By assumption, there is an�1 > 0 such that for any
x, y as in (ii), there is a path inU from x to y of length less thanCudU (x, y) � ÆR
that stays at distance at least�1R from X n U . Since x, y 2 BU (z, ÆR) and Æ < 1=3,
this path is contained in

BU (z, R) \ {� 2 U W d(� , X nU ) > �1R}.
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Using this path, the Harnack inequality easily reduces the lower bound (16) to the case
when y satisfiesd(x, y) D �R for some arbitrary fixed� 2 (0, �1) small enough. Pick
� > 0 so that, under the conditions of the lemma, the ballB(x, 2�R) is contained in
BU (z, R). Let W D BU (z, R). Then the monotonicity property of Green functions im-
plies thatGW(x, y) � GB(x,�R)(x, y). Lemma 3.11 and the volume doubling property
then yield

GW(x, y) � C
R2

V(x, R)
.

This is the desired lower bound.

4. Boundary Harnack principle

4.1. Reduction to Green functions estimates. Let (X,�, OE ,F ) be a symmetric
strongly local regular Dirichlet space andY � X. Suppose (A1)–(A2-Y), the volume
doubling condition (VD) onY and the Poincaré inequality (PI) onY hold. Suppose
that (E , F ) satisfies Assumptions 1 and 2. We obtain that under these assumptions,
local weak solutions ofLu D 0 (resp.L�u D 0) in Y are harmonic functions for the
associated Markov process and, hence, satisfy the maximum principle. This can be
proved following the line of reasoning given in [13, Theorem4.3.2, Lemma 4.3.2] and
using [25, Proposition V.1.6, Proof of Lemma III.1.4]. See also [22].

Let � be a domain so that� � Y. For � 2 �
Q

�

�, set B
�

(� , r ) WD B
Q

�

(� , r )\�. Let
cu 2 (0, 1) andCu 2 (1,1). Let A3 D 12((2C2Cu)_C

�

), A0 D A3C7, A7 D 2=cuC1,
and A8 D 2(A0 _ 7A7). Recall thatp W Q�! � is the natural projection (p(x) D x for
x 2 �) and C

�

is the constant defined in Section 3.3. For� 2 �
Q

�

�, let R
�

be the
largest radius so that
(i) B(p(� ), A8R

�

) ¨ Y,
(ii) ( A0 _ 26=cu)R

�

� diam
�

(�)=2 if � is a bounded domain,
(iii) any two points inB

Q

�

(� ,(A0C8=cu)R
�

) can be connected by a curve that is (cu,Cu)-
inner uniform in�.

Theorem 4.1. There exists a constant A01 2 (1,1) such that for any� 2 �
Q

�

�

with R
�

> 0 and any

0< r < R� inf{R
�

0

W �

0

2 B
Q

�

(� , 7R
�

) n�},

we have

GY0(x, y)

GY0(x0, y)
� A0

1
GY0(x, y0)

GY0(x0, y0)
,

for all x , x0 2 B
�

(� , r ) and y, y0 2 �
�

B
�

(� , 6r ). Here Y0 D B
�

(� , A0r ). The constant
A0

1 depends only on DY, PY, cu, Cu, C0–C7, and an upper bound on C8R2.
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The proof of this theorem is the content of Section 4.2 below.It is based on the
estimates for the Green functions in Section 3.4.

Theorem 4.2. Let (X, �, OE , F ) be a strongly local regular symmetric Dirichlet
space that satisfies(A1), (A2-Y), (VD) and (PI) on Y� X. Suppose(E , F ) satisfies
Assumptions 1and 2. Let� � Y be a bounded inner uniform domain in(X,d). There
exists a constant A1 2 (1,1) such that for any� 2 �

Q

�

� with R
�

> 0 and any

0< r < R� inf{R
�

0

W �

0

2 B
Q

�

(� , 7R
�

) n�},

and any two non-negative weak solutions u, v of LuD 0 in Y0

D B
�

(� , 12C
�

r ) with
weak Dirichlet boundary condition along B

Q

�

(� , 12C
�

r ) n�, we have

u(x)

u(x0)
� A1

v(x)

v(x0)
,

for all x , x0 2 B
�

(� , r ). The constant A1 depends only on the volume doubling constant
DY, the Poincaré constant PY, the constants C0–C7 which give control over the skew-
symmetric part and the killing part of the Dirichlet form, the inner uniformity constants
cu, Cu, and an upper bound on C8R2.

