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Abstract
We introduce and study local moves for links, called simpfdon moves. We
also introduce a complexity of links, called ttecomplexity, which coincides with
the genus in the case of knots, and we show that simple ribbmresnnever reduce
the h-complexities of links.

1. Introduction

All links are assumed to be ordered and oriented, and theycamsidered up to
ambient isotopy in the oriented 3-sphe®. In this paper, we define and study local
moves for links, called simple ribbon moves ([4]).

Let H be a 3-ball inS* andD = D;U---U Dy, (resp.B = By U---U By,) a union
of mutually disjoint disks in inH (resp.H) satisfying the following:

) BiNoaH =0aB; NaH is an arc;

(i) BiNaD =0B NaD; is an arc; and

(i) BiNnintD = B; Nint D, is a single arc of ribbon type (Fig. 1), whereis a
certain permutation ofl, 2,..., m}.

Then we calll J;(3(B; U D;j) —int(B; N dH)) an SRtangle and denote it by, and we
call eachB; a band

Let | be a link in S* —int H such that N dH consists of arcs. Take a@Rtangle
T such thatBNoH =1 NoH. Then letL be the link obtained fromh by substituting
T for I NnaH. We call the transformation either fromto L or from L to | a simple
ribbon-moveor anSRmove andH (resp.7) the associated3-ball (resp.tanglg of the
SRmove. The transformation frorhto L (resp. fromL to |) is called anSR"-move
(resp.SR-mové (see Fig. 2 for an example).
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an arc of ribbon type

Fig. 1.
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Fig. 2.

Since every permutation is a product of cyclic permutatioms rename the indices
of the bands and disks as

n n my n n Mk
B:UB":U( B{‘) and DzUD"zU( D,") where
k=1 1 1

k=1 k=1 k=1 \i=

D) I1=m=mp=<---<mp;
(2) BN dD = 3BKNaDkK is an arc; and
(3) BfnintD = Bf Nint DY, is a single arc of ribbon type.

In Condition (3), the lower indices are considered modolg For an SRtangle
T, we call|J™,(3(BKU DK —int(BKNdH)) the k-th) componenbf the SRmove or of
the SRtangle, denote it by *, and callm, the indexof the component(= 1,2....,n).
The type of the SRmove or of theSRtangle is the ordered set(, my,..., m,) of the
indices. If the index of each component is 1 (resp. no lesa #)a then we say that
the SRmove or theSRtangle is of class | (resp. class Il) (see Fig. 3 for exanples

Let TX = 9(BX U DF) —int(Bf N aH). We say that a string ¥ of the SRtangle is
trivial if TXU (Bf N aH) bounds a non-singular disk ikl whose interior is in inH
and does not intersect witii. We say that thek-th component7™® of the SRtangle
is trivial if the string T is trivial for anyi. In fact, 7% is trivial if the string TX is
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Fig. 4. Differences of thdr-complexities.

trivial for somei, which is easy to see. We say that 8Rtangle isreducibleif the
string T.X is trivial for a certain pair ofi andk. Otherwise we say that th®Rtangle
is irreducible We say that arBRtangle istrivial if the string 'I'ik is trivial for any i
and k.

Consider anSRmove transforming into L. We say that a string'ik of the SR
move istrivial if TXU(BXNdH) bounds a non-singular disk i8® whose interior does
not intersect withL. We say that thék-th component7T* of the SRmove istrivial if
the stringTi" is trivial for anyi. We say that arBRmove isreducibleif the string 'I'ik
is trivial for a pair ofi andk. Otherwise we say that thBRmove isirreducible We
say that anSRmove istrivial if the string Tik is trivial for anyi andk.

Let F be a surface (which is not necessary to be connected or toibetairle)
with n boundary components. We define the&complexity liF) of F as

x(F)+n

h(F) =1- ==

The following is a main property of the-complexity, which is obtained by calculating
the Euler characteristics (see Fig. 4 for an example).

Proposition 1.1. Let F and F be surfaces such that’Hs obtained from F by
deleting the interiors of two disks ;Dand D, on int F and identifyingaD; and aD,
by a homeomorphism: dD; — dD,. Then HF') = h(F) + 1.
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REMARK 1.2. In the above statemerd; and D, may or may not belong to the
same connected component Bf

Proposition 1.3. If F is a surface withu connected componentthen HF) >
1— u. The equality holds if and only if each connected componérit ¢ planar.

Proof. Note thatx(F) 4+ n is the Euler characteristic of the closed surface ob-
tained fromF by attachingn disks ton boundary components ¢f. Sinceyx(F)+n <
2, we have thah(F) = 1—(x(F)+n)/2>1—-2u/2 = 1— . Now the last statement
is clear. O

Corollary 1.4. If F is a connected surfacehen HF) > 0. The equality holds if
and only if F is planar.

Next we define then-complexityof a link. In this paper, &Seifert surfacefor a
link L is a compact oriented surfade embedded irS® such thatdF = L and F does
not have any closed surface components (cf. [2]). Then wena@dfie h-complexity
h(L) of L as the leash-complexity of all Seifert surfaces fac. From the definition,
we have that ifL and| are ambient isotopic, theh(L) = h(l).

REMARK 1.5. Thegenusof a link is the least genus of all its connected Seifert
surface (cf. [8]). Therefore iL is a link which admits only connected Seifert surface
(for instance, ifL is a knot, or a link withA | (t) # 0), then we have that(L) = g(L).

Proposition 1.6. If L is a link with n componenfghen HL) > 1—n. The equal-
ity holds if and only if L is the n-component trivial link.

