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Abstract
In this paper we use a knot invariant, namely the Tristram–Levine signature, to

study deformations of singular points of plane curves. We bound, in some cases, the
difference between theM-number of the singularity of the central fiber and the sum
of M-numbers of the generic fiber.

1. Introduction

A deformation of a plane curve singularity is, roughly speaking, a smooth family
of plane algebraic curves{Cs}s2D (we consider here only deformations over a diskD
in C) such thatCs � C

2 and a distinguished member, sayC0, has a singular point at
z0 2 C

2. The question we address is the following: how are related toeach other singu-
lar points of C0 and of Cs with s sufficiently small? This question, although already
very difficult, becomes even more involved if we impose some topological constrains
on the general membersCs. For example, we can require all of them to be rational,
which means that eachCs is a union of immersed disks.

This rationality condition is justified for various reasons. For example, let us be
given a flat familyCs of projective curves in some surfaceZ and this family specializes
to a curveC0 with the same geometric genus asCs. Then, for each singular point
z2 C0, we can take a sufficiently small ballB aroundz and the familyCs\B provides
a deformation of a singular point such that all curvesCs \ B are rational.

To show a more specific example, we can takeC D Cmn to be a polynomial curve
given in parametric form byC D {(tn, tm), t 2 C} with n, m coprime, and assumeC0

is also parametricC0

D {(�(t),  (t)), t 2 C} with deg� D n, deg D m. Then for
s 2 C n {0}, the mapping (sn

�(t=s), sm
 (t=s)) parametrizes a curve that is algebraically

isomorphic toC0 and, for sufficiently smalls, is very close toC. In other words, every
polynomial curve of bidegree (n,m) specializes to (tn, tm). In particular if a polynomial
curve of bidegree (n, m) has some singularity, this singularity can be specializedto the
quasi-homogeneous singularity (tn, tm). So, classification of parametric deformations
encompasses the problem of finding possible singularities of a polynomial curve of a

2000 Mathematics Subject Classification. Primary 14H20; Secondary 14H10, 57M25.
Supported by Polish MNiSz Grant N N201 397937. The author is also supported by Foundation

for Polish Science (FNP).



574 M. BORODZIK

given bidegree. The characterization of possible singularities of polynomial curves is,
in turn, a problem with applications beyond algebraic geometry itself, for example in
determining the order of weak focus of some ODE systems (see [6] and [5, Section 5]).

In [11, 5] there was defined a new invariant of plane curve singularities, namely
the codimension, also known as theNM-number (or the roughNM-number). It is, roughly
speaking, the codimension of the (topological) equisingularity stratum in the appropri-
ate space of parametric singularities. A naive parameter counting argument suggests
that this invariant is upper-semicontinuous under parametric deformations. Yet proving
this appears to be an extremely difficult task. On the one hand, the NM-number can
be expressed by some intersection number of divisors in the resolution of singularity,
but then the blow-up diagram changes after a deformation in away that we are still
far from understand. In an algebraic approach, the geometric genus of nearby fibers
is quite difficult to control. On the other hand, the famous Hirano’s example [9] can
be used to show, that a natural generalization of this expected semicontinuity property
fails if we allow the curvesCs to have higher genera.

A possible rescue comes from a very unexpected place, namelyfrom knot theory.
It turns out that the NM-number, or its more subtle brother, theM-number (also called
the fine M-number), is very closely related to the integral of the Tristram–Levine sig-
nature of the knot of the singularity ([3]). We say a knot, instead of a link, to em-
phasize that this relationship has been proved only in the case of cuspidal singular-
ities. On the other hand, we can apply methods from [2] to study the changes of the
Tristram–Levine signature. Putting things together we obtain a bound for the difference
between the sum ofM-numbers of singular points of a generic fiber and the sum of
M-numbers of singular points of the central fiber, provided that the curves have only
cuspidal singularities or double points.

The structure of the paper is the following. First we precise, what is a deform-
ation (Section 2). Then we recall definitions of codimension(Section 3). Section 4 is
devoted to the application of the Tristram–Levine signature. We recall a definition of
the Tristram–Levine signature and cite two results from [2]and [3]. This allows to
provide the promised estimates in Section 5.

