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Abstract

A submanifold of a Riemannian symmetric space is called lighrié its second
fundamental form is parallel. We classify parallel subrfzds of the Grassmannian
GJ (R"2) which parameterizes the oriented 2-planes of the EudlidgsaceR"+2,
Our main result states that every complete parallel subisldnof G; (R"*2), which
is not a curve, is contained in some totally geodesic subioldris a symmetric sub-
manifold. The analogous result holds if the ambient spadhésRiemannian prod-
uct of two Euclidean spheres of equal curvature or the nonpeet dual of one of
the previously considered spaces. We also give a charzatien of parallel sub-
manifolds with curvature isotropic tangent spaces of maxkipossible dimension in
any symmetric space of compact or non-compact type.

1. Introduction

Let N be a Riemannian symmetric space. A submantfaflN is called parallel
if its second fundamental form is parallel. D. Ferus [6] hheven that every compact
parallel submanifold of a Euclidean space is a symmetriit oftsome s-representation,
called asymmetric R-spacdn particular, such a submanifold éxtrinsically symmetric
which means that it is invariant under the reflections in ffsxa normal spaces. More
generally, every complete parallel submanifold of a spagenfhas this property (see
[2, 7, 25, 26]). This should be seen as an extrinsic analog®ffallowing well known
fact: every complete and simply connected Riemannian rolahifith parallel curvature
tensor is already a symmetric space.

Further, increasing the complexity of the ambient spacp byestep, consider par-
allel submanifolds of rank-one symmetric spaces. Theissifecation was achieved by
various authors, cf. the overview given in [1, Chapter 9.dhder slight restrictions,
parallelity of the second fundamental form implies extignsymmetry also here. More
precisely, recall that a submanifold is called! if it is not contained in any proper to-
tally geodesic submanifold of the ambient space. On the @mel,hone can show that
in all simply connected rank-one spaces of non-constartiosed curvature (i.e. the
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IWe are implicitly dealing with immersed submanifolds, e consider isometric immersions de-
fined from a connected Riemannian manifdil into N. In particular, a “submanifold” may have
self-intersections.
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projective spaces over the complex numbers or the quatesntbe Cayley plane, and
their non-compact duals) there exist one-dimensional detmpparallel submanifolds
(so calledextrinsic circle3 which are full but not extrinsically symmetric. On the athe
hand, it turns out that every complete parallel submanifidldimension at least two is
contained in some totally geodesic submanifold as a synecr&tbmanifold. Hence, at
least every higher-dimensional full complete parallelreghifold of a rank-one space
is extrinsically symmetric.

The classification of symmetric submanifolds in ambient syatric spaces of higher
rank was finally achieved by H. Naitoh in a series of papers ndsult is surprisingly
simple in its statement, but the proof seems rather lengéhyy roughly said, he con-
siders subspaced/ C TN such that bothW and W+ are curvature invariant and de-
cides whether there exists some non totally geodesic syrnustbmanifoldM c N
with ToM = W. For this, he uses a case by case strategy which is mainlyd base
[22, Lemma 1.1]. In fact, he obtains assertions on a largasscbf submanifolds (see
[1, Chapter 9.3]).

In contrast, there is “not much known” about parallel subifodels of symmetric
spaces of higher rank. As a particular case, the classditaif totally geodesic sub-
manifolds is still an open problem. But for ambient rank-tamaces, the classification
was obtained by B. Chen and T. Nagano [3, 4hd later by S. Klein [14, 15, 16, 17,
18] using different methods. Thus, one may ask also for thesdication of parallel
submanifolds in rank-two spaces.

In this article, we classify the parallel submanifolds ofe tiGrassmannian
G, (R"*2)—which parameterizes the oriented 2-planes of the EuatidgpaceR"2—
and its non-compact dual, the symmetric spacgR8+2)*, i.e. the Grassmannian of
time-like 2-planes in the pseudo Euclidean spRf€¢ equipped with the indefinite in-
ner productdx? + - - - + dxZ —dx2, ; —dxZ, ,. Note, these are simply connected sym-
metric spaces of rank two ifi > 2.

Theorem 1 (Main theorem) If M is a complete parallel submanifold of the
GrassmannianG; (R"*2) with dim(M) > 2, then there exists a totally geodesic sub-
manifold M C G5 (R"*2) such that M is a symmetric submanifold M. In particular,
every full complete parallel submanifold G (R"+2), which is not a curveis a sym-
metric submanifold. The analogous result holds for ambimuceG}(R“”)*.

We also obtain the classification of higher-dimensionalaj@r submanifolds in
a product of two Euclidean spheres or two real hyperboliccepaof equal curvature
(see Corollary 1). Further, we conclude that every higheredsional complete parallel
submanifold of G (R"*2?) is extrinsically homogeneous (see Corollary 2).

2However, the claimed classification of totally geodesicnsabifolds of G (R"+2) from [3] is
incomplete.
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Here, we focus our attention mainly on the GrassmannigiR3"2) (and its non-
compact dual). Nevertheless, we also establish a splittiregrem for parallel sub-
manifolds with curvature isotropic tangent spaces of makipossible dimension in
any symmetric space (of compact or non-compact type), seell@y 5.

The proof of Theorem 1 is based on the results given by S. Kdagh B.-Y. Chen—
T. Nagano forN := Gj (R"*?), see above. Namely, recall that these authors actually
classifiedcurvature invariant subspaces the tangent spaces ™ (since complete to-
tally geodesic submanifolds through a poipte N correspond to curvature invariant
subspaces of,N via the exponential map eXp T,N — N). Thereupon, we classify
orthogonal curvature invariant paitsThen we decide case by case on thetegrabil-
ity. For more details see Section 1.1.

Essentially, this method should work for any ambient symmimefpace whose curva-
ture invariant subspaces are known. Hence, one may hopi¢ithalso possible to classify
parallel submanifolds of the other rank-two symmetric gsafe.g. the Grassmannians
of complex or quaternionic 2-planes). It would be an inteéngsquestion whether some
analogue of Theorem 1 remains true for such ambient spaces.

1.1. Overview and outline of the proof of the main theorem. This section
gives a detailed overview on the results presented in thisl@ran outline of the proof
of Theorem 1 included. For a Riemannian symmetric sgdogith metric tensor(-, -)
and a submanifoldV, let TM, LM, h: TMxTM - LM andS: TMx 1M = TM
denote the tangent bundle, the normal bundle, the secordhfuental form and the
shape operator, respectively. L& and VN denote the Levi-Civita connections of
M and N, respectively, andV+ be the usual connection ahM (obtained by orthog-
onal projection ofVNg along TM for every sectiorg of LM). Let Synf(T M, LM)
denote the vector bundle whose sections amd-valued symmetric bilinear maps on
T M. Then there is a linear connection on SY§MM, LM) induced byV™ and V* in
a natural way, often callefan der Waerden—Bortolotti connection

DEerFINITION 1. The submanifoldM is calledparallel if h is a parallel section of
Sym?(T M, LM).

ExAMPLE 1. A unit speed curve: J — N is parallel if and only if it satisfies
the equation

) VNVNE = —«%¢

for some constank € R. For x = 0 these curves are geodesics; otherwise, due to
K. Nomizu and K. Yano [24]c is called anextrinsic circle

Recall that for every unit vectox € T,N and everyn € T,N with 5 L x there exists
a unique unit speed cunwe satisfying (1) withc(0) = p, ¢(0) = x and V,¢(0) = 7.
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EXAMPLE 2. Let M c N be totally geodesic (i.eh'\7| = 0). A submanifold of
M is parallel if and only if it is parallel inN.

DEFINITION 2. A submanifoldM C N is called éxtrinsically)y symmetricif M
is a symmetric space (whose geodesic symmetries are dehy)tegi‘, where p ranges
over M) and for everyp € M there exists an involutive isometlfgypL of N such that
° Gé(M) =M,

. orﬂM = 03",
e the differential Tyo,- is the reflection in the normal space,M.

As mentioned already before, every symmetric submanifsighdrallel. However,
in the situation of Example 2, we do not necessarily obtairyransetric submanifold
of N even if M is symmetric inM.

Let M be a parallel submanifold of the symmetric spa¢e Then the linear space
J_%)M :={h(x,y) | X, y € W} is called thefirst normal spaceat p.

QUESTION. Given a pair of linear space$\ U) both contained ifl,N and such
that W L U, does there exist some parallel submanifddthrough p with W = T,M
andU = L},M? In particular, are there natural obstructions againstetkistence of
such a submanifold?

Let RN denote the curvature tensor of and recall that a linear subspade C
TN is calledcurvature invariantif RN(V x V x V) C V holds. It is well known that
TyM is a curvature invariant subspace BfN for every parallel submanifold. In
Section 2.2, we will show that alsdtM is curvature invariant. Moreover, the curva-
ture endomorphisms of ,N generated byl,M leave J_%)M invariant and vice versa.
This means thatT,M, J_%,M) is an orthogonal curvature invariant pajrsee Defin-
ition 4 and Proposition 1. As a first illustration of this cept, we classify the or-
thogonal curvature invariant paird\( U) of the complex projective spacEP", see
Example 3. We observe that here the linear spab@ U is complex or totally real (in
particular, curvature invariant) unless diwf = 1. Hence, following the proof of The-
orem 1 given below, we obtain the well known result that thaelegue of Theorem 1
is true for ambient spac€P".

In Section 3.1, we will determine the orthogonal curvatureariant pairs ofN :=
GQ(R“*Z). Our result is summarized in Table 1. Note, even if we assaduitionally
that dimW) > 2, there do exist certain orthogonal curvature invariaritsp@V, U) for
which the linear spac&V & U is not curvature invariant (in contrast to the situation
where the ambient space &P", see above). Hence, at least at the level of curvature
invariant pairs, we can not yet give the proof of Theorem 1.

Therefore, it still remains to decide whether there acjueMists some parallel sub-
manifold M such that v, U) = (T, M, L%,M) in which case the orthogonal curvature
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invariant pair W, U) will be calledintegrable In Section 3.2, by means of a case by
case analysis, we will show that itA{ U) is integrable and dinfW/) > 2, then the lin-
ear spaceWV & U is curvature invariant. For this, we will need some moreimsic
properties of the second fundamental form of a parallel subfold of a symmetric
space which are derived in Section 2.

Further, note that (orthogonal) curvature invariant pafrdN and N*, respectively,
are the samé.Moreover, it turns out that all arguments from Section 3.2 aienvalid
for ambient space\*.

Proof of Theorem 1. Since JGR3) is isometric to a 2-dimensional Euclidean
sphere, we can assume that> 2. Given somep € M, the curvature invariant pair
(TpM, L%,M) is integrable (by definition). Thus, using the above memd results,
we conclude that thesecond osculating spac®,M := T,M & 1L3M is a curva-
ture invariant subspace df,N. By means ofreduction of the codimensio(see [5]),
we obtain thatM is already contained in the totally geodesic submaniftid:=
expV(OpM). Let MU and MU denote the universal covering spaces Mfand M,
respectively. Then the immersion ofl into M admits a lift M'¢ — MUY, j.e. M{¢
becomes a complete parallel submanifold Mf¢. By construction,L%M“c = lgMwe

for all g € MY which means thaM' is 1-full in MY“. Thus, M'¢ c M' is even a
symmetric submanifold according to Corollary 3. Furthénce the caseM = M is
obvious, we can henceforth assume that dithe& 3. Then, checking the list of isom-
etry classes of symmetric spaces occurring as completytgt@odesic submanifolds
of N from [14, Section 5], we immediately see that any isometryMf goes down
to M via the covering map. Hence, according to Definition 2, aldoc M is sym-
metric. The same arguments apply to ambient spdte O

Next, we consider the Riemannian produét>SS of two Euclidean unit-spheres
with k+1 =n>2 andk <I. Set @ := (0, ..., 0) € R. If we choose the metric on
G, (R"+2) in accordance with [17, Section 2] (cf. also Section 3 o6 thiticle), then

T: Sk X g g G;(RFH_Z)r (p! Q) = {(p1 O|+l)! (OK+11 q)}R

defines an isometric 2-fold covering onto a totally geodassibmanifold of G (R"*?)
(see [17, Section 2]). Hence every parallel submanifold 'ok S is also parallel in
G; (R"*2). Further, the embedding Skﬁ — %8, p (p/v2,p/+/2) is an isometry
onto its totally geodesic image.

3However, there is no duality between parallel submanifafisN and N*, respectively. This is
due to the semi-parallelity condition on the second fundaaicform (see (4) withR = RV) which is
not preserved if one multiplieRN by the factor minus one.
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Corollary 1 (Parallel submanifolds of’Sx S). Let M be a complete parallel
submanifold ofS¢ x S with dim(M) > 2. Then M is a product yx M, of two sym-
metric submanifolds Mc S and M, C S, or conjugate to a symmetric submanifold
of L(Skﬁ) via some isometry o8¢ x S. In the first case M is extrinsically symmet-

ric in SXx S. In the second caseM is not symmetric inS‘ x S unless k=1 and
M = L(Skﬁ). The analogous result holds for ambient spaé#sx H', the Riemannian
product of two hyperbolic spaces of constant sectional ature —1 (for 2 <k <),

and R x H', the Riemannian product of the real line and the hyperboliacsp

Proof. LetM be a complete parallel submanifold bf := S x S through (@, q)
with dim(M) > 2. ThenM is parallel also inN := G}(R””) (via 7). Hence, accord-
ing to Theorem 1 and its proof, the second osculating space T M @J_(lpvq)M is

a curvature invariant subspace of boffpqN and Tip N such thatM is contained
in the totally geodesic submanifoltl := expN(V) as a full symmetric submanifold.
Further, the curvature invariant spaE@,q)N is of Type (tk;). Thus, using the classi-
fication of curvature invariant subspacesTifn, N (see Theorem 5 below), we obtain
that there are only two possibilities:

e We haveV = W; & W, whereW,; and W, arei- and j-dimensional subspaces of
T,S¢ and T,S, respectively (Type (ir;)). Hence, the totally geodesic submanifaidl

is the Riemannian product of the Euclidean unit-sphetean8 S. If i = j = 1, then
dim(M) = 2 and M = M. Otherwise, at least one of the factors M is a higher-
dimensional Euclidean sphere. It follows from a result of Mhitoh (see Theorem 4
below) thatM = M; x M, whereM; ¢ S and M, C SI are symmetric submanifolds.
Therefore, the produci; x M, is symmetric inN.

e There exists ari-dimensional linear spac#/, C T,S¢ and some linear isometry
|” defined fromW; onto its imagel (W) C TqS such thatV = {(x, —1'x) | x € W}
(Type (tr)). Then, up to an isometry dfl, we can assume thadl is a complete paral-
lel submanifold OfL(Skﬁ), i.e. a symmetric submanifold. Further, it follows from Fhe

orem 4 thatM is not symmetric inN unlessi =k =1 and M = L(Skﬁ).

The hyperbolic case is handled in a similar way. Our resulbvis. O

Submanifolds in a product of two space forms where recertlgisd by B. Mendoca
and R. Tojeiro [19]. By means of different methods they whabée to prove a more
general version of Corollary 1.

Recall that a submanifoldl C N is called extrinsically homogeneous a suit-
able subgroup of the isometry groupNl acts transitively onM. In [11, 12] we have
dealt with the question whether a complete parallel subfolahof a symmetric space
of compact or non-compact type is automatically extringicaomogeneous. One can
show that a generic extrinsic circle of any symmetric spateaok at least two is
not extrinsically homogeneous. Further, if the rank of tmebent spaceN is ex-
actly two (e.9.N = GJ (R"*?) or N = GJ (R"*?)*), then it follows a priori from [12,
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Corollary 1.4] that every complete parallel submaniféddis extrinsically homogeneous
provided that the Riemannian spabé does not split off (not even locally) a factor
of dimension one or two (e.gM is locally irreducible and dinil) > 3). Moreover,
then M has evenextrinsically homogeneous holonomy bundiEhe latter means the
following: there exists a subgroup C I(N) such thatg(M) = M for everyg € G and
G|m is the group which is generated by th@nsvectionsof M. For ambient spaces
N = GJ (R"*?) and its non-compact dual, we obtain by means of our previesslt:

Corollary 2 (Homogeneity of parallel submanifolds)Every complete parallel
submanifold ofG{(R””), which is not a curveghas extrinsically homogeneous holo-
nomy bundle. In particularevery such submanifold is extrinsically homogeneous in
GJ (R"*2). This result holds also for ambient spaG (R"*?)*.

