CLASS NUMBER PARITY OF A QUADRATIC TWIST OF A CYCLOTOMIC FIELD OF PRIME POWER CONDUCTOR

Humio ICHIMURA

(Received March 23, 2011, revised October 5, 2011)

Abstract

Let p be a fixed odd prime number and K_{n} the p^{n+1}-st cyclotomic field. For a fixed integer $d \in \boldsymbol{Z}$ with $\sqrt{d} \notin K_{0}$, denote by L_{n} the imaginary quadratic subextension of the biquadratic extension $K_{n}(\sqrt{d}) / K_{n}^{+}$with $L_{n} \neq K_{n}$. Let h_{n}^{*} and h_{n}^{-}be the relative class numbers of K_{n} and L_{n}, respectively. We give an explicit constant n_{d} depending on p and d such that (i) for any integer $n \geq n_{d}$, the ratio h_{n}^{-} / h_{n-1}^{-}is odd if and only if h_{n}^{*} / h_{n-1}^{*} is odd and (ii) for $1 \leq n<n_{d}, h_{n}^{-} / h_{n-1}^{-}$is even.

1. Introduction

Let p be a fixed odd prime number. Let $K_{n}=\boldsymbol{Q}\left(\zeta_{p^{n+1}}\right)$ be the p^{n+1}-st cyclotomic field for an integer $n \geq 0$, and $K_{\infty}=\bigcup_{n} K_{n}$. Let $d \in Z$ be a fixed integer with $\sqrt{d} \notin K_{0}$. We denote by L_{n} the imaginary quadratic subextension of the biquadratic extension $K_{n}(\sqrt{d}) / K_{n}^{+}$with $L_{n} \neq K_{n}$. Here, K^{+}denotes the maximal real subfield of an imaginary abelian field K. When $d<0$, we have $L_{n}=K_{n}^{+}(\sqrt{d})$. We call L_{n} the quadratic twist of K_{n} associated to the integer d. The extension $L_{\infty}=\bigcup_{n} L_{n}$ is the cyclotomic \boldsymbol{Z}_{p}-extension over L_{0} with the n-th layer L_{n}. We call L_{∞} / L_{0} the quadratic twist of the cyclotomic \boldsymbol{Z}_{p}-extension K_{∞} / K_{0} associated to d. Let h_{n}^{*} and h_{n}^{-}be the relative class numbers of K_{n} and L_{n}, respectively. It is known and easy to show that $h_{n-1}^{*}\left(\right.$ resp. h_{n-1}^{-}) divides h_{n}^{*} (resp. h_{n}^{-}) using class field theory. The parity of h_{0}^{*} behaves rather irregularly when p varies (see a table in Schoof [6]). However, it is recently shown that when $p \leq 509$, the ratio h_{n}^{*} / h_{n-1}^{*} is odd for all $n \geq 1$ ([3, Theorem 2]). And it might be possible that the ratio is odd for any prime p and any $n \geq 1$. The purpose of this paper is to study the parity of the ratio h_{n}^{-} / h_{n-1}^{-}of the quadratic twist L_{n}. We already know that h_{n}^{-} / h_{n-1}^{-}is odd for sufficiently large n by a theorem of Washington [8] on the non-p-part of the class number in a cyclotomic Z_{p}-extension. Denote by $S=S_{d}$ the set of prime numbers $l \neq p$ which ramify in $\boldsymbol{Q}(\sqrt{d}) / \boldsymbol{Q}$. The set S is non-empty as $\sqrt{d} \notin K_{0}$. We define an integer $n_{d} \geq 1$ by

$$
n_{d}=\max \left\{\operatorname{ord}_{p}\left(l^{p-1}-1\right) \mid l \in S\right\}
$$

where $\operatorname{ord}_{p}(*)$ is the normalized p-adic additive valuation. The following is the main theorem of this paper.

Theorem 1. Under the above setting, the following assertions hold.
(I) When $n \geq n_{d}$, the ratio h_{n}^{-} / h_{n-1}^{-}is odd if and only if h_{n}^{*} / h_{n-1}^{*} is odd.
(II) When $n_{d} \geq 2$ and $1 \leq n<n_{d}$, the ratio h_{n}^{-} / h_{n-1}^{-}is even.

From Theorem 1 and [3, Theorem 2], we immediately obtain the following:
Corollary 1. Under the above setting, let p be an odd prime number with $p \leq$ 509. Then the ratio $h_{n}^{-} / h_{n_{d}-1}^{-}$is odd for all $n \geq n_{d}$.