Proof. Since any Seifert surface far has at mosh connected components, we
have the inequality from Proposition 1.3. Moreo\eiis the n-component trivial link if
and only if L has a Seifert surface with disks, and thus the last statement is clead

A loop on a surface is calledssentialif it is not null-homotopic on the surface.
Let F be a Seifert surface for and E(L) the exterior ofL. A disk D in E(L) is
called acompressing diskfor F in E(L) if DN F = 9D andaD is essential onF.
We say thatF is compressiblein E(L) if there exists a compressing disk fér in
E(L). Otherwise, we say that is incompressiblén E(L).

Proposition 1.7. If F is a Seifert surface for a link L with (r) = h(L), then F
is incompressible in @).

Proof. Suppose thaF is compressible inE(L). Let D be a compressing disk
for F and F’ the surface obtained frorR by replacing a neighborhood @D on F
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with two parallel copies ofD. Note thatx(F') = x(F) + 2. Therefore ifaD is a
non-separating loop off or a separating loop of but F’ has no closed components,
then F’ is another Seifert surface fdr such thath(F’) = h(F) — 1, which contradicts
that h(F) = h(L). If aD is a separating loop off and F' = F; U F, with a closed
componentF;, then F] is another Seifert surface fdr such thatx(F)) = x(F’) —
x(F2) = x(F)+ 0= x(F) + 2, sinceD is a compressing disk and thygF;) < 0.
Therefore we have thdi(F;) < h(F) — 1, which contradicts thali(F) = h(L). ]

Theorem 1.8. Let L be a link obtained from a link | by a single SRnove. Then
we have that (L) > h(l). Moreover the following conditions are equivalent
(1) h(L) = h();
(2) L is ambient isotopic to;land
(3) the SR -move is trivial.

Corollary 1.9. Let L be a link obtained from a link | by a single Sfove. If
| is a non-trivial link, then L is a non-trivial link.

REMARK 1.10. The first statement of Theorem 1.8 holds for the genstedal
of the h-complexity. However, the last statement does not hold e genus. Let
and L be the links as illustrated in the upper left and lower leftFa. 5, respectively.
Then L is obtained froml by an SR'-move of class | and. is not ambient isotopic
to | from Corollary 1.22. However both df and L have Seifert surfaces of genus 2
as illustrated in the upper right and lower right of of Fig. 8spectively. Since the
signature ofl is 4, we have 8(I) > o(l)—n+1=4—2+ 1= 3 ([6], Theorem 9.1).
Therefore we have thay(L) = g(l) = 2.

The effect of anSRmove on a link type depends not only on its associated tangle
but also on how we attach the tangleltoln fact, for anySRtangle, there is a trivial
SRmove whose associated tangle is Bigtangle. However, we have the following for
non-split links.

Theorem 1.11. An SR-move on a non-split link is reducililesp. trivial) if and
only if its associated tangle is reducib{eesp. trivial).

Corollary 1.12. Let L be a link obtained from a non-split link | by a single 'SR
move. Then L is ambient isotopic to | if and only if its asstezdatangle is trivial.

Theorem 1.13. Let L be a link obtained from a non-split link | by a single 'SR
move. Then L is also non-split.

For the effect of arSRmove on the Alexander polynomial,(t) of a link I, we
have the following. Therefore if aBRmove is not of class |, i.e., if th&Rmove has
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Fig. 5.

a component with index more than 1, then tBBmove on a knot changes the knot
type, and thus its associated tangle is non-trivial.

Theorem 1.14(cf. [1, Theorem 1]) Let L be a link obtained from a link | by a

single SR-move of type(my, my, ..., my) (my=1ifk < p—1, mg > 2if k > p).
Then we have the followingvhere ¢ and r are integers withD < qx < my/2.

AL(t) = +t" [TIA 1™ = (%ML - )™ — (=)™ %A 1).

k=p
Especially if the SR-move is of class, then we have that\ (t) = &t"A(t).

Corollary 1.15. An SR-tangle which is not of clasds non-trivial.
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Corollary 1.16. The k-th component of an SR-tangle with m2 is irreducible.

Proof. Thek-th component7* of an SRtangle withmy > 2 is non-trivial from
Theorem 1.14. Then we obtain the conclusion, sifi¢eis irreducible if and only if
TX is non-trivial. O

REMARK 1.17. If B satisfies only Condition (i) in the definition of a simple rib-
bon move, then we call the transformation either frbto L or from L to | a ribbon
move It is easy to see that any ribbon link is obtained from a atiink by a rib-
bon move. However, there is a ribbon link which is not obtdifiom a trivial link by
SR"-moves (see the following example).

ExampPLE 1.18. The knotK (= 8g) illustrated in Fig. 6 is a ribbon knot which
cannot be obtained from the trivial knot by a finite sequenc&R"-moves.

Proof. Consider the degree dég(t) of a link L which is obtained from the triv-
ial link by a finite sequence oBR"-moves. Letm;x be the index of thek-th compo-
nent of thei-th SR -move. Then deg . (t) is the sum of the degree dég of a factor
{(L—t)Mk — (—t)%x}{(1 — t)Mk — (—t)Mk%k} from Theorem 1.14, wherg i is an in-
teger with 0< g x < m;x/2. Note that dedix is 2mx — 2 if g x = 0 and 2n;y if
gk # 0 and that deg\k (t) is 4, sinceAx(t) = 2t* — 6t3 + 9t2 — 6t + 2. Therefore if
K is obtained from the trivial knot by a finite sequenceSR -moves, thenAk (t) is
one of the following:

o EH{1-1)° - (-)°HA -1~ (-1)°);

o EH{A-1)*—(-)'HA-1)*~(-1)}}; and

o Q-1 — (—1)°H@ - 1) — (-1)PHQ - 1)* — (-1)°H(Q —t)* — (-1)?).

The coefficient of the lowest term of the above three case8,ade and 1, respectively.
Thus we obtain a contradiction. 0

Take anSRtangle 7 and let p (= 0) be the maximal number of mutually dis-
joint non-singular disksF, U --- U Fy proper inH — 7 such that each component of
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Fig. 7.