Proof. We can assume that> 2. Let M be a complete parallel submanifold
of N := Gj (R"*?) with dim(M) > 2. Then there exists a totally geodesic submanifold
M c N such thatM is a symmetric submanifold d¥1. In particular,M is intrinsically
a symmetric space. Furthermore, since the rankNofs two, the rank ofM is less
than or equal to two. It follows immediately that there aremore than the following
possibilities:

e The totally geodesic submanifol is the 2-dimensional flat torus. Then we auto-
matically haveM = M (since dimM) > 2). Hence, we have to show that the totally
geodesic flatM has extrinsically homogeneous holonomy bundle: ilet ¢ @ p and

i = £ @ p denote the Cartan decompositions of the Lie algebras M &nd I(N), re-
spectively. Thend, p] = {0}, since M is flat. Let G C I(M) denote the connected
subgroup whose Lie algebra {s Then G is the transvection group ok. More-
over, p C p, becauseM is totally geodesic. Hence, we may talé as the connected
subgroup of IN) whose Lie algebra ig.

e The totally geodesic submanifol is locally the Riemannian produd® x M
where M is a locally irreducible symmetric space with dikh] > 2. SinceM c M

is symmetric, there exists a distinguished reflectbqu] of M whose restriction taVl

is the geodesic reflection ip for every p € M, see Definition 2. Therefore, these
reflections generate a subgroup oMl whose connected component acts transitively
on M and gives the full transvection group ®. Thus, it suffices to show that there
exists a suitable subgroup ofNj whose restriction taM is the connected component
of (M): leti=t®p,i=Etdp andi = tdp denote the Cartan decompositions of the
Lie algebras of I{1), (M) and I(N), respectively. Thert = & = [p, ] = [p, p], where
the first and the last equality are related to the special ymstructure ofM and the
second one uses the fact that the Killing formiof non-degenerate. It follows that
i=1[p, p] ®p. Moreover, we have C p, see above. Hence, every Killing vector field
of M is the restriction of some Killing vector field d¥.

e The totally geodesic submanifolsl is locally irreducible or locally the Riemann-
ian product of two higher dimensional locally irreduciblgnsnetric spaces: then we



292 T. JENTSCH

havei = [p, p] @ p because the Killing form of is non-degenerate. Hence we can use
arguments given in the previous case.
The hyperbolic case is handled in exactly the same way. Qauitréollows. O

2. Parallel submanifolds of symmetric spaces

We establish (or only rephrase) some general facts on phamibmanifolds of
symmetric spaces. If possible, we also give alternativeofgr@f some results from
[10, 11] which might fit better into the framework developeerda

First, we solve the existence problem for parallel subnwdaiéf of symmetric spaces
by means of giving necessary and sufficient tensorial “iratieijty conditions” on the
2-jet (see Theorem 2 and Remark*1)t remains to find a way to make efficiently use
of those conditions.

Thus, we will derive from the previous thalyM, LT M) is a curvature invariant
pair for every parallel submanifol1. Further, we establish a property of the 2-jet of
a parallel submanifold which is related to the linearizeatrispy representation of the
ambient space (see Theorem 3 and Corollary 4).

Moreover, we give two results on reduction of the codimension parallel sub-
manifolds with curvature isotropic tangent spaces of makipossible dimension in
any symmetric space of compact or non-compact type (seeofitmm 3 and Corol-
lary 5) and for certain parallel submanifolds with 1-dimiensi first normal spaces (see
Proposition 4). Note, the first result is apparently new (rghs the second is somehow
well known).

Finally, we recall a result of H. Naitoh on the classificatioh symmetric sub-
manifolds in products of symmetric spaces (see Theorem 4).

2.1. Existence of parallel submanifolds in symmetric spase It was first
shown by W. Stribing [25] that a (simply connected and cotaplgarallel sub-
manifold M of an arbitrary Riemannian manifoltN is uniquely determined by its
2-jet (TpM, hp) at some pointp € M. Conversely, let a prescribed 2-jetV(h) at
some pointp € N be given (i.e.W C TN is a subspace antd: WxW — W= is a
symmetric bilinear map). If there exists some parallel sabifold throughp whose
2-jet is given by W, h), then the latter (or simply) will be called integrable Note,
according to [13, Theorem 7], for every integrable 2-jetpatthere exists a unique
simply connected and complete parallel submanifold thihopghaving this 2-jet.

Let U be the subspace oV which is spanned by the image bfand setV :=
W@ U, i.e.U andV play the roles of the “first normal space” and the “second os-
culating space”, respectively. Then the orthogonal spijitty := W & U turns so(V)
into a naturallyZ,-graded algebrao(V) = so(V); @ so(V)- where A € so(V), or

“Note, such conditions were already claimed in [13]. Howgetlee tensorial conditions stated in
[13, Theorem 2] are not very handy.
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A e so(V)- according to whetheA respects the splittiny =W & U or A(W) C U
and A(U) C W. Further, consider the linear map W — so(T,N) given by

) VX, yeW, & e Wh: hy(y +&) =—-Sx+h(x,y)

(where & denotes the shape operator associated tviflr every & € U in the usual
way). SinceS = 0 holds for everye € W+ which is orthogonal tdJ, we actually have

(©) Vx € W: hy € so(V)_.

DEFINITION 3. Let a curvature like tensoR on TpN and anR-invariant sub-
spaceW of TyN (i.e. R(WW x W x W) C W) be given. A symmetric bilinear map
h: Wx W — W' will be called R-semi-parallelif

(4) th,yZ*[hx:hy]Zv = [RX,V - [hX’ hy]! hZ]v

holds for allx,y,ze W andv € TyN. HereR,,: TN — T,N denotes theurvature
endomorphism R, v, -) for all u,v € TyN. If W is a curvature invariant subspace of
TpN and (4) holds forR = Rg, thenh is simply calledsemi-parallel

In the situation of Definition 3, it is easy to see thais R-semi-parallel if and only
if (4) holds for allx,y,ze W andv € V.

Clearly, each linear map\ on V induces an endomorphisi- on A%V by means
of the usual rule of derivation, i.6A-uAv = AuAv+UuA Av. Let (A-)X denotes thé-th
power of A- on A2V. Similarly, [A, -] defines an endomorphism @i (V) whosek-th
power will be denoted by4, -]¥. Furthermore, every curvature like tens@r TpN x
ToN x ToN — TN can be seen as a linear m& A?Tp,N — so(V) characterized by
R(uav) = Ry,. The following theorem states the necessary and sufficiatedgrability
conditions”®

Theorem 2. Let N be a symmetric space. TBget (W, h) is integrable if and
only if the following conditions together hold
e W is a curvature invariant subspace ofN,
e h is semi-parallel
e we have

) [hy, - TR0 = RY((hy - ¥y A 2)v

for all x,y,ze W, k=1, 2, 3, 4and eachv € V.

5This result and the following remark were also obtained inuapublished paper by E. Heintze.
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Proof. In order to apply the main result of [13], consider fpace¢ of all curva-
ture like tensors onTyN and the affine subspacg C ¢ which consists, by defin-
ition, of all curvature like tensor®k on TyN such thatW is R-invariant andh is
R-semi-parallel. Then we define the one-parameter subgiyp) of curvature like
tensor onT,N characterized by

(6) expthe)Re(t)(u, v, w) = R (expth)u, expthx)v, expthy)w)

for all u, v, w € TN andx € W. According to [13, Theorem 1] and [13, Remark 2],
the 2-jet W, h) is integrable if and only ifR(t) € ¢ for all x € W andt € R (since
RN is a parallel tensor). Moreover, W, h) is integrable, then, by considering ex-
plicitly the corresponding parallel submanifold df, one can show thaRy(t)(y, z, v)

is constant int for all x,y,ze W andv € V (combine [10, Example 3.7 (a)] with
[10, Lemma 3.8 (b)]). Conversely, R,’;‘ e ¢ and R,(t)(y, z v) is constant int for all
X,y,z€ W andv € V, then Ry(t) in ¢ for all t for simple reasons.

Let us first assume that/\(, h) is integrable. Then the previous implies that

(7) eXp(hx) R)'/\‘,Z exp(_thx)v = Rg(p@hx)y,exp([hx)zv

Taking the derivatives up t&-th order of (7) with respect to, we now see that (5)
holds for allk > 1.

Conversely, suppose theRy € ¢ holds. It suffices to show that (5) implies that
the functiont > Ry(t)(y, z, v) is constant for allx, y,ze W andv € V:

Put A:=h,, sets := Y2 (A-)(A2W) and note that

(8) A-yAnz=AyAz+yA Az

(9) (A)yAz=AyAzZ+2AyAAZ+ YA Az

(10) (A-)*yAnz=AyAz+3A2y A Az+3AyA A2Z+y A A3z

(11) (A )*yAz= Ay AzZ+4A3y A AZ+BA2Y A A2Z+ AAY A A2+ y A A%z

for all y, z € W. Since A>(W) C W, we hence see thatA(- )*(A°W) C A?W +
(A-)?(A%W). Therefore,A-X C X and, furthermore, since (5) holds far= 1, 2, 3, 4,
the natural mapA?TyN — so(ToN), U A v > Rff,v restricts to an equivariant linear
map ¥ — so(V), A — RN(1)|y with respect to the linear actions of the 1-dimensional
Lie algebraR induced byA- and [A, -] on £ and so(V), respectively. Switching
to the level of one-parameter subgroups, we obtain Bdt)(A)v is constant int for

all » € ¥ andv €V, in particular Ri(t)(y, z, v) is constant int for all X, y, ze W,
veV. ]

In fact, there exist “seemingly more” necessary integigbgonditions:
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REMARK 1. In the situation of Theorem 2, suppose th¥f, ) is integrable.
Then we even have

(12) [hX11 - ~[thl Ryyz] ]lV = Rf,]\l

p hxk-y/\z|V

for all ¢, ..., Xk Y, z€ W (possibly withx, # x;) fork=1,2,....

Proof. Fork = 1, this is simply (7). However, fok > 2, there does not seem to
exist a way to deduce (12) very easily from Theorem 2. Ratherconsider again the
corresponding parallel submanifold. By means of considesuitablek-times broken
geodesics on the submanifold emanating frgnthen adapting the ideas from [10,
Example 3.7] and finally using [10, Lemma 3.9 (b)], we can shbuat

(13) go Ry,z ° gil = Rg';\‘y,gz

holds onV whereg := exp(ihy,) o - - - o exptkhy,) for arbitrary ¢, . . ., ty) € R (one
should note that (7) does not imply (13) since, sayKet 2, expfahy,)y or exptzhy,)z
might not be elements ofV). Consideringg as a function of t, ..., ty) and tak-
ing the partial derivatives at zerd,/dt; - - - 9/9tk|t,=..=t,=0 Of (13), we immediately see
that (12) holds. ]

2.2. Curvature invariant pairs. The first crucial concept of this article is
the following:

DEFINITION 4. Let linear spacesV andU both contained iriT,N be given. We
call (W, U) a curvature invariant pairif

(14) RYW xWxW)cW and RN(WxWxU)cU,
(15) RVY(U xU xU)cU and RNU xU xW) c W.

In particular, then bothV and U are curvature invariant subspaces fN. If add-
itionally W L U holds, then \V, U) is called anorthogonal curvature invariant pair.

If U =W, then @, U) is an orthogonal curvature invariant pair if and only if
both W andU are curvature invariant subspaces. Bubifis strictly contained inw+,
then the previous definition requires more.

We obtain the first obstruction against the existence of allghrsubmanifold with
prescribed tangent- and first normal spaces (cf. [10, Garoll3]):

Proposition 1. Let an integrable2-jet (W, h) of the symmetric space N be given.
Set U:={h(x,y) | X,y € W}g. Then(W, U) is an orthogonal curvature invariant pair.
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Proof. For (14): recall thatV is a curvature invariant subspace BfN and that
h: W x W — W+ is semi-parallel according to Theorem 2. Then (14) immedyat
follows.

For (15): using (12) withk = 2, we obtain that

(16) R‘f':l(xvx),h(y,y)|V = [hy, [hy, Ri\fylV]] + R’S\Iw(x,y)xyy|V + R>'<\fsl<y,y>><|v

for all x, y € W (since h is symmetric). By means of (14), we further have that
RY(V) € V and RY\|v € s0(V);. Using (3) and the rules foZ,-graded Lie alge-
bras, we thus see that r.h.s. of (16) defines an element(®f),, too, and so does
l.h.s. Finally, becausé is symmetric,A2(U) = {h(x, X) A h(y, y) | X, Yy € W}g holds.
We conclude thaRl', (V) c V and Rl |v € so(V), actually for all§, n € U, i.e. (15)
holds. This finishes our proof. O

An (orthogonal) curvature invariant paifM, U) which is induced by some integrable
2-jet as in Proposition 1 is calleidtegrable

Furthermore, it is known that every complete parallel sutifoéd of a simply con-
nected symmetric space whose normal spaces are curvatargirt is even a symmet-
ric submanifold (cf. [1, Proposition 9.3]). Hence we see (&D]):

Corollary 3. Every 1-full complete parallel submanifold of a simply connected
symmetric space is a symmetric submanifold.

In order to determine the curvature invariant pairs invodvia given curvature in-
variant subspac&® C TyN, note that

(17) hW = {R)L\fy | X,y € W}]R

is a subalgebra ofo(T,N) equipped with a natural representation \bh- (by restric-
tion). In view of (14), we aim to determine thig,-invariant subspaces diV‘. For
this, let us recall some basics from linear algebra: giveririaducible representation
p of some real Lie algebr& on the Euclidean spac¥ via skew-symmetric endo-
morphisms, the representation is callexl if V is irreducible even oveC, complex
if the complexified spac& ® C decomposes into two non-isomorpljemodules and
quaternionic otherwise. Note that in the complex or quaternionic caserethexists
uniquely the underlying structure of a unitary or quatenidoHermitian space orvV
such thato(h) C u(V) or p(h) C sp(V), respectively. Conversely, j#(h) C sp(V), then
p is quaternionic; furthermorep(h) C u(V) implies thatp is not real.

Next we consider thek(+ 1)-fold orthogonal direct sum oY, i.e. the Euclidean
spaceV := @ik:ov. Thenh acts onV via skew-symmetric endomorphisms, too. Fur-
ther, the irreducibléy-invariant subspaces of are parameterized by the real projective
spaceRP* (if V is real), the complex projective spa@™ (if V is complex) or the
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quaternionic projective spadd#P* (otherwise). More precisely, letj :=V < V, v >
(0,...,&...,0) be the canonical embedding onto ihth factor, choos&K € {R,C, H}
according to the type o¥ and seth. := Z'J-(:O cjrj for everyc = (co, ..., ) € K2,
Then A¢(V) is an irreducibleh-invariant subspace of. Using Schur's Lemma, this
gives the claimed parameterization.

Finally, for any representation of some real Lie algebrg on the Euclidean space
V via skew-symmetric endomorphisms, there is still some cgtimal decomposition
into h-irreducible subspaceg = @!‘zl\/i. Moreover, after a permutation of the index
set, there exists some> 1 and a sequence £ k; <k, <.+ < k41 =k + 1 such
that Vig = W1 = -+ = Vg, -1 fori =1,..., 1 but Vy is not isomorphic toVy; for
i # j. Hence, there is also the decompositidn= @i’zl Vi with Vi := Vi, + Vg 41 +
-+ 4+ Vi,,—1. Using again Schur's Lemma, we see that every irredudiblevariant
subspacdJ C V is contained in a uniqu&;. Further, we can apply the previous in
order to describe thg-irreducible subspaces of;.

EXAMPLE 3 (Curvature invariant pairs ofP"). Consider the complex projective
spaceN := CP" of constant holomorphic sectional curvature four. Its atuve tensor
is given bngfv =—UAv—JuAJv—2w(u,v)Jd for all u,v € T,CP" (whereJ denotes
the complex structure of,N andw(u,v) := (Ju,v) is the Kahler form). The curvature
invariant subspaces af,N are known to be precisely the totally real and the complex
subspaces. Let us determine the orthogonal curvatureiam¢gpairs W, U): if W is
totally real, thenR)'(\fy = —-XAYy—JIxaJyfor all x,y € W. Hence the Lie algebra,,
(see (17)) is given by the linear spageAny + IJXA Jy | X,y € W}g. In the follow-
ing, we assume that dil() > 2. By definition of a totally real spac®/, there is the
decompositionW+ = JW & (CW)* (here CW)* means the orthogonal complement
of CW in TyN). Thenh,, acts irreducibly onJ(W) and trivially on CW)*. Further,
Equation 14 shows thdtl is hy-invariant. Considering also the decomposition bf
into hy-invariant subspaces, it follows that eith&(W) C U or U L CW. In the first
case, we claim that actually = J(W) (and hence/ := W@ U is a complex subspace
of T,N): let U € (CW)* be chosen such thal = JW @ U. Clearly,U is not com-
plex, hencelU is necessarily totally real, becaukk is curvature invariant. Moreover,
we have dim{) > 2, thush,, (defined as above) acts irreducibly dU) = W J(U).
SinceW is b -invariant (see (15)), we see that this is not possible snks) = {0}.
The claim follows.