REMARK 4.3. (i) The hypothesis thatR
�

> 0 can be understood as “local inner
uniformity”. Clearly, R

�

> 0 holds true at every boundary point� of an inner uniform
domain. Since the statement of Theorem 4.2 is local, it is natural to only require that
points near� can be connected by inner uniform curves.
(ii) A consequence of Theorem 4.2 is that the ratiou=v of the two local weak solu-
tions u and v is Hölder continuous.
(iii) As an application of the geometric boundary Harnack principle of Theorem 4.1,
two-sided estimates of the Dirichlet heat kernel on inner uniform domains have been
obtained in the companion paper [24].

Theorem 4.4. Let (X, �, OE , F ) be a strongly local regular symmetric Dirichlet
space that satisfies(A1), (A2-Y), (VD) and (PI) on Y� X. Suppose(E , F ) satisfies
Assumptions 1and 2. Let � � Y be a bounded inner uniform domain in(X, d). Then
the Martin compactification relative to(E , F ) of � is homeomorphic toQ� and each
boundary point� 2 Q� n� is minimal.

Proof. The assertion can be proved along the line of [3, Theorem 1.1] using the
boundary Harnack principle of Theorem 4.2.

Proposition 4.5. Let � 2 Q� n � with R
�

> 0. Let 0 < r � R
�

. Let f be non-
negative harmonic on B

�

(� , 2C
�

r ) with Dirichlet boundary condition along(�
Q

�

�) \
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B
Q

�

(� , 2C
�

r ). Then there exists a positive Radon measure� f such that

Qf (x) D
Z

�

�

B
�

(� ,r )
GB

�

(� ,R)(x, y) d� f (y), 8x 2 B
�

(� , r ), R� 2C
�

r,(17)

where Qf is a modification of f that is continuous on B
�

(� , 2r ).

Proof. Let  2 F0(B(p(� ), 2r )), 0 �  � 1, be a cutoff function that is 1 on
B(p(� ), r ), where p W Q�! � is the natural projection. LetB0 be the connected com-
ponent of p�1(� \ B(p(� ), 2r )) which contains� . By Lemma 3.7, we haveB0

�

B
Q

�

(� , 2C
�

r ). Let B0

�

D B0

\�. Set

u WD f 1B0

�

and observe thatOu 2 F0(B
�

(� , 2C
�

r )). Let R � 2C
�

r , V D B
�

(� , R), A D {x 2
� W d

�

(� , x) � r } and F D �

�

B
�

(� , r ). Let u 2 F0(B
�

(� , 2C
�

r )) be a function that
equalsu on A and is superharmonic onV . By the 0-order version of [29, Theorem 1.4.1,
Theorem 2.3.1],u is a potential.

Let uA and uF be the reduced functions ofu on A and F , respectively. Sinceu
is harmonic onA, it follows from the 0-order version of [29, Theorem 2.4.2 and p. 62]
that u D uA D uF a.e. onA. Let uA and uF be the reduced functions ofu on A and
F , respectively. Sinceu is harmonic onA, it follows from the 0-order version of [29,
Theorem 2.4.2] thatuD uA D uF a.e. onA. Let �F be the 0-sweeping out of� on F ,
that is,�F is a positive Radon measure with support contained inF and uF D U�F .
By the 0-order version of [29, Theorem 2.3.5],

ED
Y (uF , v) D

Z

F
Qv(x)�F (dx), 8v 2 F0(V)e.