This corollary, though given in a very special setting, is an explicit version of the above mentioned theorem of Washington. In [4], we showed Theorem 1 when $d=-1$ and $L_{n}=K_{n}^{+}(\sqrt{-1})$ using some results of cyclotomic Iwasawa theory. In this paper, we prove Theorem 1 by using a main theorem of Conner and Hurrelbrink [1, Theorem 2.3].

REmARK. When $p \equiv 1 \bmod 4($ resp. $p \equiv 3 \bmod 4)$, we can show that two integers d_{1} and d_{2} give the same twist L_{∞} / L_{0} of K_{∞} / K_{0} if and only if $d_{2}=d_{1} x^{2}$ or $d_{2}=p d_{1} x^{2}$ (resp. $d_{2}=-p d_{1} x^{2}$) for some $x \in \boldsymbol{Q}^{\times}$. Hence, the set S_{d} and the integer n_{d} depend only on the twist L_{∞} / L_{0} and not on the choice of d.

2. Exact hexagon of Conner and Hurrelbrink

In this section, we recall the exact hexagon of Conner and Hurrelbrink. Let k be an imaginary abelian field with 2-power degree, and F a real abelian field with $2 \nmid[F: Q]$. We put $K=k F$, and

$$
G=\operatorname{Gal}(K / k)=\operatorname{Gal}\left(K^{+} / k^{+}\right)=\operatorname{Gal}(F / Q) .
$$

For a number field N, let A_{N} be the 2-part of the ideal class group of N, \mathcal{O}_{N} the ring of integers, and $E_{N}=\mathcal{O}_{N}^{\times}$the group of units of N. The groups A_{K} and E_{K} are naturally regarded as modules over $\operatorname{Gal}\left(K / K^{+}\right)$and at the same time as those over G. For a $\operatorname{Gal}\left(K / K^{+}\right)$-module X, denote by $H^{i}(X)=H^{i}\left(K / K^{+} ; X\right)$ the Tate cohomology group with $i=0,1$. When $X=A_{K}$ or E_{K}, the group $H^{i}(X)$ is also regarded as G-modules. In [1, Theorem 2.3], Conner and Hurrelbrink introduced the following exact hexagon
of G-modules to study the 2-part of the class number of a relative quadratic extension.

Here, $R^{i}(K)$ is a certain G-module associated to K / K^{+}defined in [1]. We describe the G-module structure of $R^{i}(K)$ following [1]. Let T_{f} be the set of prime ideals \wp of k^{+}for which a prime ideal \mathfrak{P} of K^{+}over \wp ramifies in K. Let T_{∞} be the set of infinite prime divisors of k^{+}. We put $T=T_{f} \cup T_{\infty}$. For each $v \in T$, let $G_{v} \subseteq G$ be the decomposition group of v at K^{+} / k^{+}. When v is an infinite prime, the group G_{v} is trivial. We define G-modules Ω_{f} and Ω_{∞} by

$$
\Omega_{f}=\bigoplus_{\wp \in T_{f}} \boldsymbol{F}_{2}\left[G / G_{\wp}\right] \quad \text { and } \quad \Omega_{\infty}=\bigoplus_{v \in T_{\infty}} \boldsymbol{F}_{2}\left[G / G_{v}\right]=\bigoplus_{v \in T_{\infty}} \boldsymbol{F}_{2}[G],
$$

respectively, where $\boldsymbol{F}_{2}=\mathbf{Z} / 2 \boldsymbol{Z}$ is the finite field with two elements. (When T_{f} is empty, $\Omega_{f}=\{0\}$ by definition.) For each prime divisor w of K^{+}with the restriction $w_{\mid k^{+}} \in T$ and an element $x \in\left(K^{+}\right)^{\times}$, we put $\iota_{w}(x)=0$ or 1 according as $x \in N\left(K_{w}^{\times}\right)$ or not. Here, K_{w} is the completion of K at the unique prime divisor of K over w and $N=N_{K / K^{+}}$is the norm map. For $g \in G$ and $x \in\left(K^{+}\right)^{\times}$, we see that

$$
\begin{equation*}
\iota_{w^{g}}(x)=\iota_{w}\left(x^{g^{-1}}\right) \tag{1}
\end{equation*}
$$

by local class field theory. For a prime ideal \mathfrak{P} of K^{+}with $\mathfrak{P} \cap k^{+} \in T_{f}$, let $\tilde{\mathfrak{P}}$ be the unique prime ideal of K over \mathfrak{P}. For an ideal \mathfrak{A} of K, writing $\mathfrak{A}=\tilde{\mathfrak{P}}^{e} \mathfrak{B}$ with an integer e and an ideal \mathfrak{B} relatively prime to $\tilde{\mathfrak{P}}$, we put $\operatorname{ord}_{\mathfrak{P}}(\mathfrak{A})=e$.