In the second case, we claim tHatis totally real (and thug/ is totally real, too):
in fact, otherwiseU would be a complex subspace a\(V)-. Then the Lie algebra
by is given byRJI & (€ An + JE A Iy | &, neUlg. Thush, acts onU+ via RJ.
Further, W is invariant under the action df, according to (15) implying thawv is
complex, a contradiction. The claim follows.
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Anyway, the linear spac® is curvature invariant unless di) = 1. Therefore,
by means of arguments given in the proof of Theorem 1, we sat awery higher
dimensional totally real parallel submanifold 6fP" is a Lagrangian symmetric sub-
manifold of some totally geodesically embedd&® or a symmetric submanifold of
some totally geodesically embedd®dP.

If W is a complex subspace G,,CP", thenby|w. = RJ|w:. Hence, if W,U) is
an orthogonal curvature invariant pair, then bathandV := W U are complex sub-
spaces, too. This shows that every complex parallel suboidrof CP" is a complex
symmetric submanifold of some totally geodesically emiseiddPX.

Note, several conclusions from the previous example cam lzdsmade by explicit
calculations but without using the notion of curvature nat pairs, cf. [23, Propos-
ition 2.3], [23, Lemma 3.2] and [23, Lemma 4.1].

2.3. Further necessary integrability conditions. There remains the problem to
decide on the integrability of a given orthogonal curvatumeariant pair (V,U). Recall
that integrability of W, U) means by definition that there exists at least one integrabl
symmetric bilinear magh: W x W — W+ such thatU = {h(x, y) | X, y € W}g. We
will see below that there exist certain restrictions on anghsh.

The first observation is the following: given a 2-ja/(h) at p, set

(18) Kernh) := {x e W | Vy € W: h(x, y) = 0}.
Using (2), (3) and (27), we immediately see that
(29) Kernf) = {x € W | h(x) = 0}.

Proposition 2. Let N be a symmetric space and an integraBiet (W, h) be
given. ThenKern(h) is invariant under the action ofj,, on W.

Proof. This follows from the curvature invariance b, the symmetry ofh and
(4) (with R = RN), cf. [21, Proof of Lemma 5.1]. O

Further, letK denote the isotropy subgroup ofNf at some fixed pointp, ¢ de-
note its Lie algebra ang: ¢ — so(T,N) be the linearized isotropy representation. Re-
call that

(20) Rl € £(8)

for all u, v € T,N (since N is a symmetric space). For a symmetric submanifold
with second fundamental forrh at p, as mentioned in [22, p.657], the image lof

is contained inp(t). For a parallel submanifold, this is no longer true in gaher
Nevertheless, there is still some relation betwéeand p(t), as follows.
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Given a 2-jet W, h) at p, we setU := {h(X,y) | X,y e W}g, V:=W& U and
(21) ty ;= {Xet|p(X)(V)C V}.

Then p induces a representation &f on V. Further, recall that the centralizer of a
subalgebrag C so(V) is given by

(22) Z(g) := {A€so(V) | VB € g: [A, B] = 0}.

Theorem 3. Let N be a symmetric space and an integrablgt (W, h) at p be
given. Set U= {h(x,y) | X,y € W}g and V:=W @ U. Further let p: € — so(TpN)
be the linearized isotropy representation. In the follogyive view h as a linear map
h: T,M — so(V)_- via (2), (3).

(@) For every k>0 and x, ..., X, ¥, z€ W, the skew-symmetric endomorphism of
TpN given by
(23) hy, [ -+ [hys RQZ], G

leaves V invariant. The so generated subalgebraog¥/), denoted byg, is contained
in p(ty)|v. Further it bears the structure of &,-graded subalgebra ofo(V), i.e. g =
g, D g_ with g, :=gnNso(V); andg_:=gnso(V)_.

(b) Set

(24) b :=bwlv + bylv.

Thenb is a subalgebra ofy, .6
(c) For every xe W there exist A€ g_, Bx € Z(g) Nso(V)- such thathy = A, + By.

Proof. For (a): sinceW, U) is a curvature invariant pair, we ha\@fy(V) cVv
for all x, y € W according to (14). Thus (23) leavas invariant fork = 0 and then
also fork > 0 because of (2). Further, we claim th@atC p(ty)|v: because of (20),
r.h.s. of (12) belongs t@(ty)|v and so does l.h.s. Thus, the restriction\toof (23)
belongs top(ty)|v for everyk, which gives our claim.

Furthermore, applyingh, -] to (23) leaves the form of (23) invariant with the
natural numberk increased by one for every € W. Hence fy, g] C g. Thus the
restriction toV of (23) belongs toso(V); or so(V)- according to whethek is even
or odd, see (3) and (14). Therefore, we have g N so(V), @ g N so(V)-.

For (b): becauseW, U) is a curvature invariant pair, it is easy to see that the
linear spacey is actually a subalgebra ab(V),.. Further, recall that the restriction to
V of (23) belongs tog, if k is even. In particular, fok = 0, we see thaiA(V) C V

81t is actually true that) = g holds, cf. [10, Proof of Theorem 5.2 (b)].
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and Aly € g, for all A€ by. It remains to show that the same is true for edch by,
which follows by means of (16) as in the proof of Propositian 1

For (c): let Ax denote the orthogonal projection bf onto g with respect to the
positive definite symmetric bilinear form ar(V) which is given by—trace@®o B) for
all A, B e so(V). Since the splittingy = g, @ g_ is orthogonal and, € so(V)_ holds,
we immediately see tha#y € so(V)- (cf. [11, Lemma 4.19]). Furthermore, using the
invariance property of the trace form (i.e. trad®(B] o C) = trace(A o [B, C])), we
conclude from fiy, g] C g that By := hy — A centralizesg. It also follows thatBy €
so(V)_. This proves the theorem. ]

Thus, the Lie algebrg from Theorem 3 (a) gives the link between the linear map
h and the Lie algebra(t). Further, note the Lie algebia defined in Part (b) of this
theorem depends only on the orthogonal curvature invagaintin question. Sincg C
so(V)., restricting the elements d¢f to W or U defines representations pfon W and

U, respectively. Hence, we introduce the linear spaces ofoneonphisms

(25) HomW, U) := {L: W — U | A is R-linean,

(26) Homy (W, U) :={A e Hom(W, U) | VA€ h: Ao Alw = Aly o A}
Recall that

(27) so(V)- - HomW, U), A~ Alw

is actually a linear isomorphism inducing an equivalence
(28) Z(h) Nso(V)- = Homy (W, U),

where Z(h) denotes the centralizer of in so(V). Further, mapping. to its adjoint,*
defines an isomorphism

(29) Hom, (W, U) = Homy (U, W).

Corollary 4. In the situation of Theorem 3,suppose additionally thab(ty)|v N
so(V)_ = {0}. Let h be the Lie algebra defined in Patb) of the theorem. Then

(30) Vx € W: h(x, +) € Homy (W, U).

Proof. Consider the decompositidyy = Ay + By described in Theorem 3 (c).
Then, by means of Part (a) of the same theorédgne g_ C p(ty)|v Nso(V)_ = {0}.
Henceh, = By € Z(g) N so(V)_ C Z(h) N so(V)_ according to Theorem 3 (b). We
conclude thah(x, -) € Homy (W, U) for eachx € W because of (2), (3), (27) and (28).
This finishes our proof. O
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“In practice”, having an orthogonal curvature curvatureaimant pair W, U) de-
scribed in a concrete way, it is not very difficult to deterethe linear spaces(ty)|v N
so(V)- and Hom (W, U) explicitly. However, if W is curvature isotropic, then the last
theorem and its corollary do not provide any further infotima Thus, in the next
Section, we will examine this particular situation in case@V) = rank(N) (which is
clearly sufficient for ambient rank-2 spaces).

2.4. Parallel submanifolds with curvature isotropic tanget spaces. Let N be
a symmetric space of compact or non-compact type.

DEFINITION 5. (&) A linear subspac®/ C T,N is called curvature isotropicif
the curvature endomorphisrRny vanishes identically for alk, y € W.
(b) Therankof N is the dimension of any maximal curvature isotropic subsmdd,N.

Lemma 1. Suppose that N is of compact or non-compact type. Let a linebr
space WC T,N be given. The following is equivalent
(@) The linear space W is curvature isotropic.
(b) The sectional curvature of N vanishes on evaplane of W i.e. (RN(x,y,y),x) =
Ofor all x,y e W.

Proof. Leti=t®p be the Cartan decomposition of the Lie algebra of)Ivith
respect to the base poimt. Recall thatN is of compact or non-compact type if and
only if the Killing form of i restricted top is negative or positive definite, respectively.
Hence (b)= (a) follows from [9, Chapter V, 83, Equation 1]. The directi¢a) =
(b) is obvious. ]

Given a submanifoldM, we thus see that the sectional curvatureNofvanishes
identically on any 2-plane of,M for every p € M if and only if T,M is curvature
isotropic in T,N for each p. In this situation, if we also assume that the dimension
of M is equal to the rank oN, then D. Ferus and F. Pedit [8] have shown thatis
intrinsically flat and hence called it a “curved flat”.

Proposition 3. Let N be a symmetric space of compact or non-compact, type
(W, h) be an integrable2-jet at p and set U:= {h(x, y) | X, y € W}r. Suppose that
d := dim(W) is equal to the rank of N and that W is a curvature isotropic spdre

of T,N. Then there exists an orthonormal basgis, . .., x4} of W such that
(31) h(xi, x;) =0 whenever i# j,

(32) ni :=h(x, x) satisfies (ni, nj) =0 whenever i# j,

(33) Rix =R, =R, =Ry =0 forall i#j.

In particular, both W and U are curvature isotropic.
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Proof. Let a parallel submanifolt¥ be given such thaT,M = W andh, = h.
SinceW is curvature isotropic, the sectional curvatureMfvanishes on every 2-plane
of ToM and then even identically on any 2-plane of the parallel sariifold M (see
[10, Proposition 3.14]), i.eM is a curved flat. ThusRXN"y =0 for all x,y € T,;M

according to [8], implying in the parallel case thaﬁys = 0 for all £ € U because
of (4). Using the Equations of Gaul3, Codazzi and Ricci for mlfel submanifold, i.e.

(34) VX, y € ToM: RY, = R @ Ry, + [y, hy],

we obtain that fix, hy] = 0 for all x, y € W. Further, we claim that there exists an
orthonormal basigxy, ..., Xq} of W such that (31), (32) hold: sinchy | x € W} is

a set of pairwise commuting, skew-symmetric operators wm@ap W to U and vice
versa, there exist an orthonormal bagis, ..., X4} of W and somedy < d such that
Kern() = {x1, ..., Xqg,}r (see (18), (19)), an orthonormal ba$fg,;1,...,&q¢} of U and
linear mapsii: W — R such thathy = Z?:dﬁl Ai (X)X A& . Using the symmetry of,

d

ME = D M)x A& =h0x, X)) = h(x}, ) = 2 (X))&.

I=dp+1

It follows that Aj(x;) = 0 for i # j. This gives our claim.
Moreover, by means of (31), we have

H H N _ N _ N —
Vi 7£ J: inrﬂj |V = in,h(xj,xi)|V - _Rh(xj,xi),xj |V =0

where the second equality uses (5) (Witk= 1), i.e. the curvature endomorphisﬁj(\l"?7J
vanishes orV wheneveri # j. Furthermore, (16) implies that then aIRf;“i,,“ vanishes
on V. Using Lemma 1 once moreR)’(\“ynJ and R’v\il,m both vanish onT,N unlessi = j.
The result now follows. O

In the notation of Proposition 3, s& := {x;, ni}g fori =1,...,d. Note, (32)
can be rephrased by saying that the linear spateare pairwise orthogonal and (33)
means thaRN(u, v) = 0 holds whenevery, v) € V; x V; with i # j.

Lemma 2. Let {Vi}i—1.. 4 be a collection of pairwise orthogonal subspaces of
T,N such that RU = 0 whenever(u,v) € V; xV; with i # j. Then there exist pairwise

orthogonal curvature invariant subspaces ofN, denoted by, such that

(35) VicV, for i=1,...,d,
(36) RY, =0 whenever (u,v) €V, xV; with i# j.
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Moreover then also the linear space

d
(37) V=PV

with properties (35), (36) and such thdtc Vi fori =1,...,d, thenV, = V; holds
for all i.

invariant inT,N for i =1,...,d: leti be arbitrary but fixed and;,v;,w; € V;. Further,
let j withi # j andw; € \7,-. Then, using a symmetry arN,

(RV(u, v, i), wy) = (RN(wi, wi, w), v) €0,

Therefore, the linear spacé =V, + RRN(uj, vi, wi) is contained in the orthogonal
complement ofV;, too. Further, note that

(38) RN(Ui, Vi, wj) = —RN(wj, Ui, vj) — RN(vi, wj, ui) (B=6)O+O= 0

by the first Bianchi-identity. Thus, the Jacobi-identityr fthe Lie bracket oni(N)
shows that

N N N N
ij,RN(ui,ui,w‘) = _RRN(ui,ui,wj),wi + [Rui,v" ij,wi] =0+0=0.

Therefore, the curvature endomorphisRY', vanishes whenever(v) € Vi x V; for

we haveV; = V; for all j. In particular,V; = Vi, i.e. RN(ui, vi, wi) € Vi. Since
ui, vi, wi € V; were chosen arbitrary, we see thétis curvature invariant. Letting
vary, we conclude tha¥; is curvature invariant for = 1, ..., d.

Further, we claim that then al$é is curvature invariant: let, v, w € V be given.
We have to show thaRN(u, v, w) € V. For this, we can assume, by multilinearity of
RN, that each of these three vectors belongs to sdméf (ui, vj, wk) € Vi x Vj x Vg
with i ¢ {], k}, then RN(uj, vj, wy) = RN(wy, ui, vj) = 0 by means of (36) and hence
also RN (vj, wx, U;) = 0 because of the first Bianchi-identity. TherefoR (u,v,w) =0
unless all three vectons, v, w belong to the sam¥; in which caseRN(u,v,w) € Vi C
V by the curvature invariance of;. O
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Corollary 5. In the situation of Proposition 3,let M be the simply connected
complete parallel submanifold of N through p whdaget is given by(W, h). Then
M is contained in some totally geodesic submanifeld= N whose universal covering
spaceM¢ splits as a Riemannian produ® x Mg, 1 x - - - x Mg where @ := Kern(h).
Moreover we have M=~ RY and there exist extrinsic circles énto M; such that the
immersion of M intoM is given by the product maflge x Cg,+1 X - - - X g followed
by the covering magM!c — M. In particular, the parallel curved flat M with d =
rank(N) > 2 is never full if N is simply connected and irreducible.

Proof. Following the notation of Proposition 3, 9ét:= {x;,ni}r fori =1,...,d
such that{x, ..., Xg}r iS an orthonormal basis of Kefmy By means of Lemma 2,
there exist curvature invariant spacésc T,N which satisfy (35), (36) foi = 1,...,d.
SinceV; = Rx; is already curvature invariant for=1,...,dg, we can assume that =
V; for i <dg. Further, consider the totally geodesic submanifditis:= exp¥(V;) and
their universal covering spacéd;. Thus,M; =R fori = 1,...,dy andR% x Ma,+1 X

- x Mq is the universal covering space of the totally geodesic sutifold M :=
expV(V) according to (36), (37). Therefore, by means of (31), (32) aveO,M =
@?:1\4 C V which implies thatM is contained inM (reduction of the codimension).
Further, letc,: R — M; be the extrinsic circle witlt; (0) = x and Va"’" ¢ (0) = n; for
i =do+1,...,d. Thus, the product map je xCqy,+1 %+ »xCq followed by the covering
map M'“ — M defines an isometric immersion & as a parallel submanifold d¥l
whose 2-jet at 0 is identical with the 2-jet & at p according to (31), (32). Our
first assertion follows, since a simply connected completealfel submanifold ofM
is uniquely determined by its 2-jet at one point. In parieulif alreadyN is simply
connected and irreducible and, moreower,is full in N, then M =~ R. ]

2.5. Parallel submanifolds with 1-dimensional first normal spaces. For cer-
tain integrable 2-jets, one implicitly knows that the setarsculating space is curva-
ture invariant.