Applying this to v D G�

V� for suitable test functions�, we obtain

Z

V
uF (x)�(x) d�(x) D ED

V (uF , v) D
Z

F

Z

V
G�

V (y, x)�(x) d�(x) d�F (y)

D

Z

V

�

Z

F
GY(x, y) d�F (y)

�

�(x) d�(x).

Hence,

uF (x) D
Z

F
GY(y, x) d�F (y) for �-a.e. x 2 V .

Since f (x) D u(x) D uF (x) for �-a.e. x 2 B
�

(� , r ), the assertion follows for�-a.e.
x 2 B

�

(� , r ). Since f is harmonic, it satisfies EHI, hence admits a continuous modifi-
cation Qf . Also, the Green function is continuous. Hence, the assertion follows.
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Proof of Theorem 4.2. Fix� 2 �
Q

�

� and 0< r < R as in the theorem. LetY0

D

B
�

(� , A0r ). Let u, v be local weak solutionsu of Lu D 0 in B
�

(� , 12C
�

r ) with weak
Dirichlet boundary condition alongB

Q

�

(� , 12C
�

r ) n�. By Proposition 4.5, there exists
a Borel measure�u such that

u(x) D
Z

�

�

B
�

(� ,6r )
GY0(x, y) d�u(y), 8x 2 \B

�

(� , 6r ).(18)

By Theorem 4.1, there exists a constantA0

1 2 (1,1) such that for allx, x0 2
B
�

(� , r ) and all y, y0 2 �
�

B
�

(� , 6r ), we have

GY0(x, y)

GY0(x0, y)
� A0

1
GY0(x, y0)

GY0(x0, y0)
.

For any (fixed)y0 2 �
�

B
�

(� , 6r ), we find that

1

A0

1

u(x) �
GY0(x, y0)

GY0(x0, y0)

Z

�

�

B
�

(� ,6r )
GY0(x0, y) d�u(y)

D

GY0(x, y0)

GY0(x0, y0)
u(x0) � A0

1u(x).

We get a similar inequality forv. Thus, for all x, x0 2 B
�

(� , r ),

(19)
1

A0

1

u(x)

u(x0)
�

GY0(x, y0)

GY0(x0, y0)
� A0

1
v(x)

v(x0)
.

4.2. Proof of Theorem 4.1. We follow closely [1] and [15]. Notice that the
estimates for the Green functionG in Section 3.4 and the results in this section also
hold for the adjointG�. Let �, Y be as above and fix� 2 �

Q

�

� with R
�

> 0.

DEFINITION 4.6. For� 2 (0, 1) and any open setU � X, define thecapacitary
width w

�

(U ) by

w

�

(U ) D inf

�

r > 0W 8x 2 U ,
CapB(x,2r )(B(x, r ) nU )

CapB(x,2r )(B(x, r ))
� �

�

,

where inf; WD C1 (e.g., when CapB(x,2r )

�

B(x, r ) is not well-defined.)

Note thatw
�

(U ) is an increasing function of� 2 (0, 1) and an increasing function
of the setU .

Lemma 4.7. There are constants A7 2 (0,1) and � 2 (0, 1) depending only on
DY, PY, cu, Cu, C0–C7, and an upper bound on C8R2, such that for all 0 < r <
R� 2R

�

,

w

�

({y 2 B
Q

�

(� , R) W d
�

(y, �
Q

�

�) < r }) � A7r .
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Proof. We follow [15, Lemma 4.12]. LetYr D {y 2 B
Q

�

(� , R) W d
�

(y, �
Q

�

�) < r }

and y 2 Yr . Sincer < cu diam
�

(�)=12, there exists a pointx 2 � such thatd
�

(x, y) D
4r =cu. By assumption, there is an inner uniform curve connectingy to x in �. Let
z2 �

�

B
�

(y,2r =cu) be a point on this curve and note thatd
�

(y,z)D 2r =cu � d
�

(x, y)�
d
�

(y, z) � d
�

(x, z). Hence,

d
�

(z, �
Q

�

�) � cu min{d
�

(y, z), d
�

(z, x)} D 2r .