H - (FLU---UF,) contains a component ¢f. Then we define the@umber of non-
separable components(X) of 7 by p+ 1. An SRtangle7 is said to beseparableif
X(T) = 2. An SRtangle withn componentsr(> 2) is said to becompletely separable
if X(7)=n.

Consider anSRmove of class | on a link. Then each ban®* = B¥ can be
regarded asbf UbK) x[—1, 1], whereb¥ (resp.b¥) is an arc with ends on ifi2* and on
dDX (resp.l). Let c be an arc orDX with ack = ab¥ (see Fig. 7). We cally = | J J¥
= U(b‘j U c¥) the attendant linkof the SRmove or of theSRtangle. We say that/
is completely splitf there is a unionM = My U---U M, (n > 2) of mutually disjoint
non-singular 3-balls inH such thatMy N 7 = b'; U ¢k for eachk. It is easy to see
that if an SRtangle is completely separable, then the attendant linthefSRtangle is
completely split. Then we have the following.

Theorem 1.19. Let T = 3(B¥ U D¥) —int(BK N dH) be a string with m = 1 of
an SR-tanglef. If T is trivial, then there is a non-singular disk proper in - HBU D)
which bounds &-ball N in H with a subdisk oBH such that N (BUD) = BKU DX.

Corollary 1.20. If an SR-tangle is reduciblehen it is separable.

Note that each component with index no less than 2 is irrédlidrom Corol-
lary 1.16. For anSRtangle of class | with no less than 2 components, we have the
following. Here note that afsRtangle of type (1) is trivial (see [3] for instance).

Corollary 1.21. An SR-tangle of classwith n componentg¢n > 2) is s trivial if
and only if it is completely separable.

Corollary 1.22. Let L be a link obtained from a non-split link | by an SRove
of classl with n componentgn > 2). If its attendant link is not completely splihen
L is not ambient isotopic to I.

REMARK 1.23. (1) The knoK; (& 9,7) illustrated in the leftside of Fig. 8 can be
transformed into the trivial knot by aBR -move of type (3). However sincaAg,(t) =
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t® — 5t5 + 11t* — 153 + 11t2 — 5t + 1, Ky cannot be transformed into the trivial knot
by a finite sequence dRmoves of class | by Theorem 1.14.

(2) We can obtain a non-trivial knot whose Alexander polyrans 1 by using The-
orem 1.14 and Corollary 1.22 (see the k6t illustrated in the middle of Fig. 8 for
an example).

(3) There is arSRmove whose attendant link is completely split, but wh&$tangle

is not completely separable. TI&Rmove in the right-side of Fig. 8 illustrates such a
case. The knoK3 is not trivial, since the Jones polynomial &f; is not 1. Thus the
SRtangle is not completely separable by Corollary 1.21.

The move on a link as illustrated in Fig. 9 is called themove If the three
strands on the figure belong to the same component, then the mcaalled theself
A-move Two links are said to bself A-equivalentif one can be transformed into the
other by a finite sequence of se-moves and ambient isotopy.

We say that a componert® of an SRmove on a linkl is distinct if BK N1l =
(B‘l‘u- ..U B,';k)ﬂl belong to distinctmy components of. Then we have the following.

Theorem 1.24. If two links can be transformed one into the other by a finite se
guence of SR-moves each of whose components hasInor is not distinct then the
two links are selfA-equivalent.
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Corollary 1.25. If two links can be transformed one into the other by a finite
sequence of SR-moves of classhen the two links are selA-equivalent.

REMARK 1.26. There is a pair of links such that they can be transfdriome
into the other by a distincERmove and not selfA-equivalent. For example, ldt;
and L, be two links as illustrated in Fig. 10. Thdy can be transformed intb, by
a distinct SR -move, but they are not selk-equivalent [7].

REMARK 1.27. Theorem 1.24 does not hold for &wmove which is not dis-
tinct, where anSRmove on a linkl is distinct if its SRtangle ¢D & 058) N H satisfies
that BN1 belongs to distincd _ my components of, where® means the homological
addition. For example, the link 3 as illustrated in Fig. 10 can be transformed into the
Hopf link L, by an SR -move which is not distinct (note that each of two components
is distinct), butL, and L3 are not selfA-equivalent. This is becaude; and L; are
self A-equivalent, which is easy to see, ahd and L, are not selfA-equivalent from
Remark 1.26.

2. Simple ribbon moves and link types

Let L be a link obtained from a link by an SR"-move. LetE be a Seifert surface
for L with h(E) = h(L). In this section, we prove Theorem 1.8 and Theorem 1.13.

We analyze the intersections & and D U B. We may assume that i@ and
int(DU B) intersects transversely. Then the singular points dt inintDuUint3 consists
of double points of a pair amonfj, D, and E and triple points of3, D, and E, since
each surface is non-singular. Note th&¢D U B) consists of mutually disjoint arcs
Ui xa¥, whereaf is the singularity ofS(DFU B ,). Let fe: (U, D) U (U; BF) —
S® be an immersion of a disk such th&t(D¥*) = D¥ and fc(BK*) = B¥. We denote
(Ui« DF*) (resp. (U, « B*)) by D* (resp.B*). We denote the pre-image of¢ on
DK* (resp. Bf*)) by & (resp.&<*). Let S* be the set of pre-images oR* U B*
of SEUDUB) -« aik. Then §* is a set of mutually disjoint simple loops and
simple arcs, and we denote an elementSéfby y*, for example.
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Define thecomplexityof E as the lexicographically ordered se {, u), wheres
(resp.t) is the number of arcs (resp. loops) 8f andu is the number of triple points
in S(EUDU B). In the following, we omit the indek unless we need to emphasize
it. Let B 1 and B; 2 be the disks such theB; 1 U Bi» = Bj, B 1N B2 = &j+1, and an
end of B 1 is on dD;.