2. What is a deformation?

Under a notion of adeformationof a plane curve singularity over a base space
(D, 0), whereD � C is an open disk, we understand a pair (X , B) where B is a ball
in C2 andX is an algebraic surface (called thetotal space) in B � D. The setsXs D

X \ B � {s} (treated simply as subsets ofB) are called thefibers of the deformation.
We impose the following conditions on the pair (X , B).
flatness: The natural projection on the second factor�2 W X ! D is a flat morphism.
transversality: For eachs 2 D, the curveXs is transverse to the boundary�B.
locality: The curveX0 (called thecentral fiber) has precisely one singular pointz0 (we
will assume that this is 02 C2), and the intersectionX0\ �B is the link of singularity
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of z0.
The flatness condition is a standard one in the deformation theory. The locality means
that we are concerned with the deformation of a given singular point z0 at a local
scope: roughly speaking it says thatB is a small ball aroundz0. The transversality
will be crucial in our approach, it roughly means that the disk D is small: if X0 is
transverse to�B, then the transversality holds for alls sufficiently close to 0.

DEFINITION 2.1. Thegenus gof the deformation is the geometric genus (i.e. the
topological genus of the normalization) of a generic fiberXs. The deformation isra-
tional if g D 0, in which case allXs are sums of immersed disks. The deformation
is unibranchedif X0 is a disk. The deformation isparametric if it is both rational
and unibranched.

The intersection ofXs with the ball B by the transversality condition above is a
link, which we shall denoteLs. As this intersection is transverse for eachs 2 D, the
isotopy type ofLs does not depend ons.

DEFINITION 2.2. The (isotopy class of the) linkLs is called thelink of the de-
formation. It is denoted byL X.

REMARK 2.3. The locality property ensures thatL X can be identified with the
link of singularity of X0.

Lemma 2.4. Let (X , B) be a parametric deformation. Then, there exists such an
" > 0 and a family of holomorphic functions

xs(t) D a0(s)C a1(s)t C � � � ,

ys(t) D b0(s)C b1(s)t C � � �

with jsj< " that (xs,ys) locally parametrizes Xs and both xs and ys depend analytically
on s.

Proof. The assumptions on the parametricity and transversality guarantee that the
deformation isÆ-constant, hence equinormalizable (see [8, Section 2.6]).By assump-
tions, the normalization ofX is a productD � D0, where D0 is a small disk. Let�
be a normalization map. Then we consider the composition of� with the projection
�1 W X ! B onto the first factor, and then with coordinate functions�x, �y W B ! C.
We havexs D �x Æ �1 Æ � and ys D �y Æ �1 Æ �.

3. Codimension

The codimension is a topological invariant of a plane curve singularity. We recall
here a definition from [5].
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DEFINITION 3.1. LetT be a topological type of a plane curve cuspidal singular-
ity with multiplicity m. Let H be the space of polynomials in one variable. Consider
the stratum6 �H consisting of such polynomialsy that a singularity parametrized by

t ! (tm, y(t))

defines a singularity at 0 of typeT . Then theexternal codimensionof the singularity
T is

ext� D codimH 6 Cm� 2.

(Here codimB A means the codimension ofA in B.) The interpretation of the def-
inition is the following. If we consider the space of pairs ofpolynomials (x(t), y(t)) of
sufficiently high degree, then the subset of those parametrizing a curve with a singu-
larity of type T forms a subspace of codimensionext�(T ). In fact, there arem � 1
condition for the derivatives ofx to vanish at some point, codimH 6 conditions for
the polynomialy (the degree ofy is assumed to be high enough so that these condi-
tions are independent). The missing�1 comes from the fact that we do not require
the singularity to be att D 0, but we have here sort of freedom.

REMARK 3.2. In [5] the assumption thatm is the multiplicity is not required. If
m is not the multiplicity, then (3.1) below, does no longer hold.

The above definition can be generalized to multibranched singularities. We refer
to [5] for detailed definitions.

