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Abstract
We introduce and study local moves for links, called simple ribbon moves. We

also introduce a complexity of links, called theh-complexity, which coincides with
the genus in the case of knots, and we show that simple ribbon moves never reduce
the h-complexities of links.

1. Introduction

All links are assumed to be ordered and oriented, and they areconsidered up to
ambient isotopy in the oriented 3-sphereS3. In this paper, we define and study local
moves for links, called simple ribbon moves ([4]).

Let H be a 3-ball inS3 andD D D1[� � �[ Dm (resp.B D B1[� � �[ Bm) a union
of mutually disjoint disks in intH (resp. H ) satisfying the following:
(i) Bi \ �H D �Bi \ �H is an arc;
(ii) Bi \ �D D �Bi \ �Di is an arc; and
(iii) Bi \ int D D Bi \ int D

�(i ) is a single arc of ribbon type (Fig. 1), where� is a
certain permutation on{1, 2, : : : , m}.
Then we call

S

i (�(Bi [ Di )� int(Bi \ �H )) an SR-tangle and denote it byT , and we
call eachBi a band.

Let l be a link in S3
� int H such thatl \ �H consists of arcs. Take anSR-tangle

T such thatB\ �H D l \ �H . Then letL be the link obtained froml by substituting
T for l \ �H . We call the transformation either froml to L or from L to l a simple
ribbon-moveor anSR-move, and H (resp.T ) the associated3-ball (resp.tangle) of the
SR-move. The transformation froml to L (resp. fromL to l ) is called anSRC-move
(resp.SR�-move) (see Fig. 2 for an example).
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Fig. 1.

Fig. 2.

Since every permutation is a product of cyclic permutations, we rename the indices
of the bands and disks as

B D

n
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Bk
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[
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i

!
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[
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mk
[

iD1
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i

!

, where

(1) 1� m1 � m2 � � � � � mn;
(2) Bk

i \ �D D �Bk
i \ �Dk

i is an arc; and
(3) Bk

i \ int D D Bk
i \ int Dk

iC1 is a single arc of ribbon type.
In Condition (3), the lower indices are considered modulomk. For an SR-tangle

T , we call
Smk

iD1(�(Bk
i [Dk

i )� int(Bk
i \�H )) the (k-th) componentof the SR-move or of

the SR-tangle, denote it byT k, and callmk the indexof the component (kD 1,2,: : : ,n).
The type of the SR-move or of theSR-tangle is the ordered set (m1, m2, : : : , mn) of the
indices. If the index of each component is 1 (resp. no less than 2), then we say that
the SR-move or theSR-tangle is of class I (resp. class II) (see Fig. 3 for examples).

Let Tk
i D �(Bk

i [ Dk
i )� int(Bk

i \ �H ). We say that a stringTk
i of the SR-tangle is

trivial if Tk
i [ (Bk

i \ �H ) bounds a non-singular disk inH whose interior is in intH
and does not intersect withT . We say that thek-th componentT k of the SR-tangle
is trivial if the string Tk

i is trivial for any i . In fact, T k is trivial if the string Tk
i is
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Fig. 3.

Fig. 4. Differences of theh-complexities.

trivial for some i , which is easy to see. We say that anSR-tangle isreducible if the
string Tk

i is trivial for a certain pair ofi and k. Otherwise we say that theSR-tangle
is irreducible. We say that anSR-tangle is trivial if the string Tk

i is trivial for any i
and k.

Consider anSR-move transformingl into L. We say that a stringTk
i of the SR-

move is trivial if Tk
i [ (Bk

i \�H ) bounds a non-singular disk inS3 whose interior does
not intersect withL. We say that thek-th componentT k of the SR-move is trivial if
the stringTk

i is trivial for any i . We say that anSR-move is reducible if the string Tk
i

is trivial for a pair of i and k. Otherwise we say that theSR-move is irreducible. We
say that anSR-move is trivial if the string Tk

i is trivial for any i and k.
Let F be a surface (which is not necessary to be connected or to be orientable)

with n boundary components. We define theh-complexity h(F) of F as

h(F) D 1�
�(F)C n

2
.

The following is a main property of theh-complexity, which is obtained by calculating
the Euler characteristics (see Fig. 4 for an example).

Proposition 1.1. Let F and F0 be surfaces such that F0 is obtained from F by
deleting the interiors of two disks D1 and D2 on int F and identifying�D1 and �D2

by a homeomorphism' W �D1! �D2. Then h(F 0) D h(F)C 1.



548 K. KOBAYASHI , T. SHIBUYA AND T. TSUKAMOTO

REMARK 1.2. In the above statement,D1 and D2 may or may not belong to the
same connected component ofF .

Proposition 1.3. If F is a surface with� connected components, then h(F) �
1� �. The equality holds if and only if each connected component of F is planar.

Proof. Note that�(F) C n is the Euler characteristic of the closed surface ob-
tained fromF by attachingn disks ton boundary components ofF . Since�(F)Cn �
2�, we have thath(F) D 1� (�(F)Cn)=2� 1�2�=2D 1��. Now the last statement
is clear.

Corollary 1.4. If F is a connected surface, then h(F) � 0. The equality holds if
and only if F is planar.

Next we define theh-complexityof a link. In this paper, aSeifert surfacefor a
link L is a compact oriented surfaceF embedded inS3 such that�F D L and F does
not have any closed surface components (cf. [2]). Then we define the h-complexity
h(L) of L as the leasth-complexity of all Seifert surfaces forL. From the definition,
we have that ifL and l are ambient isotopic, thenh(L) D h(l ).

REMARK 1.5. Thegenusof a link is the least genus of all its connected Seifert
surface (cf. [8]). Therefore ifL is a link which admits only connected Seifert surface
(for instance, ifL is a knot, or a link with1L (t)¤ 0), then we have thath(L)D g(L).

Proposition 1.6. If L is a link with n components, then h(L) � 1�n. The equal-
ity holds if and only if L is the n-component trivial link.

Proof. Since any Seifert surface forL has at mostn connected components, we
have the inequality from Proposition 1.3. MoreoverL is then-component trivial link if
and only if L has a Seifert surface withn disks, and thus the last statement is clear.

A loop on a surface is calledessentialif it is not null-homotopic on the surface.
Let F be a Seifert surface forl and E(L) the exterior ofL. A disk D in E(L) is
called acompressing diskfor F in E(L) if D \ F D �D and �D is essential onF .
We say thatF is compressiblein E(L) if there exists a compressing disk forF in
E(L). Otherwise, we say thatF is incompressiblein E(L).