Lemma 2.1. S&* does not have a loop which bounds a disk opi DB, con-
taining exactly one end af;".

Proof. Assume that there is such a logp in S*. Theny = fe(y*) is a sim-
ple closed curve orD; U B;; which bounds a disk intersecting with in one point,
and thus |kg, L) = 1. However sincey is also on intE, y* does not intersect with
E, wherey™ is y pushed into the positive normal direction &. Thus Ik{, L) =
lk(y*, L) = 0. This is a contradiction. O

Lemma 2.2. Assume that E has the minimal complexity. Th&hdoes not have
a loop which bounds a disk* on D U B* with §* Na;" = @ and §* N&* , = 0.

Proof. Assume that there is such a loop&t and take one/* which is inner-
most on D U B*. Theny bounds a disk orE, sinceh(E) = h(L) and thusk is
incompressible inE(L). By replacing a neighborhood of on E with two parallel
copies ofs, we obtain a sphere and another Seifert surfatéor L with h(E") = h(L)
whose complexity is less than that &f which is a contradiction. O

An end of an arcy* of §* on 9(D* U B*) —dH* is a branch pointp*. Here we
isotop E so that there exist no branch points &i", , x (—1, 1). Define theorientation
of p* as the orientation of* around p* induced by the orientation dE. We say that
the orientations of two branch points which are adjacenb@* U 5*) — 9H* match
if the same (positive or negative) sides face each othehdfdrientations match, then
we can isotopE to eliminate the branch points as illustrated in Fig. 11, sehemeans
a branch point.
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Fig. 12.

Lemma 2.3. Assume that E has the minimal complexity. Thirere does not

exist an arc ofS* on D U B*; whose ends are od(D;" U B*)) — &",; and which
bounds a disk* on DU B*; with an arc ond(D;"UB"))—a;" ; such thats* Ne;* = 0.

Proof. Assume that there is such an arc and take an innermestoon D U
B, that is, there are no such arcsdh Then int* does not contain any loops &
from Lemma 2.2, and the ends of are adjacent od(D;"UB)—&",; and the orien-
tations of the two branch points match. Therefore elimigathe pair of branch points,
we obtain a loop fromy*, which contradicts thaE has the minimal complexity. []

Proposition 2.4. Assume that E has the minimal complexity andyétbe an arc
in §* such thatdy* N ag* # @. Thendy* = d¢" andinty* Nint¢* = @.

Proof. Take a straight lingg* which is proper inD* and containsy". Theny*
does not have a subarc in the closure of a componetef * whose ends are od"
and at least one end is on ijt, and which bounds a disk* on D;* with a subarc of
& such that ins* N S* = @. Assume otherwise. Then we can isotBpto reduce the
complexity of E (see Fig. 12), which is a contradiction. Thus we have theofahg.

Claim 2.5. y* does not have a subarc in the closure of a component;of P*
whose ends are o and at least one end is oimt ¢;".

We also have the following.

Claim 2.6. S* does not have an arc which has its endsady* —dB* and inter-
sects withg;* once.

Proof. If exists, then take an outermost opg that is, y;* bounds with a subarc
of D —0B" a diské* in whose interior there does not exist an arcSsfintersecting
with ¢". From Lemmas 2.1, 2.2, 2.3 and Claim 2.5, there exists only element
of S* in é*, say y,, whose ends are ofi¢;* and dD;". Let dy;” = p; U p; and let
v, NAD = p} (see Fig. 13). Themp; is adjacent to both op; and p; on dD;"—dB*.
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Fig. 14.

Thus the orientations of eithgp; and p;, or p; and p; match, and hence we can
eliminate the pair of branch points whose orientations matcreduce the complexity
of E, which is a contradiction. O

Let P* be a point ofdoy*Nadg;". Let g7 be the arc off* — &* with gy Na;" = P*,
B; the other arc of* —¢;", and Q* = B N¢;". Let y™ be the arc ofS* with one of
its ends onQ*. Then we have the following.

Claim 2.7. Rotating B_; around«; properly we may assume that* (and y'*)
is as illustrated inFig. 14 (A), (B), or (C).

Proof. Starting fromP* (resp.Q*), we read the intersection dats, (resp.A,)
of inty* (resp. inty’*) with g*, which is a sequence consisting of jt, int¢;", and
int B5. Note that none of the three entries appears consecutisilyge otherwise we
can eliminate these intersections by isotoplgsimilarly to the proof of Claim 2.5.

If both of A, and A, are empty, then clearly we can transfogm and y'* into
the position of (A), (B), (C), or (D) by rotatind3; 1 arounde; properly. Thus we may
assume at least one &, and A,  is not empty. In either case, we have a symmet-
ric conclusion, which is resolved by rotatir_; aroundq; properly. Hence we may
assume than\, is not empty.

We know that the first entry of\, is not int¢;* from Claim 2.5. If the first entry

of A, is intg], then we can eliminate the intersection by isotoplgimilarly to the
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proof of Claim 2.5. Thus the first entry ok, is intg;. Then the second entry af,
is inte;*, intB; or empty. In the first case, tracing* further similarly to the above, we
know thatA, is intg;,inta;, intB;,inta;", ..., and the other end of* is Q*. However
this contradicts Claim 2.5. In the second case, also tragihdurther similarly to the
above, we know that, is intg;, intg;, intg;, int g5, ... and the other end of* is
on dD;. Then, similarly, we have thaA, is intg;, int 85, int g, int g5, ... and the
other end ofy’™* is on dD;". Thus rotatingBj_; arounde; properly, y* (and ™) is
as illustrated in Fig. 14 (A), (B), (C), or (D). The third cagesimilar to the second
case, since in this cas#, is intg; and the other end of* is on dD;".

