CLASS NUMBER PARITY OF A QUADRATIC TWIST OF A CYCLOTOMIC FIELD OF PRIME POWER CONDUCTOR

HUMIO ICHIMURA

(Received March 23, 2011, revised October 5, 2011)

Abstract

Let p be a fixed odd prime number and K_n the p^{n+1} -st cyclotomic field. For a fixed integer $d \in \mathbb{Z}$ with $\sqrt{d} \notin K_0$, denote by L_n the imaginary quadratic subextension of the biquadratic extension $K_n(\sqrt{d})/K_n^+$ with $L_n \neq K_n$. Let h_n^* and h_n^- be the relative class numbers of K_n and L_n , respectively. We give an explicit constant n_d depending on p and d such that (i) for any integer $n \geq n_d$, the ratio h_n^-/h_{n-1}^- is odd if and only if h_n^*/h_{n-1}^* is odd and (ii) for $1 \leq n < n_d$, h_n^-/h_{n-1}^- is even.

1. Introduction

Let p be a fixed odd prime number. Let $K_n = Q(\zeta_{p^{n+1}})$ be the p^{n+1} -st cyclotomic field for an integer $n \geq 0$, and $K_{\infty} = \bigcup_{n} K_{n}$. Let $d \in \mathbb{Z}$ be a fixed integer with $\sqrt{d} \notin K_0$. We denote by L_n the imaginary quadratic subextension of the biquadratic extension $K_n(\sqrt{d})/K_n^+$ with $L_n \neq K_n$. Here, K^+ denotes the maximal real subfield of an imaginary abelian field K. When d < 0, we have $L_n = K_n^+(\sqrt{d})$. We call L_n the quadratic twist of K_n associated to the integer d. The extension $L_{\infty} = \bigcup_n L_n$ is the cyclotomic \mathbb{Z}_p -extension over L_0 with the *n*-th layer L_n . We call L_{∞}/L_0 the quadratic twist of the cyclotomic \mathbb{Z}_p -extension K_{∞}/K_0 associated to d. Let h_n^* and h_n^- be the relative class numbers of K_n and L_n , respectively. It is known and easy to show that h_{n-1}^* (resp. h_{n-1}^-) divides h_n^* (resp. h_n^-) using class field theory. The parity of h_0^* behaves rather irregularly when p varies (see a table in Schoof [6]). However, it is recently shown that when $p \le 509$, the ratio h_n^*/h_{n-1}^* is odd for all $n \ge 1$ ([3, Theorem 2]). And it might be possible that the ratio is odd for any prime p and any $n \ge 1$. The purpose of this paper is to study the parity of the ratio h_n^-/h_{n-1}^- of the quadratic twist L_n . We already know that h_n^-/h_{n-1}^- is odd for sufficiently large n by a theorem of Washington [8] on the non-p-part of the class number in a cyclotomic \mathbf{Z}_p -extension. Denote by $S = S_d$ the set of prime numbers $l \neq p$ which ramify in $Q(\sqrt{d})/Q$. The set S is non-empty as $\sqrt{d} \notin K_0$. We define an integer $n_d \ge 1$ by

$$n_d = \max\{ \text{ord}_p(l^{p-1} - 1) \mid l \in S \},$$

²⁰¹⁰ Mathematics Subject Classification. Primary 11R18; Secondary 11R23.

where $\operatorname{ord}_p(*)$ is the normalized *p*-adic additive valuation. The following is the main theorem of this paper.

Theorem 1. Under the above setting, the following assertions hold.

- (I) When $n \ge n_d$, the ratio h_n^-/h_{n-1}^- is odd if and only if h_n^*/h_{n-1}^* is odd.
- (II) When $n_d \ge 2$ and $1 \le n < n_d$, the ratio h_n^-/h_{n-1}^- is even.

From Theorem 1 and [3, Theorem 2], we immediately obtain the following:

Corollary 1. Under the above setting, let p be an odd prime number with $p \le 509$. Then the ratio $h_n^-/h_{n,-1}^-$ is odd for all $n \ge n_d$.