So for anyy 2 Yr there exists a pointz 2 �
�

B
�

(y, 2r =cu) with d
�

(z, �
Q

�

�) � 2r . Thus,
B(z, r ) � B(y, A7r )nYr if A7 D 2=cuC1. The capacity ofB(y, A7r )nYr in B(y, 2A7r )
is larger than the capacity ofB(z, r ) in B(y, 2A7r ), which is larger than the capacity
of B(z, r ) in B(z, 3A7r ). Thus, by Theorem 3.3, we have

CapB(y,2A7r )(B(y, A7r ) n Yr )

CapB(y,2A7r )(B(y, A7r ))
�

CapB(z,3A7r )(B(z, r ))

CapB(y,2A7r )(B(y, A7r ))
� �,

for some� 2 (0, 1). Hence, for this�, we havew
�

(Yr ) � A7r .

Write w(U ) WD w
�

(U ) for the capacitary width of an open setU � �, where� is
the same constant as in Lemma 4.7.

The following lemma relates the capacitary width to theL-harmonic measure!. A
similar inequality holds for theL�-harmonic measure!�. We write f � g to indicate
that cg� f � Cg, for some constantsc, C 2 (0,1) that depend only onDY, PY, cu,
Cu, C0–C7, and an upper bound onC8R2.

Lemma 4.8. There is a constant a1(DY, PY, C0 � C7, C8R2) such that for any
non-empty open set U� X and any ball B(x, 3r ) � Y with x2 U , 0< r < R, we have

!U\B(x,r )(x, U \ �X B(x, r )) � exp

�

2�
a1r

w(U )

�

.

Proof. We follow [1, Lemma 1] and [15, Lemma 4.13]. We may assume that
r =w(U ) > 2. For any� 2 (0, 1), we can pickw(U ) � s< w(U )C � so that

CapB(y,2s)(B(y, s) nU )

CapB(y,2s)(B(y, s))
� � 8y 2 U .

Consider a pointy 2 U such thatB(y, 3s) � Y and let E D B(y, s)nU . Let �E be the
equilibrium measure ofE in BD B(y,2s). We claim that there existsA2 > 0 such that

(20) GB�E � A2� on B(y, 3s=2).
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Let F D B(y, s) and �F be the equilibrium measure ofF in B. Then, by the Harnack
inequality, for anyz with d(y, z) D 3s=2, we have

GB(z, � ) � GB(z, y) 8� 2 B(y, s).

Hence,

GB�F (z) D
Z

F
GB(z, � )�F (d� ) � GB(z, y)�F (F)

and

GB�E(z) D
Z

E
GB(z, � )�E(d� ) � GB(z, y)�E(E).

Moreover, since�F (F) D CapB(F), the two-sided inequality (6) and Lemma 3.11 yield
that GB�F (z) ' 1. Hence, by choice ofs, for any z 2 �X B(y, 3s=2),

GB�E(z) �
GB�E(z)

GB�F (z)
�

�E(E)

�F (F)
�

CapB(E)

CapB(F)
� �.

This proves (20).
Now, fix x 2 U such thatB(x, 3r ) � Y. For simplicity, write

!( � ) D !U\B(x,r )( � , U \ �X B(x, r )).

Let k be the integer such that 2kw(U ) < r < 2(k C 1)w(U ), and pick s > w(U ) so
close tow(U ) that 2ks< r . We claim that

(21) sup
U\B(x,r�2 js)

{!} � (1� A2�) j

for j D 0, 1,: : : , k with A2,� as in (20). Note that forj D k, (21) yields the inequality
stated in this lemma:

!(x) � (1� A2�)k
� exp(log((1� A2�)r =(2w(U )))) � e2 exp

�

�a1r

w(U )

�

,

with a1 D �(log(1� A2�))=2.
Inequality (21) is proved by induction, starting with the trivial case j D 0. Assume

that (21) holds forj � 1. By the maximum principle, it suffices to prove

(22) sup
U\�X B(x,r�2 js)

{!} � (1� A2�) j .