Proposition 1.7. If F is a Seifert surface for a link L with h(F) D h(L), then F
is incompressible in E(L).

Proof. Suppose thatF is compressible inE(L). Let D be a compressing disk
for F and F 0 the surface obtained fromF by replacing a neighborhood of�D on F



SIMPLE RIBBON MOVES FOR L INKS 549

with two parallel copies ofD. Note that�(F 0) D �(F) C 2. Therefore if�D is a
non-separating loop onF or a separating loop onF but F 0 has no closed components,
then F 0 is another Seifert surface forL such thath(F 0) D h(F)� 1, which contradicts
that h(F) D h(L). If �D is a separating loop onF and F 0

D F 0

1 [ F 0

2 with a closed
componentF 0

2, then F 0

1 is another Seifert surface forL such that�(F 0

1) D �(F 0) �
�(F 0

2) � �(F 0) C 0 D �(F) C 2, since D is a compressing disk and thus�(F 0

2) � 0.
Therefore we have thath(F 0

1) � h(F) � 1, which contradicts thath(F) D h(L).

Theorem 1.8. Let L be a link obtained from a link l by a single SRC-move. Then
we have that h(L) � h(l ). Moreover, the following conditions are equivalent:
(1) h(L) D h(l );
(2) L is ambient isotopic to l; and
(3) the SRC-move is trivial.

Corollary 1.9. Let L be a link obtained from a link l by a single SRC-move. If
l is a non-trivial link, then L is a non-trivial link.

REMARK 1.10. The first statement of Theorem 1.8 holds for the genus instead
of the h-complexity. However, the last statement does not hold for the genus. Letl
and L be the links as illustrated in the upper left and lower left ofFig. 5, respectively.
Then L is obtained froml by an SRC-move of class I andL is not ambient isotopic
to l from Corollary 1.22. However both ofl and L have Seifert surfaces of genus 2
as illustrated in the upper right and lower right of of Fig. 5,respectively. Since the
signature ofl is 4, we have 2g(l ) � � (l ) � nC 1D 4� 2C 1D 3 ([6], Theorem 9.1).
Therefore we have thatg(L) D g(l ) D 2.

The effect of anSR-move on a link type depends not only on its associated tangle
but also on how we attach the tangle tol . In fact, for anySR-tangle, there is a trivial
SR-move whose associated tangle is theSR-tangle. However, we have the following for
non-split links.

Theorem 1.11. An SR-move on a non-split link is reducible(resp. trivial) if and
only if its associated tangle is reducible(resp. trivial).

Corollary 1.12. Let L be a link obtained from a non-split link l by a single SRC-
move. Then L is ambient isotopic to l if and only if its associated tangle is trivial.

Theorem 1.13. Let L be a link obtained from a non-split link l by a single SRC-
move. Then L is also non-split.

For the effect of anSR-move on the Alexander polynomial1l (t) of a link l , we
have the following. Therefore if anSR-move is not of class I, i.e., if theSR-move has
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Fig. 5.

a component with index more than 1, then theSR-move on a knot changes the knot
type, and thus its associated tangle is non-trivial.

Theorem 1.14(cf. [1, Theorem 1]). Let L be a link obtained from a link l by a
single SRC-move of type(m1, m2, : : : , mn) (mk D 1 if k � p � 1, mk � 2 if k � p).
Then we have the following, where qk and r are integers with0� qk � mk=2.

1L (t) D �t r
n
Y

kDp

{(1� t)mk
� (�t)qk}{(1� t)mk

� (�t)mk�qk}1l (t).

Especially if the SRC-move is of classI, then we have that1L (t) D �t r
1l (t).

Corollary 1.15. An SR-tangle which is not of classI is non-trivial.
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Fig. 6.

Corollary 1.16. The k-th component of an SR-tangle with mk � 2 is irreducible.

Proof. Thek-th componentT k of an SR-tangle with mk � 2 is non-trivial from
Theorem 1.14. Then we obtain the conclusion, sinceT k is irreducible if and only if
T k is non-trivial.

REMARK 1.17. If B satisfies only Condition (i) in the definition of a simple rib-
bon move, then we call the transformation either froml to L or from L to l a ribbon
move. It is easy to see that any ribbon link is obtained from a trivial link by a rib-
bon move. However, there is a ribbon link which is not obtained from a trivial link by
SRC-moves (see the following example).

EXAMPLE 1.18. The knotK (D 88) illustrated in Fig. 6 is a ribbon knot which
cannot be obtained from the trivial knot by a finite sequence of SRC-moves.

Proof. Consider the degree deg1L (t) of a link L which is obtained from the triv-
ial link by a finite sequence ofSRC-moves. Letmi ,k be the index of thek-th compo-
nent of thei -th SRC-move. Then deg1L (t) is the sum of the degree degfi ,k of a factor
{(1� t)mi ,k

� (�t)qi ,k}{(1� t)mi ,k
� (�t)mi ,k�qi ,k} from Theorem 1.14, whereqi ,k is an in-

teger with 0� qi ,k � mi ,k=2. Note that degfi ,k is 2mi ,k � 2 if qi ,k D 0 and 2mi ,k if
qi ,k ¤ 0 and that deg1K (t) is 4, since1K (t) D 2t4

� 6t3
C 9t2

� 6t C 2. Therefore if
K is obtained from the trivial knot by a finite sequence ofSRC-moves, then1K (t) is
one of the following:
• �t r {(1� t)3

� (�t)0}{(1� t)3
� (�t)3};

• �t r {(1� t)2
� (�t)1}{(1� t)2

� (�t)1}; and
• �t r {(1� t)2

� (�t)0}{(1� t)2
� (�t)2}{(1� t)2

� (�t)0}{(1� t)2
� (�t)2}.

The coefficient of the lowest term of the above three cases are3, 4, and 1, respectively.
Thus we obtain a contradiction.

Take anSR-tangle T and let p (� 0) be the maximal number of mutually dis-
joint non-singular disksF1 [ � � � [ Fp proper in H � T such that each component of
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Fig. 7.

H � (F1 [ � � � [ Fp) contains a component ofT . Then we define thenumber of non-
separable components X(T ) of T by pC1. An SR-tangleT is said to beseparableif
X(T ) � 2. An SR-tangle withn components (n � 2) is said to becompletely separable
if X(T ) D n.