This corollary, though given in a very special setting, is an explicit version of the above mentioned theorem of Washington. In [4], we showed Theorem 1 when d = -1 and $L_n = K_n^+(\sqrt{-1})$ using some results of cyclotomic Iwasawa theory. In this paper, we prove Theorem 1 by using a main theorem of Conner and Hurrelbrink [1, Theorem 2.3].

REMARK. When $p \equiv 1 \mod 4$ (resp. $p \equiv 3 \mod 4$), we can show that two integers d_1 and d_2 give the same twist L_{∞}/L_0 of K_{∞}/K_0 if and only if $d_2 = d_1x^2$ or $d_2 = pd_1x^2$ (resp. $d_2 = -pd_1x^2$) for some $x \in \mathbf{Q}^{\times}$. Hence, the set S_d and the integer n_d depend only on the twist L_{∞}/L_0 and not on the choice of d.

2. Exact hexagon of Conner and Hurrelbrink

In this section, we recall the exact hexagon of Conner and Hurrelbrink. Let k be an imaginary abelian field with 2-power degree, and F a real abelian field with $2 \nmid [F:Q]$. We put K = kF, and

$$G = \operatorname{Gal}(K/k) = \operatorname{Gal}(K^+/k^+) = \operatorname{Gal}(F/\mathbf{0}).$$

For a number field N, let A_N be the 2-part of the ideal class group of N, \mathcal{O}_N the ring of integers, and $E_N = \mathcal{O}_N^{\times}$ the group of units of N. The groups A_K and E_K are naturally regarded as modules over $\operatorname{Gal}(K/K^+)$ and at the same time as those over G. For a $\operatorname{Gal}(K/K^+)$ -module X, denote by $H^i(X) = H^i(K/K^+; X)$ the Tate cohomology group with i = 0, 1. When $X = A_K$ or E_K , the group $H^i(X)$ is also regarded as G-modules. In [1, Theorem 2.3], Conner and Hurrelbrink introduced the following exact hexagon

of G-modules to study the 2-part of the class number of a relative quadratic extension.

Here, $R^i(K)$ is a certain G-module associated to K/K^+ defined in [1]. We describe the G-module structure of $R^i(K)$ following [1]. Let T_f be the set of prime ideals \wp of k^+ for which a prime ideal $\mathfrak P$ of K^+ over \wp ramifies in K. Let T_∞ be the set of infinite prime divisors of k^+ . We put $T = T_f \cup T_\infty$. For each $v \in T$, let $G_v \subseteq G$ be the decomposition group of v at K^+/k^+ . When v is an infinite prime, the group G_v is trivial. We define G-modules Ω_f and Ω_∞ by

$$\Omega_f = igoplus_{\wp \in T_f} F_2[G/G_\wp] \quad ext{and} \quad \Omega_\infty = igoplus_{v \in T_\infty} F_2[G/G_v] = igoplus_{v \in T_\infty} F_2[G],$$

respectively, where $F_2 = \mathbb{Z}/2\mathbb{Z}$ is the finite field with two elements. (When T_f is empty, $\Omega_f = \{0\}$ by definition.) For each prime divisor w of K^+ with the restriction $w_{|k^+} \in T$ and an element $x \in (K^+)^\times$, we put $\iota_w(x) = 0$ or 1 according as $x \in N(K_w^\times)$ or not. Here, K_w is the completion of K at the unique prime divisor of K over W and $N = N_{K/K^+}$ is the norm map. For $g \in G$ and $x \in (K^+)^\times$, we see that

$$\iota_{w^g}(x) = \iota_w(x^{g^{-1}})$$

by local class field theory. For a prime ideal $\mathfrak P$ of K^+ with $\mathfrak P \cap k^+ \in T_f$, let $\tilde{\mathfrak P}$ be the unique prime ideal of K over $\mathfrak P$. For an ideal $\mathfrak A$ of K, writing $\mathfrak A = \tilde{\mathfrak P}^*\mathfrak B$ with an integer e and an ideal $\mathfrak B$ relatively prime to $\tilde{\mathfrak P}$, we put $\mathrm{ord}_{\mathfrak P}(\mathfrak A) = e$.