We denote by $I(K)$ the group of (fractional) ideals of K. Let X be the subgroup of $I(K)$ consisting of ideals \mathfrak{A} with $\mathfrak{A}^{J}=\mathfrak{A}$. Here, J is the complex conjugation acting on several objects associated to K. Let X_{0} be the subgroup of X consisting of ideals $\mathfrak{A} \in I(K)$ with $\mathfrak{A}=x \mathfrak{B}^{1+J}$ for some $x \in\left(K^{+}\right)^{\times}$and $\mathfrak{B} \in I(K)$. The G-module $R^{1}(K)$ is isomorphic to the quotient X / X_{0}. For this, see the lines $1-2$ from the bottom of p. 6 and Lemma 2.1 of [1]. For each prime ideal $\wp \in T_{f}$, we fix a prime ideal \mathfrak{P} of K^{+}over \wp. From the argument in [1, §5], we obtain the following isomorphism of G-modules:

$$
\begin{equation*}
R^{1}(K) \cong \Omega_{f} ; \quad \mathfrak{A} X_{0} \rightarrow \bigoplus_{\wp \in T_{f}}\left(\sum_{\bar{g}} \operatorname{ord}_{\mathfrak{P}^{s}}(\mathfrak{A}) \bar{g}\right), \tag{2}
\end{equation*}
$$

where \bar{g} (with $g \in G$) runs over the quotient G / G_{\wp}.

Let Y be the subgroup of the multiplicative group $\left(K^{+}\right)^{\times} \times I(K)$ consisting of pairs (x, \mathfrak{A}) with $x \mathfrak{A}^{1+J}=\mathcal{O}_{K}$. Let Y_{0} be the subgroup of Y consisting of pairs $\left(N(y), y^{-1} \mathfrak{B}^{1-J}\right)$ with $y \in K^{\times}$and $\mathfrak{B} \in I(K)$. By definition, $R^{0}(K)=Y / Y_{0}$. We denote by $[x, \mathfrak{A}] \in R^{0}(K)$ the class containing (x, \mathfrak{A}). The map i_{0} in the hexagon is defined by

$$
i_{0}: H^{0}\left(E_{K}\right)=E_{K^{+}} / N\left(E_{K}\right) \rightarrow R^{0}(K) ; \quad[\epsilon] \rightarrow\left[\epsilon, \mathcal{O}_{K}\right]
$$

with $\epsilon \in E_{K^{+}}$. For each $v \in T_{\infty}$, we fix a prime divisor \tilde{v} of K^{+}over v. Using (1), we observe that the homomorphisms

$$
\alpha_{\infty}:\left(K^{+}\right)^{\times} \rightarrow \Omega_{\infty} ; \quad x \rightarrow \bigoplus_{v \in T_{\infty}}\left(\sum_{g \in G} l_{\tilde{v}^{g}}(x) g\right)
$$

and

$$
\alpha_{f}:\left(K^{+}\right)^{\times} \rightarrow \Omega_{f} ; \quad x \rightarrow \bigoplus_{\wp \in T_{f}}\left(\sum_{\bar{g}} \iota_{\mathfrak{P}^{g}}(x) \bar{g}\right)
$$

are compatible with the action of G. Further, α_{∞} is nothing but the "sign" map. From the argument in $[1, \S 4]$, we obtain the following exact sequence of G-modules:

$$
\begin{equation*}
\{0\} \rightarrow R^{0}(K) \xrightarrow{\alpha} \Omega_{f} \oplus \Omega_{\infty} \xrightarrow{\beta} \boldsymbol{F}_{2} \rightarrow\{0\} \tag{3}
\end{equation*}
$$

Here, α is defined by $\alpha([x, \mathfrak{A}])=\left(\alpha_{f}(x), \alpha_{\infty}(x)\right), \beta$ is the argumentation map and G acts trivially on \boldsymbol{F}_{2}.

3. Consequences

In this section, we derive some consequences of the exact hexagon and (2), (3). All of them are G-decomposed versions of the corresponding results in [1]. We work under the setting of Section 2. Denote by $\tilde{A}_{K^{+}}$the 2 -part of the narrow class group of K^{+}. Letting $K_{>0}^{+}$be the group of totally positive elements of K^{+}, we have an exact sequence

$$
\begin{equation*}
\{0\} \rightarrow\left(K^{+}\right)^{\times} /\left(K_{>0}^{+} E_{K^{+}}\right) \rightarrow \tilde{A}_{K^{+}} \rightarrow A_{K^{+}} \rightarrow\{0\} \tag{4}
\end{equation*}
$$