Proposition 4. Let N be a symmetric spacéWV, h) be an integrable2-jet and
U :={h(x,y) | X,y € W}g. Assume thatim(U) = 1 and dim(W) > 2. Suppose add-
itionally that by, acts irreducibly on W. Then V=W & U is a curvature invariant
subspace of JN.

Proof. Using Proposition 2, we obtain that Kdip(= {0}. Thus h(x, y) :=
(h(x, y), n) defines a non-degenerate bilinear form \dh for any unit vectorn € U.
Further, in view of Proposition 1, it remains to show tlﬂZﬂ’n(V) C V holds. For this,
we may proceed as in the proof of [1, Theorem 9.2.2]: we camnassthatx # 0
in which case there exist, z € W with h(x, z2) = n and h(y, zZ) = 0 (sinceh is non-
degenerate and divi() > 2). Hence, using (5) with = 1, we see thaR}!, = [h,,R}!,]
holds onV. The result follows by means of (2) and the curvature inverégaof W. [
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2.6. Symmetric submanifolds of product spaces. In order to show that certain
orthogonal curvature invariant pairs of;@"*?) are not integrable (cf. the proof of
Corollary 20), we will apply the following theorem to ambtespace §x S«

Theorem 4 (H. Naitoh) Suppose that N is a simply connected symmetric space
and that the de Rham decomposition of N has precisely tworkadi = N; x N. If
M C N is a symmetric submanifglthen either N = N, and M= {(p,9(p)) | p € N1}
where g is an isometry of N(in particular, then M is totally geodesjcor M is a
product My x M, of symmetric submanifolds ;M- N; for i =1, 2

Proof. In case both factors of are of compact type, we can immediately apply [23,
Theorem 2.2]. In case both factors Wfare of non-compact type, we use the duality be-
tween compact and non-compact spaces to pass to the preaseignote that the results
of [23] are mainly based on [22, Lemma 1.1] which is presemeder duality). In the
general case, we decompdsex N.x N, x Ng into its compact, non-compact and Euclid-
ean factor (where one or more factors may be trivial) and st®wm [23, p. 562/563] that
M splits as the Riemannian produkt = M¢ x My x Mg of symmetric submanifolds
M C N¢, Mpc C Npc and Mg C N, which finally establishes Theorem 4. L]

3. Parallel submanifolds of GF(R"+2)

Let n > 2 and consider the simply connected compattdEnensional symmetric
spaceN := GQ(R”*Z) of rank two which is given by the oriented 2-planes Rif*2.
In accordance with [17, Section 2], we choose the metridNosuch that the shortest
restricted root has length equal to one for 3 and G (R?) = Sf/z X Szﬁ. Further,
setT := T,N for some fixedp € N and letp: £ — s0(T) be the linearized isotropy
representation. Then one knows (cf. [14]):

e N is a Hermitian symmetric space. Hence, there exists a comgiteicture JN
compatible with the inner product ofh. This turnsT into a Hermitian vector space
of complex dimensiom.

e Recall that a real formi C T is ann-dimensional real subspace ®f with 9 L
if. By acircle of real formswe mean the sete’% | ¢ € [0, 27]} defined by some
real form% C T. As a special feature of ZR"*?), there exists a distinguished circle
of real forms of T, denoted byi/, see [14, Section 3].

e Consider the orthogonal splitting = 9%i(v) + i3(v) into real and imaginary parts
for everyv € T depending ot € Y. Then, for any)t € U, the curvature tensor dfl
can be described via

Yu,veT:
RY, = (M), I(U)) — (R(u), I@))IN — R(u) A R(v) — I(u) A I(v).

This is consistent with [14, p.84, Equation (16)] (but théhe inner product gets a
factor 1/2).

(39)
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e Further, let the Lie algebrso(9) act onT via Av = AR (v) +iAJI(v). Thenp(t) =
{RY, lu,veTlr =RIN @ so(R) for any it € U.

Recall that a subspad® C T is called curvature invariant iRN(x, y, z2) € W for
al x,y,ze W.

Theorem 5 (S. Klein). For N := Gj (R"*?) with n > 2, there are precisely the
following curvature invariant subspaces of T
Type (&) Let % € U and a k-dimensional subspace,W 9% be given. Then W=
CW, is curvature invariant. Here we assume thatKl.
Type (i) Let % € U and an orthogonal pair of subspaces; WV, of i be given.
Then W:= W; & iW, is curvature invariant. Here the dimensions k and | of whd
W, respectivelyare supposed to satisfy -kl > 2.
Type (g) Let 3 e and a subspace W= R equipped with a Hermitian structure’ |
be given. Then W= {x —il'x | x € W'} is curvature invariant. Here k= 1 denotes
the complex dimension ¢W', 1).
Type (ty) LetR €U, a subspace WC %t equipped with a Hermitian structure’ ind
a real form W, of the Hermitian vector spac@V’, 1’) be given. Then W= {x —il'x |
x € W(} is curvature invariant. Here k= 2 denotes the dimension of )W
Type (ex) Let % € U and an orthonormal systenpe;, e;} C 9% be given. The
3-dimensional linear space W= {e; —iey, & + i€y, €1 + ie}r iS curvature invariant.
Type (ex) (only for n > 3) Let % € U and an orthonormal systerte;, e, e3} C N
be given. The2-dimensional linear space W= {2e; + ey, e + i(ep + Jﬁeg)}m is
curvature invariant.
Type (tr) Let u be a unit vector of T. Thd-dimensional spaceRu is curva-
ture invariant.

For a proof see [14, Theorem 4.1]. The corresponding toigdélgdesic submanifolds
are described in [14, Section 5] or [17, Section 2.1].

Our notation emphasizes that spaces of Typey #ad (¢) both are complex of
dimensionk over C and those of Types {r) and (t§) are totally real of dimensions
k + | and k, respectively. The spaces of Types feand (ex) are “exceptional” (in
the sense that they do not occur in a series).

3.1. Curvature invariant pairs of GF(R"*2). In this section, we determine the
orthogonal curvature invariant pairs df. Note that W, U) is a curvature invariant
pair if and only if U, W) has this property. Since Theorem 5 provides seven types of
curvature invariant subspaces Bf there are (v8)/2 = 28 possibilities to consider. Our
approach is briefly explained as follows: given a curvatumeaiiant subspacg/ of T,
we will first determine the Lie algebrg,, (see (17)) and th&,,-invariant subspaces
of W, Second, we will determine those skew-symmetric endonismuh of T which
belong top(t) and leaveW invariant, see (20). Once this information is available for
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Table 1. Orthogonal curvature invariant pairs 0j(®“+2).

Type Data Conditions

©. Q) | (%, Wo; 9%, Ug) N = 9N, Wo L Ug

(tl’i’j, tl’k’|) (M, Wi, Wa; 0%, Uy, Uy) N = ei“’.‘){*, W, W, L ei“’(Ul @ Uyp)
(tl'j'k, tr.,,-) (N, Wy, Wa; R*, Ug, Uyp) R=xN* Wy =U,, W, L Uy

(trics, ) | (N, Wy, Wo; %, Uy, Up) N=NRN* Wy =U,, Wo =U;

(tl’kyl, tr1,|) (SR, Wi, Wo; i*, Uy, U2) N=NRN*" W, LU, Wo, L U, W; L Uy
(trk,l, tl’lyk) (9{, Wi, Wa; i*, Uy, U2) RN=x* W, =U,

(tl’]_’]_, tl’]_’]_) (.‘H, Wi, Wo; i, Us, U2) N=NRN* W, LU, Wb, L U,

(trp, tro) | (O, W, Wa; u) ulCwW, & CW,

(trk,l, trl) (9{, W]_, Wg; U) ul (CW]_, S(U) 1 W2

(trl,l! try) | (9, Wi, Wa; U) N(u) L Wy, S(u) L W,

0 C)  |(R, Wo: %, U7, 1) N = 9N, Wo L U’

C.c) | W, 195 U, J) N =0, W LU

. c) | W, 19, U7, J) R=0", W =U, I =7

Sk
E

(cy, tr1) O, W', 175 u)

(U, the) [OL W, 1, Wi ", U, Up) [ =9", W LU @ U,

(. tr) | OL W/, 17, W5 %, U7, 37, 00) [ = %, W LU’

(try, tr) | O, W/, 17, Wy %, U7, 7, Ug) | 9t = 9™, w U, Ui=1'(Wp), I/ =1’
(tr, tr) | (O, W/, 17, Wy %, U7, 37, Ug) [ ] = %, W = U/,

Uj = exp(@l/)(W’) V=-l

(tr5, try) (O, W/, 17, W v, U7, 07, UQ) | = 3%, W= U’ and there exists
J e SUW', 1) N so(W’) such that
Uy=J(W)) andJ' = Jo 1’037t (x)

(tri, tro) |8, W/, 1Y, W u) ulcw
(exa, tr) | (N, {e1, ep}: u) u=£(1/v2)(e —iey)
(trq, try) (u; &) ulé

(x) If W is of Type ti, defined by {t, W', I’, W), then a second Hermitian structure
on W’ is given byI~ =e1 A&+ 1'eg A l’e; for some orthonormal basigy, e} of WY.
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curvature invariant spaces of Types x and y, we will deteemali curvature invariant
pairs of Type (X, V).

Lemma 3. Let W be curvature invariant of Typex) defined by the datér, Wp).
(a) We have

(40) bw = RIN @ so(W).
(b) A subspace of W is hy-invariant if and only if it is a complex subspace.
(c) Let Aeso(R) and ac R be given. The linear map aJ+ A leaves W invariant

if and only if AWp) C Wb.

Proof. By means of (39), the curvature endomorphiﬁﬂ]X is given by JN for

every unit vectoix € Wo. Further,RY, = R, = —xAy for all x,y € Wp and RY;, =0
if x,y €Wy with (x, y) = 0. Part (a) follows. For (b), note thdk,|w: = RIN|y:.
Part (c) is obvious. ]

Corollary 6. Let W and U be curvature invariant of Typés) and (¢) defined
by the data(:i, Wp) and (0t*, Ug), respectively. Ifh = R* and W L Ug, then (W, U)
is an orthogonal curvature invariant pair. Conversebvery orthogonal curvature in-
variant pair of Type(c, g) can be obtained in this way.

Proof. Using Lemma 3, the first part of the corollary is Qb\ﬂ'opFor the last
assertion, since the linear spaééis determined also by the tuple'{, €YW) for all
¢ € R, we can assume that = %i*. Thus the conditionV L U implies thatW, L Uy.

O

Corollary 7. There are no orthogonal curvature invariant pairs of Tygegtri,),
(cj, ), (i, %), (cj, ex) and (cj, try).

Proof. If W is of Type (g), then anyh-invariant subspace ofV:* is complex
according to Lemma 3 (b). Since spaces of Typag Xt«(tr,), (exs), (€%) and (ir) are
not complex, this proves the result. 0

Lemma 4. Let W be of Typédtry,) defined by the dat@i, Wi, Ws).
(&) We have

(41) by = s0(Wp) @ so(Wo).
In particular, if k =1 =1, then W is curvature isotropic.

(b) If k,I # 1, then a subspace of Wis by -invariant if and only if it is equal tdW,
W,, a subspace of the orthogonal complemeniWwf & W, or a sum of such spaces.
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If k =1 and | > 2, then a subspace of Wis b-invariant if and only if it is equal

to W, a subspace of W or a sum of such spaces. If% | = 1, then any subspace
of W is byy-invariant.

(c) Let Aeso(N) and ac R be given. The linear map &9+ A leaves W invariant
if and only if a=0and AW,)cC W fori =1,2

Proof. For (a), see the proof of Lemma 3. For (b), considerdeéeomposition
W = iW; @ Wo @ (CW; @ CWs,)* into by -invariant subspaces. Theéy, acts trivially
on (CWy @ CW,)* and irreducibly on bothW; andWs. In particular, the linear spaces
iW; and W, are trivial h-modules only ifk = 1 or| = 1, respectively. Moreover,
they are non-isomorphig,,-modules unles& =1 = 1. The result follows. Part (c) is
straightforward. ]

Corollary 8. Let W and U be curvature invariant of Typés; ;) and (trc,) de-
fined by the data9, Wi, W) and (%, Uy, Uy), respectively. If one of the following
conditions holdsthen (W, U) is an orthogonal curvature invariant pair
e the real numbery is chosen such thdl = €*%* and é#(U; @ U,) belongs to the
orthogonal complement of b Ws;

N =NRN* Wo, =U; and W = Uy;

N =R W, LU and W = Uy;

j =k=1, % =NR* W; LUy, Wp L Ug and W 1L Uy;

j=k=10N=9R* W =Uy;

i,.))=KkDH=@1,1,R=9 W, LU; and W, L U,.

Conversely every orthogonal curvature invariant pair of Typ# j, tr) can be ob-
tained in this way.

Proof. Obviously, the pairsW, U) mentioned above satisfyt 1. U. Further, the
fact that they are curvature invariant pairs is verified byange of Lemma 4. Con-
versely, let us see that these conditions are also necessarhave

Uy = € “e?u; = cos)e?us — i sin(p)e?uy,

iU, = e7%e¥%iu, = sin(p)e¥u, + i cosp)e?us,

with €2u; € i and E€%u, € iR for all (uy, uy) € Uy x Uy, Thus, the conditiod L W
implies that

0 = (X1, U1) = cosfp)(x1, €uy),

0 = (xq, iUz) = sinp)(xa, €°Uy),

0 = (ixo, U1) = — sin(p) (Xz, €u1),
0=(

iXo, iUp) = cosfp)(Xz, €¥Uy)
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for all (xq, x2) € Wy x W, and {1, up) € Uy x U,. Hence, in case ¢ (7/2)Z, the
condition W L U necessarily implies tha (U, & U,) L Wy @ W.

In casey € (n/2)Z, interchanging, if necessaryl; with U,, we can assume that
N = R*. Clearly, thenW; L U; and W, L U, by the conditionW L U. Further,
suppose thaj > 2. On the one hand, sinc&\( U) is a curvature invariant pair and
bw C so(N) by means of Lemma 4 (a), the linear spaggeis an by -invariant subspace
of Wf N NR. Using Lemma 4 (b), we conclude thely | Wy & W, or Uy = Wo & U]
for someU c % which belongs to the orthogonal complement\Wf & W,. We claim
that the second possibility can not occur unléss= {0}: since W, U) is a curvature
invariant pair andh, C so(M), the linear spaceW, is an hy-invariant subspace of
UL NifR. Moreover, the conditiord; = W, & U implies thatk > j > 2. Therefore,
by means of Lemma 4 (b), we haw, 1L U; & U, (which is clearly not given) or
W, = U; & W for someW L U; & U,. HenceU; = U; @ W @ U, thusW = U = {0}.

We conclude thaty; L Wy & W, or U; = W, unlessj = 1. Similarly, we can
show thatU, L W; & W, or U, = W; unlessi = 1. Clearly, the same conclusions hold
with the roles ofW and U interchanged. This finishes the proof. ]

Corollary 9. Let W and U be curvature invariant of Typés, ) and (tr;) de-
fined by the data), Wi, W,) and a unit vector ue T, respectively. If one of the
following conditions holdsthen (W, U) is an orthogonal curvature invariant pair
e U belongs to the orthogonal complement@#; & CW;

e | =1, ulCW and J(u) L Wy;

e k=I=1,%u) LW and J(u) L W..

Converselyevery orthogonal curvature invariant pair of Ty|fy,tr1) can be obtained
in this way.

Proof. Note, the pairW, U) is an orthogonal curvature invariant pair if and only
if ue Wt andb,, annihilates the vectou. If k,| # 1, this is equivalent tau L
CW,; & CW, according to Lemma 4 (b). Further, we can assume khatl. If k > 2
and|l = 1, we use the same argument as before; however, now it is edidtat)i(u)
has a component ifW,. In casek =1 = 1, the Lie algebréy,y is trivial and the only
condition isu € W+, O

Lemma 5. Let W be of Typdc,) determined by the datéi, W', 1"). Further
let W denote its complex conjugate in T with respect to the rean fii.
(&) We have

(42) by = su(W) @RI’ + kJIN).
(b) In case k> 2, a subspace of W is hyy-invariant if and only if it is equal toW,

a complex subspace ¢CW')* or a sum of such spaces. In case=k1, the previ-
ous statement remains true if we replace the phrasgual to W” by “contained in
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W”. Anyway the linear spaceW as well as anyh-invariant subspace ofCW')*
is complex.

(c) Let ac R and Ae so(%). The linear map al + A leaves W invariant if and
only if AAW) c W and Aw € u(W', |).