There exists also a construction of theext� in a coordinate-free way. It can be
done as follows. Let (C, 0) be a germ of a plane curve singularity at 0, not necessarily
unibranched. Let� W (U, E) ! (C2, 0) be the minimal embedded resolution of this
singularity, whereE D

P

Ei is the exceptional divisor with a reduced structure. LetK
be a (local) canonical divisor onU , which means thatK D

P

�i Ei and (KCEi ) �Ei D

�2 for exceptional curvesEi . Let C0 be the class of the strict transform ofC, and
D D C0

C E.

DEFINITION 3.3. A rough NM-numberof (C, 0) is the quantity

K � (K C D).

We have the following fact (see [5, Proposition 4.1])

(3.1) NM D ext�.
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REMARK 3.4. In [11], NM is defined as NM D �C(KCD)2. This definition agrees
with Definition 3.3 for unibranched singularities, because� D �D(K C D). For multi-
branched, the Orevkov’s version is bigger and the difference is the number of branches
�1. See also [5, Remark 4.2].

Orevkov [11] defines, besides a roughNM-number, a fineM-number of a singular-
ity. We should take the Zariski–Fujita decomposition

K C D D H C N,

where H is the nef part andN negative (i.e. the intersection form on the support of
N is negative definite). We have the following definition (see [5, Definition 4.1]).

DEFINITION 3.5. TheM-number of the singularity is equal toNM � N2.

N2 is always non-positive, soNM � M. For cuspidal singularities we haveN2
<

�1=2, while for an ordinaryd-tuple pointN D 0 andN2
D 0. For cuspidal singularities

we have the formulaNM D �C(KCD)2, hence we recover Orevkov’s original definition
[11, Section 1]

M D �C H2.

Both NM and M-numbers can be very effectively calculated from the Eisenbud–
Neumann diagram. An algorithm can be found for example in [5,Section 4.2]. We
provide a simple, but important example.

EXAMPLE 3.6. Let p,q be coprime positive integers and consider the singularity
{xp
� yq

D 0}. Its NM-number is equal topC q � dp=qe � dq=pe � 1, while

(3.2) M D pC q �
p

q
�

q

p
� 1.

EXAMPLE 3.7. Both NM and M-numbers of an ordinary double point are zero.

We expect the NM-number to be upper-semicontinuous in parametric deformation.
To be more specific we state a following conjecture.

Conjecture 3.8. Let (X , B) be a parametric deformation with a central fiber X0

having a singular point z0 with NM-number NM0. Then, for all s 2 D� we have

(3.3)
n
X

kD1

NMk � NM0,

where we sum theNM-numbers of all singular points of the fiber Xs.
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Without assumption for the deformation to be parametric, one could naturally ex-
pect that the left hand side of (3.3) should be replaced byNM0 C g, where g is the
geometric genus of the fiberXs. But then we can give a counterexample to this ex-
tended conjecture. Namely, Hirano [9] constructs a series of curves Hd � CP2 (for
infinitely many d’s) such that eachHd is of degreed and has approximately932d2 or-

dinary cusps. Now, it is well known that any algebraic curveC of degreed in CP2

specializes to a curveCd given by xd
� yd

D 0. So let us take a deformation (sat-
isfying only the flatness condition)Z � CP2

� D, with Zs D Z \ CP2
� {s}, such

that Z0 D Cd, and, for s 2 D�, Zs is isomorphic toHd. For s sufficiently small and
non-zero, all singularities ofZs are close to (0, 0)2 C � CP2, so we can restrict our
deformation to a small ballB around (0, 0). ShrinkingD if necessary we can guaran-
tee that

X D Z \ B � D � C2
� D

is a deformation satisfying flatness, transversality and locality conditions. Now we com-
pare codimensions. As the codimension of the ordinaryd-tuple point isd � 2 by (3.1),
and the codimension of an ordinary cusp is one, we get that thegeometric genus ofXs

for s ¤ 0 should be at least (9=32)d2 (we neglect terms of lower order ind). Thus
the geometric genus ofHd must be at least (9=32)d2. But this contradicts the classical
genus formula, because a degreed curve with (9=32)d2 cusps can have geometric genus
at most (7=32)d2.