We denote by I(K) the group of (fractional) ideals of K. Let X be the subgroup of I(K) consisting of ideals $\mathfrak A$ with $\mathfrak A^J=\mathfrak A$. Here, J is the complex conjugation acting on several objects associated to K. Let X_0 be the subgroup of X consisting of ideals $\mathfrak A \in I(K)$ with $\mathfrak A = x\mathfrak B^{1+J}$ for some $x \in (K^+)^\times$ and $\mathfrak B \in I(K)$. The G-module $R^1(K)$ is isomorphic to the quotient X/X_0 . For this, see the lines 1–2 from the bottom of $\mathfrak B$. From the argument in [1, §5], we obtain the following isomorphism of G-modules:

(2)
$$R^{1}(K) \cong \Omega_{f}; \quad \mathfrak{A}X_{0} \to \bigoplus_{\wp \in T_{f}} \left(\sum_{\bar{g}} \operatorname{ord}_{\mathfrak{P}^{g}}(\mathfrak{A})\bar{g} \right),$$

where \bar{g} (with $g \in G$) runs over the quotient G/G_{\wp} .

Let Y be the subgroup of the multiplicative group $(K^+)^{\times} \times I(K)$ consisting of pairs (x,\mathfrak{A}) with $x\mathfrak{A}^{1+J} = \mathcal{O}_K$. Let Y_0 be the subgroup of Y consisting of pairs $(N(y), y^{-1}\mathfrak{B}^{1-J})$ with $y \in K^{\times}$ and $\mathfrak{B} \in I(K)$. By definition, $R^0(K) = Y/Y_0$. We denote by $[x,\mathfrak{A}] \in R^0(K)$ the class containing (x,\mathfrak{A}) . The map i_0 in the hexagon is defined by

$$i_0: H^0(E_K) = E_{K^+}/N(E_K) \to R^0(K); \quad [\epsilon] \to [\epsilon, \mathcal{O}_K]$$

with $\epsilon \in E_{K^+}$. For each $v \in T_{\infty}$, we fix a prime divisor \tilde{v} of K^+ over v. Using (1), we observe that the homomorphisms

$$\alpha_{\infty} \colon (K^{+})^{\times} \to \Omega_{\infty}; \quad x \to \bigoplus_{v \in T_{\infty}} \left(\sum_{g \in G} \iota_{\tilde{v}^{g}}(x)g \right)$$

and

$$\alpha_f \colon (K^+)^{\times} \to \Omega_f \,; \quad x \to \bigoplus_{\wp \in T_f} \left(\sum_{\bar{g}} \iota_{\mathfrak{P}^g}(x) \bar{g} \right)$$

are compatible with the action of G. Further, α_{∞} is nothing but the "sign" map. From the argument in [1, §4], we obtain the following exact sequence of G-modules:

(3)
$$\{0\} \to R^0(K) \xrightarrow{\alpha} \Omega_f \oplus \Omega_\infty \xrightarrow{\beta} F_2 \to \{0\}.$$

Here, α is defined by $\alpha([x, \mathfrak{A}]) = (\alpha_f(x), \alpha_\infty(x))$, β is the argumentation map and G acts trivially on F_2 .

3. Consequences

In this section, we derive some consequences of the exact hexagon and (2), (3). All of them are G-decomposed versions of the corresponding results in [1]. We work under the setting of Section 2. Denote by \tilde{A}_{K^+} the 2-part of the narrow class group of K^+ . Letting $K^+_{>0}$ be the group of totally positive elements of K^+ , we have an exact sequence

