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Abstract
Let p be a fixed odd prime number ari¢, the p"*-st cyclotomic field. For a
fixed integerd € Z with +/d ¢ Ko, denote byL, the imaginary quadratic subexten-
sion of the biquadratic extensidfi,(+/d)/K with L, # K,. Let h* andh; be the
relative class numbers df, and Ly, respectively. We give an explicit constamg
depending onp andd such that (i) for any integem > ng, the ratioh,; /h,_, is odd
if and only if hj/h:_; is odd and (ii) for 1< n < ng, h,/h;_, is even.

1. Introduction

Let p be a fixed odd prime number. Lé{, = Q({p+1) be the p"tl-st cyclo-
tomic field for an integen > 0, andK, = [, Kn. Let d € Z be a fixed integer with
Vd ¢ Ko. We denote byl, the imaginary quadratic subextension of the biquadratic
extensionK,(+/d)/K;f with L, # K,. Here, K* denotes the maximal real subfield of
an imaginary abelian fiel&. Whend < 0, we haveL, = K/ (+/d). We call L, the
quadratic twist ofK,, associated to the integel. The extensionL., = |, L is the
cyclotomic Z ,-extension overlo with the n-th layer L,. We call L,./Lo the quad-
ratic twist of the cyclotomicZ ,-extensionK /Ko associated tal. Let h; and h; be
the relative class numbers &, and L,, respectively. It is known and easy to show
that h:_, (resp.h;_,) divides h;; (resp.h;y) using class field theory. The parity of
behaves rather irregularly whep varies (see a table in Schoof [6]). However, it is
recently shown that whemp < 509, the ratioh’/h:_, is odd for alln > 1 ([3, The-
orem 2]). And it might be possible that the ratio is odd for gmyme p and any
n > 1. The purpose of this paper is to study the parity of the rhfjgh,_, of the
quadratic twistL,. We already know thah; /h-_, is odd for sufficiently largen by
a theorem of Washington [8] on the ngmpart of the class number in a cyclotomic
Zy-extension. Denote bys = & the set of prime numberk # p which ramify in
Q(+/d)/Q. The setS is non-empty asv/d ¢ Ko. We define an integeng > 1 by

ng = max{ord,(I"*-1) |1 € S},
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where orgy(x) is the normalizedp-adic additive valuation. The following is the main
theorem of this paper.

Theorem 1. Under the above settinghe following assertions hold.
() When n> nq, the ratio I, /h;_; is odd if and only if f/h’_, is odd.
(1) When g > 2 and 1 < n < ng, the ratio Ij;/h-_, is even.

From Theorem 1 and [3, Theorem 2], we immediately obtain tilewing:

Corollary 1. Under the above settindet p be an odd prime number with ¢
509 Then the ratio t;p/h‘dfl is odd for all n> ng.

This corollary, though given in a very special setting, is explicit version of
the above mentioned theorem of Washington. In [4], we shoWkdorem 1 when
d=-1andL, = Kn+(«/—_1) using some results of cyclotomic lwasawa theory. In
this paper, we prove Theorem 1 by using a main theorem of Goamé Hurrelbrink
[1, Theorem 2.3].

REMARK. When p = 1 mod 4 (resp.p = 3 mod 4), we can show that two in-
tegersd; and d, give the same twist o,/Lo of K /Kq if and only if d, = dix? or
d, = pdix? (resp.d, = —pdyx?) for somex € Q*. Hence, the se§ and the integer
ng depend only on the twisk ,,/Lo and not on the choice af.

2. Exact hexagon of Conner and Hurrelbrink

In this section, we recall the exact hexagon of Conner andrethrink. Let k
be an imaginary abelian field with 2-power degree, @d real abelian field with
24[F:Q]. We putK =kF, and

G = Gal(K /k) = Gal(K " /k*) = Gal(F/Q).

