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Abstract
In this paper we study involutions on minimal surfaces ofggahtype withpg =

g =0 andK? = 7. We focus on the classification of the birational modelshaf t
quotient surfaces and their branch divisors induced by waalttion.

1. Introduction

Algebraic surfaces of general type with vanishing georoegegnus have a very old
history and have been studied by many mathematicians. 3$h@re are too many to
mention here, we refer a very recent survey [1]. Nonethglasslassification is still
lacking and it can be considered one of the most difficult entriproblems in the the-
ory of algebraic surfaces.

In the 1930s Campedelli [5] constructed the first example ahinimal surface
of general type withp; = 0 using a double cover. He used a double coverPdf
branched along a degree 10 curve with six points, not lyingaaconic, all of which
are a triple point with another infinitely near triple poinAfter his construction, the
covering method has been one of main tools for constructeaw surfaces.

Surfaces of general type withy = q = 0, K? = 1, and with an involution have
studied by Keum and the first named author [11], and complé&iest by Calabri,
Ciliberto and Mendes Lopes [3]. Also surfaces of general typth py; = q = 0,
K2 = 2, and with an involution have studied by Calabri, Mendes Isp@nd Pardini
[4]. Previous studies motivate the study of surfaces of genigpe with py = q = 0,
K2 =7, and with an involution.

We know that a minimal surface of general type with = g = O satisfies 1<
K2 <9. One can ask whether there is a minimal surface of gengelwjth py = q =
0, and with an involution whose quotient is birational to amrifues surface. Indeed,
there are examples that are minimal surfaces of general wife py = q = 0, and
K2 =1, 2,3, 4 constructed by a double cover of an Enriques suifa¢®], [11], [12],
[17]. On the other hand, there is no a minimal surface of gartgpe withpy=q =0
and K2 = 9 (resp. 8) having an involution whose quotient is biratlaieaan Enriques
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surface by Theorem 4.3 (resp. 4.4) in [8]. Therefore, it igtivdo classify the pos-
sible branch divisors and to find an example whose quotiebiréional to an Enriques
surface in the casel&? =5, 6, 7. We focus on the classification of branch divisors in-
duced by an involution instead of finding examples. We haJg twio possible cases
by excluding all other cases in the caké = 7. Precisely, we prove the following in
Section 4.

Theorem. Let S be a minimal surface of general type with(® = q(S) = 0,
Kg = 7 having an involutiono. Suppose that the quotient/& is birational to an
Enriques surface. Then the number of fixed point®,iand the fixed divisor is a
curve of genus3 or consists of two curves of gendsand 3. Furthermore S has
a 2-torsion element.

Let S be a minimal surface of general type withy(S) = q(S) = 0 having an
involution o. There is a commutative diagram:

1/ S
bt
In this diagramr is the quotient map induced by the involutien And € is the blow-
up of S atk isolated fixed points of. Also, 7 is induced by the quotient map and

n is the minimal resolution of th& double points made by the quotient map And,
there is a fixed divisoR of o on S which is a smooth, possibly reducible, curve. We
set Ry := €*(R) and By := 7(Rp). Let I; be an irreducible component d&y. When
we write (nfjn), m meansp,(Ij) andn is I'2.

In the paper, we give the classification of the birational eisdof the quotient
surfaces and their branch divisors induced by an involutidren K2 = 7. Precisely,
we have the following table of the classification.

If k =11, the bicanonical map is composed with the involution. Vi amit the
classification ofBy for k = 11 because there are detailed studies in [2], [3] and [14].
The paper is organized as follows. In Section 3 we provide dlssification of

branch divisorsBy, and birational models of quotient surfac@s for each possible.
Our approach follows by the same approach as in [3], [4] ahdB&t we have to face
different problems with respect to previous known resuiection 4 is devoted to the
study whenW is birational to an Enriques surface. Firstly, we see thattanques
surfaceW’, obtained by contracting two—l)-curves fromW, has eight disjoint€2)-
curves. Then via detailed study of Enriques surfaces wigitef—2)-curves, only two
possible cases of branch divisors are remained by exclualingther cases. Section 5
is devoted to the study of the branch divisors of an examplengin [14].
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Even if we are not able to construct a new example of such&sfahich are double
covers of surfaces birational to an Enriques surface oasasf of general type, our work
will help to find such an example and to give the classificatibthese surfaces.

2. Notation and conventions

In this section we fix the notation which will be used. We workenthe field of
complex numbers in this paper.
Let X be a smooth projective surface. LEtbe a curve inX andI" be the nor-
malization of I". We set:
Kx: the canonical divisor ofX;
N §X): the Néron—Severi group oX;
p(X): the rank of N §(X);
k(X): the Kodaira dimension okK;
q(X): the irregularity of X, that is, h(X, Ox);
Pg(X): the geometric genus oX, that is, h%(X, Ox(Kx));
pa([): the arithmetic genus of, that is,['(I" + Kx)/2 + 1;
py(T): the geometric genus df, that is, hO(T", O:(K3));
=: the linear equivalence of divisors on a surface;
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~: the numerical equivalence of divisors on a surface;

r':(m,n)or (n{n): m is pa(I") andn is the self intersection number @f,

(—n)-curve: a smooth irreducible rational curve with the salfersection numbe#n,

in particular we call that a-{2)-curve is nodal.