(4)
$$\{0\} \to (K^+)^{\times}/(K_{>0}^+ E_{K^+}) \to \tilde{A}_{K^+} \to A_{K^+} \to \{0\}$$

of G-modules. We define the minus class group A_K^- to be the kernel of the norm map $A_K \to A_{K^+}$. Let χ be a \bar{Q}_2 -valued character of $G = \operatorname{Gal}(K/k) = \operatorname{Gal}(F/Q)$, which we also regard as a primitive Dirichlet character. For a module M over $\mathbb{Z}_2[G]$, we denote by $M(\chi)$ the χ -part of M. Here, \mathbb{Z}_2 is the ring of 2-adic integers and \bar{Q}_2 is a fixed algebraic closure of the 2-adic rationals Q_2 . (For the definition of the χ -part and some of its properties, see Tsuji [7, §2].) Denote by S_K the set of prime numbers lying

below some prime ideal in T_f . In all what follows, we assume that χ is a *nontrivial* character. The following is a version of [1, Theorem 13.8].

Theorem 2. Under the above setting, the groups $H^i(K/K^+; A_K)(\chi)$ with i = 0 and 1 are trivial if and only if

- (i) $\chi(l) \neq 1$ for all $l \in S_K$ and
- (ii) $|\tilde{A}_{K^+}(\chi)| = |A_{K^+}(\chi)|$.

The following corollary is a version of [1, Corollary 13.10] and Hasse [2, Satz 45].

Corollary 2. Under the above setting, the group $A_K^-(\chi)$ is trivial if and only if

- (i) $\chi(l) \neq 1$ for all $l \in S_K$ and
- (ii) $\tilde{A}_{K^+}(\chi)$ is trivial.

Let \tilde{h}_M be the class number in the narrow sense of a number field M. When M is an imaginary abelian field, let h_M^- be the relative class number of M. We can easily show that h_k^- (resp. \tilde{h}_{k^+}) divides h_K^- (resp. \tilde{h}_{K^+}) using class field theory. The following is an immediate consequence of Corollary 2.

Corollary 3. Under the above setting, the ratio h_K^-/h_k^- is odd if and only if

- (i) no prime number l in S_K splits in F and
- (ii) $\tilde{h}_{K^+}/\tilde{h}_{k^+}$ is odd.

To prove these assertions, we prepare the following two lemmas. For a number field L, let $\mu(L)$ be the group of roots of unity in L and $\mu_2(L)$ the 2-part of $\mu(L)$.

Lemma 1. The group $H^1(K/K^+; E_K)(\chi)$ is trivial.

Proof. Let ${}_N E_K$ be the group of units $\epsilon \in E_K$ with $N(\epsilon) = \epsilon^{1+J} = 1$. We have $N(\epsilon) = 1$ if and only if $\epsilon \in \mu(K)$ by a theorem on units of a CM-field (cf. Washington [9, Theorem 4.12]). Since $\mu(K)^2 = \mu(K)^{1-J} \subseteq E_K^{1-J}$, we obtain a surjection

$$\mu(K)/\mu(K)^2 \to H^1(K/K^+; E_K) = {}_N E_K/E_K^{1-J}$$

of G-modules. However, as [K:k] is odd, we have

$$\mu(K)/\mu(K)^2 = \mu_2(K)/\mu_2(K)^2 = \mu_2(k)/\mu_2(k)^2.$$

Since χ is nontrivial, the χ -part $(\mu_2(k)/\mu_2(k)^2)(\chi)$ is trivial. Hence, we obtain the assertion.

Lemma 2. The natural map $A_{K^+}(\chi) \to A_K(\chi)$ is injective.

Proof. Denote the natural map $A_{K^+} \to A_K$ by ι . Let $\mathfrak A$ be an ideal of K^+ with the class $[\mathfrak A] \in \ker \iota$. Then $\mathfrak A \mathcal O_K = x \mathcal O_K$ for some $x \in K^\times$. We see that $\epsilon = x^{1-J}$ is a unit of K with $N(\epsilon) = 1$. It is known that the map

$$\ker \iota \to H^1(K/K^+; E_K); [\mathfrak{A}] \to x^{1-J}E_K^{1-J}$$

is an injective *G*-homomorphism ([1, Theorem 7.1]). Then, from Lemma 1, we see that the χ -part (ker ι)(χ) is trivial, from which we obtain the assertion.