For a number fieldN, let Ay be the 2-part of the ideal class group Mf Oy the ring
of integers, andEy = Oy the group of units ofN. The groupsAx and Ex are natur-
ally regarded as modules over G&l(K ™) and at the same time as those o@rFor a
Gal(K /K *)-module X, denote byH'(X) = H'(K /K *; X) the Tate cohomology group
with i = 0, 1. WhenX = Ax or Ex, the groupH'(X) is also regarded aG-modules.
In [1, Theorem 2.3], Conner and Hurrelbrink introduced tb#ofving exact hexagon
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of G-modules to study the 2-part of the class number of a relafiiedratic extension.
H(Ax) — H*(Ek)
ROK) RY(K)
HO(Ex) «—— H%(A«)

Here, R'(K) is a certainG-module associated t& /K* defined in [1]. We describe
the G-module structure ofR' (K) following [1]. Let T; be the set of prime idealp
of k™ for which a prime ideall3 of K* over g ramifies inK. Let T, be the set of
infinite prime divisors ofk™. We putT = Ty U T,. For eachv € T, let G, € G be
the decomposition group aof at K*/k*. Whenwv is an infinite prime, the grougs,
is trivial. We defineG-modulesQ¢ and ., by

Qi = P FaG/G,] and Q. = @ F2lG/G.] = €D F[Gl,

peTs vETA vET,

respectively, wherd=, = Z/2Z is the finite field with two elements. (Whem; is
empty, Q¢ = {0} by definition.) For each prime divisap of K* with the restriction
wi+ € T and an elemenk € (K*)*, we putt,(x) = 0 or 1 according ax € N(K

or not. Here,K,, is the completion oK at the unique prime divisor oK over w and
N = Nk/k+ is the norm map. Fog € G andx € (K*)*, we see that

Q) twa(X) = LG(xgil)

by local class field theory. For a prime ide@l of K+ with 3 Nkt € T;, let B be
the unique prime ideal oK overB. For an ideal?l of K, writing 2 = 8 with an
integere and an idealB relatively prime toi%, we put orgz(A) = e.

We denote byl (K) the group of (fractional) ideals oK. Let X be the subgroup
of 1(K) consisting of ideal€l with 21’ = 2. Here, J is the complex conjugation acting
on several objects associated Ko Let Xy be the subgroup oKX consisting of ideals
2 € 1 (K) with 2 = xB'"? for somex € (K+)* andB € | (K). The G-module RY(K)
is isomorphic to the quotienX/Xy. For this, see the lines 1-2 from the bottom of
p.6 and Lemma 2.1 of [1]. For each prime idgale T¢, we fix a prime ideal} of
K* over p. From the argument in [1, 85], we obtain the following isoptuism of
G-modules:

2) RY(K) = Qr: AXo — P (Z ordng(ﬁ)g),
g

KJETf

where g (with g € G) runs over the quotienG/G,,.
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Let Y be the subgroup of the multiplicative grouki {)* x I (K) consisting of pairs
(x,20) with x2*9 = O . Let Y, be the subgroup of consisting of pairsi(y),y 181 Y)
with y € K>* andB € | (K). By definition, R%(K) = Y/Y,. We denote by, 2] € RO(K)
the class containingx( 2(). The mapio in the hexagon is defined by

io: HO(Ek) = Ex+/N(Ex) — RU(K); [e] — [e, Ok]

with € € Ex+. For eachv € T, we fix a prime divisors of K+ over v. Using (1),
we observe that the homomorphisms

veTy, \geG

Uoo: (KT > Q0; X — @ (Z ng(x)g)

and

ar: (K> Qi x—> @ [ D pe()g
gJETf g
are compatible with the action @. Further,a., is nothing but the “sign” map. From
the argument in [1, 84], we obtain the following exact seqeenf G-modules:

3) {0} = RUK) S Qr @ Qo B Fu — {0).

Here, « is defined bya([x, 2(]) = (at(X), (X)), B is the argumentation map ar@
acts trivially onF.

3. Consequences

In this section, we derive some consequences of the exaelgbexand (2), (3).
All of them are G-decomposed versions of the corresponding results in [H. wrk
under the setting of Section 2. Denote By the 2-part of the narrow class group
of K*. Letting K, be the group of totally positive elements Kf*, we have an ex-
act sequence

(4) {0} — (K*)* /(K Ek+) — Ac+ — A+ — {0}

of G-modules. We define the minus class grodp to be the kernel of the norm map
Ak — Ax:. Let x be aQ,-valued character o6 = Gal(K /k) = Gal(F/Q), which
we also regard as a primitive Dirichlet character. For a nedd over Z;[G], we
denote byM(x) the x-part of M. Here, Z, is the ring of 2-adic integers an@, is a
fixed algebraic closure of the 2-adic ration&s. (For the definition of the¢-part and
some of its properties, see Tsuji [7, §2].) Denote3rythe set of prime numbers lying
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below some prime ideal iff¢. In all what follows, we assume that is a nontrivial
character. The following is a version of [1, Theorem 13.8].