We usually omit the sign of the intersection product of two divisors on a surface.
Let S be a minimal surface of general type withy(S) = q(S) = 0 having an

involution . Then there is a commutative diagram:

Y S
bk
In the above diagranr is the quotient map induced by the involutien And ¢ is the
blowing-up of S at k isolated fixed points arising from the involution. Also, 7 is
induced by the quotient map andn is the minimal resolution of th& double points
made by the quotient map. We denote theék disjoint (—1)-curves onV (resp. thek
disjoint (—2)-curves onW) related to thek disjoint isolated fixed points o (resp. the
k double points o) as E; (resp.N;), i = 1,...,k. And, there is a fixed divisoR
of o on S which is a smooth, possibly reducible, curve. So we Rgt= ¢*(R) and
Bo := 7(Ro).

The map7 is a flat double cover branched d := By + Zikzl N;. Thus there
exists a divisorL on W such that 2 = B and

€
—

U]
e

7.0v = Ow & Ow(—L).
Moreover,Ky = 7%(Kw + L) and Ks = 7*Kg + R.

3. Classification of branch divisors and quotient surfaces

In this section we focus on the classification of the biralomodels of the quo-
tient surfaces and their branch divisors induced by an urtia.

Sincee*(2Ks) = 7*(2Kw + Byp), the divisor Ky, + By is nef and big, and Rw +
Bo)? = 2K§. We begin with recalling the results in [3] and [8].

Proposition 3.1 (Proposition 3.3 and Corollary 3.5 in [3]) Let S be a minimal
surface of general type withgp= 0 and leto be an involution of S. Then
() k=4
(i) KwL +L%2=-2;
(i) hO(W, Ow(2Kw + L)) = K& + KwL;
(iv) K3 + KwL > 0;
(v) k= K3Z+4-2n%W, Ow(2Kw + L));
(Vi) ho%(W, Ow(2Kw + Bg)) = K2 + 1 —hO%(W, Ow(2Kw + L));
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i K2 2
(vii) K = Kg.

Proposition 3.2 (Corollary 3.6 in [3]) Let S be a minimal surface of general type
with p; = 0, let ¢: S— PXS be the bicanonical map of S and letbe an involution of
S. Then the following conditions are equivatent
(i) ¢ is composed withr;

(i) hO(W, Ow(2Kw + L)) = 0;
(i) Kw(Kw + L) =0;
(iv) the number of isolated fixed points @fis k = K3 + 4.

By (i) and (v) of Proposition 3.1, the possibilities kfare 5, 7, 9, 11 ifK2 = 7.
In particular, ifk = 11, the bicanonical map is composed with the involution, which
is treated by Proposition 3.2.

Lemma 3.3 (Theorem 3.3 in [8]) Let W be a smooth rational surface and let
Ng, ..., Nk € W be disjoint nodal curves. Then
(i) k= p(W)-1, and equality holds if and only if W= Fy;
(iiy if k = p(W)—2 and p(W) > 5, then k is even.

Lemma 3.4 (Proposition 4.1 in [8] and Remark 4.3 in [10])Let W be a surface
with pyg(W) = q(W) =0and«x(W) > 0,and let N,...,Nx C W be disjoint nodal curves.
Then
(i) k< p(W)—-2unless W is a fake projective plgne
(i) if k = p(W)—2, then W is minimal unless W is the blowing-up of a fake projecti
plane at one point or at two infinitely near points.

For simplicity of notation, we leD stand for Xy, + Bg.

Theorem 3.5. Let S be a minimal surface of general type with($) = 0 and
KZ = 7 having an involutiono. Then
() D? =14
(ii) if k =11, then KyD =0, K& = —4, and W is a rational surfage
(i) if k =9, then KyD = 2, K& = -2, and x(W) < 1;
(iv) if k = 7, then KyD = 4, 0 < K3 <1, and «(W) > 1. Furthermore if W is
properly elliptic then K&, = 0. If K& = 1 then W is minimal of general type. And
if K&V = 0 and W is of general type then\%l,(z 1 where W is the minimal model
of W,
(v) if k=5, then KyD = 6, K\%, =2, and W is minimal of general type.

Proof. (i) This follows bye*(2Ks) = 7*(D) and K2 = 7.
(i) Firstly, KwD = 2Kw(Kw + L) = 0 by Proposition 3.2. Secondl)Z =
KZ—k=7-11= —4. We have thuk3 > —4 by (vii) of Proposition 3.1. Finally,
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K&V < 0 by the algebraic index theorem becali&gD = 0 andD is nef and big. Since
KwD =0, W can be a rational surface or birational to an Enriques serfanriques
surface is excluded by Theorem 3 in [19]. Also, by Lemma B3 p(W)— 3, and we
have thusp(W) > 14. ThereforeK2, = —4.