Proof of Theorem 2. Let \wp be a prime ideal in T_f , and $l = \wp \cap Q \in S_K$. We see that the χ -part $F_2[G/G_\wp](\chi) \neq \{0\}$ if and only if χ factors through G/G_\wp , which is equivalent to $\chi(G_\wp) = \{1\}$. Since $[k^+ : Q]$ is a 2-power and [F : Q] is odd, we have $\chi(G_\wp) = \{1\}$ if and only if $\chi(l) = 1$. Hence, we have shown that the condition (i) in Theorem 2 is equivalent to the condition $\Omega_f(\chi) = \{0\}$. By the hexagon and Lemma 1, we see that $H^0(A_K)(\chi)$ and $H^1(A_K)(\chi)$ are trivial if and only if (iii) $R^1(K)(\chi) = \{0\}$ and (iv) the map

$$i_0: H^0(E_K)(\chi) = (E_{K^+}/N(E_K))(\chi) \to R^0(K)(\chi)$$

is an isomorphism. By (2) and the above, the condition (iii) is equivalent to (i). Under the condition (i), we see that $R^0(K)(\chi) = \Omega_\infty(\chi)$ from the exact sequence (3), and that for each class $[\epsilon] \in H^0(E_K)(\chi)$ with $\epsilon \in E_{K^+}$, we have $i_0([\epsilon]) = \alpha_\infty(\epsilon)$ from the definitions of the maps i_0 and α . Further, the 2-rank of $\Omega_\infty(\chi)$ is larger than or equal to that of $H^0(E_K)(\chi)$ by a theorem of Minkowski on units of a Galois extension (cf. Narkiewicz [5, Theorem 3.26]). Therefore, under (i), we observe that the condition (iv) holds if and only if $\alpha_\infty(E_{K^+})(\chi) = \Omega_\infty(\chi)$. We see that the last condition is equivalent to the condition (ii) in Theorem 2 because of the exact sequence (4) and $\alpha_\infty((K^+)^\times)(\chi) = \Omega_\infty(\chi)$. Therefore, we obtain Theorem 2.

Proof of Corollary 2. First, we show the "only if" part assuming that $A_K^-(\chi)$ is trivial. By Lemma 2, we can regard $A_{K^+}(\chi)$ as a subgroup of $A_K(\chi)$. Assume that $A_{K^+}(\chi)$ is nontrivial. Then there exists a class $c \in A_{K^+}(\chi)$ of order 2. We have $c^J = c = c^{-1}$, and hence $c \in A_K^-(\chi)$. It follows that $A_K^-(\chi)$ is nontrivial, a contradiction. Hence, $A_{K^+}(\chi) = \{0\}$. It follows that $A_K^-(\chi)$ is trivial by the exact sequence

$$\{0\} \to A_K^-(\chi) \to A_K(\chi) \xrightarrow{1+J} A_{K^+}(\chi) \to \{0\}.$$

Therefore, the "only if" part follows from Theorem 2. Next, assume that the conditions (i) and (ii) in Corollary 2 are satisfied. Then, $A_{K^+}(\chi) = \{0\}$, and the groups $H^i(A_K)(\chi)$ (i = 0, 1) are trivial by Theorem 2. As the cohomology groups are trivial, we obtain an exact sequence

$$\{0\} \to A_{K^+}(\chi) \hookrightarrow A_K(\chi) \xrightarrow{1-J} A_K^{1-J}(\chi) = A_K^-(\chi) \to \{0\}.$$

Since $A_{K^+}(\chi) = \{0\}$, we see that $A_K(\chi) = A_K^-(\chi)$, and

$$A_K^-(\chi) = A_K^-(\chi)^{1-J} = A_K^-(\chi)^2$$

from the above exact sequence. Therefore, $A_K^-(\chi)$ is trivial.