Consider anSR-move of class I on a linkl . Then each bandBk
D Bk

1 can be
regarded as (bk

1[bk
2)� [�1,1], wherebk

1 (resp.bk
2) is an arc with ends on intDk and on

�Dk (resp.l ). Let ck be an arc onDk with �ck
D �bk

1 (see Fig. 7). We callJ D
S

Jk

D

S

(bk
1 [ ck) the attendant linkof the SR-move or of theSR-tangle. We say thatJ

is completely splitif there is a unionM D M1[ � � � [Mn (n � 2) of mutually disjoint
non-singular 3-balls inH such thatMk \ J D bk

1 [ ck for eachk. It is easy to see
that if an SR-tangle is completely separable, then the attendant link ofthe SR-tangle is
completely split. Then we have the following.

Theorem 1.19. Let T D �(Bk
1 [ Dk

1) � int(Bk
1 \ �H ) be a string with mk D 1 of

an SR-tangleT . If T is trivial, then there is a non-singular disk proper in H� (B[D)
which bounds a3-ball N in H with a subdisk of�H such that N\ (B[D)D Bk

1[Dk
1.

Corollary 1.20. If an SR-tangle is reducible, then it is separable.

Note that each component with index no less than 2 is irreducible from Corol-
lary 1.16. For anSR-tangle of class I with no less than 2 components, we have the
following. Here note that anSR-tangle of type (1) is trivial (see [3] for instance).

Corollary 1.21. An SR-tangle of classI with n components(n � 2) is s trivial if
and only if it is completely separable.

Corollary 1.22. Let L be a link obtained from a non-split link l by an SRC-move
of classI with n components(n � 2). If its attendant link is not completely split, then
L is not ambient isotopic to l.

REMARK 1.23. (1) The knotK1 (� 927) illustrated in the leftside of Fig. 8 can be
transformed into the trivial knot by anSR�-move of type (3). However since1K1(t) D
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Fig. 8.

Fig. 9.

t6
� 5t5

C 11t4
� 15t3

C 11t2
� 5t C 1, K1 cannot be transformed into the trivial knot

by a finite sequence ofSR-moves of class I by Theorem 1.14.
(2) We can obtain a non-trivial knot whose Alexander polynomial is 1 by using The-
orem 1.14 and Corollary 1.22 (see the knotK2 illustrated in the middle of Fig. 8 for
an example).
(3) There is anSR-move whose attendant link is completely split, but whoseSR-tangle
is not completely separable. TheSR-move in the right-side of Fig. 8 illustrates such a
case. The knotK3 is not trivial, since the Jones polynomial ofK3 is not 1. Thus the
SR-tangle is not completely separable by Corollary 1.21.

The move on a link as illustrated in Fig. 9 is called the1-move. If the three
strands on the figure belong to the same component, then the move is called theself
1-move. Two links are said to beself 1-equivalentif one can be transformed into the
other by a finite sequence of self1-moves and ambient isotopy.

We say that a componentT k of an SR-move on a linkl is distinct if Bk
\ l D

(Bk
1[� � �[Bk

mk
)\ l belong to distinctmk components ofl . Then we have the following.

Theorem 1.24. If two links can be transformed one into the other by a finite se-
quence of SR-moves each of whose components has mk D 1 or is not distinct, then the
two links are self1-equivalent.
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Fig. 10.

Corollary 1.25. If two links can be transformed one into the other by a finite
sequence of SR-moves of classI, then the two links are self1-equivalent.

REMARK 1.26. There is a pair of links such that they can be transformed one
into the other by a distinctSR-move and not self1-equivalent. For example, letL1

and L2 be two links as illustrated in Fig. 10. ThenL1 can be transformed intoL2 by
a distinctSR�-move, but they are not self1-equivalent [7].

REMARK 1.27. Theorem 1.24 does not hold for anSR-move which is not dis-
tinct, where anSR-move on a linkl is distinct if its SR-tangle (�D� �B)\ H satisfies
that B\ l belongs to distinct

P

mk components ofl , where� means the homological
addition. For example, the linkL3 as illustrated in Fig. 10 can be transformed into the
Hopf link L2 by anSR�-move which is not distinct (note that each of two components
is distinct), but L2 and L3 are not self1-equivalent. This is becauseL3 and L1 are
self 1-equivalent, which is easy to see, andL1 and L2 are not self1-equivalent from
Remark 1.26.

2. Simple ribbon moves and link types

Let L be a link obtained from a linkl by anSRC-move. LetE be a Seifert surface
for L with h(E) D h(L). In this section, we prove Theorem 1.8 and Theorem 1.13.

We analyze the intersections ofE and D [ B. We may assume that intE and
int(D[B) intersects transversely. Then the singular points of intE[intD[intB consists
of double points of a pair amongB, D, and E and triple points ofB, D, and E, since
each surface is non-singular. Note thatS(D [ B) consists of mutually disjoint arcs
S

i ,k�
k
i , where�k

i is the singularity ofS(Dk
i [Bk

i�1). Let fCW
�

S

i ,k Dk�
i

�

[

�

S

i ,k Bk�
i

�

!

S3 be an immersion of a disk such thatfC(Dk�
i ) D Dk

i and fC(Bk�
i ) D Bk

i . We denote
�

S

i ,k Dk�
i

�

(resp.
�

S

i ,k Bk�
i

�

) by D� (resp.B�). We denote the pre-image of�k
i on

Dk�
i (resp. Bk�

i�1) by P�k�
i (resp. R�k�

i ). Let S� be the set of pre-images onD�

[ B�

of S(E [D [ B) �
S

i ,k �
k
i . Then S� is a set of mutually disjoint simple loops and

simple arcs, and we denote an element ofS� by  �, for example.
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Fig. 11.

Define thecomplexityof E as the lexicographically ordered set (s, t, u), wheres
(resp.t) is the number of arcs (resp. loops) ofS� and u is the number of triple points
in S(E [D [ B). In the following, we omit the indexk unless we need to emphasize
it. Let Bi ,1 and Bi ,2 be the disks such thatBi ,1[ Bi ,2 D Bi , Bi ,1\ Bi ,2 D �iC1, and an
end of Bi ,1 is on �Di .

Lemma 2.1. S� does not have a loop which bounds a disk on D�

i [ B�

i ,1 con-
taining exactly one end ofP��i .

Proof. Assume that there is such a loop � in S�. Then  D fC( �) is a sim-
ple closed curve onDi [ Bi ,1 which bounds a disk intersecting withL in one point,
and thus lk( , L) D 1. However since is also on intE, C does not intersect with
E, whereC is  pushed into the positive normal direction ofE. Thus lk( , L) D
lk(C, L) D 0. This is a contradiction.

Lemma 2.2. Assume that E has the minimal complexity. Then, S� does not have
a loop which bounds a diskÆ� on D�

i [ B�

i with Æ� \ P��i D ; and Æ� \ R��iC1 D ;.