(iiiy  Firstly, KwD = 2Kw(Kw + L) = 2 follows by (iii) and (v) of Proposition 3.1.
SecondlyK3 = K3—k = 7—9 = —2. We have thu&3, > —2 by (vii) of Proposition 3.1.
Finally, the algebraic index theorem yieldsQ(7Ky — D)? = 49K3, — 14Ky D + D2 =
49K 2, — 14, and we have thukZ, < 0.

If W is a rational surface then by Lemma X3< p(W) — 3, and sop(W) > 12.
ThereforeKg, = 2. If x(W) > 0 then by Lemma 3.4(W) > 11. If p(W) = 11 then
W is minimal. It gives a contradiction becausg, = —1. Thereforep(W) = 12 and
KZ = -2.

Moreover, W is not of general type; suppod®' is of general type, then we con-
sider a birational morphisni: W — W’ such thatW’ is the minimal model ofw.
Also, we can writeKy = t*(Kw) + E, E > 0 sinceK2, < 0. Then Dt*(Ky/) = 2;
firstly, Dt*(Kw/) < 2 because 2= DKy = Dt*(Kw/) + DE and D is nef. Secondly,
Dt*(Kw) > 2 follows from thatDt*(Ky) = 2Kwt*(Kw) + Bot*(Kw) = 2(t*(Kw') +
E)t*(Kw) + Bot*(Kw/) = 2K3, + Bot*(Kw) > 2 becauseK3, > 0 and Ky is nef.

The algebraic index theorem yields ® (7t*(Kw) — D)? = 49%*(Kw)? —
14Dt*(Kw) + D? = 49K3, — 28 + 14. We have thusK3, < 0, which gives a
contradiction.

(iv) Since KZ = KZ—k =0, K = 0. KwD = 4 yields K& < 1. K >0 and
KwD = 4 imply thatW is not birational to an Enriques surface. Ag&in= 7 implies
that if W is a rational surface theK3, = 0. But thenh®(W, Ow(—Kw)) > 0 and this
is impossible becausP is nef.

If W is properly elliptic thenKZ, = 0. And if Ki = 1 then W is a minimal
surface of general type by Lemma 3.4.

Now suppose thak3, = 0 and W is of general type. Then we consider a bi-
rational morphismt: W — W'’ such thatW’ is the minimal model ofW. Suppose
Kg > 2.

We write Ky = t*(Kw) + E, E > 0. Firstly, Dt*(Kyw) < 4 becauseKyD =
E)t*(Kw) + Bot*(Kw) = 2K2, + Bot*(Kw) > 4 since we supposiZ, > 2 and Ky
is nef.

ThereforeDt*(Kw/) = 4. Then by the algebraic index theorem apd = 14, 0>
(7t*(Kw/) — 2D)? = 49t*(Kw)?> — 28Dt* (Kw/) + 4D? = 49K, — 112+ 56, which gives
a contradiction.

(v) SinceK3 =2, K& > 2 and soW is either a rational surface or a surface of
general type. But if it is a rational surface thBR(W, Ow(—Kw)) > 0 gives a contra-
diction. Also, KD = 6 and the algebraic index theorem implies tll@;, <2.

Now we know thatW is of general type witrK\%, = 2, it is enough to prove that
W is minimal. SupposéV is not minimal. Then we consider a birational morphism
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t: W — W such thatW’ is the minimal model ofW. Also, we can writeKy =
t*(Kw)+ E, E > 0. Firstly, Dt*(Kw) < 6 becaus&KwD = 6, andK3, > 3. Secondly,
Dt*(Kw) = 6: Dt*(Kw) = 2Kwt*(Kw) + Bot*(Kw) = 2@t*(Kw) + E)Xt**(Kw) +
Bot*(Kw) = 2K3, + Bot*(Kw) > 6 sinceK3, > 3 and Ky, is nef.
ThereforeDt*(Kw/) = 6. Then by the algebraic index theorem abd = 14, 0>
(7t*(Kw) — 3D)? = 49%*(Kw)? — 42Dt*(Kw/) + 9D2 = 49KZ, — 252+ 126, which
gives a contradiction. []

We now study the possibilities of an irreducible component By for each num-
ber of isolated fixed points. Ldty be the preimage of in the double covelV of W.
We do not consider the case= 11 because it is already treated in [2], [3] and [14].

Lemma 3.6. For any irreducible componert C By on W, 2Ky I'y = I'D, where
= 2Ty.

Proof. We have PD = 7*(I")7*(D) = 2I've*(2Ks). We have thusI'D =
I've*(2Ks). On the other hand, we know that e*(2Ks) = 2Ky I'y becausel’y N
(exceptional locus ot) = @. Therefore Ky I'y = I'D. []

REMARK 3.7. By Lemma 3.6]'D should be even, and if'D = 0 thenI is a
(—4)-curve.