of G-modules. We define the minus class group A_{K}^{-}to be the kernel of the norm map $A_{K} \rightarrow A_{K^{+}}$. Let χ be a $\overline{\boldsymbol{Q}}_{2^{-}}$-valued character of $G=\operatorname{Gal}(K / k)=\operatorname{Gal}(F / \boldsymbol{Q})$, which we also regard as a primitive Dirichlet character. For a module M over $\boldsymbol{Z}_{2}[G]$, we denote by $M(\chi)$ the χ-part of M. Here, \boldsymbol{Z}_{2} is the ring of 2 -adic integers and $\overline{\boldsymbol{Q}}_{2}$ is a fixed algebraic closure of the 2 -adic rationals \boldsymbol{Q}_{2}. (For the definition of the χ-part and some of its properties, see Tsuji [7,§2].) Denote by S_{K} the set of prime numbers lying
below some prime ideal in T_{f}. In all what follows, we assume that χ is a nontrivial character. The following is a version of [1, Theorem 13.8].

Theorem 2. Under the above setting, the groups $H^{i}\left(K / K^{+} ; A_{K}\right)(\chi)$ with $i=0$ and 1 are trivial if and only if
(i) $\quad \chi(l) \neq 1$ for all $l \in S_{K}$ and
(ii) $\left|\tilde{A}_{K^{+}}(\chi)\right|=\left|A_{K^{+}}(\chi)\right|$.

The following corollary is a version of [1, Corollary 13.10] and Hasse [2, Satz 45].
Corollary 2. Under the above setting, the group $A_{K}^{-}(\chi)$ is trivial if and only if
(i) $\chi(l) \neq 1$ for all $l \in S_{K}$ and
(ii) $\tilde{A}_{K^{+}}(\chi)$ is trivial.

Let \tilde{h}_{M} be the class number in the narrow sense of a number field M. When M is an imaginary abelian field, let h_{M}^{-}be the relative class number of M. We can easily show that h_{k}^{-}(resp. $\tilde{h}_{k^{+}}$) divides h_{K}^{-}(resp. $\tilde{h}_{K^{+}}$) using class field theory. The following is an immediate consequence of Corollary 2.

Corollary 3. Under the above setting, the ratio h_{K}^{-} / h_{k}^{-}is odd if and only if
(i) no prime number l in S_{K} splits in F and
(ii) $\tilde{h}_{K^{+}} / \tilde{h}_{k^{+}}$is odd.

To prove these assertions, we prepare the following two lemmas. For a number field L, let $\mu(L)$ be the group of roots of unity in L and $\mu_{2}(L)$ the 2-part of $\mu(L)$.

Lemma 1. The group $H^{1}\left(K / K^{+} ; E_{K}\right)(\chi)$ is trivial.
Proof. Let ${ }_{N} E_{K}$ be the group of units $\epsilon \in E_{K}$ with $N(\epsilon)=\epsilon^{1+J}=1$. We have $N(\epsilon)=1$ if and only if $\epsilon \in \mu(K)$ by a theorem on units of a CM-field (cf. Washington [9, Theorem 4.12]). Since $\mu(K)^{2}=\mu(K)^{1-J} \subseteq E_{K}^{1-J}$, we obtain a surjection

$$
\mu(K) / \mu(K)^{2} \rightarrow H^{1}\left(K / K^{+} ; E_{K}\right)={ }_{N} E_{K} / E_{K}^{1-J}
$$

of G-modules. However, as $[K: k$] is odd, we have

$$
\mu(K) / \mu(K)^{2}=\mu_{2}(K) / \mu_{2}(K)^{2}=\mu_{2}(k) / \mu_{2}(k)^{2} .
$$

Since χ is nontrivial, the χ-part $\left(\mu_{2}(k) / \mu_{2}(k)^{2}\right)(\chi)$ is trivial. Hence, we obtain the assertion.

Lemma 2. The natural map $A_{K^{+}}(\chi) \rightarrow A_{K}(\chi)$ is injective.

Proof. Denote the natural map $A_{K^{+}} \rightarrow A_{K}$ by ι. Let \mathfrak{A} be an ideal of K^{+}with the class $[\mathfrak{A}] \in \operatorname{ker} \iota$. Then $\mathfrak{A} \mathcal{O}_{K}=x \mathcal{O}_{K}$ for some $x \in K^{\times}$. We see that $\epsilon=x^{1-J}$ is a unit of K with $N(\epsilon)=1$. It is known that the map

$$
\operatorname{ker} \iota \rightarrow H^{1}\left(K / K^{+} ; E_{K}\right) ;[\mathfrak{A}] \rightarrow x^{1-J} E_{K}^{1-J}
$$

is an injective G-homomorphism ([1, Theorem 7.1]). Then, from Lemma 1, we see that the χ-part $(\operatorname{ker} \iota)(\chi)$ is trivial, from which we obtain the assertion.