Proof. Assume that there is such a loop inS� and take one � which is inner-
most on D�

i [ B�

i . Then  bounds a disk onE, since h(E) D h(L) and thusE is
incompressible inE(L). By replacing a neighborhood of on E with two parallel
copies ofÆ, we obtain a sphere and another Seifert surfaceE0 for L with h(E0)D h(L)
whose complexity is less than that ofE, which is a contradiction.

An end of an arc � of S� on �(D�

[ B�)� �H� is a branch pointp�. Here we
isotop E so that there exist no branch points on� R��iC1� (�1, 1). Define theorientation
of p� as the orientation of � around p� induced by the orientation ofE. We say that
the orientations of two branch points which are adjacent on�(D�

[ B�) � �H� match
if the same (positive or negative) sides face each other. If the orientations match, then
we can isotopE to eliminate the branch points as illustrated in Fig. 11, where Æ means
a branch point.
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Fig. 12.

Lemma 2.3. Assume that E has the minimal complexity. Then, there does not
exist an arc ofS� on D�

i [ B�

i ,1 whose ends are on�(D�

i [ B�

i ,1) � R�
�

iC1 and which
bounds a diskÆ� on D�

i [B�

i ,1 with an arc on�(D�

i [B�

i ,1)� R�
�

iC1 such thatÆ�\ P��i D ;.

Proof. Assume that there is such an arc and take an innermost one  � on D�

i [

B�

i ,1, that is, there are no such arcs inÆ�. Then intÆ� does not contain any loops ofS�

from Lemma 2.2, and the ends of � are adjacent on�(D�

i [B�

i ,1)� R�
�

iC1 and the orien-
tations of the two branch points match. Therefore eliminating the pair of branch points,
we obtain a loop from �, which contradicts thatE has the minimal complexity.

Proposition 2.4. Assume that E has the minimal complexity and let

� be an arc
in S� such that� � \ � P��i ¤ ;. Then� � D � P��i and int  � \ int P��i D ;.

Proof. Take a straight line�� which is proper inD�

i and containsP��i . Then  �

does not have a subarc in the closure of a component ofD�

i ��
� whose ends are onP��i

and at least one end is on intP��i , and which bounds a diskÆ� on D�

i with a subarc of
P�

�

i such that intÆ� \ S�

D ;. Assume otherwise. Then we can isotopE to reduce the
complexity of E (see Fig. 12), which is a contradiction. Thus we have the following.

Claim 2.5. 

� does not have a subarc in the closure of a component of D�

i ��
�

whose ends are onP��i and at least one end is onint P��i .

We also have the following.

Claim 2.6. S� does not have an arc which has its ends on�D�

i ��B�

i and inter-
sects withP��i once.

Proof. If exists, then take an outermost one �1 , that is, �1 bounds with a subarc
of �D�

i ��B�

i a disk Æ� in whose interior there does not exist an arc ofS� intersecting
with P��i . From Lemmas 2.1, 2.2, 2.3 and Claim 2.5, there exists only one element
of S� in Æ

�, say  �2 , whose ends are on� P��i and �D�

i . Let � �1 D p�1 [ p�2 and let


�

2 \�D�

i D p�3 (see Fig. 13). Thenp�3 is adjacent to both ofp�1 and p�2 on �D�

i ��B�

i .
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Fig. 13.

Fig. 14.

Thus the orientations of eitherp�3 and p�1 , or p�3 and p�2 match, and hence we can
eliminate the pair of branch points whose orientations match to reduce the complexity
of E, which is a contradiction.

Let P� be a point of� �\� P��i . Let ��1 be the arc of�� � P��i with ��1 \ P�
�

i D P�,

�

�

2 the other arc of�� � P��i , and Q�

D �

�

2 \ P�
�

i . Let  0� be the arc ofS� with one of
its ends onQ�. Then we have the following.

Claim 2.7. Rotating Bi�1 around �i properly, we may assume that � (and  0�)
is as illustrated inFig. 14 (A), (B), or (C).

Proof. Starting fromP� (resp.Q�), we read the intersection data1


(resp.1


0)
of int  � (resp. int 0�) with �

�, which is a sequence consisting of int��1 , int P��i , and
int ��2 . Note that none of the three entries appears consecutively,since otherwise we
can eliminate these intersections by isotopingE similarly to the proof of Claim 2.5.

If both of 1


and1


0 are empty, then clearly we can transform � and  0� into
the position of (A), (B), (C), or (D) by rotatingBi�1 around�i properly. Thus we may
assume at least one of1



and1


0 is not empty. In either case, we have a symmet-
ric conclusion, which is resolved by rotatingBi�1 around�i properly. Hence we may
assume that1



is not empty.
We know that the first entry of1



is not int P��i from Claim 2.5. If the first entry
of 1



is int��1 , then we can eliminate the intersection by isotopingE similarly to the
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proof of Claim 2.5. Thus the first entry of1


is int��2 . Then the second entry of1


is int P��i , int��1 or empty. In the first case, tracing � further similarly to the above, we
know that1



is int��2 , int P��i , int��2 , int P��i , : : : , and the other end of � is Q�. However
this contradicts Claim 2.5. In the second case, also tracing

� further similarly to the
above, we know that1



is int��2 , int ��1 , int ��2 , int ��1 , : : : and the other end of � is
on �D�

i . Then, similarly, we have that1


0 is int��1 , int ��2 , int ��1 , int ��2 , : : : and the
other end of 0� is on �D�

i . Thus rotatingBi�1 around�i properly,  � (and  0�) is
as illustrated in Fig. 14 (A), (B), (C), or (D). The third caseis similar to the second
case, since in this case1



is int��2 and the other end of � is on �D�

i .
If  � (and  0�) is as illustrated in Fig. 14 (D), then letÆ� be the disk bounded

by  �, P��i ,  0�, and a subarc of�D�

i � �B�

i . Then the elements ofS� \ Æ� are arcs
each of which has ends on�D�

i and on P��i from Lemmas 2.2, 2.3 and Claim 2.5.
Note thatS� \ Æ� has � and  0�, and thusS� \ Æ� is not empty. Then there exists at
least one adjacent pair of branch points on�Æ�\ �D�

i whose orientation match. Hence
we can eliminate the pair of branch points to reduce the complexity of E, which is a
contradiction. We complete the proof of Claim 2.7.

Proof of Proposition 2.4 (continued). Our goal is to show that � (D 

0�) is as
illustrated in Fig. 14 (A). We work on this task by dividing itinto two cases:mk D 1;
and mk > 1.