4. Proof of Theorem 1

We use the same notation as in Section 1. In particular, $d \in \mathbb{Z}$ is a fixed integer with $\sqrt{d} \notin K_0$ and L_n is the quadratic twist of K_n associated to d. We have $L_n^+ = K_n^+$. Let k (resp. k_d) be the maximal intermediate field of K_0/Q (resp. L_0/Q) of 2-power degree, and let F_0 be the maximal subfield of $K_0^+ = L_0^+$ of odd degree over Q. Then k and k_d are imaginary abelian fields with $k^+ = k_d^+$. Let B_n/Q be the real abelian field with conductor p^{n+1} and $[B_n:Q]=p^n$. We put $F_n=F_0B_n$. Then $L_n=k_dF_n$ and $K_n=kF_n$. The triples (k_d,F_n,L_n) and (k,F_n,K_n) correspond to (k,F,K) in Sections 2 and 3. We see that

$$(5) S_{L_n} = S_d or S_d \cup \{p\}$$

and $S_{K_n} = \{p\}$. We put

$$G_n = \operatorname{Gal}(F_n/\mathbb{Q}) = \operatorname{Gal}(L_n/k_d) = \operatorname{Gal}(K_n/k),$$

and

$$\Delta = \operatorname{Gal}(F_0/Q), \quad \Gamma_n = \operatorname{Gal}(F_n/F_0) = \operatorname{Gal}(B_n/Q).$$

Then we have a natural decomposition $G_n = \Delta \times \Gamma_n$. For characters φ and ψ of Δ and Γ_n respectively, we regard $\varphi \psi = \varphi \times \psi$ as a character of G_n . Further, we regard φ , ψ and $\varphi \psi$ also as primitive Dirichlet characters. The class groups $A_{L_n}^-$, $A_{K_n}^-$ and $\tilde{A}_{K_n^+}^+$ are modules over G_n . We can naturally regard $A_{L_{n-1}}^-$ as a subgroup of $A_{L_n}^-$ since L_n/L_{n-1} is a cyclic extension of degree $p \neq 2$ and $A_{L_{n-1}}^-$ is the 2-part of the class group. Actually, it is a direct summand of $A_{L_n}^-$ (cf. [9, Lemma 16.15]). We see that

(6)
$$A_{L_n}^{-}/A_{L_{n-1}}^{-} = \bigoplus_{\varphi,\psi_n} A_{L_n}^{-}(\varphi\psi_n)$$

where φ (resp. ψ_n) runs over a complete set of representatives of the Q_2 -conjugacy classes of the \bar{Q}_2 -valued characters of Δ (resp. Γ_n of order p^n). Regarding $A_{K_{n-1}}^-$ as a subgroup of $A_{K_n}^-$, we have a similar decomposition for $A_{K_n}^-/A_{K_{n-1}}^-$. As $S_{K_n} = \{p\}$ and $(\varphi\psi_n)(p) = 0$, we obtain the following assertion from Corollary 2 for the triple (k, F_n, K_n) .

Lemma 3. Let $n \ge 1$ be an integer, and the characters φ and ψ_n be as in (6). Then $A_{K_n}^-(\varphi\psi_n) = \{0\}$ if and only if $\tilde{A}_{K_n^+}(\varphi\psi_n) = \{0\}$.

Proof of Theorem 1 (I). Let φ and ψ_n be as in (6). As the orders of φ and ψ_n are relatively prime to each other, we have $(\varphi\psi_n)(l)=1$ if and only if $\varphi(l)=\psi_n(l)=1$ for a prime number l. Let n be an integer with $n\geq n_d$. Then we have $\psi_n(l)\neq 1$ and hence $(\varphi\psi_n)(l)\neq 1$ for all prime numbers $l\in S=S_d$. Further, we have $(\varphi\psi_n)(p)=0$. Hence, by (5), the condition (i) in Corollary 2 for the triple (k_d,F_n,L_n) is satisfied. It follows that the condition $A_{L_n}^-(\varphi\psi_n)=\{0\}$ is equivalent to $\tilde{A}_{K_n^+}(\varphi\psi_n)=\{0\}$. (Note that $L_n^+=K_n^+$.) Therefore, we obtain Theorem 1(I) from Lemma 3.