3.1. Classification of By for k = 9. In this case,BjD = 10 becauseBy)D =
(D —2Kw)D =14—4=10. SoI'D =10, 8, 6, 4, or 2.

1) The casd'D = 10. SinceD? = 14 andD is nef and big, 0> (7I' — 5D)? =
492 — 70I'D + 25D? = 491'? — 350 by the algebraic index theorem. That ¥, < 7.
Thus we getl“\z, < 3 because ]2\2} = I'°. Moreover, we know that & pa(I'v) =1+
(1/2)(M3 + KyI'y) = 1+ (1/2)(T3 + 5) by Lemma 3.6. Thus-7 < I'Z < 3. By the
genus formulal’ = —7,-5,-3,-1, 1, 3.

(1) The casd'? = —7: in this casepa(I'y) = 0. SoTl: (0,—14). Then if we write that
Bop=Tg+TI'1+---+1) such thatly =I" and I’ are 4)-curves for each =1,...,1,
then

6=2-2K3 = Kw(D — 2Kw) = KwBy = 12+ 2I.

We get a contradiction because= —3.

(2) The case§? = —5,—3: similar arguments as the case (1) give contradictions be-
causel < 0.

(3) The casd'? = —1: we getp,(I'y) = 3. SoT: (3,—2) andl = 0.

(4) The casd'Z = 1: here,pa(I'v) = 4. SoT: (4, 2) andl = 1.

(5) The casd'Z = 3: lastly, pa('v) = 5. SoI': (5, 6) andl = 2.

We have thus the following possibilities &, in the casel'D = 10.

. T r I I r I
BO . (5,06) + (0’_14) + (0’_24), (4’02) + (0’_14), (3’_02).
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REMARK 3.8. (5% + (o.'4) + (0.2 Cannot occur by Proposition 2.1.1 of [16] be-
cause a smooth rational curve By corresponds to a smooth rational curve &n

2) The casel'l(,D = 8 andI';D = 2. We can use the similar argument as the
above Section 3.1. 1) for each 6§D andI';D. However, we have to consid@y =
g+ T+ T} +---4+ T to get the possibilities folBy, whereT: (0, —4) for all i €
{1, 2,...,1} if those exist. Then we get the following possible cases.

Bo:uitwat e anto’e chta’

Now, we give all remaining cases by the similar argument a&s dhove Sec-
tion 3.1. 2).
3) The casdyD =6 andI'1D = 4.

Bo: o+ @byt 024y 62+ @4y 22 F @by

32+ 2.5+ (0. 24) caNNot happen. Indeed, the intersection number matrixpf Io,
I'1, and 'y is nondegenerate. ThygW) > 13 which is a contradiction since(W) =
12 by K3 = —2.

4) The casd'yD =6, '1D =2 andI',D = 2.

. I r T
Bo. (3’02) + (1‘_12) + (l,—22)-
5) The casdoD =4, T';D =4 andI',D = 2.
Y
Bo: o)+ @byt a2y

6) The casd'oD =4,I''D =2, I',D =2 andI';D = 2.

We get a contradiction by the similar argument in Section 3)1(1).

7) The casdyD =2,I'1D =2,I2,D =2,I'3D =2 andl'yD = 2.
This case is also ruled out by the similar argument in Sec3idn 1) (1).
By Theorem 3.5 and from the above classification, we get Table

3.2. Classification of By for k = 7. In this case,BpD = 6. SoI'D can be
6, 4, 2. By using similar arguments as the above Section 3€lget the following
tables related td(&v and By for each case of'D.

1) The casd'D = 6.

K2 | By

1| @Y

0 | gH+ 04 @
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Table 1. Classifications oIK\%, By and W for k = 9.

@h+ @+ s
@nT 0
6ot 2
6ot
@22+ @b
e+ ayt e

@d T @b T w2

KZ | Bo W

2 | ud+ o k(W) =<1
Io
(3-2)

Lemma 3.9. By = 3%+ (o4 iS NOt possible.

Proof. By Theorem 3.5\ is minimal properly elliptic, or of general type whose

129

minimal modelW’ has K3, = 1. If W is minimal properly elliptic, then we get a
contradiction by Miyaoka’s theorem in [16] becaudé has seven disjoint—+{2)-curves

and one {4)-curve.

We now suppose thaw is of general type whose minimal modél’ has K\%,, =1.
We consider a birational morphism W — W', and Ky, = t*(Kw) + E, whereE is
the unique £1)-curve. E cannot meet seven disjoirl; becauseKwt(N;) = —N; E
and Ky is nef. AndI'iE < 1 becauseKywBy = 4, Kwlp = 2, andt*(Kw/)I'; >
1. Then, Miyaoka’'s theorem [16] again gives a contradicti@tduseW’ has seven
disjoint (—2)-curves, and one—{4)-curve or one {3)-curve.

2) The casd’oD =4 andI';D = 2.

K

Bo

0

@ht 1)

3) The casdyD =2,T";D =2 andI';D = 2.

This case is not possible by the similar argument in Sectidn B) (1).

3.3. Classification ofBg for k = 5.

O]

In this case,BoD = 2. SoT'D can be 2.

By using similar arguments as the above Section 3.1, we gefollowing table related
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Table 2. Classifications oIK\%, Bo and W for k = 7.