Proof of Theorem 2. Let \wp be a prime ideal in T_{f}, and $l=\wp \cap \boldsymbol{Q} \in S_{K}$. We see that the χ-part $\boldsymbol{F}_{2}\left[G / G_{\wp}\right](\chi) \neq\{0\}$ if and only if χ factors through G / G_{\wp}, which is equivalent to $\chi\left(G_{\wp}\right)=\{1\}$. Since $\left[k^{+}: \boldsymbol{Q}\right]$ is a 2-power and $[F: \boldsymbol{Q}]$ is odd, we have $\chi\left(G_{\wp}\right)=\{1\}$ if and only if $\chi(l)=1$. Hence, we have shown that the condition (i) in Theorem 2 is equivalent to the condition $\Omega_{f}(\chi)=\{0\}$. By the hexagon and Lemma 1, we see that $H^{0}\left(A_{K}\right)(\chi)$ and $H^{1}\left(A_{K}\right)(\chi)$ are trivial if and only if (iii) $R^{1}(K)(\chi)=\{0\}$ and (iv) the map

$$
i_{0}: H^{0}\left(E_{K}\right)(\chi)=\left(E_{K^{+}} / N\left(E_{K}\right)\right)(\chi) \rightarrow R^{0}(K)(\chi)
$$

is an isomorphism. By (2) and the above, the condition (iii) is equivalent to (i). Under the condition (i), we see that $R^{0}(K)(\chi)=\Omega_{\infty}(\chi)$ from the exact sequence (3), and that for each class $[\epsilon] \in H^{0}\left(E_{K}\right)(\chi)$ with $\epsilon \in E_{K^{+}}$, we have $i_{0}([\epsilon])=\alpha_{\infty}(\epsilon)$ from the definitions of the maps i_{0} and α. Further, the 2-rank of $\Omega_{\infty}(\chi)$ is larger than or equal to that of $H^{0}\left(E_{K}\right)(\chi)$ by a theorem of Minkowski on units of a Galois extension (cf. Narkiewicz [5, Theorem 3.26]). Therefore, under (i), we observe that the condition (iv) holds if and only if $\alpha_{\infty}\left(E_{K^{+}}\right)(\chi)=\Omega_{\infty}(\chi)$. We see that the last condition is equivalent to the condition (ii) in Theorem 2 because of the exact sequence (4) and $\alpha_{\infty}\left(\left(K^{+}\right)^{\times}\right)(\chi)=\Omega_{\infty}(\chi)$. Therefore, we obtain Theorem 2.

Proof of Corollary 2. First, we show the "only if" part assuming that $A_{K}^{-}(\chi)$ is trivial. By Lemma 2, we can regard $A_{K^{+}}(\chi)$ as a subgroup of $A_{K}(\chi)$. Assume that $A_{K^{+}}(\chi)$ is nontrivial. Then there exists a class $c \in A_{K^{+}}(\chi)$ of order 2 . We have $c^{J}=$ $c=c^{-1}$, and hence $c \in A_{K}^{-}(\chi)$. It follows that $A_{K}^{-}(\chi)$ is nontrivial, a contradiction. Hence, $A_{K^{+}}(\chi)=\{0\}$. It follows that $A_{K}(\chi)$ is trivial by the exact sequence

$$
\{0\} \rightarrow A_{K}^{-}(\chi) \rightarrow A_{K}(\chi) \xrightarrow{1+J} A_{K^{+}}(\chi) \rightarrow\{0\}
$$

Therefore, the "only if" part follows from Theorem 2. Next, assume that the conditions (i) and (ii) in Corollary 2 are satisfied. Then, $A_{K^{+}}(\chi)=\{0\}$, and the groups $H^{i}\left(A_{K}\right)(\chi)(i=0,1)$ are trivial by Theorem 2. As the cohomology groups are trivial, we obtain an exact sequence

$$
\{0\} \rightarrow A_{K^{+}}(\chi) \hookrightarrow A_{K}(\chi) \xrightarrow{1-J} A_{K}^{1-J}(\chi)=A_{K}^{-}(\chi) \rightarrow\{0\} .
$$

Since $A_{K^{+}}(\chi)=\{0\}$, we see that $A_{K}(\chi)=A_{K}^{-}(\chi)$, and

$$
A_{K}^{-}(\chi)=A_{K}^{-}(\chi)^{1-J}=A_{K}^{-}(\chi)^{2}
$$

from the above exact sequence. Therefore, $A_{K}^{-}(\chi)$ is trivial.