Theorem 2. Under the above settinghe groups H(K/K*; Ax)(x) with i =0
and 1 are trivial if and only if
i x(h#1Llforalll e & and
(i) A0l = 1Ak G-

The following corollary is a version of [1, Corollary 13.1@hd Hasse [2, Satz 45].

Corollary 2. Under the above settinghe group A (x) is trivial if and only if

i) x()#121foralll e S and
(i) Ax+(x) is trivial.

Let hy be the class number in the narrow sense of a number fieldVhen M
is an imaginary abelian field, lét, be the relative class number &. We can easily
show thath, (resp.hy:) divides hy (resp.hk+) using class field theory. The following
is an immediate consequence of Corollary 2.

Corollary 3. Under the above settinghe ratio Iy /h, is odd if and only if
(i) no prime number | in g splits in F and

(i) hg+/he is odd.

To prove these assertions, we prepare the following two lasanfor a number
field L, let u(L) be the group of roots of unity i and uy(L) the 2-part ofu(L).

Lemma 1. The group H(K/K™*; Ex)(x) is trivial.

Proof. LetyEk be the group of unitg € Ex with N(¢) = ¢**J = 1. We have
N(e) =1 if and only if ¢ € u(K) by a theorem on units of a CM-field (cf. Washington
[9, Theorem 4.12]). Since(K)? = u(K)? € EXJ, we obtain a surjection

u(K)/i(K)? = HYK/K": Ex) = NEx/EZ
of G-modules. However, asK[ : k] is odd, we have
1(K)/1(K)? = pa(K)/1a(K)? = pa(k)/pma(k)?.

Since x is nontrivial, the x-part (u2(k)/u2(K)?)(x) is trivial. Hence, we obtain the
assertion. O

Lemma 2. The natural map A+(x) — Ax(x) is injective.



568 H. ICHIMURA

Proof. Denote the natural mafix+ — Ax by t. Let 2 be an ideal ofK* with
the class ] € ker.. Then20x = xOk for somex € K*. We see that = x'J is a
unit of K with N(¢) = 1. It is known that the map

kert — HY(K/K™: Ex): [] — x*YEL?

is an injective G-homomorphism ([1, Theorem 7.1]). Then, from Lemma 1, we see
that the x-part (ker))(x) is trivial, from which we obtain the assertion. O

Proof of Theorem 2. Lep be a prime ideal irl¢, andl = p NQ € Sc. We see
that the x-part Fo[G/G,](x) # {0} if and only if x factors throughG/G,,, which is
equivalent tox (G,,) = {1}. Since k™ : Q] is a 2-power and If : Q] is odd, we have
x(G,) = {1} if and only if x(I) = 1. Hence, we have shown that the condition (i) in
Theorem 2 is equivalent to the conditi& (x) = {0}. By the hexagon and Lemma 1,
we see thatH°(Ax)(x) and HY(Ax)(x) are trivial if and only if (i) RY(K)(x) = {0}
and (iv) the map

io: H(Ek)(x) = (Ex+/N(Ex))(x) = RUK)(x)

is an isomorphism. By (2) and the above, the condition (§ieguivalent to (i). Under
the condition (i), we see thaR°(K)(x) = Q4 (x) from the exact sequence (3), and
that for each classe] € HY(Ek)(x) with € € Ex+, we haveig([¢]) = au(€) from
the definitions of the mapg and «. Further, the 2-rank of2..(x) is larger than or
equal to that ofH?(Ex)(x) by a theorem of Minkowski on units of a Galois extension
(cf. Narkiewicz [5, Theorem 3.26]). Therefore, under (i)e whserve that the condi-
tion (iv) holds if and only ifas(Ex+)(x) = Q(x). We see that the last condition
is equivalent to the condition (ii) in Theorem 2 because @&f éxact sequence (4) and
Ao ((KT)) (%) = Quo(x). Therefore, we obtain Theorem 2. ]