If y* (and y™) is as illustrated in Fig. 14 (D), then lét* be the disk bounded
by y*, &, y"™, and a subarc odD; — 9B*. Then the elements d&* N §* are arcs
each of which has ends o#D; and ong* from Lemmas 2.2, 2.3 and Claim 2.5.
Note thatS* N é* hasy* and y’*, and thusS* N é* is not empty. Then there exists at
least one adjacent pair of branch points & N dD;" whose orientation match. Hence
we can eliminate the pair of branch points to reduce the cexityl of E, which is a
contradiction. We complete the proof of Claim 2.7. ]

Proof of Proposition 2.4dpntinued. Our goal is to show thay* (= y’™) is as
illustrated in Fig. 14 (A). We work on this task by dividingiitto two casesmy = 1;
and my > 1.

First consider the case when, = 1. Take a look atS* N &**. If y* and y’* are
as illustrated in Fig. 14 (B), then lé¥ = y* Nak* (resp. Qi = y™* Nak*). Thus there
is If’l* (resp.Q’l‘) on d'{* (see Fig. 15 (a)). Take a look at the subafcof a'{ bounded
by P, and Q;, and letp be the number of intersections of wtnN E. Thus there are
p arcs of §* which intersect with int’* C &*. From Claim 2.5, these arcs also
intersect with int"*. However, also from Claim 2.5, the arc which intersects wih
in Py (resp. Q}) intersects withak*, in fact, intersects with ini’*. This induces that
the number of intersections on i@t is no less thamp + 2, which is a contradiction.

If y* andy’™ are as illustrated in Fig. 14 (C), then we may assume that tie@-0
tations oféX* and&X* coincide, i.e.,P* and P* (resp.Q* and Q*) are on the leftside
(resp. the rightside) o&X* and & in the figure, respectively. LeB; = y* N ak*.
Take a look at the subake’ of oz'l‘ bounded byP and P;, and letp be the number of
intersections of ink’ N E. The arc which is in the component obf* U BX*) — (y* U
d‘f‘ Uy’*) containing&™ and intersects With‘:'l‘* in Pl* intersects withi™ (Fig. 15 (b))
or 3D¥* —dBK* (Fig. 15 (c)). In the former case, lgt be the number of intersections
of inta’ N E. Then thep arcs intersect with'* also intersect withx™* from Claim 2.5,
and thus the number of intersections ondititis no less tharp+ 1, which is a contra-
diction. In the latter case, let” be the subarc o&'l‘ bounded byP; and Q, andq the
number of intersections of int’ N E. However then, the arc which intersects watkr
in P; and theq arcs which intersect witlé"* intersect with in&”* from Claim 2.6,
which induces a contradiction similarly to the former case.
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(b) 0 ()

1|, ,

Fig. 15.

Next consider the case when, > 1. Let y** and p* be the arcs ofS* with an
end ondaX* (1 <i <my). If »** and p* are as illustrated in Fig. 14 (B) or (C), then
either y** or pf* intersects withi*;,. Thusy**, and p¢; are as illustrated in Fig. 14
(B) or (C), sinceS* ﬂo’:ikjjl = ¢ from Claim 2.5 in the case of Fig. 14 (A). Therefore,
¥ and p}* are as illustrated in Fig. 14 (B) or (C) for ea¢h(1 <i < my). Then
let p be the number of intersections on éft" with S*. Since an arc that intersects
with int&X* intersects withak* and eithery[* or p¥* intersects withak*, there are
no less thanp + 1 intersections on ints* with S*. Then inductively we have that
there are no less thap + mg intersections on intr'ﬁ;H = inta%* with S*, which is
a contradiction. [

Proof of Theorem 1.8. LeE be a Seifert surface fot with h(E) = h(L) and
with minimal complexity. From Proposition 2.4, each att* of S* with an end on
dak* satisfies thaBy** = d&* and inty** Nint&* = @. Therefore int* and y**
are as illustrated in Fig. 16, wheng* is the arc onE* such thatfc(3<*) = y. Let
£ be 0(Df* U Bf) —intalr,. Note thatg¥ is a subarc ofL.

Note thatS* may have arcs and loops ddf* U Bf;. From Lemma 2.3 and Prop-
osition 2.4, such an arc oBf* U Bf which is noty** has its ends og/* and bounds
a diske* on Df* U BF} with a subarc of** such thats* containse/*. If there exists
such an arc, then we can transform it into a loop by elimiggtin innermost pair of
branch points as the proof of Lemma 2.3. Then we obtain a adiation thatE has
the minimal complexity. From Lemma 2.2, each loop &f on DX U Bi‘f’{ bounds a
disk ¢* containinga*. In fact, we may assume that such a loop is Rff by ambi-
ent isotopy.

We construct a Seifert surfacé for | from E. Note thatS* now consists of
arcs U, x ¥ (L <i <m, 1<k =<n)and loops, say; (1= j =<r), and that each
¥ bounds a disks/* on Df* with & and eachp: bounds a diske? on a disk of

D*. Replace a neighborhood ¢f¢ on E with two parallel copies o, and replace
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Fig. 16.

a neighborhood op; on E with two parallel copies okj, where we operate the re-
placement and these cancellations on each BiKrom the innermost one on the disk
so to have a non-singular surface (see Fig. 17). Let thetreatfiace beE’ and letF
be the result obtained fronk’ U | J; . (Df U (Bf; — af,; x [0, 1)) by removing the
closed components.