4. Proof of Theorem 1

We use the same notation as in Section 1. In particular, $d \in \boldsymbol{Z}$ is a fixed integer with $\sqrt{d} \notin K_{0}$ and L_{n} is the quadratic twist of K_{n} associated to d. We have $L_{n}^{+}=K_{n}^{+}$. Let k (resp. k_{d}) be the maximal intermediate field of K_{0} / \boldsymbol{Q} (resp. L_{0} / \boldsymbol{Q}) of 2-power degree, and let F_{0} be the maximal subfield of $K_{0}^{+}=L_{0}^{+}$of odd degree over \boldsymbol{Q}. Then k and k_{d} are imaginary abelian fields with $k^{+}=k_{d}^{+}$. Let $\boldsymbol{B}_{n} / \boldsymbol{Q}$ be the real abelian field with conductor p^{n+1} and $\left[\boldsymbol{B}_{n}: \boldsymbol{Q}\right]=p^{n}$. We put $F_{n}=F_{0} \boldsymbol{B}_{n}$. Then $L_{n}=k_{d} F_{n}$ and $K_{n}=k F_{n}$. The triples $\left(k_{d}, F_{n}, L_{n}\right)$ and $\left(k, F_{n}, K_{n}\right)$ correspond to (k, F, K) in Sections 2 and 3 . We see that

$$
\begin{equation*}
S_{L_{n}}=S_{d} \quad \text { or } \quad S_{d} \cup\{p\} \tag{5}
\end{equation*}
$$

and $S_{K_{n}}=\{p\}$. We put

$$
G_{n}=\operatorname{Gal}\left(F_{n} / \boldsymbol{Q}\right)=\operatorname{Gal}\left(L_{n} / k_{d}\right)=\operatorname{Gal}\left(K_{n} / k\right),
$$

and

$$
\Delta=\operatorname{Gal}\left(F_{0} / \boldsymbol{Q}\right), \quad \Gamma_{n}=\operatorname{Gal}\left(F_{n} / F_{0}\right)=\operatorname{Gal}\left(\boldsymbol{B}_{n} / \boldsymbol{Q}\right) .
$$

Then we have a natural decomposition $G_{n}=\Delta \times \Gamma_{n}$. For characters φ and ψ of Δ and Γ_{n} respectively, we regard $\varphi \psi=\varphi \times \psi$ as a character of G_{n}. Further, we regard φ, ψ and $\varphi \psi$ also as primitive Dirichlet characters. The class groups $A_{L_{n}}^{-}, A_{K_{n}}^{-}$and $\tilde{A}_{K_{n}^{+}}$are modules over G_{n}. We can naturally regard $A_{L_{n-1}}^{-}$as a subgroup of $A_{L_{n}}^{-}$since L_{n} / L_{n-1} is a cyclic extension of degree $p \neq 2$ and $A_{L_{n-1}}^{-}$is the 2-part of the class group. Actually, it is a direct summand of $A_{L_{n}}^{-}$(cf. [9, Lemma 16.15]). We see that

$$
\begin{equation*}
A_{L_{n}}^{-} / A_{L_{n-1}}^{-}=\bigoplus_{\varphi, \psi_{n}} A_{L_{n}}^{-}\left(\varphi \psi_{n}\right) \tag{6}
\end{equation*}
$$

where φ (resp. ψ_{n}) runs over a complete set of representatives of the \boldsymbol{Q}_{2}-conjugacy classes of the $\overline{\boldsymbol{Q}}_{2}$-valued characters of Δ (resp. Γ_{n} of order p^{n}). Regarding $A_{K_{n-1}}^{-}$as a subgroup of $A_{K_{n}}^{-}$, we have a similar decomposition for $A_{K_{n}}^{-} / A_{K_{n-1}}^{-}$. As $S_{K_{n}}=\{p\}$ and $\left(\varphi \psi_{n}\right)(p)=0$, we obtain the following assertion from Corollary 2 for the triple $\left(k, F_{n}, K_{n}\right)$.

Lemma 3. Let $n \geq 1$ be an integer, and the characters φ and ψ_{n} be as in (6). Then $A_{K_{n}}^{-}\left(\varphi \psi_{n}\right)=\{0\}$ if and only if $\tilde{A}_{K_{n}^{+}}\left(\varphi \psi_{n}\right)=\{0\}$.

Proof of Theorem 1 (I). Let φ and ψ_{n} be as in (6). As the orders of φ and ψ_{n} are relatively prime to each other, we have $\left(\varphi \psi_{n}\right)(l)=1$ if and only if $\varphi(l)=\psi_{n}(l)=1$ for a prime number l. Let n be an integer with $n \geq n_{d}$. Then we have $\psi_{n}(l) \neq 1$ and hence $\left(\varphi \psi_{n}\right)(l) \neq 1$ for all prime numbers $l \in S=S_{d}$. Further, we have $\left(\varphi \psi_{n}\right)(p)=0$. Hence, by (5), the condition (i) in Corollary 2 for the triple $\left(k_{d}, F_{n}, L_{n}\right)$ is satisfied. It follows that the condition $A_{L_{n}}^{-}\left(\varphi \psi_{n}\right)=\{0\}$ is equivalent to $\tilde{A}_{K_{n}^{+}}\left(\varphi \psi_{n}\right)=\{0\}$. (Note that $L_{n}^{+}=K_{n}^{+}$.) Therefore, we obtain Theorem 1(I) from Lemma 3.