Let y 2 U \ �X B(x, r � 2 js)). Then B(y, 2s) � B(x, r � 2( j � 1)s) so that the
induction hypothesis implies that

! � (1� A2�) j�1 on U \ B(y, 2s).
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Since! vanishes (quasi-everywhere) on (�XU )\ B(x, r ) � (�XU )\ B(y, 2s), the mean
value property implies that

!(b) D
Z

�X (U\B(y,2s))
!(a)!U\B(y,2s)(b, da)

� (1� A2�) j�1
!U\B(y,2s)(b, U \ �X B(y, 2s))

for any b 2 V \ B(y, 2s). To estimate

u D !U\B(y,2s)( � , U \ �X B(y, 2s)),

on U \ B(y, 2s), we compare it to

v D 1� GB(y,2s)�E,

where, as above,�E denotes the equilibrium measure ofE D B(y, s) nU in B(y, 2s).
Both functions areL-harmonic inU \ B(y, 2s), and it holdsu � v on �X(U \ B(y, 2s))
quasi-everywhere (in the limit sense). By (20), this implies

u � v � 1� A2�

on U \ B(y, s). Hence,

! � (1� A2�) j on U \ B(y, s).

Since this holds for anyy 2 U \ �X B(x, r � 2 js), (22) is proved.

Lemma 4.9. There exists a constant A2 2 (0,1) depending only on DY, PY,
C0–C7, cu, Cu, and an upper bound on C8R2, such that for any0 < r < R � R

�

and any x2 B
�

(� , r ), we have

!(x, �
�

B
�

(� , 2r ), B
�

(� , 2r )) � A2
V(� , r )

r 2
GB

�

(� ,C
�

A3r )(x, �16r ).

Here �16r is any point in� with d
�

(� , �16r ) D 4r and

d(�16r , X n�) D d(�16r , X n Y0) � 2cur .

A similar estimate holds for the L�-harmonic measure!�.

Proof. We follow [1, Lemma 2] and [15, Lemma 4.14]. Recall that A3 � 2(12C
12Cu) so that all (cu, Cu)-inner uniform paths connecting two points inB

�

(� , 12r )
stay in B

�

(� , A3r =2). Recall thatY0

D B
�

(� , A0r ), where A0 D A3 C 7. For any
z 2 B

�

(� , A3r ), set

G0(z) D GB
�

(� ,A3r )(z, �16r ).
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Let sD min{cur, 5r =Cu}. Since

B
�

(�16r , s) � B
�

(� , A3r ) n B
�

(� , 2r ),

the maximum principle yields

8y 2 B
�

(� , 2r ), G0(y) � sup
z2�

�

B
�

(�16r ,s)
G0(z).

Lemma 3.12 and the volume doubling condition yield

sup
z2�

�

B
�

(�16r ,s)
G0(z) � C

r 2

V(� , r )
,

for some constantC > 0. Hence, there exists�1 > 0 such that

8y 2 B
�

(� , 2r ), �1
V(� , r )

r 2
G0(y) � e�1.

Write

B
�

(� , 2r ) D
[

j�0

U j \ B
�

(� , 2r ),

where

U j D

�

x 2 Y0

W exp(�2 jC1) � �1
V(� , r )

r 2
G0(x) < exp(�2 j )

�

.

Let Vj D
�

S

k� j Uk
�

. We claim that

(23) w

�

(Vj \ B
�

(� , 2r )) � A4r exp

�

�2 j

�

�

for some constantsA4, � 2 (0,1).
Supposex 2 Vj . Observe that forz 2 �

�

B
�

(�16r , s), by the inner uniformity of the
domain, the length of the Harnack chain of balls inB

�

(� , A3r )n{�16r } connectingx to
z is at mostA5 log(1C A6r =d(x, X n Y0)) for some constantsA5, A6 2 (0,1). Hence,
there are constants�2, �3, � such that

exp(�2 j ) > �1
V(� , r )

r 2
G0(x) � �2

V(� , r )

r 2
G0(z)

�

d(x, X n Y0)

r

�

�

� �3

�

d(x, X n Y0)

r

�

�

.