Proof. For (a), note that
(43) Rl iy ity = =2(1'% Y)IN =x Ay —1'x A l'y
for all x, y € W because of (39). In particular,

(44) R!(\l_”fx‘y_”/y = _ZJN —2X A |/X

for every unit vectorx e W andy = |’x. Similarly, if x, y € W’ are unit vectors with
(x, 1'y) =0, then

(45) R

_ / ’
ilxy—ily = “XAY = XA Ty.

It follows from (44), (45) thatA € b, if and only if there exists som& € u(W’, 1)
such thatA = —itrace-(B)JN + B (where tracg(B) means the complex trace & in
(U’, 1). Now (42) is straightforward.

For (b), note that

(46) VX e W:ilx Fil'x) = £I'x +ix = £(I'x Fil'l'’x) = £1'(x Fil’x),

hence JN|w = I'lw and JN| = —I'|w. In particular, the linear spac#/ is a com-
plex subspace off. The fact thatl’ = —JN on W and part (a) together imply that
bwlw = {0} for k =1 andby|w = w(W’, I') for k > 2. Further, we have(W’, |") =
uw(W’, —1") 2= u(W) where the second equality uses (46). Therefore, the lispace
W is an irreducibleh,,-module of real dimensionk2for k > 2. Furthermore, the Lie
algebrab,, acts on CW’)* via RJIN. Part (b) easily follows.

For (c), recall thatJN|w = |’|w according to (46). ThudV is actually complex
and we can assume in the following theat= 0. Since

47) Vx e W A(x +il'x) = Ax +iAl'),

for all A € so(N), we see thatA(W) c W if and only if A(W') ¢ W and Al €
u(W’, 1"). Part (c) follows. ]

Corollary 10. Let W and U be of Typeé&y) and (¢) determined by the data
M, W) and (M*, U’, 1), respectively. IfR = R* and W, L U’, then (W, U) is an
orthogonal curvature invariant pair. Converselgvery orthogonal curvature invariant
pair of Type(c, ) can be obtained in this way.
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Proof. Obviously, the pairsW, U) mentioned above satistw L U. Further, the
fact that these are curvature invariant pairs is verified amns of Lemmas 3 and 5,
parts (a) and (c). Conversely, let us see that the condiim@salso necessary: here we
can assume that = R* (cf. the proof of Corollary 6). Sincé&) L W,

(48) 0= (u—il'u, x) = (u, x)
for all u e U’ andx € Wy, i.e. Wp L U’. O

Corollary 11. Let W and U be of Type&,) and (¢) determined by the data
M, W', 1) and (™, U’, J'), respectively. If one of the following conditions hqltlsen
(W, U) is an orthogonal curvature invariant pair
e N=R*"U=WandIl'=-7;

e N=NR"and U L W.
Converselyevery orthogonal curvature invariant pair of Tyfde,, ¢) can be obtained
in this way.

Proof. Note, ifR = R*, U =W andl’ = —J/, thenU = W. Further, if = R*
and U’ L W, thenCW’' L CU’. Thus the fact that these are orthogonal curvature
invariant pairs follows by means of Lemma 5 (b).

Conversely, the Hermitian structuité extends toW’ & iW’ (via complexification)
and the linear spac® is determined also by the data“(t, €*W’, |'|s.w/). Hence,
we can assume that = 9*. In the following, we further suppose th&t>|. If also
k > 2, then by means of Lemma 5, eithdr. CW’ or U = W@ U with U L CW'. In
the first case, obviouslyW’ L U’. In the second case, we halke= {0} (sincel < k),
ie.U=W.

In casek =1 = 1, by means of Lemma 5 we hai# = U & U* for someU C
W and a complex subspadé” of the orthogonal complement @W'. Thus, since
dim(U) = dim(W) = 2, eitherU* = {0} (and henceU = U = W) or U = U*. This
finishes the proof. ]

Corollary 12. (a) There are no orthogonal curvature invariant pairs of
Type(c;, tr)).
(b) There are no curvature invariant pairs of Tyi€,, try) for k > 2.
(c) Let W and U be of Type§)) and (tr;) determined by the datéR, W', ', W)
and a unit vector e T, respectively. TheifW, U) is a curvature-invariant pair if and
only if ue W.

Proof. For (a), letW and U be of Types (£) and (t,) defined by the data
M, W, 1) and i*, Uy, Uy). Then we can assume that = %t*, cf. the proof of
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Corollary 6. Therefore, the conditiow/ L U implies that

(49) 0= (ug, X —il’x) = (uy, x),
(50) 0 = (iug, I'x + ix) = {(uy, x)

for all (ug, up) e U x U andx € W'. ThusUq, U, and W' are mutually orthogonal
subspaces ofi. In particular, the linear spadd is contained in the orthogonal com-
plement of CW’. We hence see by thk-invariance ofU that the latter would be
complex according to Lemma 5 (b), a contradiction.

For (b) and (c), according to Lemma 5 (b), the 1-dimensionhlspaceRu of W+
is by invariant if and only ifk = 1 andu € W. O

Lemma 6. Let W be of Typdtr,) determined by the datéh, W', I, W().
(&) The Lie algebrah,y is given by

(51) {Aeu(W, 1) | A(WY) C W}

(b) An byy-invariant subspace of W is contained in the orthogonal complement of
the complex spac€W’, belongs to a distinguished family of k-dimensional totadigl
subspaces o€ W N WL —which can be parameterized by the real projective sfRee
(for k > 3) or the complex projective spad@P? (for k = 2)—or is a direct sum of
such spaces.

(c) Let Aeso(N), a e R be given and set B=al’ + A. Then Be so(9t) holds and
the linear map alY + A leaves W invariant if and only if @) C Wy and BI'x =
I’'Bx for all x € W.

Proof. For (a), we use that the curvature endomorpr@h,,xyyfi,,y is given by
—XAYy—=1"xAl'y for all x, y e W] according to (45). For (b), in order to avoid any
confusion in cas& = 2 (see below), we temporarily drop the notationfor JNx with
X € T. Thus, setiox := x4+ INI’x, A1x := INx andA,x := I’ for all x € W;. Then
i is an isomorphism ofy,-modules defined fronW; onto W, JN(W}) and 1"(W),
respectively. Therefore,

(52) W o INW) NWE =W o INW) @ I'(W)

is an orthogonal decomposition into three irreducibleywise equivalenty,,-modules
each being isomorphic t&\;. Moreover, we note thab|w, = so(Wp). Hence the
linear spaceW is an irreducibleso(Wj)-module even ovelC for k > 3. Fork = 2,
let {e, &} be an orthonormal basis &%) and consider the Hermitian structure &
given by

(53) l:=eeAne+ l'ep A l'es.
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Then | extends toW’ & JN(W’) (via complexification byJN) such thathy,, C u(W' &
IN(W'), ). Further, theni (W) € W) and &; commutes with for i =0, 1, 2. There-
fore, as was mentioned in Section 2.2, there exids ¢: : ¢;) € KP? with K = R (for
k> 3) orK = C (for k = 2) such that

(54) U = {cox + Cal 'x + IN(col X + c1x) | x € W}

(Where in casé& = 2 multiplication with the complex numbers is now defined via).
Part (b) follows.

For (c): sinceW is totally real and the complexificatio/ @ iW is of Type (g)
defined by the data){, W’, 1’), we haveJN|y = I’|w in accordance with (46). In
particular, the linear magN — 1’ leavesW invariant, which reduces the question to
the casea = 0. It remains to determine thosk € so(9) which leave the linear space
W invariant and satisfyAl’x = 1" Ax for all x e W}, i.e. those for whichA(W") C W/,
Alw € u(W’) and A(W)) € Wy holds. This proves our result. ]

Corollary 13. Let W and U be of Typeftr;) and (tr,) defined by the data
(MW, 17, W) and (0i*,U1,Uy), respectively. Ift = %™ and the linear space UpU, is
contained in the orthogonal complement of ,\\When (W, U) is an orthogonal curvature
invariant pair. Converselyevery orthogonal curvature invariant pair of Tyg#’, tr)
can be obtained in this way.

Proof. Obviously, the pairsW, U) mentioned above satistw L U. Further, the
fact that these are curvature invariant pairs is verified ans of Lemmas 4 and 6,
parts (a) and (c). Conversely, let us see that our conditwasalso necessary: suppose
that (W, U) is an orthogonal curvature invariant pair. Note thdtis defined also by
the data €79, €°W', 1’, €*W)(—¢)) with Wj(—¢) := {cosg)x — sin()l'x | x € Wy}
for every ¢ € R, hence we can assume that= %*. SinceU is hy-invariant, there
exists a decompositiot) = U* @ U into b -invariant subspaces* c CW' N W+t
andU c (CW')* according to Lemma 6 (b). We claim that the only possibiitare
U* = {0}, U* =W, U = I"(Wp) or U* = I'(W)) & iWg: first, the conditionW L U
implies that O= (ug, x —il’x) = (uy, x) for all u; € U; andx € Wj. HenceU; C Wi,
thus Uy N W C I'(Wp). Similarly, we can show that, N W' C W§. Thus, on the
one hand,

(55) UP=UNCW =UNnW @i(U; N W) C I'(Wp) D iWg.

Moreover, according to (51), each of the linear spatésU; andU, is invariant under
the action ofl,. Therefore, on the other hand, since (52) gives a deconipogif
CW’'NW+ into irreducibleb,,-modules, we conclude that; "W’ € {{0}, I'(Wp)} and
U, N W e {{0}, Wy}. Our claim follows from (55).

Next, we claim thatU* = {0}: assume, by contradiction, th&t(W}) C U. Since
dim(W{) > 2, there exists an orthonormal pairy € Wy. Then{l’x, I'y} CU NN =



PARALLEL SUBMANIFOLDS OF THE REAL 2-GRASSMANNIAN 315
Ui, henceA := er\’x,l’y leavesW invariant (since \V, U) is a curvature invariant pair).
Further, by means of (39), we hawe = —1'x A |'y. It follows, in particular, that
A € so(W’') and Alw, = 0. Therefore, applying Lemma 6 (c) (with = 0), we obtain
that A = 0 (sinceW; is a real form of W, 1)), a contradiction. A similar argument
shows that neithej} is contained inU. We conclude that* = {0}, i.e. U L CW'.
Clearly, this implies thatJ; & U, 1L W/, which finishes our proof. O

Spaces of Type (f) are neither 1-dimensional nor do they contain any complex
subspaces. Hence Lemma 5 (b) implies:

Corollary 14. There are no orthogonal curvature invariant paifg/, U) of Type

(tri, @)-

Corollary 15. Let W and U be of Typeér,) and (ir)) defined by the data
(R, W 17, Wg) and (%, U7, J’, Ug), respectively. Furtherin case k= 2, let {e;, &} be
an orthonormal basis of YVand I be the Hermitian structure of Wdefined by(53).

If % = NR* and one of the following conditions holdden (W,U) is an orthogonal
curvature invariant pair
e we have U1l W/

o U'=W,I'=Jand U= I"(W);
o U =W,I"=-J and U = expf!’)(W() for somed € R;
e k=I1=2 U =W and there exists somd@ € SUW/, I) N so(W’) such that

Uj=JWy) and J =Jol’oJ2
Converselyevery orthogonal curvature invariant pair of Ty, tr) can be obtained
in this way.

Proof. In the one direction, in order to see that the givemsp@V,U) are actually
curvature invariant, we proceed as follows: the chisel W’ is handled by means of
Lemma 6, (a) and (c). In the other cases, we have- JN(W), U = exp(61")(W)
or U = J(W), respectively. IfU = iW, then

(56) bu = {IN o Ao IV | Ac by} = by,

where the first equality is straightforward and the secorebs ubatJN commutes with
any curvature endomorphism af. If U = exp(601")(W), then

(67) by = {exp(01") o Acexpfl’) | A € by} = by = bw,

where the first equality is again straightforward and theosdcas well as the last one
follow immediately from Lemma 6 (a). Ik = 2, thenh,, = RI according to Lemma 6
(@) and (53), hence, withh = J(W),

(58) by =(JoAoJ|Achy) =RIoioJ S IRI —yp,,.
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Clearly, if by, = by, then W, U) is a curvature invariant pair (by the curvature invari-
ance of bothw and U). This shows that the pairs in question are actually cureatu
invariant pairs.

It remains to verify thaty L W. This is straightforward in casd’ L W’. Further,
we haveW L iW (sinceW is totally real) ande™?W L W for any 6 (since everCW L
CW, see Corollary 11). Ik = 2, then f; := ¢ and f, := I’e; defines a Hermitian
basis of (', I). Consider the complex matrbgi) defined by

(59) g == (f, Jf) +i(i i, If):

Then () belongs to SU(2) su(2), hence there exist € R and w € C with t% +
|lw|? =1 such that

(60) (911 912) _ (it —111)
O21 O22 w -t

holds. Using the skew-symmetry df and (60), we calculate

(61)

(6 —JIN1'g, J@ —JINI'g)) = (g, Jg)+(I'g, JlI'g) =0+0=0 for i=1,2,
(62)

(& —INey, J(er — INVey)) = (1, T fy) + (2, I f2) = (g1 + G2) = O,

(63)

(e —INl'ey, J(& — IV1'e)) = —(&2 — INI'ey, J(e1 — INI'ey)) = 0.

This shows thaw L J(W).

In the other direction, letW,U) be an orthogonal curvature invariant pair of Type
(tri,tn) defined by the datad{, W', 1”,W{}; %*,U’, J",U(). Then we can assume thiit=
N* (cf. the proof of Corollary 13). Clearly, we can also supptsst| < k. Therefore,
since U is hy-invariant with dim{) < k, eitherU L CW’ or there existsq : ¢; :
;) € KP? with K = R (for k > 3) or K = C (for k = 2) such thatJ is given by r.h.s.
of (54) according to Lemma 6 (b).

Suppose thal L CW'. Then

(64) 0= (u—J1"u, x) = (u, x),
(65) 0= (u—JN1'u, INx) = —(I"u, x)
for all ue Uj andx € W, i.e. we obtain thatV’ L U’.
We are left with the case that there exists 1(c; : ¢;) € KP? such thatU is given

by r.h.s. of (54). In particular, thed Cc CW’', i.e. Ui C RNCW' =W’ and J'(U() C
W', henceU’ = Uy & J'(U}) = W’ since automaticallk = | in this case. Furthermore,
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we claim that herey,, = hy: given A € b, by means of Lemma 6 (a), we have,
in particular, A € so(W’). Further, we haveA(W) C W since W, U) is assumed to
be a curvature invariant pair. Thus, we obtain from Lemma )6({dth a = 0) that
A e u(W, 1) and A(W)) C Wi. Then A € by, again by means of Lemma 6 (a). This
shows thath, C b holds. The other inclusion is proved in a similar way. Thigegi
our claim.

For k > 3, we claim thatU = iW or U = €’W for some# € R: taking real and
imaginary parts in (54), we obtain that

(66) U:= CopX + Col’x
belongs toU; for every x € Wy and
(67) J'u = —c1X — col 'X.

Moreover, anyu € U] can be uniquely obtained from somee W via (66). Now
assume thak is a unit vector. Then,

(68) G+ D= 1gur @+
(69) — CoC1 — C2Co (0, (67)(u, J'u) = 0.

Note, ¢ := ¢ + ¢ does not vanish (since otherwisg= ¢; = c, = 0 according to (68)
which is not allowed). Thus, we can assume tbat 1 (because we consider only the
ratio (Co : €1 : C2)). Then (68) implies

(70) g+ =c+ci=1

Therefore, by means of (69), (70), the real matr X defined by

(71) (911 912) — (Co _Cl)

021 022 C2 —Co
belongs to O(2). Ifg € SO(2), thency = 0 andc; = ¢; = £1. Hence (66) and (67)
together imply thatUj = 1'(W(}) and J’ = I’. Otherwise, there exist$ € R such that
Cop = cos@) andc; = —¢; = sin@), thus J' = —1’" and Uy = {cosP) + sin@)1'x | x €

W} according to (66), (67). This finishes the proof foe 3.