To show Theorem 1 (II), assume that $n_{d} \geq 2$ and let n be an integer with $1 \leq n<$ n_{d}. We put

$$
S^{(n)}=\left\{l \in S=S_{d} \mid \operatorname{ord}_{p}\left(l^{p-1}-1\right) \geq n+1\right\}
$$

From the definition, we see that

$$
S \supseteq S^{(1)} \supseteq S^{(2)} \supseteq \cdots \supseteq S^{\left(n_{d}-1\right)}
$$

and that each $S^{(n)}$ is non-empty. Let φ (resp. ψ_{n}) be a $\overline{\boldsymbol{Q}}_{2}$-valued character of Δ (resp. of Γ_{n} of order p^{n}). Denote by φ_{0} the trivial character of Δ. Theorem 1 (II) is a consequence of the following assertion.

Proposition 1. Under the above setting, the following hold.
(I) The class group $A_{L_{n}}^{-}\left(\varphi \psi_{n}\right)$ is nontrivial if $\varphi(l)=1$ for some $l \in S^{(n)}$. In particular, $A_{L_{n}}^{-}\left(\varphi_{0} \psi_{n}\right)$ is nontrivial.
(II) If $A_{K_{n}}^{-}\left(\varphi \psi_{n}\right)=\{0\}$, the converse of the first assertion of (I) holds.

Proof. Applying Corollary 2 for the triple $\left(k_{d}, F_{n}, L_{n}\right)$, we see from Lemma 3 that $A_{L_{n}}^{-}\left(\varphi \psi_{n}\right)=\{0\}$ if and only if (i) $\left(\varphi \psi_{n}\right)(l) \neq 1$ for all $l \in S=S_{d}$ and (ii) $A_{K_{n}}^{-}\left(\varphi \psi_{n}\right)=$ $\{0\}$. We have $\psi_{n}(l)=1$ for $l \in S^{(n)}$, and $\psi_{n}(l) \neq 1$ for $l \in S \backslash S^{(n)}$. Therefore, we see that the condition (i) is satisfied if and only if $\varphi(l) \neq 1$ for all $l \in S^{(n)}$ noting that the orders of φ and ψ_{n} are relatively prime. From this, we obtain the proposition.

We put $M_{n}=K_{n}(\sqrt{d})=K_{n} L_{n}$. On the relative class number $h_{M_{n}}^{-}$of M_{n}, the following assertion holds.

Proposition 2. (I) When $n \geq n_{d}$, the ratio $h_{M_{n}}^{-} / h_{M_{n-1}}^{-}$is odd if and only if h_{n}^{*} / h_{n-1}^{*} is odd.
(II) When $n_{d} \geq 2$ and $1 \leq n<n_{d}, h_{M_{n}}^{-} / h_{M_{n-1}}^{-}$is even.

To prove this proposition, we need to show the following lemma. For an imaginary abelian field N, we put

$$
\mathcal{E}_{N}=E_{N} / \mu(N) E_{N^{+}}
$$

It is well known that the unit index $Q_{N}=\left|\mathcal{E}_{N}\right|$ is 1 or $2([9$, Theorem 4.12]).

Lemma 4. Let T and N be imaginary abelian fields with $N \subseteq T$. If the degree $[T: N]$ is odd, then $Q_{T}=Q_{N}$.

Proof. We first show that the inclusion map $N \rightarrow T$ induces an injection $\mathcal{E}_{N} \hookrightarrow$ \mathcal{E}_{T}. For a unit ϵ of N, assume that $\epsilon=\zeta \eta$ for some $\zeta \in \mu(T)$ and $\eta \in E_{T^{+}}$. Let ρ be a nontrivial element of the Galois group $G=\operatorname{Gal}(T / N)$. Then, as $\epsilon=\epsilon^{\rho}$, we see that $\zeta^{1-\rho}=\eta^{\rho-1} \in \mu(T) \cap E_{T^{+}}$. Hence, $\zeta^{1-\rho}= \pm 1$. However, as $N_{T / N}\left(\zeta^{1-\rho}\right)=1$ and $\left[T: N\right.$] is odd, the case $\zeta^{1-\rho}=-1$ does not happen. Hence, $\zeta^{1-\rho}=1$ for all $\rho \in G$. It follows that $\zeta \in \mu(N)$ and hence $\eta \in E_{N^{+}}$. Therefore, we can regard \mathcal{E}_{N} as a subgroup of \mathcal{E}_{T}. In particular, Q_{N} divides Q_{T}.