The last inequality is obtained by applying Lemma 3.12 withRD A3r and Æ D 5=A3.
Now we have that for anyx 2 Vj \ B

�

(� , 2r ),

d(x, X n Vj ) � d(x, X n Y0) �

�

�

�1=�
3 exp

�

�2 j

�

�

r

�

^ 2r .
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This together with Lemma 4.7 yields (23).
Let R0 D 2r and for j � 1,

Rj D

 

2�
6

�

2

j
X

kD1

1

k2

!

r .

Then Rj # r and

(24)

1

X

jD1

exp

�

2 jC1
�

a1(Rj�1 � Rj )

A4r exp(�2 j
=� )

�

D

1

X

jD1

exp

�

2 jC1
�

6a1

A4�
2

j �2 exp

�

2 j

�

��

�

1

X

jD1

exp

�

2 jC1
�

3a1

C
�

A4�
2

j �2 exp

�

2 j

�

��

< C <1.

Let !0 D !( � , �
�

B
�

(� , 2r ), B
�

(� , 2r )) and

d j D

8

<

:

sup

�

r 2
!0(x)

V(� , r )G0(x)
W x 2 U j \ B

�

(� , Rj )

�

, if U j \ B
�

(� , Rj ) ¤ ;,

0, if U j \ B
�

(� , Rj ) D ;.

Since the setsU j \ B
�

(� , 2r ) cover B
�

(� , 2r ) and B
�

(� , r ) � B
�

(� , Rk) for eachk, to
prove Lemma 4.9, it suffices to show that

sup
j�0

d j � A2 <1

where A2 is as in Lemma 4.9.
We proceed by iteration. Since!0 � 1, we have by definition ofU0,

d0 D sup
U0\B

�

(� ,2r )

r 2
!0(x)

V(� , r )G0(x)
� �1e2.

Let j > 0. For x 2 U j�1 \ B
�

(� , Rj�1), we have by definition ofd j�1 that

!0(x) � d j�1
V(� , r )

r 2
G0(x).

Also, !0 � 1. Thus, the maximum principle yields that, forx 2 Vj \ B
�

(� , Rj ),

(25) !0(x) � !(x, Vj \ �X B
�

(� , Rj�1), Vj \ B
�

(� , Rj�1))C d j�1
V(� , r )

r 2
G0(x).

For x 2 Vj \ B
�

(� , Rj ), let D D B(p(x), C�1
�

(Rj�1� Rj )) and let D0 be the connected
component ofp�1(D \�) that containsx. Then by Lemma 3.7,

D0

\� � B
�

(x, Rj�1 � Rj ) � B
�

(� , Rj�1),
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henceD0

\ � \ Vj \ �X B
�

(� , Rj�1) D ;. Thus, the first term on the right hand side
of (25) is not greater than

!

�

x, Vj \ D0

\ �X B

�

p(x),
Rj�1 � Rj

C
�

�

, Vj \ D0

\ B

�

p(x),
Rj�1 � Rj

C
�

��

� exp

�

2�
a1

C
�

Rj�1 � Rj

w

�

(Vj \ D0)

�

� exp

�

2�
a1

C
�

Rj�1 � Rj

w

�

(Vj )

�

� exp

�

2�
a1

C
�

A4
exp

�

2 j

�

�

Rj�1 � Rj

r

�

� exp

�

2� �6 j �2 exp

�

2 j

�

��

by Lemma 4.8, monotonicity ofU 7! w

�

(U ) and (23). Here�6 D 6a1=(�2A4C
�

).
Moreover, by definition ofU j ,

�1
V(� , r )

r 2
G0(x) � exp(�2 jC1)

for x 2 U j . Hence, forx 2 U j \ B
�

(� , Rj ), (25) becomes

!0(x) � exp

�

2� �6 j �2 exp

�

2 j

�

��

C d j�1
V(� , r )

r 2
G0(x)

�

�

�1 exp

�

2C 2 jC1
� �6 j �2 exp

�

2 j

�

��

C d j�1

�

V(� , r )

r 2
G0(x).