K& | Bo w

1 (502) minimal of general type

0 I'o . .
(2.-2) minimal properly elliptic, or of general
o, T | type whose minimal model has? = 1
2,00 T (1,-2)

Table 3. Classifications oK3,, By and W for k = 5.

K2 [ By | W

2 | 1'% | of general type

to K3, and By for T'D.

4. Quotient surface birational to an Enriques surface

In this section we treat the case whénh is birational to an Enriques surface.

Theorem 4.1. Let S be a minimal surface of general type with($) = 0 and
Kg = 7 having an involutiono. If W is birational to an Enriques surface then=k9,
K2 = —2, and the branch divisor 8= (5’%)4— (Lr_lz) or (3T32). Furthermore S has a
2-torsion element.

SupposeW is birational to an Enriques surface. Then by Theorem 3.5hexe
k=9 andK3 = —2. Consider the contraction maps:

wEw A w,

where E; is a (~1)-curve onW, E, is a (~1)-curve onW;, ¢; is the contraction of
the (—1)-curve E, and W'’ is an Enriques surface.

Lemma 4.2. i) N, NE; # @ for some ie {1,2,...,9}.
i) NiE; =1 after relabeling{N, ..., Ng}.
i) NsEp=0forallse{2,...,9.

Proof. i) Suppose thal, NE; =@ foralli =1,...,9. Let A be the number
of disjoint (—2)-curves onW;. Then by Lemma 3.4 (i), & A < p(W;) —2 = 9. Thus
A =9 andW; should be a minimal surface by Lemma 3.4 (ii). This is a caiittion
becauseW; is not minimal. HenceN; N E; # @ for somei € {1, 2,...,9}.
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i) By part i) we may choose a—-2)-curve N; such thatN;E; = o > 0. Then
(91(N1))? = =2+ a? and ¢1(N;)Kw, = —a. We claim thate must be 1. Indeed, sup-
pose o > 2, then (1(N31))?> > 0, S0 ¢, o ¢1(N;) is a curve onW'. Moreover,
w20 p1(N1)Kw < ¢1(N1)Ky,. But the left side is zero becaus& g, = 0 and the right
side is negative becausa(N;)Ky, = —a by our assumption. This is a contradiction,
thusa = 1.

i) Suppose thatNsE; # 0 for somes € {2,...,9}. ThenW; would contain a
pair of (—1)-curves with nonempty intersection. This is impossibdeduseKyy is nef.
HenceNsE; =0 for all se {2,..., 9. O

In this situation, consider an irreducible nonsingularveur disjoint to N; and
such thatE;T" = 8. Then we obtain the following.

Lemma 4.3. 2pa(l") —2 =T?+ 28.
Proof. By Lemma 4.2,
Kw = o7 (Kw,) + E, = o1 (5 (Kw) + Eg) +E = @7 o5 (Kw) + N1 + 2E;.

So KwI' = ¢} o ¢3(Kw)I' + NiT" + 2E,T" = 28 since Ky =0 andN; andI" are
disjoint. Thus we get @,(I") —2 = I'? + 28. O

By referring to Table 1. of Section 3.1 with respectK¢§, = —2 andk = 9, we
obtain a list of possible branch curvd®. Then we can consider as one of the
componentd’; in the By. The possibilities forl” which we will consider are:

(0,-4), (2,-2), (2,0), (1,—2), (0,-6), (3, 2), (1,—4).

We treat each case separately.
a) The casd': (0, —4).

By Lemma 4.3, = 1. ThusW’ should contain nine disjoint—2)-curves. This
is a contradiction becaus#’ can contain at most eight disjoint-2)-curves since it is
an Enriques surface.

From now on, we consider the nodal Enriques surfa¢eobtained by contracting
eight (-2)-curvesN;, i = 2,...,9, whereN; := ¢,0¢1(N;) on W'. The surfacex’ has
eight nodesy, i = 2,...,9 andI's, which is image ofl", whereI := g,0¢1(I') on W'.
By Theorem 4.1 in [15],X" = D; x Dy/G, where D; and D, are elliptic curves and
G is a finite groupz2 or Z3. Let p be the quotient majD; x D, — Dy x D/G = ¥'.
The mapp is étale outside the preimage of nodgson ¥/, and we note thaly
does not meet with any eight nodgs on ¥’. We write IA"DlxD2 for a component of