Assume that $Q_{N} \neq Q_{T}$. Then we have $\left|\mathcal{E}_{T}\right|=\left|\mathcal{E}_{T} / \mathcal{E}_{N}\right|=2$. Regarding \mathcal{E}_{T} as a module over G, we have a canonical decomposition

$$
\mathcal{E}_{T}=\mathcal{E}_{T} / \mathcal{E}_{N}=\bigoplus_{\chi} \mathcal{E}_{T}(\chi)
$$

where χ runs over a complete set of representatives of the \boldsymbol{Q}_{2}-conjugacy classes of the nontrivial $\overline{\boldsymbol{Q}}_{2}$-valued characters of G. Hence, $\left|\mathcal{E}_{T}(\chi)\right|=2$ for some such χ. Let $\boldsymbol{Z}_{2}[\chi]$ be the subring of $\overline{\boldsymbol{Q}}_{2}$ generated by the values of χ over \boldsymbol{Z}_{2}. The group $\mathcal{E}_{T}(\chi)$ is naturally regarded as a module over the principal ideal domain $\boldsymbol{Z}_{2}[\chi]$. Since the order of χ is odd and ≥ 3, we observe that $Z_{2}[\chi] \cong \boldsymbol{Z}_{2}^{d}$ as \boldsymbol{Z}_{2}-modules for some $d \geq 2$. Hence, $\left|\mathcal{E}_{n}(\chi)\right|$ is a multiple of 2^{d}, which contradicts $\left|\mathcal{E}_{n}(\chi)\right|=2$. Therefore, we obtain $Q_{N}=Q_{T}$.

Proof of Proposition 2. By Lemma 4, we have $Q_{M_{n}}=Q_{M_{n-1}}$ and $Q_{L_{n}}=Q_{L_{n-1}}$ for all $n \geq 1$. Therefore, using the class number formula [9 , Theorem 4.17], we see that

$$
h_{M_{n}}^{-} / h_{M_{n-1}}^{-}=p \prod_{\sigma} \prod_{\psi_{n}}\left(-\frac{1}{2} B_{1, \sigma \psi_{n}}\right)
$$

where ϖ runs over the odd Dirichlet characters associated to M_{0}, and ψ_{n} over the even characters of conductor p^{n+1} and order p^{n}. Further, $B_{1, \varpi \psi_{n}}$ denotes the generalized Bernoulli number. We easily see that ϖ equals an odd Dirichlet character associated to K_{0} or L_{0} since M_{0} / K_{0}^{+}is an imaginary biquadratic extension with the imaginary quadratic subextensions K_{0} and L_{0}. Hence, using the class number formulas for L_{n}, K_{n} and $Q_{L_{n}}=Q_{L_{n-1}}$, we obtain

$$
h_{M_{n}}^{-} / h_{M_{n-1}^{-}}^{-}=h_{n}^{*} / h_{n-1}^{*} \times h_{n}^{-} / h_{n-1}^{-} .
$$

Therefore, the assertion follows from Theorem 1.

References

[1] P.E. Conner and J. Hurrelbrink: Class Number Parity, World Sci. Publishing, Singapore, 1988.
[2] H. Hasse: Über die Klassenzahl abelscher Zahlkörper, reprint of the first edition, Springer, Berlin, 1985.
[3] H. Ichimura and S. Nakajima: On the 2-part of the class numbers of cyclotomic fields of prime power conductors, J. Math. Soc. Japan 64 (2012), 317-342.
[4] H. Ichimura: On the parity of the class number of an imaginary abelian field of conductor $2^{a} p^{b}$, Arch. Math. (Basel) 96 (2011), 555-563.
[5] W. Narkiewicz: Elementary and Analytic Theory of Algebraic Numbers, third edition, Springer, Berlin, 2004.
[6] R. Schoof: Minus class groups of the fields of the lth roots of unity, Math. Comp. 67 (1998), 1225-1245.
[7] T. Tsuji: Semi-local units modulo cyclotomic units, J. Number Theory 78 (1999), 1-26.
[8] L.C. Washington: The non-p-part of the class number in a cyclotomic \mathbf{Z}_{p}-extension, Invent. Math. 49 (1978), 87-97.
[9] L.C. Washington: Introduction to Cyclotomic Fields, second edition, Springer, New York, 1997.

Faculty of Science
Ibaraki University
Bunkyo 2-1-1, Mito, 310-8512
Japan