Dividing both sides by (V(� , r )=r 2)G0(x) and taking the supremum over all pointsx 2
U j \ B

�

(� , Rj ),

d j � �1 exp

�

2C 2 jC1
� �6 j �2 exp

�

2 j

�

��

C d j�1,

and hence for every integeri > 0,

di � �1e2

 

1C
1

X

jD1

exp

�

2 jC1
�

6a1

�

2A4C
�

j �2 exp

�

2 j

�

��

!

D �1e2(1C C) <1

by (24).

Proof of Theorem 4.1. We follow [15, Theorem 4.5] and [1, Lemma 3]. Recall
that A0 D A3 C 7 D 2(12C 12Cu) C 7. Fix � 2 �

Q

�

� with R
�

> 0, let 0< r < R �
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inf{R
�

0

W �

0

2 B
�

(� , 7R
�

) n �} and setY0

D B
�

(� , A0r ). Note that any two points in
B
�

(� ,12r ) can be connected by a (cu,CU )-inner uniform path that stays inB
�

(� , A3r =2).
Fix x� 2 B

�

(� , r ), y� 2 �
�

B
�

(� , 6r ) such thatc1r � d(x�, �
Q

�

�) � r and 6c0r �
d(y�, �

Q

�

�) � 6r , for some constantsc0, c1 2 (0, 1) depending oncu and Cu. Existence
of x� and y� follows from the inner uniformity of�. It suffices to show that for all
x 2 B

�

(� , r ) and y 2 �
�

B
�

(� , 6r ) we have

(26) GY0(x, y) �
GY0(x�, y)

GY0(x�, y�)
GY0(x, y�).

Fix y 2 �
�

B
�

(� , 6r ), and callu (v, respectively) the left(right)-hand side of (26),
viewed as a function ofx. Thenu is positive andL�-harmonic inY0

n {y}, whereasv
is positive andL�-harmonic inY0

n {y�}. Both functions vanish quasi-everywhere on
the boundary ofY0.

Since y� 2 �
�

B
�

(� , 6r ) and 6c0r � d(y�, �
Q

�

�) � 6r , it follows that the ball
B
�

(y�, 3c0r ) is contained inB
�

(� , 9r ) n B
�

(� , 3r ). Let z 2 �
�

B
�

(y�, c0r ). By a re-
peated use of Harnack inequality (a finite number of times, depending only oncu and
Cu), one can compare the value ofv at z and atx�, so that by Lemma 3.12 (notice
that d(x�, y) � c1r ) and the volume doubling property,

v(z) � Cv(x�) D CGY0(x�, y) � C0

r 2

V(� , r )
.

Now, if y 2 B
�

(y�, 2c0r ), then by Lemma 3.12 (notice thatd
�

(z, y) � 3r � A0r =(6Cu)
and z, y 2 B

�

(� , A0r =6)) and the volume doubling property,

u(z) D GY0(z, y) � c
r 2

V(� , r )
,

so that we haveu(z)� c0v(z) in this case for somec0 > 0. If insteady 2�nB
�

(y�,2c0r ),
then we can connectz and x� by a path of length comparable tor that stays away (at
scaler ) from both �

Q

�

� and the pointy. Hence, the Harnack inequality implies that
u(z) � u(x�) D v(x�) � v(z) in this case. This shows that we always have

u(z) � �3v(z) 8z 2 �
�

B
�

(y�, c0r ).

By the maximum principle, we obtain

u � �3v on Y0

n B
�

(y�, c0r ).