First consider the case whenmk D 1. Take a look atS�

\ P�

k�
i . If  � and  0� are

as illustrated in Fig. 14 (B), then letRP�

1 D 
�

\ R�

k�
1 (resp. RQ�

1 D 
0�

\ R�

k�
1 ). Thus there

is PP�

1 (resp. PQ�

1) on P�k�
1 (see Fig. 15 (a)). Take a look at the subarc�0 of �k

1 bounded
by P1 and Q1, and let p be the number of intersections of int�0 \ E. Thus there are
p arcs ofS� which intersect with intP�0� � P�k�

1 . From Claim 2.5, thesep arcs also
intersect with intR�0�. However, also from Claim 2.5, the arc which intersects withP�k�

1

in PP�

1 (resp. PQ�

1) intersects withR�k�
1 , in fact, intersects with intR�0�. This induces that

the number of intersections on intR�0� is no less thanpC 2, which is a contradiction.
If  � and 0� are as illustrated in Fig. 14 (C), then we may assume that the orien-

tations of P�k�
1 and R�k�

1 coincide, i.e., PP� and RP� (resp. PQ� and RQ�) are on the leftside

(resp. the rightside) ofP�k�
1 and R�k�

1 in the figure, respectively. LetRP�

1 D 

�

\ R�

k�
1 .

Take a look at the subarc�0 of �k
1 bounded byP and P1, and let p be the number of

intersections of int�0 \ E. The arc which is in the component of (Dk�
1 [ Bk�

1 )� ( � [

P�

k�
1 [

0�) containing R�0� and intersects withP�k�
1 in PP�

1 intersects withR�0� (Fig. 15 (b))
or �Dk�

1 � �Bk�
1 (Fig. 15 (c)). In the former case, letp be the number of intersections

of int�0\E. Then thep arcs intersect withP�0� also intersect withR�0� from Claim 2.5,
and thus the number of intersections on intR�0� is no less thanpC1, which is a contra-
diction. In the latter case, let�00 be the subarc of�k

1 bounded byP1 and Q, andq the
number of intersections of int�00\ E. However then, the arc which intersects withP�k�

1

in PP�

1 and theq arcs which intersect withP�00� intersect with intR�00� from Claim 2.6,
which induces a contradiction similarly to the former case.
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Fig. 15.

Next consider the case whenmk > 1. Let  k�
i and �k�

i be the arcs ofS� with an
end on� P�k�

1 (1� i � mk). If  k�
i and�k�

i are as illustrated in Fig. 14 (B) or (C), then
either  k�

i or �k�
i intersects withR�k�

iC1. Thus k�
iC1 and�k�

iC1 are as illustrated in Fig. 14

(B) or (C), sinceS�

\ P�

k�
iC1 D ; from Claim 2.5 in the case of Fig. 14 (A). Therefore,



k�
i and �k�

i are as illustrated in Fig. 14 (B) or (C) for eachi (1 � i � mk). Then
let p be the number of intersections on intP�k�

1 with S�. Since an arc that intersects
with int P�k�

1 intersects with R�k�
2 and either k�

1 or �k�
1 intersects with R�k�

2 , there are
no less thanp C 1 intersections on intP�k�

2 with S�. Then inductively we have that
there are no less thanpC mk intersections on intP�k�

mkC1 D int P�k�
1 with S�, which is

a contradiction.

Proof of Theorem 1.8. LetE be a Seifert surface forL with h(E) D h(L) and
with minimal complexity. From Proposition 2.4, each arc k�

i of S� with an end on
� P�

k�
i satisfies that� k�

i D � P�

k�
i and int k�

i \ int P�k�
i D ;. Therefore int k�

i and P k�
i

are as illustrated in Fig. 16, whereP k�
i is the arc onE� such that fC( P k�

i ) D  . Let
�

k�
i be �(Dk�

i [ Bk�
i ,1) � int R�k�

iC1. Note that� k
i is a subarc ofL.

Note thatS� may have arcs and loops onDk�
i [ Bk�

i ,1. From Lemma 2.3 and Prop-

osition 2.4, such an arc onDk�
i [ Bk�

i ,1 which is not k�
i has its ends on� k�

i and bounds

a disk "� on Dk�
i [ Bk�

i ,1 with a subarc of� k�
i such that"� contains P�k�

i . If there exists
such an arc, then we can transform it into a loop by eliminating an innermost pair of
branch points as the proof of Lemma 2.3. Then we obtain a contradiction thatE has
the minimal complexity. From Lemma 2.2, each loop ofS� on Dk�

i [ Bk�
i ,1 bounds a

disk "� containing P�k�
i . In fact, we may assume that such a loop is onDk�

i by ambi-
ent isotopy.

We construct a Seifert surfaceF for l from E. Note thatS� now consists of
arcs

S

i ,k 
k�
i (1 � i � mk, 1 � k � n) and loops, say��j (1 � j � r ), and that each



k�
i bounds a diskÆk�

i on Dk�
i with P�k�

i and each��j bounds a disk"�j on a disk of

D�. Replace a neighborhood of k
i on E with two parallel copies ofÆk

i , and replace
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Fig. 16.

a neighborhood of� j on E with two parallel copies of" j , where we operate the re-
placement and these cancellations on each diskDk

i from the innermost one on the disk
so to have a non-singular surface (see Fig. 17). Let the result surface beE0 and let F
be the result obtained fromE0

[

S

i ,k(Dk
i [ (Bk

i ,1 � �
k
iC1 � [0, 1))) by removing the

closed components.
Since�(E0) D �(E)C

P

k mkC 2r , we have that�(F) D �(E)C 2(
P

k mkC r )�
P

t �(Ft ), whereFt is a closed component which was removed above. Since�(Ft ) � 2
and

P

t 1�
P

k mkC r , we have that�(F) � �(E), and thush(l ) � h(L). The equality
h(l ) D h(L) holds only when

P

k mk C r spheres are removed when we constructF
from E0, which implies that� k

i [ 
k
iC1 bounds a disk onE for any pair of i and k.

Thus ourSR-move is trivial. For if � k
i [ 

k
iC1 bounds a disk onE, then � k

i is ambient

isotopic to  k
iC1 along the disk. Since k

iC1 and �k
iC1 bounds a subdisk ofDk

iC1,  k
iC1

is ambient isotopic to�k
iC1. This implies thatTk

i of the SR-move is trivial. Therefore
we can conclude that condition (1) implies condition (3), which is sufficient to show
the last part of the statement, and thus we complete the proof.