Since x(E’) = x(E) + >_, Mk + 2r, we have thaty(F) = x(E) + 2_, mk +r) —
> i x(F), whereF is a closed component which was removed above. Si(ée) < 2
and) 1<, mg+r, we have thaty(F) > x(E), and thush(l) < h(L). The equality
h(l) = h(L) holds only when}", my +r spheres are removed when we constrict
from E’, which implies thatg® U y* ; bounds a disk orE for any pair ofi and k.
Thus ourSRmove is trivial. For if&* U X, bounds a disk orE, then&f is ambient
isotopic to ¥ ; along the disk. Since;; and«f,; bounds a subdisk oDf, ;, ¥* ,

is ambient isotopic taxf ;. This implies thatT* of the SRmove is trivial. Therefore
we can conclude that condition (1) implies condition (3),iskhis sufficient to show

the last part of the statement, and thus we complete the .proof ]

Proof of Theorem 1.13. Supposeis split. Namely, there is a 2-sphek in S°
such thatz N L = @ and each connected component®f— ¥ contains a component
of L. Here letX split L into L; andL,. Let S* be the set of pre-images d* U B*

of SCGUDUB)-Uix ozik. Then S§* is a set of mutually disjoint simple loops and
simple arcs, where note that each arc has its end8*andH*. Define thecomplexity
of ¥ as the lexicographically ordered se {, u), wheres (resp.t) is the number of
arcs (resp. loops) af* and u is the number of triple points i5(Z U D U B). Here
we may assume th& has the minimal complexity.

Note that the numbers of componentslofandl coincide, since alsRmove does
not change the number of components.3fn | = @, thenl is entirely in a compo-
nent of S* — X, sincel is non-split. However then, it contradicts that the numbefrs

components ofL and| coincide. HenceX Nl # @, and thusz N (I — L) # @, since
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zk,l z+1 x [0,1))

-

35—1,1 - af x [0,1)

Fig. 17.
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type A type B

kx*
i+1

Fig. 18.

¥ NL = 0. Therefore we obtain that N 5 # #. We have the following similarly to
Lemma 2.1 and Claim 2.5.

Claim 2.8. S* does not have a loop which bounds a disk off DB, j contain-
ing exactly one end aff*.

Claim 2.9. Every element of 'Sdoes not have a subarc which bounds with a
subarc ofé* or &, a disk on ¥ U BX* whose interior does not intersect wittf*

or O‘|+1
Using the above claims, we have the following.

Claim 2.10. S* does not have a loop which intersects witf or &<;.

Every arc ofS* on D U B} intersects withé(;,. Otherwise, we can eliminate
it by ambient isotopy. Then the arc is either an arc whichrggets WlthozI+1 twice
and bounds with a subarc ¢, a disk onD* U Bf* which containsa* (type A)
or an arc which intersects wnbal"jﬁl twice and intersects witlk* once (type B) (see
Fig. 18). Here note that &(* NS*) = #(@* N S*) = #(@;, NS*). Then we obtain a
contradiction, since we have Claim 2.10 and that’#() y*) < #(@<*; N %**) in both

cases of type A and type B for every ag* of S* on D¥* U B*. Therefore,L is
non-split. O

3. Reducibility of Simple ribbon moves

Consider anSR"™-move on a linkl such that a stringr¥ is trivial. Let E be a
non-singular disk inS* whose boundary iF* U (Bf N dH) such that inE does not
intersect with the resultant link. In this section, we prove Theorems 1.11 and 1.19.

Similarly to the previous section, I&8* be the set of pre-images db* U B* of
S(EUDUB) =ik of and define the complexity oE as the lexicographically or-
dered setg, t, u, v), wheres (resp.t) is the number of arcs (resp. loops) 8f, u is
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the number of triple points i6(E U D U B), andv is the number of intersections of
E NnaH. Then we can obtain Lemmas 2.1, 2.2, 2.3, and Proposition dreover,
we have the following.

Lemma 3.1. If E has the minimal complexityhenint E does not intersect with
Uik Bik,2'

Proof. Assume thaE intersects with J; , BX,. Then the intersections consists of
arcs from Lemma 2.2. Moreover from Proposition 2.4, each ef¢harcs has its ends
on aBf, — o, ;. Then we can transform an innermost arc into a loop by isotpf
as illustrated in Fig. 11, which contradicts thAthas the minimal complexity. [

Proof of Theorem 1.11. It is sufficient to show that if 8R®move on a non-split
link is reducible, then its associated tangle is reducibdssume that there exists a
counter example, and take such @3Rmove on a non-split link, that is, it has a string
T.X such thatT.X U (BN 8H) bounds a non-singular disk in S* whose interior does
not intersect with the resultant link but does not bound a non-singular disk kh
whose interior does not intersect with the resultant link

We may assume thd& has the minimal complexity. Then from Lemma 3.1, Ed
dH consists of mutually disjoint simple loops each of which slo®t intersect with
BN oH, and thus inE does not intersect with. From the assumption, we have that
intEN9H # @. Thus take a loop. of int ENdH which is innermost on inE, that is,
A bounds a diskE; on intE such that inE, N oH = 9.

Claim 3.2. Each component ofH — X intersects with.

Proof. If a componens of dH — A does not intersect witt8, then replacing a
neighborhood ofs on E with two parallel copies of the disk, we obtain a sphere
and a non-singular dislE’ whose boundary i§;X U (BX N dH) such that inE’ does
not intersect withL and the complexity o’ is less than that oE, which contradicts
that E has the minimal complexity. ]

Assume thatE, is in S* —int H. From Claim 3.2, each component 6H — 1
intersects withB. Thus each component & —int H — E, contains a component of
I, since E, does not intersect with. However this contradicts thatis non-split.

Next assume thaE, is in H. From Claim 3.2, each component &H — X inter-
sects with3. Thus each component d¢f — E, contains a component 6f, since E,
does not intersect witlh.. We show that we have a contradiction by an induction on
the number of connected componexé7). In the case wherX(7) =1, that is,7 is
non-separable, we have a contradiction, sifeseparate§ . Assuming that we have
a contradiction in the case wheX(7) <t — 1, consider the case wheX(7) = t.