Since B
�

(� , r ) � Y0

n B
�

(y�, c0r ), we have proved thatu � �3v on B
�

(� , r ), that is,

(27) GY0(x, y) � �3
GY0(x�, y)

GY0(x�, y�)
GY0(x, y�)
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for all x 2 B
�

(� , r ) and y 2 �
�

B
�

(� , 6r ). This is one half of (26).
We now focus on the other half of (26), that is,

(28) �4GY0(x, y) �
GY0(x�, y)

GY0(x�, y�)
GY0(x, y�),

for all x 2 B
�

(� , r ) and y 2 �
�

B
�

(� , 6r ).
For x 2 B

�

(� , 2r ) and z 2 B
�

(� , 9r ) n B
�

(� , 3r ), Lemma 3.12 and the volume
doubling condition yield

GY0(x, z) � C
r 2

V(� , r )
.

RegardingGY0(x, z) as L-harmonic function ofx, the maximum principle gives

GY0( � , z) � C
r 2

V(� , r )
!( � , �

�

B
�

(� , 2r ), B
�

(� , 2r )) on B
�

(� , 2r ).

Using Lemma 4.9 (note thatA0 > A3) and the Harnack inequality (to move from�16r

to y�), we get forx 2 B
�

(� , r ) and z 2 B
�

(� , 9r ) n B
�

(� , 3r ), that

(29) GY0(x, z) � C A2
r 2

V(� , r )

V(� , r )

r 2
GY0(x, �16r ) � C0GY0(x, y�),

for some constantC0

2 (0,1). Fix x 2 B
�

(� , r ) and y 2 �
�

B
�

(� , 6r ). If d
�

(y, �
Q

�

�) �
c0r =2, then GY0(x, y) � GY0(x, y�) and GY0(x�, y) � GY0(x�, y�) by the Harnack in-
equality, so that (28) follows. Hence we now assume thaty 2 �

�

B
�

(� , 6r ) satisfies
d
�

(y, �
Q

�

�) < c0r =2. Let � 0 2 �
Q

�

� be a point such thatd
�

(y, � 0) < c0r =2. It follows
that y 2 B

�

(� 0, r ). Also,

B
�

(� 0, 2r ) � B
�

(y, 3r ) � B
�

(� , 9r ) n B
�

(� , 3r ).

We apply inequality (29) to getGY0(x, z) � C4GY0(x, y�) for any z 2 B
�

(� 0, 2r ). Re-
garding GY0(x, y) D G�

Y0

(y, x) as L�-harmonic function ofy, we obtain

(30) GY0(x, y) � C4GY0(x, y�)!�(y, �
�

B
�

(� 0, 2r ), B
�

(� 0, 2r )).

Let us apply Lemma 4.9 with� replaced by� 0. This yields

(31)
!

�(y, �
�

B
�

(� 0, 2r ), B
�

(� 0, 2r )) � A2
V(� 0, r )

r 2
G�

B
�

(� 0,C
�

A3r )(y, � 016r )

� A0

2
V(� , r )

r 2
GY0(� 016r , y),

where� 016r 2 � is any point such thatd
�

(� 016r , �
0) D 4r and d(� 016r , X n�) � 2cur . Ob-

serve that we have used the volume doubling property as well as the set monotonicity
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of the Green function, and thatB
�

(� 0, A3r ) � B
�

(� , A0r ) becauseA0 D A3 C 7 and
d
�

(� , � 0) � 7r . Now, (30) and (31) give

(32) GY0(x, y) � C5
V(� , r )

r 2
GY0(� 016r , y)GY0(x, y�).

By construction,d
�

(� 016r , y) � d(� 016r , �
0) � d

�

(� 0, y) � 2r and d
�

(x�, y) � d
�

(� , y) �
d
�

(� , x�) � 5r . Using the inner uniformity of�, we find a chain of balls, each of
radius� r and contained inY0

n {y}, going from x� to �

0

16r , so that the length of
the chain is uniformly bounded in terms ofcu, Cu. Applying the Harnack inequality
repeatedly thus yieldsGY0(� 016r , y) � GY0(x�, y). As Lemma 3.12 givesGY0(x�, y�) �
r 2
=V(� , r ), inequality (32) implies (28). This completes the proof.
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