Proof of Theorem 1.13. SupposeL is split. Namely, there is a 2-sphere6 in S3

such that6 \ L D ; and each connected component ofS3
�6 contains a component

of L. Here let6 split L into L1 and L2. Let S� be the set of pre-images onD�

[B�

of S(6 [D [ B) �
S

i ,k �
k
i . Then S� is a set of mutually disjoint simple loops and

simple arcs, where note that each arc has its ends onB�

\ �H�. Define thecomplexity
of 6 as the lexicographically ordered set (s, t, u), wheres (resp. t) is the number of
arcs (resp. loops) ofS� and u is the number of triple points inS(6 [ D [ B). Here
we may assume that6 has the minimal complexity.

Note that the numbers of components ofL and l coincide, since anSR-move does
not change the number of components. If6 \ l D ;, then l is entirely in a compo-
nent of S3

� 6, since l is non-split. However then, it contradicts that the numbersof
components ofL and l coincide. Hence6 \ l ¤ ;, and thus6 \ (l � L) ¤ ;, since
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Fig. 17.
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Fig. 18.

6 \ L D ;. Therefore we obtain that6 \ B ¤ ;. We have the following similarly to
Lemma 2.1 and Claim 2.5.

Claim 2.8. S� does not have a loop which bounds a disk on Dk�
i [ Bk�

i ,1 contain-

ing exactly one end ofP�k�
i .

Claim 2.9. Every element of S� does not have a subarc which bounds with a
subarc of P�k�

i or R�k�
iC1 a disk on Dk�

i [ Bk�
i whose interior does not intersect withP�k�

i

or R�k�
iC1.

Using the above claims, we have the following.

Claim 2.10. S� does not have a loop which intersects withP�k�
i or R�k�

iC1.

Every arc ofS� on Dk�
i [ Bk�

i intersects withR�k�
iC1. Otherwise, we can eliminate

it by ambient isotopy. Then the arc is either an arc which intersects with R�k�
iC1 twice

and bounds with a subarc ofR�k�
iC1 a disk on Dk�

i [ Bk�
i which containsP�k�

i (type A)

or an arc which intersects withR�k�
iC1 twice and intersects withP�k�

i once (type B) (see

Fig. 18). Here note that #(P�k�
i \S

�) D #(R�k�
i \S

�) D #(R�k�
iCmk
\S�). Then we obtain a

contradiction, since we have Claim 2.10 and that #(P�

k�
i \ 

k�
i ) < #(R�k�

iC1\ 
k�
i ) in both

cases of type A and type B for every arc k�
i of S� on Dk�

i [ Bk�
i . Therefore,L is

non-split.

3. Reducibility of Simple ribbon moves

Consider anSRC-move on a linkl such that a stringTk
i is trivial. Let E be a

non-singular disk inS3 whose boundary isTk
i [ (Bk

i \ �H ) such that intE does not
intersect with the resultant linkL. In this section, we prove Theorems 1.11 and 1.19.

Similarly to the previous section, letS� be the set of pre-images onD�

[ B� of

S(E [D [ B) �
S

i ,k �
k
i and define the complexity ofE as the lexicographically or-

dered set (s, t, u, v), wheres (resp. t) is the number of arcs (resp. loops) ofS�, u is
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the number of triple points inS(E [ D [ B), and v is the number of intersections of
E \ �H . Then we can obtain Lemmas 2.1, 2.2, 2.3, and Proposition 2.4. Moreover,
we have the following.

Lemma 3.1. If E has the minimal complexity, then int E does not intersect with
S

i ,k Bk
i ,2.

Proof. Assume thatE intersects with
S

i ,k Bk
i ,2. Then the intersections consists of

arcs from Lemma 2.2. Moreover from Proposition 2.4, each of these arcs has its ends
on �Bk

i ,2 � �
k
iC1. Then we can transform an innermost arc into a loop by isotoping E

as illustrated in Fig. 11, which contradicts thatE has the minimal complexity.

Proof of Theorem 1.11. It is sufficient to show that if anSR-move on a non-split
link is reducible, then its associated tangle is reducible.Assume that there exists a
counter example, and take such anSR-move on a non-split linkl , that is, it has a string
Tk

i such thatTk
i [ (Bk

i \ �H ) bounds a non-singular diskE in S3 whose interior does
not intersect with the resultant linkL but does not bound a non-singular disk inH
whose interior does not intersect with the resultant linkL.

We may assume thatE has the minimal complexity. Then from Lemma 3.1, intE\
�H consists of mutually disjoint simple loops each of which does not intersect with
B \ �H , and thus intE does not intersect withl . From the assumption, we have that
int E \ �H ¤ ;. Thus take a loop� of int E \ �H which is innermost on intE, that is,
� bounds a diskE

�

on int E such that intE
�

\ �H D ;.

Claim 3.2. Each component of�H � � intersects withB.

Proof. If a componentÆ of �H � � does not intersect withB, then replacing a
neighborhood of� on E with two parallel copies of the diskÆ, we obtain a sphere
and a non-singular diskE0 whose boundary isTk

i [ (Bk
i \ �H ) such that intE0 does

not intersect withL and the complexity ofE0 is less than that ofE, which contradicts
that E has the minimal complexity.

Assume thatE
�

is in S3
� int H . From Claim 3.2, each component of�H � �

intersects withB. Thus each component ofS3
� int H � E

�

contains a component of
l , since E

�

does not intersect withl . However this contradicts thatl is non-split.
Next assume thatE

�

is in H . From Claim 3.2, each component of�H � � inter-
sects withB. Thus each component ofH � E

�

contains a component ofT , since E
�

does not intersect withL. We show that we have a contradiction by an induction on
the number of connected componentsX(T ). In the case whenX(T ) D 1, that is,T is
non-separable, we have a contradiction, sinceE

�

separatesT . Assuming that we have
a contradiction in the case whenX(T ) � t � 1, consider the case whenX(T ) D t .
Let H1 be the closure of the component ofH � E

�

which containsTk
i , and letT1 be
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H1 \ T . Let H2 be the closure ofH � H1 and T2 be H2 \ T . Let L 0 be the link
obtained froml by the SRC-move whose associated tangle isT2 and whose associated
3-ball is H2. Since l is non-split, L 0 is non-split from Theorem 1.13. ThusT1 is the
associated tangle of theSR-move on a non-split linkL 0 such thatX(T1) � t � 1. Thus
Tk

i [ (Bk
i \�H1) bounds a non-singular diskE1 in H1 whose interior does not intersect

with T1. This implies thatTk
i [ (Bk

i \ �H ) bounds a non-singular diskE1 in H whose
interior does not intersect withT1, since H1 � H . This is a contradiction.