To show Theorem 1 (II), assume that $n_d \ge 2$ and let n be an integer with $1 \le n < n_d$. We put

$$S^{(n)} = \{l \in S = S_d \mid \operatorname{ord}_p(l^{p-1} - 1) \ge n + 1\}.$$

From the definition, we see that

$$S \supseteq S^{(1)} \supseteq S^{(2)} \supseteq \cdots \supseteq S^{(n_d-1)}$$

and that each $S^{(n)}$ is non-empty. Let φ (resp. ψ_n) be a \bar{Q}_2 -valued character of Δ (resp. of Γ_n of order p^n). Denote by φ_0 the trivial character of Δ . Theorem 1 (II) is a consequence of the following assertion.

Proposition 1. Under the above setting, the following hold.

- (I) The class group $A_{L_n}^-(\varphi \psi_n)$ is nontrivial if $\varphi(l) = 1$ for some $l \in S^{(n)}$. In particular, $A_{L_n}^-(\varphi_0\psi_n)$ is nontrivial.
- (II) If $A_{K_n}^-(\varphi \psi_n) = \{0\}$, the converse of the first assertion of (I) holds.

Proof. Applying Corollary 2 for the triple (k_d, F_n, L_n) , we see from Lemma 3 that $A_{L_n}^-(\varphi\psi_n)=\{0\}$ if and only if (i) $(\varphi\psi_n)(l)\neq 1$ for all $l\in S=S_d$ and (ii) $A_{K_n}^-(\varphi\psi_n)=\{0\}$. We have $\psi_n(l)=1$ for $l\in S^{(n)}$, and $\psi_n(l)\neq 1$ for $l\in S\setminus S^{(n)}$. Therefore, we see that the condition (i) is satisfied if and only if $\varphi(l)\neq 1$ for all $l\in S^{(n)}$ noting that the orders of φ and ψ_n are relatively prime. From this, we obtain the proposition.

We put $M_n = K_n(\sqrt{d}) = K_n L_n$. On the relative class number $h_{M_n}^-$ of M_n , the following assertion holds.

Proposition 2. (I) When $n \ge n_d$, the ratio $h_{M_n}^-/h_{M_{n-1}}^-$ is odd if and only if h_n^*/h_{n-1}^* is odd.

(II) When $n_d \ge 2$ and $1 \le n < n_d$, $h_{M_n}^-/h_{M_{n-1}}^-$ is even.

To prove this proposition, we need to show the following lemma. For an imaginary abelian field N, we put

$$\mathcal{E}_N = E_N/\mu(N)E_{N^+}$$
.

It is well known that the unit index $Q_N = |\mathcal{E}_N|$ is 1 or 2 ([9, Theorem 4.12]).

Lemma 4. Let T and N be imaginary abelian fields with $N \subseteq T$. If the degree [T:N] is odd, then $Q_T = Q_N$.

Proof. We first show that the inclusion map $N \to T$ induces an injection $\mathcal{E}_N \hookrightarrow \mathcal{E}_T$. For a unit ϵ of N, assume that $\epsilon = \zeta \eta$ for some $\zeta \in \mu(T)$ and $\eta \in E_{T^+}$. Let ρ be a nontrivial element of the Galois group $G = \operatorname{Gal}(T/N)$. Then, as $\epsilon = \epsilon^{\rho}$, we see that $\zeta^{1-\rho} = \eta^{\rho-1} \in \mu(T) \cap E_{T^+}$. Hence, $\zeta^{1-\rho} = \pm 1$. However, as $N_{T/N}(\zeta^{1-\rho}) = 1$ and [T:N] is odd, the case $\zeta^{1-\rho} = -1$ does not happen. Hence, $\zeta^{1-\rho} = 1$ for all $\rho \in G$. It follows that $\zeta \in \mu(N)$ and hence $\eta \in E_{N^+}$. Therefore, we can regard \mathcal{E}_N as a subgroup of \mathcal{E}_T . In particular, Q_N divides Q_T .