For k = 2, we first recall that equips the linear space/’ with a second Hermit-
ian structure such thalT(Wé) C Wy and I’ belongs to UV, ). Now it is straightfor-
ward by means of (66), (67) that aldgu;)  Uj and J’ € U(W', ). Then it follows
on the analogy of (68)—(70) that

(72) col? + |2 = |2 + a2 = 1,
(73) —CoCy — Coco = 0.
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Thus, the complex matrixg(;) defined by (71) belongs to U(2). Moreover, since our
considerations depend only on the complex ratig: €; : ¢2), we can even assume that
(9ij) belongs to SU(2). Then necessardy = —Co and c; = €, hence §;;) takes the
form (60) which implies thatdjj) € SU(2)N su(2). Further, recall thatf, := e, and

f, := 1'e, defines a Hermitian basis ofA(, I). Thus, we obtain a unique element of
SUW/, 1) N so(W’) via J f; := gy f1 + gz f2. Then, using the previous and (66), (67),
we conclude that); = J(W}) and Jo 1’ = J' o J. The details of this part of the proof
are left to the reader. O

Corollary 16. Let W and U be of Typeéir,) and (ir;) defined by the data
(R, W', 17, W) and a unit vector u of Trespectively. Theifw, U) is an orthogonal
curvature invariant pair if and only if u belongs §CW’)*.

Lemma 7. Let W be of Typdexs) defined by the daté), {e1, e}).
(@) The Lie algebrah,, is the linear space which is generated by J e A e.
(b) A subspace of W is hy-invariant if and only if it is thel-dimensional space
R(e; — ie1), a complex subspace of the orthogonal complemeriegfe;}c, or a sum
of such spaces.
(c) Let Aeso(R) and ac R be given. The linear map aJ+ A leaves W invariant
if and only if A—ae A e vanishes oney, e}r.

Proof. Consider the Hermitian structuté:= e; A€, on W' := {e1, &}r and put
X1 := € — 6, X2 := e +ie; and x3 := e + ie. A straightforward calculation shows
that RN . = RN = 0. Further, letW be the curvature invariant space of Typg)(c
defined by {t,W’,1"). ThusW = W@®Rxs, hencehy, = byw- Now part (a) follows from
Lemma 5 (a) (withk = 1). Clearly, the intersectio@ W’ N'W+ is given byR(e; —iey).
Thus part (b) follows from Lemma 5 (b) (witk = 1). For (c), sinceIN + 1’ leavesW
invariant (by means of (a) and sind® is curvature invariant), we can assume that
0. If A leavesW invariant, thenAx; = Ae —iAe& is necessarily a linear combination
of x; and x3, say Ax; = ¢X + dxs. It follows that

d = (cx + dXg, €1) = (AXy, €1) = (AeL —iA&, €1) = (Aey, &) = 0,
henceAx; = cxo, i.e. Aet = ce, and Ae, = —ce;,. Thus
W s Axs = Ae + iAe = c(e —ie)) € W,

hence Axs € W N W+ = {0}. It follows thatc = 0. This implies thatAe, = Ae, =0
which proves our claim. O

Corollary 17. Let W and U be of Typegexs) and (tr;) defined by the data
(M, {e1, &}) and a unit vector u of T respectively. Ther{W, U) is an orthogonal
curvature invariant pair if and only if u= +(1/v/2)(e; — iey).
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Corollary 18. There do not exist any orthogonal curvature invariant pagf
Types(exs, G), (X, tr), (exs, tri) and (exs, €xs).

Proof. LetW be of Type (ex) defined by the dataf, {e1,e;}) andU be a subspace
of W+ such that (v, U) is a curvature invariant pair. Recall that thg-invariance ofU
implies that there is the spliting = U @ U* into a totally real spac&/* c R(e; —
ie;) and a complex subspate of the orthogonal complement ¢éy, ;)¢ according to
Lemma 7 (b).

Hence, ifU is of Type (¢) defined by the data(*,U’,1"), thenU* = {0} (sinceU is
complex) and thus) L {e;,e}¢. Further, we can assume that = N. Thus{e;, e}r L
U’ (see (48)). Therefore, we obtain that | CU’ and whence thég-invariant spacéV
is complex according to Lemma 5 (b), which is not given.

Furthermore, ifU is of Type (t§) or (trc,), thenU = {0} (sinceU is totally real)
and hencel is at most 1-dimensional, which is not given.

If U is of Type (ex), too, defined by €t*, { f1, f,}), thenU is defined also by
€9, {filp), fa(e))) with fi(p) := €“(cos@)fi + sin@)f) and fap) :=
€ (—sin(p) f1 + cosg) f2). Hence we can assume that= R*. Further, an orthogonal
decompositionld = U*@U into a totally real subspadd” and a complex subspaté
is unique (if it exists). We conclude that* = R(i fo+ f1) andU = { f1—i fp, fo+i f1)g.
Thus, on the one handfi, fo}r L {€1,&}r. On the other hand,fp + f; = +(e;—iey),
a contradiction. O

Lemma 8. Let W be of Typdex,) defined by the daté), {e1, e, €3}).
(a) The Lie algebrah,, is the linear space which is generated by 3 e A & +
V3e; e
(b) A subspace U of W is hy-invariant if and only if it is the complex spac&(—e; +
V/3e3 + 2iey), belongs to a distinguished family @al) 2-dimensional subspaces of the
linear space

(74) {Zez + i(—3e1 + %93), e + %93 - 2iez}]R @ ({e1, &, 3}c)*,

or is a sum of such spaces.
(c) Let Ae so(R) and ac R. The linear map al + A leaves W invariant if and

only if A—a(e; A & + +/3e; A e3) vanishes on{ey, &, ).

Proof. For (a), sek; := 2e; +ie, and x, := e +i(e; + +/3e3). A straightforward
calculation shows that the curvature endomorphl?.ﬂjx2 is given by—JN —e; Aep —
V3e nes.

For (b), we first verify that the eigenvalues &f .= RQLXZ (seen as a complex-
linear endomorphism of’) are given by{i, —i, —3i}. The complex eigenspace for the
eigenvalue—3i is a subspace ofV', given by C(—e; + +/3es + i2e;). Furthermore,
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A? = —1d on the (21— 4)-dimensional linear space (74), i.e. the linear maplefines
a second complex structure on (74). This proves (b).

For (c): sinceW is curvature invariant, the endomorphish +e, A&, + +/3e, A 63
leavesW invariant. This reduces the problem to the case 0. If A(W) C W, then
Ax; = cx and Ax; = —cx for somec € R (since A is skew-symmetric andx; || =
V5 = |x2|)). Considering the action oA on the real and imaginary parts ®f andxs,
respectively, this implies tha\e, = —2ce; and Ae, = c(e1 + +/3e3), a contradiction
unlessc = 0. Thus Ax; = Ax; = 0 and henceA|e, e, e}, = 0 Since A € so(9f). This
finishes the proof. O

Corollary 19. If W is of Type(ex), then there are no orthogonal curvature in-
variant pairs (W, U) at all.

Proof. Letd% € & and an orthonormal systere;, e, e3} of i be given such
that W is spanned by, := 2e; + ie; and X, := & + i(e1 + +/3e3). Suppose further,
by contradiction, that there exists some curvature inmarsaibspace) of T such that
(W, U) is an orthogonal curvature invariant pair.

For Type (g, ex), see Corollary 7. IfU is of Type (¢) or (ex), thenW is a
2-dimensionab;-invariant subspace df+ but not a complex subspace dfaccording
to Lemma 8 (c). However, this is not possible, because ofsp@ds} of Lemmas 5
and 7, respectively.

Now suppose that) is of Type (tf ;) determined by the datai(, U, Uy). Using
Lemmas 4 (c) and 8 (a), we see thg(U) C U does not hold.

Similarly, the case that) is of Type (tr) can not occur.

Suppose that) is of Type (tf) determined by the quadrupl&i{,U’,1’,Ug). Then
we can assume that = %*. Using Lemma 6 (b), the fact that/ is 2-dimensional
linear subspace of which is invariant undef,, implies that eithew c CU* or W
is a 2-dimensionab-invariant subspace of'U’.

In the first case, we havér(x), u) = (J(x),u) =0 for allu e U’ andi =1, 2.
With i = 1, it follows that (e, u) = (e, u) = 0, then the previous with = 2 implies
that also{es, u) = 0 for all u € U’. Thus Lemma 8 (a) and the fact thia},(U) C U
show thatU is a complex subspace df, a contradiction.

In the second case, we have dugf = 2, hence dim{’) = 4. Further, bothR(x;)
and 3J(x;) belong toU’ for i = 1, 2. Thus we conclude thde,, e, es}g C U’. Let
{ug, Uz} be an orthonormal basis d&f;. According to Lemma 6, the curvature endo-
morphismRY;,., . ¢ is given by A:= —uA & —1'uA I’€ for all u, & € U. Hence,
since W, U) is a curvature invariant pair, we obtain th&tw) c W. Using Lemma 8
(c) (with a = 0), we obtain thatA vanishes on{e;, &, e3}g. Therefore, sinceA €
s0(U’), the rank of A would be at most one, which is not possible unless= 0,
a contradiction.

Consider the case that is of Type (ex), too. Then there exists sonm&* € ¢/ and
an orthonormal systerify, f,, fa} of %* such thatU is spanned by, :=2f; +if;
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andu, := fo+i( f1++/3f3). Let ¢ be chosen such that’%* = 9. In accordance with
Lemma 8, the curvature endomorphisfa . := R)!  is given by—JN + A with A:=
—f1 A f2—+/3f2 A f3. We decomposd; = f,7 + f;* such thatf,” € e (e, &, e3)r
and fX L e'“{e,&,6e3)r. SinceRy (W) C W, Lemma 8 (c) (witha = —1) shows that

erne+V3ae=1f Af) +/3f Afy)

(both sides seen as elementsugT)). Comparing the length of the tensors on the left
and right hand side above, we see that

I =15 =1f=1,

ie.€vfi € {e, &, e)g fori =1, 2, 3. Hence we can assume timat 3. SinceU is
hw-invariant but not complex, it follows from Lemma 8 (b) thdt is the linear space
spanned byli; := 26 + i(—3e; + (1/+/3)es) and Ui, := e, + (5/+/3)e3 — 2iey. A short
calculation shows that the curvature endomorphlagfljl~12 is given by (83)IN —4(e; A
&+ +/3e, Ae;3). Thus we obtain thalh, does not leav&V invariant. Therefore,W,U)
is not a curvature invariant pair. ]

3.2. Integrability of the curvature invariant pairs of G F(R"*?). Let (W, U)
be an orthogonal curvature invariant pair of @®"*2) such that diniV) > 2. It re-
mains the question whetheW( U) or (U, W) is integrable. By means of a case by
case analysis of the possible pairs (see Table 1), we willvghat the answer is “no”
unlessV := W @ U is curvature invariant.

Let ¢ denote the isotropy Lie algebra & := GZ+(]R”+2) and p: ¢ — s0(T) be
the linearized isotropy representation. Recall théf) = RIN @ so(0). Further, by
definition, the Lie algebr&y is the maximal subalgebra df such thatp(ty)|v is a
subalgebra ofo(V), see (21).

Type (&, ¢). Let W andU be of Types () and (¢) defined by the data, W)
and (i*, Up), respectively. If YV, U) is a curvature invariant pair, then the only possi-
bility is %t = R* and Wy L Ug. ThenV is curvature invariant of Type {¢) defined
by the data i, Wo & Ug). Thus, there is nothing to prove.

Type (trij, tri;). Let W andU be of Types (ir;) and (tk,) defined by the data
(R, W1, Wo) and i*, Uy, U,), respectively. Letp be chosen such thak = e¢f*.
Substituting, if necessaryiii for %*, we can assume that € [—7/4, 7 /4].

e Casei = j = 1. Suppose thatW, U) is integrable and leM be a simply con-
nected complete parallel submanifold througrsuch thatT,M = W and J_}J M =U.
Since W is curvature isotropic, we hav®l = R? according to Corollary 5 and there
exists some totally geodesic submanifditl C N, a Riemannian splitting of its uni-
versal covering spachlc = M; x M, with simply connected factorM; of dimension
at least two and there exist extrinsic circles R — M; such that the isometric im-
mersion of M into M is given by the product map; x ¢, followed by the covering
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map MY — M. In particular, dim{y) = 2 and hence& = | = 1. Further, recall that
GJ (R%) =~ SZJz X Szﬁ whereas the symmetric spaceg ®"*?) is irreducible ifn > 3

(since then its root-system is of Ty, see [14]) and that any rank-one symmetric
space is irreducible, too. Therefore, using the classifinabf totally geodesic sub-
manifolds in N from [14, Section 5], the only possibilities afdc = S* x S* with
ab>2o0o M= M¥= Szﬁ x Szﬁ such thatTpM is curvature invariant of Types
(trap) Or (c2), respectively. In the first case, applying reduction of toelimension to
each factor, we can even assume that b = 2. Therefore, dim{l) = 4 anyway and
henceV = Tp|\7l is curvature invariant of Types §ts) or (c).

In the remaining cases, at least one of the indigeg} is strictly greater than 1
and hence (possibly after substitutirtg for %), we can suppose that> 2. Then we
have to consider the possibilitiés = R* and W, = Uy, or Wy L €¢U..

e Casei=I1>2 0%N=%* and W; = U,. Here we have\N, L Uy, or W, = U4, or

j = k=1. In caseW, = Uj, the linear spac&/ is curvature invariant of Typexg
defined by {t, W; @ U;). Otherwise, we claim thap(ty)|v Nso(V)_ = {0}: let a € R,
B € so(N), set A:=aJN + B and suppose that\(V) c V and Ay € so(V)_ holds.
Then A(W) C U and A(U) C W. We aim to show thatA = 0. Let x; € W,. Thus
Aixp € U. It follows thatax, € U; and Bx, € U,. In the same wayau; € W, and
Bu; € W; for all u; € U;. Hencea = 0, sinceW, = U; would be a different case.
Further, settingy; := W, @ U; for i =1, 2, we haveA|y, € so(V;)_. Since the maps
so(V1)- — Hom(Wi, Uq), A= Alw, andso(Vo)- — HomU;, W,), A — Aly, both are
linear isomorphisms according to (27), for the vanishingfoft suffices to show that
Alw, = 0 and Ay, = 0: on the one handA(W,;) = A(Uz) C W, since A € so(Vz)—. On
the other hand A(W;) C U; becauseA € so(V;)_. Hence A(W;) C Wo N U;. Further,
the linear spac&\,NUj; is trivial if Wo L Ug, or if j =k =1 andW, # U;. Therefore,
Alw, = 0 unlessW, = U;. Similar considerations show that alégy, = 0 unlessW, =
U;. This establishes our claim.

Assume thatW, # U; and, by contradiction, that\{, U) is integrable. Thus there
exists an integrable symmetric bilinear mapW x W — W+ whose image spand.
Further, since the previous discussion shows @@y)|v N so(V)_ = {0}, Corollary 4
implies thath satisfies (30). According to Lemma 4, the Lie algebré24) is given by
s50(Wp) @ so(W,) @ so(U;) (note, the last two summands are trivial in cgse k = 1).
Anyway, the direct sum Lie algebra(W,) ®so(U;) gives the direct sum representation
on W, &U; whereasso(W,;) acts diagonally o'W, &iW; (i.e. A(xp+iy1) = A +iAy
for all A € so(W;) and 1, y1) € Wy x W;). In particular, the induced action eb(\W)
is non-trivial and irreducible on both; and W, (sincei > 2) and trivial on both
iW, andU;. Therefore, Schur's Lemma implies that HpfwW, U) C Hom, (W1, iW;) @
Homj (iW,, U1). We conclude from the previous thhagx, y;) € iW, andh(x, iy2) € Uy



PARALLEL SUBMANIFOLDS OF THE REAL 2-GRASSMANNIAN 323

for all x e W, y; € Wy and y, € W,, hence

(75) h(W:p x iW,) = h(iW, x Wp) € U; NiwW, = {0},
(76) WL = {h(x1, X1) | X1 € Wa}r andU; = {h(ixz, ix2) | X2 € Wo}g.

We claim thatW, = {0}: let x3, X, € Wi x W, with x; # 0. Then R)’(\LiXZ = 0 (by the
condition W; L W5, see (39)) and hence (5) (with= 1) yields

_ N _ PN N (79) N
(77) 0= [hxl’ RleiX2|V] - Rh(XLXl)viX2|V + Rleh(XLixz)‘V - Rh(lexl),iX2|V +0.

Using (76), it follows that

(39)
(78) 0= R} ixlv = —X1 A Xz

for all (xg, x2) € Wy x Wa. Thus (78) implies thak; = 0 or x, = 0 by the condition
W; L Ws,. Sincexy # 0, this gives our claim.