p~H(Ty).
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b) The casd : (0, —6).
By Lemma 4.3,8 = 2. Sol is (2, 2). Then the normalization™" of I'p,.p, is
a smooth rational curve singgy(I') = 0 and " is smooth.
Let pr; be the projection mafD; x D, — D;. Then this induces morphisms
pi: [ — D; which factors throughpr; Ifo,.0,- THEN sincel'p,«p, iS a curve onD; x
D,, pi should be a surjective morphism for soine {1,2}. However, this is impossible
becausepy(I™®) = 0 and py(D;) = 1.
c) The casd : (1, —4).
By Lemma 4.3,8 = 2. Sol is (3, 4). Then the normalization™" of I'p.p, is
a smooth elliptic curve becaug® (') = 1 and I is smooth. Thusd™ — Dy x D, is
a morphism of Abelian varieties and so must be linear, whioplies thatl'p,.p, is
smooth. Thusl'y is also smooth becaudés: does not meet any of the eight nodes
g on X’ and p is étale on away from the nodep. This is a contradiction since we
assumed’s, to be singular.
d) The casgi% + o)+ 12y
By Lemma 4.3, we havé&, I =1 fori = 0,1, 2. So we gefy: (3,4), I1: (1,0),
I: (1,0) and[iTj =2 for i # j on the Enriques surfacd/’. Now, we apply Propos-
ition 3.1.2 of [7] to the curvel,. Then one of the linear systens,| or |2I%| gives
an elliptic fibration f: W — P'. So we have the reducible non-multiple degenerate
fibres Ty (= Nz + N3 + Ny + N5 + 2E;) and T, (= Ng + N7 + Ng + Ng + 2E,) of
f by Theorem 5.6.2 of [7], sinc&/ has eight disjoint {2)-curves. Moreoverf has
two double fibres E; and 2=, since W' is an Enriques surface.
(1) Supposdly| determines the elliptic fibration. Thel is a fibre of f. Since
I, = 2 (they meet at a point with multiplicity 2), BTy = 2, 2F,I'1 = 2 and
Ty =2fori = 1,2, we apply Hurwitz’s formula to the coverinf, : Iy — P*
to obtain

0=2py(M)—2>2(-2)+5=1,

which is impossible.

(2) Supposd2l,| determines the elliptic fibration. Therd2is a fibre of f. Since
2FiT (= 2I%0) =4, 2RI =4 and Ty = 4 fori = 1, 2, we apply Hurwitz’s
formula to the coveringf | : ' — P! to obtain

0=2py(l1) —2>4(-2)+34+2+2+2=1,
which is impossible.
e) The casg;%)+ ab)+ (o 2y

By Lemma 4.3,E:Iy =1 fori =0,1,2. So we hav&y: (2,2), I'i: (2,2), I (1,0)
andiTj = 2 fori # j on the Enriques surface/’.

Lemma 4.4. hO(W', Ow (Ty)) = 2.
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Proof. Since Ky =0 andKy + [y is nef and big,

h' (W', Ow/(I')) = h' (W', Ow/ (2Kw + T))
= h' (W, Ow(Kw + (Kw + ')
=0

for i =1, 2 by Kawamata—Viehweg Vanishing Theorem. Thus
ho(W', Ow () = 2
by Riemann—Roch Theorem. []

Lemma 4.5. Let T be a nef and big divisor on W Then any divisor U in a
linear systemT| is connected.

Proof. Consider an exact sequence
0— OW'(—U) —> OW/ — OU — 0.

Then we getH%(Ow) = H%(Oy) by the long exact sequence for cohomology, and so
U is connected. (]

Now, we apply Proposition 3.1.2 of [7] to the cunid. Then one of the linear
systems|I;| or |2I,| gives an elliptic fibrationf: W' — P1. So we have the reducible
non-multiple degenerate fibrég; (= N, + N3 + N4 + Ns + 2E3), T2 (= Ng + N7 +
Ng + Ng + 2E;) and two double fibres B, 2F, of the fibration f.

(1) Supposérl’| determines the elliptic fibration. Consider an exact seqeidh—~

Ow (F]_— E;) — OW/(F]_) — OEI(F;[) — 0. If we assumeH O(W/ Ow (F]_— Ej)) #0,

thenTy = 2E; + N, + N3+ Ny 4+ Ns + G = I, + G for some effective divisoG,

and sopa(G) = 0 becausd»G = 2. So there is an irreducible smooth cur@e

with pa(C) =0 (i.e.C is a (-2)-curve) as a component &. We claimCN; = 0

fori =2,3,...,9. Indeed, suppos€N; > 0 for somei, and then 0= GN; =

(H+C)N;, whereG = H +C for some effective divisoH. SinceHN; <0, N; is

a component oH. ThusI;—I = G = N; + | for some effective divisot, which

is impossible bypa(Ty) = 2, pa(Ty) = 1, Thl =2, NjI = 2 and connectedness

amongl,N; and | induced from Lemma 4.5 sindg is nef and big. On the other

hand, suppos€N; < 0 for somei, thenC = N; becauseC and N; are irreducible
and reduced. Thusy, — I, = G = N; + H for an effective divisorH, which is
|mp033|ble bypa(I'y) = 2, pa(I2) = 1, ILH =2 andN;H = 2 and connectedness
amongl“z, N; and H induced from Lemma 4.5 sincg, is nef and big. Hence we
have nine disjoint £2)-curvesC, Ny, . .., Ng, which induce a contradiction on the
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Enriques surfacéV’ by Lemma 3.4. Now, we havéi®(W’', Ow (I'1 — E1)) = 0,
and so

HOW, Ow (1)) — HO(E1, Ok, ()

is an injective map.

Sinceh®(W’, Oy (1)) = 2 andh®(E1, Ok, (1)) = 2 (becausd1E; = 1), [} =
N, + I} for some effective divisoi'}; The injectivity of the above map anB; =
P! imply that the linear systerﬁl restricted onE; should move orE;. Therefore
at least one member of the linear systemiofshould meetN,.