Proof of Theorem 1.19. LetE be a non-singular disk inH whose boundary is
T [ (Bk

1 \ �H ) and whose interior does not intersect withT . Assume thatE has the
minimal complexity. By a similar argument to the end of the proof of Theorem 1.8
and by Lemma 3.1, we have thatS� consists of the arc k� and loops

S

s �
�

s , and that


k� bounds a diskÆ�k on Dk� with P�k� and each��s bounds a disk"�s on a disk of
Dk(s)� containing P�k(s)�.

If S� does not have loops, then letE1 and E2 be the disks such thatE1[E2 D E,
E1 \ E2 D 

k, and �E1 \ �Dk
1 ¤ ;. Then F D E [ Dk

1 [ Bk
1 consists of a torus

F1 D (Dk
1� Æk)[ E1[ Bk

1,1 and a sphereF2 D Æk[ E2[ Bk
1,2, where we recall thatBk

1,1

and Bk
1,2 are the disks such thatBk

1,1[ Bk
1,2D Bk

1, Bk
1,1\ Bk

1,2D �
k, and an end ofBk

1,1

is on �Dk
1. Let N1 and N2 be 3-manifolds inH bounded byF1 and F2, respectively.

Then a neighborhoodN on H of the union ofN1 and N2 is a 3-ball such that intN \
(B [ D) D Bk

1 [ Dk
1, since N1 \ N2 is a meridian ofF1. Thus the boundary ofN in

H is a required non-singular disk.
If S� has a loop, then let� 2 S be an innermost loop onE, and E

�

the innermost
subdisk ofE bounded by�, that is, E

�

does not intersect withD [B. Assume that�
is on Dl

i . Here note thatT l
i of T is trivial through the disk which is a union ofE

�

,
Bl

i and the annulus inDl
i bounded by� and �Dl

i . Thus we have thatml D 1 from
Corollary 1.16. Now assume that (Dl

1� {1})\ Bl
1,1¤ ; and (Dl

1� {�1})\ Bl
1,2¤ ;. If

E
�

\ (Dl
1� {1}) ¤ ;, then�� {1} bounds a disk (a subdisk ofE

�

) in S3
� (Dl

1[ Bl
1,1),

which is impossible. Thus we have thatE
�

\ (Dl
1 � {�1}) ¤ ;. Let Æ

�

be the subdisk
of Dl

1 which is bounded by�. Then E
�

[ Æ

�

bounds a 3-ballN
�

in H which contains
Bl

1,1. Since intE
�

does not intersect withD [ B and Æ
�

intersects withB in �

l , we

have thatN
�

\ (D [ B) D Dl
1 [ Bl

1,1.

If l D k, then a neighborhoodN � H of the union of N
�

and Bl
1,2 satisfies that

int N \ (B [D) D Bk
1 [ Dk

1. Thus the closure of�N � �H is a required disk.
If l ¤ k, then let1 be a disk properly embedded inN

�

such that�1 is a union of
an arc�E in E

�

and an arc�D in Æ
�

such that�l
� �D and ��E D ��D is on �. Take

a look atE\1�{�E}. Sincel ¤ k and N
�

\(D[B)D Dl
1[Bl

1,1, �E D T[(Bk
1\�H )

is in H � N
�

, and thusE \ 1 � {�E} consists of properly embedded arcs and loops.
Moreover since each loop ofE \ Dl

1 bounds a subdisk ofDl
1 containing�l and there

exists no subdisks ofE in N
�

shown as above, the ends of each arc ofE \1� {�E}

are on the same component of�D � �
l . Let � be one of the two arcs on1 one of
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Fig. 19.

whose ends is on��E D ��D and let Æ
�

be the subdisk of1 bounded by� and an
arc on ��D. Then take an outermost arc� 0 of E \ 1 � {�E} on Æ

�

. Let ł1 and ł2
be the loops ofE \ Dl

1 on which the ends of� 0 are. Then ł1 � {�1} and ł2 � {�1}

bounds an annulusA on E and A0 on Dl
1� {�1}. Since A0 does not intersect withE,

substitutingA0 for A, we obtain have another non-singular disk inH whose boundary
is T [ (B \ �H ) and which does not intersect withT with less complexity than that
of E, which is a contradiction.

4. Proof of Theorem 1.14

Proof of Theorem 1.14. LetD [ B be the union of disks and bands which gives
an SRC-move transformingl into L. Let E0 be the orientable surface obtained from
D [ B by performing an orientation preserving cut along the intersection of each pair
of a disk Dk

iC1 and a bandBk
i (see Fig. 20). LetF be a connected Seifert surface for

l . If E0 intersects withF , then it consists of arcs of ribbon type ofBk
i \F . Performing

the orientation preserving cut along these arcs, we obtain aconnected Seifert surface
E for L.

Take a set of basis of the first homologyH1(E) of E including ak
i and bk

i as il-
lustrated in Fig. 20. LetM be a Seifert matrix ofL, whereakC

i and bkC
i mean the lift
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of ak
i and bk

i over the positive side ofE, respectively. Then we have

1L (t) D jM � t M t
j

D

a1C
1 � � � a1C

m1
b1C

1 � � � b1C
m1
� � � anC

1 � � � anC
mn

bnC
1 � � � bnC

mn

a1
1
... O A1 O O O O

a1
m1

b1
1
... B1 � � O � �

b1
m1

... O �

.. . O � �

an
1
... O O O O An O

an
m1

bn
1
... O � � Bn � �

bn
m1

O � � O � 1l (t)

,
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where A1 D "1t Æ1 and B1 D �"1t1�Æ1,

Ai D

0

B

B

B

�

"1t Æ1 t � 1

t � 1
... O
. . .

. . . t � 1
O t � 1 "mi t

Æmi

1

C

C

C

A

and Bi D

0

B

B

B

�

�"1t1�Æ1 t � 1 O
. . .

. . .

O
. . . t � 1

t � 1 �"mi t
1�Æmi

1

C

C

C

A

if mi � 2, andÆk D 0, "k D 1 or Æk D 1, "k D �1. Denotingqk D Æ1C � � � C Æmk , we
have that"1 � � � "mk D (�1)qk and (�1)mk

"1 � � � "mk D (�1)mk�qk . Therefore,

1L (t) D �t r
n
Y

kDp

jAkjjBkj1l (t)

D �t r
n
Y

kDp

{(�1)mk�1(t � 1)mk
C (�t)qk}{(�1)mk�1(t � 1)mk

C (�t)mk�qk}1l (t)

D �t r
n
Y

kDp

{(1� t)mk
� (�t)qk}{(1� t)mk

� (�t)mk�qk}1l (t).