But then alsoU,; = {0} by means of (76), hencé/, = Uy, a contradiction.
e Casei >2 andW; L €“U,. The subcasg =k > 2, ¢ =0 andW, = U; follows
from the previous one (by means of interchangifigwith U). In the remaining cases,
we haveW, L €Uy, or j =k = 1. In casepy = 0 andW, L U1, we obtain thatV is
curvature invariant of Type (tr j1) defined by §i, Wy & Uy, W> @ U,). Otherwise,
we claim thatp(ty)|v Nso(V)_ = {0}: let a € R, B € s0(N) be given such thah :=
aJN + B satisfiesA(V) c V and Aly € so(V)_. Thus Ax; € U for every unit vector
X1 € Wy, i.e. Ay = uy + iup for suitableu; € U; andu, € U,. Since

€Y(Ax) = €?(aix; + Bx;) = ai cosfp)x1 — a sinp)x, + cosg)Bx, + isin(p)Bx,

we see that
(79) e“u; = R(€Y(Ax)) = —asinp)x; + cos)Bxq,
(80) €YU, = J(€¥(Ax)) = acosg)x1 + sin()Bx.

The conditionW; L €¥U, implies that

(80)

0 = (x1, €92 "= a cosf) (1, X1) + sinf)(Bx, X1) = acosg),

sincex; is a unit vector andB € so(N). Thusa = 0, because € [—x/4,7/4]. There-
fore, A= B € so(9) anyway. In particular,

cosf)Axy 2 e*uy,

sin)Ax. & e*u,.
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We conclude that
0 = (ug, Up) = (€%uy, €u,) = sinfp) cosfp)(Axy, Axq).

Henceyp = 0 or Ax, = 0 for all x; € W;. In the same way, we can show that= 0 or
Ax; = 0 for all x, € W,. By means of (27), we conclude tha{y = 0 unlessy = 0.

In casep =0 andj =k=1, setV; := W; & U; andV, := W, & U,. Note that
Aly, € so(V1)_ and Ay, € so(V2)_. Thus, using thaV; L Uy,

(AXg, X2) = — (X1, AX) =0

for all x, € Wy and x, € W,. Further, the linear form{x,, -) defines an isomorphism
U; — R for every x, € W, which is not equal to zero (sincé/, L U, is a different
case). Therefore, we conclude thajw, = O and henceAly, = 0, sinceso(Vi)- —
Hom(W, U;), A — Alw, is a linear isomorphism according to (27). For the same
reason,Aly, = 0 and henceA|y, = 0. We conclude thatAly = 0. This establishes
our claim.

Assume that one of the cas&¥ L €U, or j = k = 1, but not¢y = 0 and
W, L U; holds, and, by contradiction, thatM, U) is integrable. We have just seen
that this implies thatp(ty)|v N so(V)_ = {0}. Thus, there exists a symmetric bilinear
map h: W x W — U whose image spand and which satisfies (30). Note, the Lie
algebrah defined in (24) is given byo(W;) @ so(W,) @ so(U1) @ so(Uz) (in case
j =1 ork =1 the second or the third summand, respectively, is trivaal)l acts as
a direct sum representation ok, @ iW, & U @ iUy, whereso(W,;) acts non-trivially
and irreducibly onW; anyway (sincei > 2). Therefore, by means of Schur's lemma,
Hom, (Wy, U) = {0}, i.e. Hom,(W, U) C Hom(iW,, U). If j # 1, then we even have
Hom, (W, U) = {0}, henceh = 0 which is not possible. Otherwise, jf= 1, we thus
see thath(x,y) = h(y,x) =0 for all x e Wy andy € W, i.e. h(W x W) = h(iW, xiW5,)
which spans a 1-dimensional space, a contradiction (dined > 2).

Type (trg,,tr1). Suppose thatV is of Type (tk,) defined by the datai, Wi, W)
and U is spanned by a unit vectar.
e Casek =1 = 1. Similar as for Type (iry, tr1,1), if (W, U) is integrable, then
the corresponding simply connected parallel submanifdlds given by the product of
the real line with an extrinsic circle in the totally geode&liemannian product space
MU = RxS? or M{¢ = ]Rxsf/E followed by a covering map onto some totally geodesic

submanifoldM C N such thatV = TpM is of Types (ts,1) or (ex).

e Casek > 1| with k > 2. Let us writeu = u; + ius with us, u, € R. Then we
haveu; L W; andu, L Wy & W,. Further, ifu; = 0, or if up = 0 andu; L W,
then W @ U is curvature invariant of Typedr(,+1) or (trk+1,) defined by the triples
(M, Wi, W, @ Ruy) or (M, Wy & Ruy, Wh), respectively. Otherwise, we claim that the
linear spacen(ty)|v Nso(V)_ is trivial: let a € R and B € so() be given and suppose
that A := aJV @ B satisfiesA(V) c V and Aly € so(V)_. Then there exists a linear
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form A on W, such that
(81) VX1 € Wy Axp = aiXy + Bxg = A(X1)(Uy + iuy).

Comparing the imaginary parts of the last equation, we obila@tax; = A(x1)u, for
all x; € Wy, hencea = 0 (sincek > 2). Thus there existg.: W, — R such that

(82) Vxo € Wa: iBXo = u(x)(ug + iuy).

Comparing the real parts of the previous equation and fagathatu; # 0, we obtain
that u = 0, i.e. Blw, = 0. Suppose now, by contradiction, that there exigte W
with Bx; # 0. Theni(x;) # 0 and hencai, = 0 by means of (81). Further,

(83) 0= (X1, Bxo) = —(Bxq, X2) & —M(X1)(u1, X2)

for all x, € W,. Sincei(x;) # 0, we obtain thau; belongs to the orthogonal comple-
ment of W,, i.e. we have shown that, = 0 andu; L W5, which is a different case.
This proves our claim.

Assume that neither the casg = 0 nor the casal, = 0 andu; .. W, holds but,
by contradiction, that there exists an integrable symméddtilinear maph: WxW — U
whose image spand. Since we have already shown thatty)|y N so(V)- = {0},
Corollary 4 implies thah satisfies (30). Note, the Lie algebljadefined in Corollary 4
is given byso(W;) & so(W,) where the first summand acts irreducibly and non-trivially
on W (sincek > 2) and trivially onU. Hence Horg(W, U) C Homg (iW,, U) anyway.
If I # 1, then Hom(W, U) is trivial, thush = 0, a contradiction. This finishes the
proof unlesd = 1. Further, by means of (30), we obtain that

(84) h(W; x iW,) = h(iW, x Wy) = h(W; x Wy) = {0},
In casel = 1, using the previous equation, there exisis=s W, such that
(85) h(ixz, ix2) = u.
Therefore, by means of (5) and (85), we have forxalie Wy

R‘-IJ\‘,X1|V = [hix,, Ri’j(z,xl|v] - Riﬁz,h(iXval)|V =0-0
according to (84) and sincBQi’iXZ = 0. Hence,

(39) Uz LW
0= Rthlxl = ((uz, X1) IV —Uug A X)X = —(Ug A Xp)Xq = Uy,

for any unit vectorx; € Wy, thusu; = 0, a contradiction.
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Type (G,q). Let W and U be of Types (f) and (¢) defined by the data
(M, W', 1) and t*, U’, J) with | = %*. If U =W and J' = —I’, thenU = W
andV =W @ W = CW is curvature invariant of Type ). If W L U’, thenV is
curvature invariant of Type [g,) defined by {{, W @ U’, I’ @ J').

Type (¢,tr1). Let W andU be of Types (§) and (tr), respectively, withU C W.
The action ofh,, on W is given byso(W) and henceV is an irreducibleh,,-module
(see Lemma 5 (a)). Therefore, ¥, U) is integrable, then the linear spavé® U is
curvature invariant according to Proposition 4.

Type (&, q). Let W andU be of Types (g) and (¢) determined by the data
(M, Wp) and i*,U’, 1) respectively. Suppose further tht= R* and Wy L U’ holds.
We claim thatp(ty)|v Nso(V)_ = {0}: let a € R and B € so()) be given, setA :=
aJN @ B and suppose thaA(V) c V and Aly € so(V)_. If x is a unit vector ofW,
thenx, ix € W and thus the conditioA(W) L W implies

0 = (AX, ix) = a(ix, ix),

i.e.a=0. HenceA € so()) and Ax belongs toU N % = {0}, i.e. Aix = iAx = 0 for
all x € Wy. Therefore,Aly = 0 because of (27).

Further, recall that,, and b, are given byRJIN + so(Wp) and R(I" + 1IN) @
su(U’, I'). Hencel’ can be written asA + B with A € b, and B € . Thus |’
belongs to the Lie algebrg defined in Corollary 4. Since the action of is trivial
on W whereasl’ is an isomorphism otJ, we see that the linear spaces Hdgiv, U)
and Hom (U, W) both are trivial. Therefore, Corollary 4 implies that meit (W, U)
nor (U, W) is integrable.

Type (trj., tr7). Let (W, U) be an integrable orthogonal curvature invariant pair
with W and U of Types (tfx) and (tf) determined by the dataR( Wi, W,) and
(R*, U7, 17, U)), respectively. By means of Corollary 13, we can assume dhat i*
and thatW; & W, is contained in the orthogonal complementWf in %t. We claim
that the linear spacg(ty)|v Nso(V)_ is trivial: let a € R and B € so(0) be given, set
A:=aJV @ B and suppose thaA(V) c V and Ay € so(V)_ holds. If x; € W, then
aix; is the imaginary part ofAx;. Since Ax, € U, we see thatAx; = a(l’xy + iXg).
In particular,al’x; € Uj C U’. BecauseW; N U’ = {0}, this impliesa = 0, i.e. A
vanishes orW;. In the same way, we can show thaAtvanishes onW,, too. Hence,
we see thatA|y = 0, since (27) is a linear isomorphism. This establishes ¢aimc

Further, according to Lemma 6 (a), the actionhgf on U is given byso(U) and
hy acts trivially on CU’)*. Thus, Hom(W, U) = {0}. Therefore, Corollary 4 implies
that neither Y, U) nor U, W) is integrable.

Type (try,tr]). Let W and U be of Types (i) and (tf) defined by the data
(R, W/, 17, Wy) and @i*, U7, J', UY), respectively. We can assume thiat= %™,

If W’ is orthogonal tdJ’, thenW@U is curvature invariant of Type (tr,) defined
by @, WaoU,I"'eJ, Wy Uj). It U=iW, thenW @ U is curvature invariant of
Type (g) defined by &, W', ).
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Suppose thak =1 > 3 andU = e W for somef € R. We claim that neither
(W, U) nor U, W) is integrable. SinceV = e ?U, it suffices to prove the first as-
sertion. In order to explain the idea of our proof, first coesithe cas® = 0. Then,
the linear spacé/ is curvature invariant of Type k) defined by §it, Wy, I'(W)) and
the totally geodesic submanifold €k(/) is the Riemannian product‘s S¢ through
p = (0, 0) and the linear spac® is given by {(x, x) | x € ToS}. If we assume, by
contradiction, that\\/, U) is integrable, then the corresponding complete paralle}t s
manifold throughp would be contained in 'Sx S¢ via reduction of the codimension
and, moreover, it would be even a symmetric submanifold 'o&xS¢ according to
Corollary 3. However, this is not possible, since a symmettibmanifoldM c S¢x S
through the pointp = (0, 0) with T,M = {(x,x) | X € ToS'} is totally geodesic accord-
ing to Theorem 4. In the general case, the linear spacs not curvature invariant,
but a similar idea shows that\(, U) is not integrable, as follows.

DEFINITION 6. Let A € so(W’) be given. We say thaA is real, holomorphic or
anti-holomorphic if A(Wg) C Wy, Aol =10 Aor Aol’ = —1'"0 A, respectively.

Consider the linear magy on W @iW’ which is given onWy@il’(Wg) by Jo(x—
i1’x) ;= e ¥(x +il’x) and Jy(x +i1'x) := —€?(x —il'x) for all x € W} and which is
extended toW’ @ iW’ by C-linearity (note, Wy @ il’(W() is a real form ofW’ & iwW’).

Lemma 9. Let W be of Typédtr,) defined by the dat@r, W', I’, Wy). Set U:=
e "W and V:= W @ U.
(@) Jy is a Hermitian structure on W& iW’ such that W gets mapped onto U and
vice versa. In particularV is a complex subspace N ®iW’, J;) and J}|yv belongs
to so(V)_.
(b) Let Ae so(W’) and suppose that A is real. As usuale extend both A and’|
to complex linear maps on Wb iW’ via complexification. If A is holomorphitchen
A commutes with gJfor all § € R. If A is anti-holomorphi¢c then exp@l’) o A anti-
commutes with gJfor all 9 € R.
(c) Letbhyy be the Lie algebra described ip1). Thenh := b |y defines a subalgebra
of so(V),. Moreovey the Lie algebrah acts irreducibly(in case k> 3 even overC)
on both W and U.
(d) Further, let Z(h) denote the centralizer of in so(V), see(22). If k > 3, then
Z(h) Nso(V)- =RJlv.

Proof. Let{ey, ..., &} be an orthonormal basis ok, and setx; := (1/+/2)(e —
il’g). Then{xy, ..., X, X1, ..., Xk} is a Hermitian basis oW’ @ iW’. We define a
unitary mapJ on W' @ iW’ via J(x) := X; and J(X;) := —X;. Further, setl := 1" and
K:=10J. Thenl?=J2=—Idandl oJ =—Jo| by means of (46), i.e. the usual
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guaternionic relations hold. Furthermorgx = —ix for all x e W & iW’. Note that

(86) Jy =expfl)od =Joexpol) = exp(%l) oJ oexp(—%l).

It follows that J, defines another Hermitian structure Wi @iW’. SinceW = {xy,...,
XJr andW = {X1,...,Xx}r, We see from (46) thay(W) = e *W and J;(W) = €W,
i.e. (V) =V and J € so(V)_. This proves the first part of the lemma.

Moreover, if A € so(W’) is holomorphic or anti-holomorphic, theA commutes or
anti-commutes withl on W’ & iW’, respectively. IfA is additionally real, then the
same is true forJ instead ofl: in fact, sinceA is real, we haveA(X) = Ax for all
x € W, henceAoK =Ko AonW &iW' and thus

(87) AoJ=AocKol =KoAol =£KoloA=2J0A,

where the sign+ is chosen according to whethek is holomorphic ¢) or anti-
holomorphic ¢). Our claim follows.

Therefore, if A is real and holomorphic, the® commutes with bothJ and I,
hence A commutes also with), according to (86). Suppose thét e so(W’) is real
and anti-holomorphic. Using (86) and (87) (with the negathign), we have

Jyoexp@l)o AL Joexpol)oexppl)o A= JoA
=—AoJ=—Aoexp0l)o Jy = —explfl)o Ao Jy.

Thus, expf|’)o A anti-commutes withJ, for any real and anti-holomorphié € so(W’).
This gives (b).

For (c): from (51) we immediately obtain thgtacts viaso(W) andso(U) on W
and U, respectively. The result follows.

For (d): recall thatA is real and holomorphic ohV’ for each A € b, as a con-
sequence of (51). Furthermore, recall thiaty € so(V)- as was shown in part (a).
Thus J|v € Z(h) N so(V)- according to part (b). Moreover, sindée> 3, the Lie al-
gebrabh acts irreducibly on botiV and U even overC by means of part (c), hence
dim(Homy (W, U)) < 1. Therefore, because of (28) for every subalgebra so(V);.,
the linear space&(h) Nso(V)_ is spanned byJ,. O

Lemma 10. Let W be of Typdtr,) defined by the datér, W', 1", Wy). Set U:=
e "W for somed e R and V:=W @ U.
(@) The linear map

F:W oWy — V,
(88) 1. ., - |, o
(X, Y)'—>§[x—|l X4+ J(X—il'X)+y—il'y— Jp(y —il'y)]
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is an isometry such that the linear spadgs, x) | x € W3} and {(x, —x) | x € W{} get
identified with W and U respectively.

(b) By means of(88), the direct sum Lie algebrao(W)) ® so(W;) gets identified with
the Lie algebrap(ty)|v such that(A, A) € p(ty)|v Nso(V); and (A, —A) € p(ty)|v N

so(V)_ for every Ac so(Wp).

(c) The complex structure,{, commutes with every element pfty)|v N so(V)+

whereas it anti-commutes with every elemenpf,)|v N so(V)-.

Proof. For (a): we havd=(x, x) = x —il’x e W and F(x, —X) = Jy(x —il’x) =
e ?(x +il’x) € W = U. Since dim) = dim(U) = dim(W;), we conclude thaF
is actually a linear isometry ont¥ with the properties described above.