SinceT’; is a smooth projective curve of genus 2 whose self interseatum-
ber is 2, and[}N; = 2, we havel? = 0 and pa(T}) = 1. And we note that
ho(W’, Ow/(T})) = 1. Therefore,|2T;| gives an elliptic fibration, and the special
member 0f|2f1| containsE; becausef“/lEl = 0. Then this special member also
containsN3, Ns, Ns because;N; = 0 for i = 3, 4, 5. Since|2[}| gives an ellip-
tic fibration,

2l = 2E; + N3 + Ng + Ns + N,

where N is a (-2)-curve withNE; = 1, NN; = 0 for all j =3, 4,5,6,7,8, 9.
And we getNN, = 2 becausd;N; = 2. Then we see thg2(N + Ny)| gives an
elliptic pencil onW’. On the other hand, by the classification of possible simgula
fibers on an elliptic pencil oW’ (Theorem 5.6.2 in [7], or [15]), we have that any
elliptic fibration onW’ has no singular fibers of type R(+ N,). We note thatN;
forall j =3,4,5,6,7,8,9 are also on singular fibers.

(2) Supposd2l’;| determines the elliptic fibration. Consider an exact segeen

0 — Ow/(I1 — E1) = Ow (1) = Og,(T1) — 0.

If we assumeHO(W’,Ow (I'1—E1)) # 0, thenTy = E; + No+ N3+ Na+ N5+ G for
some effective divisoiG by the same reason as the above. Then it is impossible
by pa(l1) =2, E;G =0 andN;G =1 for all i =2, 3, 4,5 and connectedness
among E1, N2, N3, N4, N5 and G induced from Lemma 4.5 sincE; is nef and

big. Thus we haveH(W', Ow.(I'1 — E1)) = 0, and so

HOW, Ow (1)) — HO(E1, Ok, (T))

is an injective map.
Sinceh®(W’, Oy (1)) = 2 andh®(E1, Ok, (1)) = 3 (becausd1E; = 2), [} =
N + I, for some effective divisoi; by the same reason as the above. Then it is
also impossible by the same argument as the above.
f) The casey, %) + by
By Lemma 4.3,E;Tg = 2 and E;I"; = 1. So we havd: (4, 6) andly: (2, 2) on
the Enriques surfacgV’.
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Consider an elliptic fibration of Enriques surfaée W' — P!, and assumé F =
2y, where F is a general fibre off. Theny > 0 becausd™ cannot occur in a fibre
of f since p.(I'1) = 2. Moreover, consider an exact sequence

0 — Ow([1 — E1) — Ow([1) — Og, (1) — 0.

If we assumeHO(W’, Ow (I'1 — E1)) # 0, thenTy = E; + N, + N3 + Ny + Ns + G
for some effective divisofs, which is impossible byp,(I'1) =2, NG =1 for all i =
2,3,4,5 and connectedness amdgg N, N3, N, Ns and G induced from Lemma 4.5
sinceT; is nef and big. Now, we havel®(W’, Ow (I'y — E;)) = 0, and so

HOW', Ow (T'1)) = H%(Ey, O, (T))

is an injective map. Sinck%(W’, Ow (1)) = 2 by Lemma 4.4 and®(E;, O, (1)) =
y + 1 (becausd E; = y), ['1 = Ny + I} for some effective divisoi; by the same
reason as the previous case. Then it is also impossible bgahee argument as the
previous case.

Therefore, all other cases excepf = (g%)+ (f_lz) or (3’F_°2) are excluded.

Lemma 4.6. If W is birational to an Enriques surface then S has2dorsion
element.

Proof. If W is birational to an Enriques surface theK\g can be written as &
where A is an effective divisor. ThusRy = 7*(2A) + 2R, whereR is the ramification
divisor of 7. So G = #*(A) + R is an effective divisor such tha® ~ Ky but G #
Ky becauseG is effective andpy(V) = 0. Since & = 2Ky, G — Ky is a 2-torsion
element, and s& has a 2-torsion element. O

REMARK 4.7. Suppos® = 3%+ '2. By Lemma 4.3l =2 andE; 'y = 1.
So we havely: (5, 8), I'1: (1, 0) andIoI'; = 4 on the Enriques surfacd/. We have
ho(W’, Ow (o)) = 5 sincely: (5,8). However, the intersection numbeyi’; = 4 together
with tangency condition gives a six dimensional condition.

By the results in Sections 3 and 4, we have the table of thesifiztion in Intro-
duction.

5. Examples

There is an example of a minimal surfaSeof general type withpy(S) = q(S) =
0, Ké = 7 with an involution. Such an example can be found in Exampleof [13].
Since the surfaces is constructed by bidouble cover (i.&3-cover), there are three
involutions y1, > andys on S. The bicanonical map is composed with the involution
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y1 but not with y, and y;. Thus the pair §, y;) hask = 11 by Proposition 3.2, and
thenW; is rational andK\f\,1 = —4 by Theorem 3.5 (ii), wher&V; is the blowing-up of

all the nodes inS/y;. On the other hand, we cannot see directly adquk? and the

Kodaira dimension of the quotients in the ca&t) and (S, y3). We use the notation
of Example 4.1 in [13], butP denotesX. Moreover,W, comes from the blowing-up
at all the nodes ot := S/y fori =1, 2, 3.