Let H; be the closure of the component bf — E; which containsTi", and let7; be
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Hy N 7. Let H, be the closure oH — Hy and 7, be H, N 7. Let L’ be the link
obtained froml by the SR"-move whose associated tangle7is and whose associated
3-ball is Hy. Sincel is non-split, L’ is non-split from Theorem 1.13. Thug is the
associated tangle of theRmove on a non-split link’ such thatX(7;) <t — 1. Thus
TXU(B*NdH;) bounds a non-singular disk; in H; whose interior does not intersect
with 77. This implies thatT* U (BN aH) bounds a non-singular disk; in H whose
interior does not intersect witffi;, sinceH; € H. This is a contradiction. O

Proof of Theorem 1.19. LeE be a non-singular disk irH whose boundary is
T U (BKN aH) and whose interior does not intersect with Assume thatE has the
minimal complexity. By a similar argument to the end of theqdrof Theorem 1.8
and by Lemma 3.1, we have th&t consists of the ar¢** and loops| , pZ, and that
y** bounds a disks; on D¥* with ¢* and eachp? bounds a diske; on a disk of
DK®* containinga*®*.

If S* does not have loops, then IB and E;, be the disks such thd; U E; = E,
E; N Ex =y, and 9E; N aDK # @. Then F = E U D¥ U BK consists of a torus
F1 = (D§¥—68)UE1UBY, and a spherd=, = 8 U E; U BY ,, where we recall thaB}
and B , are the disks such th@¥, U BY, = BY, B, N BY, =o¥, and an end oB}
is on aD'l‘. Let N; and N, be 3-manifolds inH bounded byF; and F,, respectively.
Then a neighborhood on H of the union ofN; and N, is a 3-ball such that if¥l N
(BU D) = BKU DX, sinceN; N N, is a meridian ofF;. Thus the boundary oN in
H is a required non-singular disk.

If S* has a loop, then let € S be an innermost loop o&, and E; the innermost
subdisk ofE bounded by, that is, E; does not intersect wittb U B. Assume that.
is on D!. Here note thafl! of 7 is trivial through the disk which is a union d&,,
B! and the annulus irD! bounded byx and dD!. Thus we have tham = 1 from
Corollary 1.16. Now assume thab{ x {1})N B} ; # @ and @} x {-1}) N By , # @. If
E. N (D} x {1}) # @, then x {1} bounds a disk (a subdisk d;) in $*— (D} U B, ,),
which is impossible. Thus we have thgg N (D'l x {—1}) # @. Let §; be the subdisk
of D'1 which is bounded by.. Then E; U §; bounds a 3-balN, in H which contains
B} .. Since intE; does not intersect wittD U B and 8, intersects with5 in o', we
have thatN, N (DU B) = D} U B} ;.

If I =k, then a neighborhootN C H of the union of N, and B} , satisfies that
int N N (BUD) = BKU DK. Thus the closure 0dN — dH is a required disk.

If | # Kk, then letA be a disk properly embedded M, such thatd A is a union of
an arcne in E, and an argjp in 8, such thate' C np anddng = dnp is on 1. Take
a look atEN A —{ng}. Sincel #k andN, N(DUB) = D{UB, ;, 9E = TU(BNoH)
is in H — N,, and thus N A — {ng} consists of properly embedded arcs and loops.
Moreover since each loop d& N D} bounds a subdisk ob} containinge' and there
exists no subdisks oE in N, shown as above, the ends of each ardeah A — {ng}
are on the same component gf —o'. Let & be one of the two arcs on one of
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Fig. 19.

whose ends is odng = dnp and lets: be the subdisk ofA bounded byt and an
arc ondnp. Then take an outermost af¢ of EN A — {neg} on §:. Let 4 and b
be the loops ofE N D'1 on which the ends of’ are. Then ¢ x {—1} and § x {—1}
bounds an annulué on E and A’ on D'l x {—1}. Since A’ does not intersect witlk,
substituting A’ for A, we obtain have another non-singular diskHhwhose boundary
is T U(BNaH) and which does not intersect with with less complexity than that
of E, which is a contradiction. ]

4. Proof of Theorem 1.14

Proof of Theorem 1.14. LeD U B be the union of disks and bands which gives
an SR"-move transforming into L. Let E’ be the orientable surface obtained from
D U B by performing an orientation preserving cut along the sgetion of each pair
of a disk D¥,; and a bandB (see Fig. 20). Lef be a connected Seifert surface for
I. If E intersects withF, then it consists of arcs of ribbon type Brﬂ F. Performing
the orientation preserving cut along these arcs, we obtaiormected Seifert surface
E for L.

Take a set of basis of the first homolodys(E) of E including aik and bik as il-
lustrated in Fig. 20. LeM be a Seifert matrix oL, wherea’" andb" mean the lift
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(Z > 2) by’,—l(mod )

7a

of aik and bik over the positive side oE, respectively. Then we have

AL() = IM —tM']
a}* a%;lr b}* b%;lr coat .. a,’%j bt ... brr;:nr

a

: o] A o o o] o
ag,
by

B, * * O * *
b,

- O * O * * |

ay

: o] o] o o] A, o
am,
by

: O * * Bn * *
bin,

O * * O * Al(t)
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where A; = &t and B; = —g it %,

gttt t—1 —eqtt™ -1 0
A=|t-1" O and B =
ool t—-1 o . t-1
o) t—1 emtom t—1 — g, 11 0m

if m >2,andéx =0, ex =1 or § = 1, ex = —1. Denotingox = 81 + - - - + &m,, We
have thate; - - - em, = (—1)gk and 1)™eq - - - g, = (—1)™ %, Therefore,