For (b): given A € so(W)), we associate therewith linear mapssand A on W
defined by A(x + 1'x) := Ax + I’Ax and A(x + 1’x) := Ax — I’Ax for every x
Wj. By definition, both A and A are real, further,A is holomorphic whereas is
anti-holomorphic. Furthermore, we consider the secondtiggl V = V; & V, with
Vi={x—il'x 4+ Jp(x —il'x) | x e W} and Vo = {x —il'x — Jp(x —il’x) | x €
Wy}. Note that bothV; and V, are naturally isomorphic t&V;. Hence, this splitting
induces a monomorphism of Lie algebrag(W)) & so(W(}) — so(V). We claim that
this monomorphism is explicitly given by

1 _

(89) (A B)~ S[(A+B)+ expPl’) o (A—B)] :
for each A € so(Wp) and allx € Wy we have

1. ’ A 1/ 1/

E(A+exp@l Yo A)X —il'X + Jp(x —il"x))

= %[(Ax —il'AX) + e (Ax +ilI’AX) + e (Ax +il'Ax) + €?e " (Ax — il AX)]

= (Ax—il’Ax) + e "(Ax +il’Ax),

%(A+exp@l/)o A)X —il'x = Jy(x —il'x)

= %[(Ax— iI"AX) —e (Ax +il'AX) + e (Ax + il’AX) — €’ (Ax — il AX)]

=0.

This establishes our claim in cage= 0. For A= 0, a similar calculation works.
Further, we claim that in this wayo(W}) ® so(Wy) = p(tv)|v such that A, A) =
A€ p(ty)|v Nso(V), and (A, —A) = exp@l’) o A € p(ty)|v Nso(V)_.
For “C”: we have A(x+il’x) = Ax=il’Ax for all x e W and A € s0(W}), thus A
mapsW to W andU to U. Further, A € so(%). This shows thatA € p(&y)|v Nso(V)..
Furthermore A(x £i1'x) = AxFil’Ax and I’(x +il'x) = Fi(x £il’x) for all x € W,
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thus expgl’) o A mapsW to U and vice versa. Finally, note that efp() o A is in
fact skew-symmetric since

(exp@l’) o A)* = A* oexpPl’)* = —Aoexp(61’) = —exp@l’) o A.
Hence exp{l’) o A € p(tv)|v Nso(V)-_.

For “D™ conversely, let someA € p(ty)|y be given. We distinguish the cases
A e so(V)y and A € so(V)_. Anyway, we haveA = aJV|, + Bly with B € so(W’)

anda e R. SetB’ :=al’|y + B|y. Note thatl’ = JN on W +iW and |’ = —JN on
W + iW, hence

(90) A=B on W+iWw,

(91) A =B +2aJ" on bothW andU.

If A€ so(V)y, then A(W) c W and hence we conclude from (90) thBt is real
and holomorphic; thus’ = C with C := B'|w,. In particular,B'(W) ¢ W and hence
B'(U) c U. Thusa = 0 because of (91) and sincBN(U) c U+ whereU+ denotes
the orthogonal complement &f in T.

If A€ so(V)_, then A mapsW to U and vice versa, hencB'(W) c U because
of (90), thuse? B'(W) ¢ W which shows that the linear endomorphi€n= exp61")o
B’ is real and anti-holomorphic oW’. HenceB’ is anti-holomorphic, too. Therefore,
also exp{-61")(B'(W)) c W, thusB'(U) c W. We conclude thaa = 0 according to (91)
(since IN(U) ¢ W +iW c W+). This establishes our claim. Part (b) follows.

For (c), recall thatA commutes withJy|y whereasA anti-commutes withJ|yv
according to Lemma 9 for everA € so(Wj). Hence, the result is a consequence of
Part (b) and (89). ]

Corollary 20. Suppose that W is of Typgr,) with k > 3. The curvature in-
variant pair (W, e "“W) is not integrable.

Proof. SetU :=e W andV := W@ U. Suppose, by contradiction, thatv(U)
is integrable. Letg be the subalgebra of(¢y)|v described in Theorem 3 (a). Recall
that g is a Z,-graded Lie algebra such that the Lie algelpra= by |v considered in
Lemma 9 (c) is contained ig, according to Theorem 3 (b). Recall further that there
exist Ax € g_ and By € Z(g) N so(V)- such thath, = A + By for every x e W
according to Theorem 3 (c). First, we claim that for evarg W there exists some
b € R such thatB, = bJ|y: we haveZ(g) C Z(h) (sinceh C g), thus By € RJy|v by
means of Lemma 9 (d). This gives our first claim.

Next, we claim that = 0: by definition, we haveRg',zlv e b forally,ze W and
we also haveA, € g_. Furthermorep C g, see above. Therefore, following the rules
for Z,-graded Lie algebras, we havé,, R&lev] € g_. Thus, on the one hand, since

g_ C p(ty)|v Nso(V)_, the complex structurd, anti-commutes with Ay, R&lev] onV
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for all x,y, ze W according to Lemma 10 (c). Assume, by contradiction, that 0.
Then, on the other handy|y = (1/b)By would also commute withA4, RQZIV] by the

very definition of By (recall that [A, Rglev] € g). Moreover, sinceJ, is a complex
structure, this is not possible unlesa| Ry“fz|v] = 0. But then also

[hy, RYLIv] = [Ax RJLIV] 4 [By, R),lv] = 0+0.

In other words, since the Lie algebhais spanned by the endomorphisms\6fwhich
are given byR)'/\fz|V with y, z € W, we obtain that

Vx e W: hy € Z(h) Nso(V)- =RJlv

where the latter equality follows from Lemma 9 (d) again. Shhbe rank of the linear
maph: W — so(V), X — hy is zero or one. In particular, since diWf > 1, it is not
possible that is injective. Therefore, becaus$g, acts irreducibly onV (see Lemma 9
(c)) and since Kerr) is a non-trivial proper subspace @ which is invariant under
the action off)y, on W according to (18), (19) and Proposition 2, we necessarile ha
hy = 0 for all x € W, a contradiction. Our second claim follows.

Thus By = 0, which implies thath, € p(¢ty)|y for all x € W. Let us choose some
0 € S a linear isometryf : T,S¢ — W} and consider the Riemannian produdt: =
S x S whose curvature tensor will be denoted By On the analogy of (88),

F: ToqgN — T,

(X, y) = %[f(x)+ FOy) =11 (F () + £(¥)) + Jo(f(x) = F(y) = 11"(F(x) = F(¥))]

is an isometry ontdV such that{F™1o Aly o F | A € p(ty)} is the direct sum Lie
algebraso(T,S) @ s0(T,S). Note, the latter is the imag#(t) of the linearized isotropy
representation oN. PutW := F~1(W), h:= F~lohoF xF andU := {h(x,y) | X,y €
Wig. ThenU = F~1(U) and henceT, )N = W @ U holds. Furthermore, we claim
that W, h) is an integrable 2-jet i, qN: Let v Skﬁ — xS p (p/llpll p/l P
Then T(O’O)L(Skﬁ) = {(x, X) | X € T,S, henceF(T(o,o)L(Skﬁ)) =W, ie. T(O’O)L(Skﬁ) =
W. Further, on the one hand, we have

RN(F(x, X), F(y,y), F(z 2)) = RYf() —il" f(x), f(y) —il"f(y), f@—il1"f(2)
=—fX)A (Y@ +i(I"T)A I TY)I' (2
for all x, y, ze W according to Lemma 6 (a). On the other hand,

FxAayzxayz) = fx)A (W@ —il'(fx) A f(y)f(2)
f)AT(WT@—il"TX)AI (Y1 f(2).
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This shows thatF o RY o 15 = RN, . F(y y © Fly- Furthermore, (14), (20) and
Lemma 10 (b) show thaR(’i,x)’(y’y) and F~1o RF(X . Fyy © F both belong top(€).,
i.e. there existA, B € so(ToS') with R,y = A® A and F 1o RN, ) riyy) ©

F = B & B. Thus, since the direct sum endomorphigi@® A is uniquely deter-
mined by its restriction taV for every A € so(T,S¥), we conclude thaF o Ry ) ) =
RN ox.Fyy © F- Therefore W is curvature invariant anti is semi-parallel inN. More-
over, sincehy € p(ty)|v for all x € W, we haveh, € 5(k) for all x € W which shows
that Equation 5 for\V, h) is implicitly given for all k. Hence, by means of Theorem 2,
we obtain that {V, h) is an integrable 2-jet irN.

Thus, there exists a complete parallel submanifﬁldthrough 6, 0) whose 2-jet
is given by @, h). The fact thatT, O)N =W & U holds implies thatM is 1-full in
N, i.e. extrinsically symmetric according to Corollary 3. rfher, sinceM is tangent
to l(Sk\/é) at (0, 0), there do not exist submanifoldgl; ¢ S and M, c ¢ such that

M = M; x M,. Therefore, by means of Theorem K, is totally geodesic, i.eh = 0,
a contradiction. O

Suppose thaWV is of Type () defined by the data){, W', I, Wy). Let {e, &}
be an orthonormal basis aff and I be defined according to (53). Further, léte
SUW’, I Nso(W’) be given and set) := J(W). We will show that neither\{/,U) nor
(U, W) is integrable unles¥ := W @ U is curvature invariant. First, we claim that it
suffices to prove the first assertion: recall that herés also of Type (), defined by
the triple @i, U’, U;, J°) with U’ := W', J':= Jo 1’0 J~* and U := J(W). Further,

—Joloit®@jenie+illerdle=Jdarie+diendie.
Hence, sincd Je;, Je} is an orthonormal basis ad), the Hermitian structurd may

also be defined on the analogy of (53) via the tririLt—é,({jel, Jey}, J'). Furthermore,
we haveU = J(W), hence alsdV = J(U) (since J2 = — Id). This proves the claim.

Lemma 11. Suppose that W is of Tyf#,) defined by the dat&x, W', |7, Wy).
Let {e1,&} be an orthonormal basis of {\and I be defined according t63). Further,
let J € SUW/, 1) Nso(W') be given set U:= J(W) and V:=W & U. Then we have
o(ty)lv Nso(V)_ =RJJy unlessJ = +1".

Proof. First, we claim thatl € p(ty) and J|v € p(ty)|lv Nso(V)_: we haveld e
so(W) C so(R) C p(k). Further, J(W) = U and J(U) = W, henceJ(V) = V and
Jlv € so(V)_. This gives our claim.

Conversely, leta € R and B € so(t) be given such that := aJV 4 B satisfies
A(V) c V and Aly € so(V)_. We aim to show thatA is a multiple of J|y unless
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J = +I’. With A:=al’ + B|w, we haveA e so(%) and Alw = AJw according to
(46), hence

(92) Ax—il’x) e (Jy—iJy|y e W}

for all x e Wyp. Thus, using (92) and passing to real and imaginary partscamelude
that Alw € so(W’) such thatA(W;) C J(Wp). In particular, the endomorphisi@ :=
Jo A on W is real and holomorphic (see Definition 6). Furthér: = —A which
implies that

(93) JoC =C*oJ.

We claim thatC = cld for somec € R or J = +1’: for this, let RH denote the algebra
of real and holomorphic maps oW’. Note, I is real and holomorphic, hence there is
the splitting RH= RH, & RH_ with

RH, :={Ae€RH| Aol =10A},
RH_:={AeRH| Aol =—I0A}.

Then RH. = {Id, [}g and RH. = {0, o o [ }g, Wheres denotes the conjugation of
w, f) with respect to the real fornje;, 1’e;}g. Further, consider the involution on
EndW’) defined byC > —J o C* o J. This map preserves both RHand RH. and
its fixed points in RH are the solutions to (93). It follows ttesolution to (93) with
C € RH decomposes a€ = C; + C_ such thatC, € RH. and C. is a solution
to (93), too.

Then we haveJ ol = 0 J = —*0 J sincel is skew-symmetric and commutes
with J. Hence a solution to (93) witl € RH,. is given only if C is a multiple of Id.
If C e RH_ is a solution to (93), thel€ o | is a solution to this equation, too, since

JoCol =C*oJol =C*olod
=("0C)oJ=(-T0C)*0J =(Col) ol.

Thus, since RH is invariant under right multiplication by, the intersection of the
solution space to (93) with RHis either trivial or all of RH.. Hence, to finish the
proof of our claim, it suffices to show tha& := o is not a solution to (93) unless
J = 41" for this, recall that there existe R andw € C with t2+|w|? = 1 such that
the matrix of J with respect to the Hermitian basig, |’e;} of (W, I) is given by
Equations (59), (60). Clearlyr = 0~ ando* = o. Hence, if (93) holds foC := o,
thenooJoo = J, i.e.

o9 (v 2)-0G )
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Thust =0 andw = +1, i.e. J = £1'.

This proves our claim. Therefore, il # +1’, then A = —cJ. Hence Aly =
—cJ|v +a(IN|y —1’|v). It remains to show thaa(JN|y —1'|y) = 0: we havedN|y =
l'lw anda(IN|y — I'lv) = Alv + cJ|v € so(V)_. Sinceso(V)_ — Hom(W, U), A —
Alw is an isomorphisma(JN|y — 1’|y) = 0. This finishes our proof. O

Corollary 21. In the situation ofLemma 11,the curvature invariant pai(W, U)
is not integrable unless V is a curvature invariant subspatd .

Proof. Note, ifJ = £1’, thenV := W & U is curvature invariant of Type ®
defined by {t, W', 1"). Otherwise, ifJ # +1’, then we will show that\{, U) is not
integrable. Assume, by contradiction, thaWw,(U) is integrable butJ # +1’. Thus,
there exists an integrable symmetric bilinear mapW x W — U such thatU =
{(h(x, y) | X, y € W}g. Further, let{l, J, K} be a quaternionic basis afi(V, ) de-

fined as follows: set |w := I|w, |y := —I|u, J := J|v andK := 1 o J. Sincel
commutes withJ, we havel o J = —J o | and then the usual quaternionic relations
hold, ie.1?=J2=K?=—-1d, JoK==-KoJ=1 andKol =—l oK = J. We

claim thath, € {J, K}g for all x € W: note, the setl, I, J, K} is a basis ofu(V, I)
andl, I € so(V); whereasJ, K € so(V)_. Hence

(95) w(V, N Nso(V). ={J, K}g.

Moreover, recall that,, = RI according to Lemma 6. Therefore, by virtue of The-
orem 3, there exis\, € p(ty)|v Nso(V)_ and B, € u(V, ) Nso(V)_ with hy, = A, +
Bx. Furthermore, sincel # +1’, we havep(ty)ly Nso(V)_ = RJ as a consequence
of Lemma 11. Thus bottA, and B, belong tou(V, I), henceh, € u(V, I) N so(V)_
for all x € W, too. The claim follows by means of (95).

Further, by, acts onW via so(W) which implies thath: W — so(V)_ is injective
according to (18), (19) and Proposition 2. Hence there xdstmex € W with hy =
K. Furthermore, sey := e, —il’e;, z:= e —il’'e; and recall thatRy'Z = - A6 —

I’e; A I’'e, = —I. Therefore, withx, y, z chosen as above, Equation (5) with= 1
means that
(96) K, 1=-RN(KyArz+yArK2|y.

Since K belongs tou(V, I), l.h.s. of the last Equation vanishes. In order to evaluate
rh.s. of (96), note thatz = I'y, hence

Ky=1Jy=-Jly=—-iJy=-Jiy=-Jz
thusz = JKy = —KJy and Kz = Jy = Jy, which gives

Kyaz+yAKz=zAJz+yAJy.
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Let c € R and A € so(%) be given such thaRN(KyAz+yA Kz) =cJIN + A. Using
Equation (39), the real par is given as follows,

A=Jegre+JlegAle+Jeare+ Jleal’e=-2],

(the last equality uses thdes, e, |'e;, 1'e;} is an orthonormal basis ofV' and that
J € s0(W')). Therefore, since r.h.s. of (96) vanishes, we concludé 24 = cJN on V.
Hencec = +2 (since bothJ and JN|cw are isometries oEW'), i.e. J = +£JN on V.
In particular, FIN 4+ J vanishes onW. With B:= FI’' + J anda:= F1, Lemma 6
(c) in combination with (46) implies thaB vanishes identically oW’. This shows
that J = +1’, a contradiction. O

Type (try,tr1). Let (W, U) be an integrable orthogonal curvature invariant pair
of Type (tr, tr1). Since the action ofy, on W is given byso(W) (see Lemma 6 (a)),
Proposition 4 shows that here the linear sp¢eb U is curvature invariant.

Type (ex, tr1). Let W and U be of Types (eX) and (tq) defined by the data
(M, {e1, &)) and a unit vectou € T, respectively. Them = +(1/+/2)(e; —ie;) and the
linear spacaN @ U is curvature invariant of Type £r defined by the data)i,{e;,e}r).
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