Assume that $Q_N \neq Q_T$. Then we have $|\mathcal{E}_T| = |\mathcal{E}_T/\mathcal{E}_N| = 2$. Regarding \mathcal{E}_T as a module over G, we have a canonical decomposition

$$\mathcal{E}_T = \mathcal{E}_T/\mathcal{E}_N = \bigoplus_{\chi} \mathcal{E}_T(\chi)$$

where χ runs over a complete set of representatives of the Q_2 -conjugacy classes of the *nontrivial* \bar{Q}_2 -valued characters of G. Hence, $|\mathcal{E}_T(\chi)| = 2$ for some such χ . Let $\mathbf{Z}_2[\chi]$ be the subring of \bar{Q}_2 generated by the values of χ over \mathbf{Z}_2 . The group $\mathcal{E}_T(\chi)$ is naturally regarded as a module over the principal ideal domain $\mathbf{Z}_2[\chi]$. Since the order of χ is odd and ≥ 3 , we observe that $\mathbf{Z}_2[\chi] \cong \mathbf{Z}_2^d$ as \mathbf{Z}_2 -modules for some $d \geq 2$. Hence, $|\mathcal{E}_n(\chi)|$ is a multiple of 2^d , which contradicts $|\mathcal{E}_n(\chi)| = 2$. Therefore, we obtain $Q_N = Q_T$.

Proof of Proposition 2. By Lemma 4, we have $Q_{M_n} = Q_{M_{n-1}}$ and $Q_{L_n} = Q_{L_{n-1}}$ for all $n \ge 1$. Therefore, using the class number formula [9, Theorem 4.17], we see that

$$h_{M_n}^-/h_{M_{n-1}}^- = p \prod_{\varpi} \prod_{\psi_n} \left(-\frac{1}{2} B_{1,\varpi\,\psi_n} \right)$$

where ϖ runs over the odd Dirichlet characters associated to M_0 , and ψ_n over the even characters of conductor p^{n+1} and order p^n . Further, $B_{1,\varpi\psi_n}$ denotes the generalized Bernoulli number. We easily see that ϖ equals an odd Dirichlet character associated to K_0 or L_0 since M_0/K_0^+ is an imaginary biquadratic extension with the imaginary quadratic subextensions K_0 and L_0 . Hence, using the class number formulas for L_n , K_n and $Q_{L_n} = Q_{L_{n-1}}$, we obtain

$$h_{M_n}^-/h_{M_{n-1}}^- = h_n^*/h_{n-1}^* \times h_n^-/h_{n-1}^-.$$

Therefore, the assertion follows from Theorem 1.

References

- [1] P.E. Conner and J. Hurrelbrink: Class Number Parity, World Sci. Publishing, Singapore, 1988.
- [2] H. Hasse: Über die Klassenzahl abelscher Zahlkörper, reprint of the first edition, Springer, Berlin, 1985.
- [3] H. Ichimura and S. Nakajima: On the 2-part of the class numbers of cyclotomic fields of prime power conductors, J. Math. Soc. Japan 64 (2012), 317–342.
- [4] H. Ichimura: On the parity of the class number of an imaginary abelian field of conductor 2^a p^b, Arch. Math. (Basel) 96 (2011), 555–563.
- [5] W. Narkiewicz: Elementary and Analytic Theory of Algebraic Numbers, third edition, Springer, Berlin. 2004.
- [6] R. Schoof: Minus class groups of the fields of the 1th roots of unity, Math. Comp. 67 (1998), 1225–1245.
- [7] T. Tsuji: Semi-local units modulo cyclotomic units, J. Number Theory 78 (1999), 1–26.
- [8] L.C. Washington: The non-p-part of the class number in a cyclotomic Z_p-extension, Invent. Math. 49 (1978), 87–97.
- [9] L.C. Washington: Introduction to Cyclotomic Fields, second edition, Springer, New York, 1997.

Faculty of Science Ibaraki University Bunkyo 2-I-1, Mito, 310-8512 Japan