AL(t) =+t TTIAIBAI()

k=p

= £t [ THED)™ 7 — D)™ + (—)RHED)™ M — D™ 4 ()™ %A ()
k=p

=+t [ I 0™ = (CO*HE@ - O™ = (O™ %A (0). O

k=p

5. Simple ribbon moves and the self delta-equivalence

In this section, we prove Theorem 1.24. ConsiderSRi-move on a linkl each
index of whose component s, = 1 or is not distinct, and let. be the resultant link.
We show that theSR"-tangle can be transformed into trivial by sélftmoves onL and
ambient isotopy inH. To do this, we useD U B of the SR"-tangle. On the process,
we apply selfA-moves (resp. isotopies) on links such that we can natucahysider
a substitution forD U B after the moves (resp. isotopies). Thus for convenience, in
such a situation, we just say, for instance, that we applfy Aeioves and isotopies
on DU B.

As we defined in Section 2, each baB{l is divided by Df,, into two sub-bands,
B, and BX,, where BX, has an end odDF. Let B = Bf, or Bf,. On the process
of the proof, B may intersect with a disID'J- (I < k). Let @ and &’ be singularities
of BN D'j, and B’ be the sub-band oB whose ends are and«’. We call « and
o’ an innermost intersection paiif B’ N D = {«, «’}, and B' N (D'j x(0,1]) =@ or
B'N (D'j x (0,—1]) = 4. Consider the sequence of the singularitiesBah D on B by
reading singularities fromB N DX, = {of,;} to the other end oB. We say thatB
is well-situated with respect t®* U ---U D' if BN (D'*1U---UD") = {af,;} and
we can reduce the sequence{uﬁﬁrl} by removing innermost intersection pairs one by
one. The following lemma has been shown in [12].

Lemma 5.1 (Lemma 2.2, [12]) The transformations as illustrated iRig. 21 are
realized byA-moves.
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Fig. 21.

Proof of Theorem 1.24. LeD U B be the union of disks and bands for SR -
move on a linkl each index of whose componentrig = 1 or is not distinct, and let
L be the resultant link. Lep be the number such that each of tkeh components
(k < p) has indexm, = 1, and each of thé-th componentsk > p + 1) has index
my > 2. First we transform each component with index = 1 into trivial. If p =20,
then go to Step 2. In the following, we dendd and D¥ simply by BX and DX when
my = 1.

STep la: Take the 1-st component. Since themove is an unknotting operation
[5], Bll,l can be transformed into unknotted by using the transfoonatias illustrated
in Fig. 21 if Bf, is knotted. Here a sub-bar8l whose ends are on a digk is unknot-
ted if there is a disks such thattNB = 95N B and§ND = 9§ ND are complementary
two arcs ofds. If B, intersects withs for B} ,, then remove the intersections by the
transformations as illustrated in Fig. 21. If the other &amds intersect with the disk
5 for Bf ;, then isotop these sub-bands outsofind remove the intersection &' and
D! as illustrated in Fig. 22. Then shrinR! so thatD* N B! (= DN aB?) is an arc
on dH. Note that the sub-bands &f (> 1)-th components are all well-situated with
respect toD?.

STEP 1b: Letl be the number satisfying 2 | < p. Assuming thatBX N Dk =
aBKN D" is an arc omdH (k=1,...,1 —1) and that each sub-band of a component
with index no less thah is well-situated with respect t®* U --- U D'1, transform
BUD so thatB' N D' (=3B' N aD') is an arc ondH and that each sub-band of a
component with index no less thdnt 1 is well-situated with respect t®* U --- U
PD'. This can be done similarly to Step 1a unless we remove allsthgularities of
Bll,l N(D*U---uU D) before transformingB'l'l into unknotted. Note that each sub-
band B bounded by an innermost intersection pairgjf, N D¥ is unknotted from the
construction, and thus there is a dislsuch thatsN B = 36 N B and§ N DX = 35 N DX
are complementary two arcs 66. If B}, itself intersects withs for B, then remove
the intersections by the transformations as illustratedrim 21 (see Fig. 23). Then
eliminate the innermost intersection pair by isotopiBgl along § out of DX. Note
that this isotopy may create new innermost intersectiomsp@r a sub-band which is
B} , or belongs toB'** U --- U B".
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STeP2: Now we have thaBXNDK (= 9B¥NaDX) is an arc odH (k = 1....,p).
In this step, we transform each component with indgx> 2 into trivial. Take ank-th
componentK = p+1,...,n). Since this component is not distinct from the assumption,
there is a pair of bands, s:ﬂf and Bf, which have ends on the same component. of

STEP 2a: First we claim that we can deforf U B so that intDk N 3 = int Df N
BY. By the definition of theSRtangle, we have that irﬁ)h-‘ NB =int D'j‘ n B}‘_l. Thus
the claim is true wher = 2. If t > 2, then shrinkBS so thatDX pass througiD¥ and
we have that inb§N B = intD¥N B¥ (see Fig. 24). Then inductively we shrirg ; so
that DX ; pass througtDX and we have that ifPk N B = int DfN BK for i = 3,...,t.
Similarly we can deform ¢, U Bf,;) U--- U (D, U B ) so that intD N B =
int DK N BX. Then remove the intersections of Bf N Bf by the transformations as
illustrated in Fig. 21, and shrinB¥ so thatD¥ N B = DX N 9BY is an arc ondH.
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the case when m,y =6 and t = 4

Fig. 24.

STEP 2b: By applying Step 2a to all the componefft8, 7P+1, ..., and 7™, we
have thatDK N BX (= aDK N 9BK) is an arc onaH for any k andi (1 <k <n and
1<i=<m),ie.,L is self A-equivalent tol. 0
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