4. Tristram–Levine signatures

Let L be a link in S3. Let V be a Seifert matrix ofL. Finally, let � 2 C, j� j D 1.

DEFINITION 4.1. TheTristram–Levine signatureof L is the signature�L (� ) of
the Hermitian form given by the matrix

(1� � )V C (1� N� )VT .

It is well-known that�L is a link invariant. It is also easily computable for alge-
braic links.

EXAMPLE 4.2. Let us consider the singularity{xp
� yq

D 0} as in Example 3.6
and let Tp,q be its link (note, that this is exactly the (p, q)-torus knot). Its Tristram–
Levine signature can be computed as follows: consider a set

6 D

�

i

p
C

j

q
W 1� i � p� 1, 1� j � q � 1

�

� (0, 2).

Let � D e2� i x with x 2 (0, 1) andx 62 6. Then

� (� ) D �#6 \ (x, x C 1)C #6 n (x, x C 1).
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Here # denote the cardinality of a finite set.

In general,� (� ) is a piecewise constant function with jumps only at the roots of
the Alexander polynomial. Its values are computable, yet they can not always be ex-
pressed by a nice, compact formula. However, the main feature we shall use is that
Tristram–Levine signatures behave well under knot cobordism. This behavior was stud-
ied in [2] in the context of the plane algebraic curves. We useone result from this
paper, that in our setting can be formulated as follows.

Assume that (X , B) is a deformation. LetY D Xs be a non-central fiber (i.e.s¤
0). Assume thatz1,:::,zN are the singular points ofY and L1,:::,L N the corresponding
links of singularities. Let, finally,b1(Y) denotes the first Betti number ofY. Recall that
L0 is the link of the singularityX0.

Proposition 4.3. For almost all � 2 S1

(4.1)

�

�

�

�

�

�L0(� ) �
N
X

kD1

�Lk (� )

�

�

�

�

�

� b1(Y).

Proof. Let x, y be the coordinates inC2. If the function jxj2 C jyj2 is Morse
on Y, then the statement follows from [2, Proposition 6.8] (L0 in the present paper
corresponds toLr in [2], with r being the radius of our ballB). If the above function
is not Morse, we can still find its subharmonic perturbation which is sufficiently close
to the original one inB and finish the proof in the way like above.

Proposition 4.3 gives a strong obstruction for the singularities occurring in the per-
turbations. Yet the Tristram–Levine signature function isdifficult to handle as we have
already seen in Example 4.2. Fortunately, there is a result of [3, 4] that allows to draw
some consequences from Proposition 4.3 in a ready-to-use form.

Proposition 4.4 (see [3, 4, Proposition 4.6]). Let C be a germ of a curve singu-
lar at z0. Let K be the corresponding link of the singularity, � and M the Milnor and
M-numbers of C. If K is a knot then

(4.2) 0< �3
Z 1

0
� (e2� i x ) dx� (M C �) <

2

9
.

REMARK 4.5. There is a mistake in the formulation of [3, Lemma 4.4] and [3,
Lemma 4.5]. The updated version [4] on the arxiv has this error corrected. The quanti-
ties on the left hand sides of formulae (4.2) and (4.3) in [3] should be read 2�C (K C
D)2 and 2� C H2, respectively. Indeed, the correct version of [3, (4.2)] isexplicitly
written e.g. in [12, formula 29]. It can be also deduced from the formula [5, (4.7)] and
[5, Corollary 4.7]. The correct formula, as stated in [4, (4.3)] follows as well, because
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2� C H2
D 2� C (K C D)2

� N2 and�N2 is computed e.g. in [5, Proposition 4.9].
Thus, the correct estimate in [3, Proposition 4.6], should be 0< �3�0 � (2�C H2) <
2=9, exactly as we wrote in [4] above. The essential part of the proof of [3, Prop-
osition 4.6] is not changed. We are grateful to the referee ofthe present article for
having spotted that mistake.