5. Simple ribbon moves and the self delta-equivalence

In this section, we prove Theorem 1.24. Consider anSRC-move on a linkl each
index of whose component ismk D 1 or is not distinct, and letL be the resultant link.
We show that theSRC-tangle can be transformed into trivial by self1-moves onL and
ambient isotopy inH . To do this, we useD [ B of the SRC-tangle. On the process,
we apply self1-moves (resp. isotopies) on links such that we can naturallyconsider
a substitution forD [ B after the moves (resp. isotopies). Thus for convenience, in
such a situation, we just say, for instance, that we apply self 1-moves and isotopies
on D [ B.

As we defined in Section 2, each bandBk
i is divided by Dk

iC1 into two sub-bands,

Bk
i ,1 and Bk

i ,2, where Bk
i ,1 has an end on�Dk

i . Let B D Bk
i ,1 or Bk

i ,2. On the process

of the proof, B may intersect with a diskDl
j (l < k). Let � and �0 be singularities

of B \ Dl
j , and B0 be the sub-band ofB whose ends are� and �0. We call � and

�

0 an innermost intersection pairif B0

\ D D {�, �0}, and B0

\ (Dl
j � (0, 1])D ; or

B0

\ (Dl
j � (0,�1]) D ;. Consider the sequence of the singularities ofB\D on B by

reading singularities fromB \ Dk
iC1 D {�k

iC1} to the other end ofB. We say thatB

is well-situated with respect toD1
[ � � � [ Dl if B \ (DlC1

[ � � � [ Dn) D {�k
iC1} and

we can reduce the sequence to{�k
iC1} by removing innermost intersection pairs one by

one. The following lemma has been shown in [12].

Lemma 5.1 (Lemma 2.2, [12]). The transformations as illustrated inFig. 21 are
realized by1-moves.
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(a) (b)

Fig. 21.

Proof of Theorem 1.24. LetD[B be the union of disks and bands for anSRC-
move on a linkl each index of whose component ismk D 1 or is not distinct, and let
L be the resultant link. Letp be the number such that each of thek-th components
(k � p) has indexmk D 1, and each of thek-th components (k � p C 1) has index
mk � 2. First we transform each component with indexmk D 1 into trivial. If p D 0,
then go to Step 2. In the following, we denoteBk

1 and Dk
1 simply by Bk and Dk when

mk D 1.
STEP 1a: Take the 1-st component. Since the1-move is an unknotting operation

[5], B1
1,1 can be transformed into unknotted by using the transformations as illustrated

in Fig. 21 if B1
1,1 is knotted. Here a sub-bandB whose ends are on a diskD is unknot-

ted if there is a diskÆ such thatÆ\BD �Æ\B andÆ\D D �Æ \D are complementary
two arcs of�Æ. If B1

1,2 intersects withÆ for B1
1,1, then remove the intersections by the

transformations as illustrated in Fig. 21. If the other sub-bands intersect with the disk
Æ for B1

1,1, then isotop these sub-bands out ofÆ and remove the intersection ofB1 and

D1 as illustrated in Fig. 22. Then shrinkB1 so thatD1
\ B1 (D �D1

\ �B1) is an arc
on �H . Note that the sub-bands ofk (> 1)-th components are all well-situated with
respect toD1.

STEP 1b: Let l be the number satisfying 2� l � p. Assuming thatBk
\ Dk

D

�Bk
\ �Dk is an arc on�H (k D 1, : : : , l � 1) and that each sub-band of a component

with index no less thanl is well-situated with respect toD1
[ � � � [ Dl�1, transform

B [ D so that Bl
\ Dl (D �Bl

\ �Dl ) is an arc on�H and that each sub-band of a
component with index no less thanl C 1 is well-situated with respect toD1

[ � � � [

Dl . This can be done similarly to Step 1a unless we remove all thesingularities of
Bl

1,1\ (D1
[ � � � [ Dl�1) before transformingBl

1,1 into unknotted. Note that each sub-

band B bounded by an innermost intersection pair ofBl
1,1\ Dk is unknotted from the

construction, and thus there is a diskÆ such thatÆ\ B D �Æ\ B and Æ\Dk
D �Æ\Dk

are complementary two arcs of�Æ. If Bl
1,1 itself intersects withÆ for B, then remove

the intersections by the transformations as illustrated inFig. 21 (see Fig. 23). Then
eliminate the innermost intersection pair by isotopingBl

1,1 along Æ out of Dk. Note
that this isotopy may create new innermost intersection pairs for a sub-band which is
Bl

1,2 or belongs toBlC1
[ � � � [ Bn.
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Fig. 22.

Fig. 23.

STEP 2: Now we have thatBk
\Dk (D �Bk

\�Dk) is an arc on�H (kD 1,:::, p).
In this step, we transform each component with indexmk � 2 into trivial. Take ank-th
component (kD pC1,: : : ,n). Since this component is not distinct from the assumption,
there is a pair of bands, sayBk

1 and Bk
t , which have ends on the same component ofl .

STEP 2a: First we claim that we can deformD[B so that intDk
t \B D int Dk

t \

Bk
1. By the definition of theSR-tangle, we have that intDk

j \B D int Dk
j \ Bk

j�1. Thus

the claim is true whent D 2. If t > 2, then shrinkBk
2 so thatDk

2 pass throughDk
3 and

we have that intDk
3\B D int Dk

3\Bk
1 (see Fig. 24). Then inductively we shrinkBk

i�1 so
that Dk

i�1 pass throughDk
i and we have that intDk

i \B D int Dk
i \ Bk

1 for i D 3, : : : , t .
Similarly we can deform (Dk

tC1 [ Bk
tC1) [ � � � [ (Dk

mk
[ Bk

mk
) so that intDk

1 \ B D

int Dk
1 \ Bk

t . Then remove the intersections of intDk
1 \ Bk

t by the transformations as
illustrated in Fig. 21, and shrinkBk

1 so that Dk
1 \ Bk

1 D �Dk
1 \ �Bk

1 is an arc on�H .
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Fig. 24.

STEP 2b: By applying Step 2a to all the componentsT p, T pC1, : : : , andT n, we
have thatDk

i \ Bk
i (D �Dk

i \ �Bk
i ) is an arc on�H for any k and i (1 � k � n and

1� i � mk), i.e., L is self1-equivalent tol .
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