We now observe thatV; is constructed by using a double coverifig of a ra-
tional surfaceP with a branch divisor related tb;. The surfaceP is obtained as the
blowing-up at six points on a configuration of linesf. The surfaceW; is obtained
by examining £1) and 2)-curves onT; and contracting some of them.

We will now explain this examination in more details for eacdise. Firstly, for
i =1, then K% = —6 sinceKy, = 7;(Kp + L1), wherer;: T, — P is the double
cover. We observe that there are only twelj-curves onT; becauseS;, S, are on
the branch locus ofr;. So K, = KZ = —6+ 2= —4. On the other hand, we also
observe that there are only seven nodes and fe@)-€urves onT; becauseD,;D3; =
7 and S, and S do not contain inD, + D3;. So ¥; hask = 11 nodes. Moreover,
HO(T1, O1,(2K1,)) = HO(P, Op(2Kp + 2L4)) & HO(P, Op(2Kp + L1)) since Ky, =
ﬂf(zKp + 2L1) and nl*(OTl) =0p & Op(—Ll). So HO(T]_, OTl(ZKTl)) = 0 because
2Kp +2Ly =4 — 26 — 464 — 265 — 265 and Kp + Ly = —| + e + e3 — e This
means thafl; is rational, and therefor&V, is rational. For the branch divisd8,, we
observe f, and A; in D;. Since f;D, = 4 and f,D3 = 4, (D2 + D3) = 8. By
Hurwitz's formula, 204(To) —2 = 2(2pgy(f2) —2) + 8, and sopy(To) = 3 becausef; is
rational, and moreoveF3 = 0 becausef? = 0. This meand: (3, 0). Similarly, since
A1Dy; =1 and A;D3 = 5, A1(Dy + D3) = 6. By Hurwitz's formula, 24(T"y) — 2 =
2(2pg(A1) —2)+ 6, and sopy(I'y) = 2 becauseA; is rational, and moreover? = —2
becauseA? = —1. This meanss: (2, —2), thus By = 3%+ o'

Secondly, in the case= 2, we calculateKf = —6. We observe that there are only
four (—1)-curves onT, becauseS;, S, S, S are on the branch locus. 963, = K2, =
—6+4 = —2. On the other hand, we also observe that there are only midesnonT,
becauseD; D3 = 9. So ¥, hask = 9 nodes. Chen [6] shows th&t’(T,, Or,(2K71,)) =
1 and thatW, is birational to an Enriques surface. For the branch diviBgrwe ob-
serve f3 and A, in Da. Since f3D; = 2 and fzD3 = 6, py(I'g) = 3 becausefs is ra-
tional, andF(Z) =0 becausefg2 = 0. This meandy: (3, 0). Moreover, since\,D; = 3
and A,D3 = 1, py(I'1) = 1 becausen; is rational, andl'? = —2 becauseA3 = —1.
This meansl'y: (1, -2), thus Bo = 3%+ 1'%

Lastly, fori = 3, we getK%3 = —4. There are only two-{1)-curves onT3 because
S, & are on the branch locus. S¢3, = KZ = —4+4 2= —2. On the other hand,
there are only nine nodes oiy becauseD;D, =5 and & and S, do not contain in
D; + D,. So X; hask = 9 nodes. AlsoH?(T3, Or,(2K+,)) = 0 by a similar argument
to the case = 1. SoWs is rational. For the branch divisoBy, we observef;, f;
and Az in Ds. Since ;D1 = 4 and f1D, = 2, py(To) = 2 becausef; is rational, and



INVOLUTIONS ON A SURFACE WITH pg =q =0, K2=7 137

I'2 = 0 becausef? = 0. This meandy: (2, 0), andT’; related to f, is also of type

(2, 0). Moreover, sinceAzD; =1 and A3zD, = 3, py(I'2) = 1 becauseAs is rational,

and ' = —2 becauseA? = —1. This meand;: (1,—2), thusBo = 5%+ 2by+ 1 %2y
The following table summaries the above computation:

k K\%,l Bo W,
(Sn Vl) 11| -4 (31’_:()0) + (zr_lz) rational
(Sy2) | 9| -2 (5%)—% (Lr_lz) birational to an Enriques surfage
(Sv )/3) 9 -2 (zr:%) + (zr:lo) + (lvr,zz) rational

REMARK. In the pre-version of the paper, the 3 quotients of Inouganle
were claimed rational surfaces. And we raised the questiorthe existence of a min-
imal smooth projective surface of general type with = 0 and K2 = 7 which is a
double cover of a surface birational to an Enriques surface surface of general type.
Rito [18] constructed an example whose quotient is biratidn an Enriques surface.
Later Chen [6] showed that Rito's example is the Inoue’s carad Rito pointed out
that one of quotients is not rational but is birational to awriues surface.
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