EXAMPLE 4.6. If C is a germ of a quasi-homogeneous singularity{xp
�yq
D 0},

p, q > 1, gcd(p, q) D 1, then its link is the torus knotTp,q. It is known (see e.g. [3,
Corollary 2.10], or [10, Remark 3.9]), that for the torus knot

�3
Z 1

0
� (e2� i x ) dx D

�

p�
1

p

��

q �
1

q

�

D pq�
p

q
�

q

p
C

1

pq
.

As � D (p� 1)(q � 1), by Example 3.6 we haveM C � D pq� p=q � q=p. Hence

�3
Z 1

0
� (e2� i x ) dx� (M C �) D

1

pq
2

�

0,
1

6

�

.

Now we have all pieces to prove the main result.

5. The main result

The setup in this section is the following. (X , B) is a deformation,X0 the cen-
tral fiber andY D Xs (s ¤ 0) some other fiber (not necessarily a generic one). We
introduce the following notation:
• �0 is the Milnor number of the singularity ofX0 and M0 its M-number;
• g is the geometric genus ofY;
• z1, : : : , zN are singular points ofY, L1, : : : , L N are corresponding links of singular-
ities. Then�1,:::,�N (respectivelyM1,:::,MN) are Milnor numbers (resp.M-numbers)
of the singular points;
• b1 is the first Betti number ofY.

We shall put a following additional assumption. It is dictated by the fact that we
do not have the formula for the integral of the Tristram–Levine signature for general
algebraic links.

ASSUMPTION 5.1. There isn � N that z1, : : : , zn are cuspidal andznC1, : : : , zN

are ordinary double points. Furthermore, the singularity of X0 is cuspidal.

Let

RD N � n

be the number of the double points ofY. We have the following important result.
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Theorem 5.2. In the above notation.

(5.1)
n
X

kD1

Mk � M0 < 8gC 2RC
2

9
.

Proof. Let us observe that

b1(Y) D 2gC R,(5.2)

�0 D 2gC RC
N
X

kD1

�k D 2gC 2RC
n
X

kD1

�k.(5.3)

The equality (5.3) is exactly the genus formula. It can be proved by comparing the
Euler characteristics of smoothings ofX0 and Y (they must agree). Since the signature
of a link of a double point is exactly�1 we deduce from Proposition 4.3 that for
almost all�

(5.4)
n
X

kD1

(��Lk (� )) � (��L0(� )) � 2g.

The signs in (5.4) are written in this way on purpose. Now we integrate the inequality
(5.4). Using (4.2) we get

n
X

kD1

(�k C Mk) � �0 � M0 < 6gC
2

9
.

Applying (5.3) finishes the proof.

We see that in this approach, the control of the genus is vital. In particular we
can have the following result.

Proposition 5.3 (BMY like estimate). Let C be a curve inC2 given in paramet-
ric form by

C D {(x, y) 2 C2
W x D �(t), y D  (t), t 2 C},

where� and  are polynomials of degree p and q respectively. Assume that pand q
are coprime and C has cuspidal singularities z1, : : : , zn with M-numbers M1, : : : , Mn

and, besides, C has precisely R ordinary double points. Then

n
X

kD1

Mk < pC q �
p

q
�

q

p
�

7

9
C 2R.
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Proof. Consider a family of curves

Cs D {(x, y) 2 C2
W x D sp

�(s�1t), y D sq
 (s�1t), t 2 C},

wheres is in the unit disk inC. For s¤ 0 all these curves are isomorphic, while for
sD 0 we have a homogeneous curve (t p,tq). Let B be a sufficiently large ball such that
for eachs with jsj < 1, Cs is transverse to the boundary�B. Then, B\Cs gives raise
to a deformation in the sense of Section 2. The central fiber isC0, a homogeneous
curve, while a non-central is isomorphic to the intersection of C with a large ball. We
can apply Theorem 5.2 in this context, noting that theM-number of the singularity
(t p, tq) is equal topC q � p=q � q=p� 1 (see (3.2)).

We remark that the estimate in Proposition 5.3 is very similar to Theorem 4.2 in
[5]. That result, however, relies on very difficult BMY inequality.
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