Proof of Corollary 2. First, we show the “only if” part assungithat A (x) is
trivial. By Lemma 2, we can regard+(x) as a subgroup oA (x). Assume that
Ax+(x) is nontrivial. Then there exists a classs Ax+(x) of order 2. We have’ =
c = c}, and hencec € Ag(x). It follows that Ax(x) is nontrivial, a contradiction.
Hence, Ax+(x) = {0}. It follows that Ak (x) is trivial by the exact sequence

(0} > AZ(x) = Ak(x) == Ax:(x) — {0},

Therefore, the “only if” part follows from Theorem 2. Nextssume that the condi-
tions (i) and (ii) in Corollary 2 are satisfied. Thed\+(x) = {0}, and the groups
H'(Ak)(x) (i =0, 1) are trivial by Theorem 2. As the cohomology groups aiséaty
we obtain an exact sequence

(0} > A () = Ak(x) —> AL (x) = Ag(x) — (0.
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Since Ak+(x) = {0}, we see thatAx (x) = Ax(x), and

AL () = A0 = Ax(x)?

from the above exact sequence. Therefdkg(x) is trivial. O

4. Proof of Theorem 1

We use the same notation as in Section 1. In particdas,Z is a fixed integer
with +/d ¢ Ko and L, is the quadratic twist oK, associated tal. We havel; = K.
Let k (resp.ky) be the maximal intermediate field d€y/Q (resp.Lo/Q) of 2-power
degree, and lef, be the maximal subfield oK = L/ of odd degree ove®. Then
k and kg are imaginary abelian fields witkt = kj. Let B,/Q be the real abelian
field with conductorp™! and B, : Q] = p". We put F, = FoB,,. Then L, = kyFy
and K, = kF,. The triples kg, Fn, L) and k, F,, K,) correspond to i, F, K) in
Sections 2 and 3. We see that

(5) S, =% or SU{p
and S, = {p}. We put

Gn = Gal(Fn/Q) = Gal(Ln/kq) = Gal(Kn/K),
and

A = Gal(Fo/Q), TI'h = Gal(F,/Fo) = Gal(Bn/Q).

Then we have a natural decompositi@) = A x I',. For charactergp and ¢ of A
and I',, respectively, we regar¢hyy = ¢ x ¢ as a character o6,. Further, we regard
@, ¥ and gy also as primitive Dirichlet characters. The class grodgs, Ay and
AK; are modules oveG,. We can naturally regaré_ as a subgroup of\_ since

Ln/Ln-1 is a cyclic extension of degrep # 2 and A{  is the 2-part of the class
group. Actually, it is a direct summand & (cf. [9, Lemma 16.15]). We see that

®) AL/AL, = D AL (pvn)
©,Yn

where ¢ (resp. ¥,) runs over a complete set of representatives of @econjugacy
classes of theQ,-valued characters oA (resp.T, of order p"). RegardingAy | as
a subgroup ofAy , we have a similar decomposition fok /A, . As S, = {p}
and @vn)(p) = 0, we obtain the following assertion from Corollary 2 for thiple
(k, Fn, Kp).

Lemma 3. Let n> 1 be an integerand the characterg and v, be as in(6).
Then A (¢vn) = (0} if and only if A (¢yn) = (0).
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Proof of Theorem 1 (I). Let and vy, be as in (6). As the orders @f and v,
are relatively prime to each other, we haye/{)(I) =1 if and only if (1) = yn() =1
for a prime numbet. Let n be an integer witm > ny. Then we have/,(l) # 1 and
hence ¢vy)(1) # 1 for all prime numberd € S= ;. Further, we havedy,)(p) = O.
Hence, by (5), the condition (i) in Corollary 2 for the trip(ky, Fn, L) is satisfied.
It follows that the conditionA_ (¢¥n) = {0} is equivalent toAK;(wpn) = {0}. (Note
that L7 = K;I.) Therefore, we obtain Theorem 1(I) from Lemma 3. O

To show Theorem 1 (Il), assume that > 2 and letn be an integer with K n <
nqg. We put

SV ={leS=S|ordy(IPt~1)>n+1}.
From the definition, we see that
SD s ) @) D...D gna—1)

and that eacts™ is non-empty. Lety (resp.y,) be aQ,-valued character ok (resp. of
I, of order p"). Denote bygg the trivial character ofA. Theorem 1 (ll) is a conse-
guence of the following assertion.

Proposition 1. Under the above settinghe following hold.
(I) The class group A(eyn) is nontrivial if ¢(I) = 1 for some le S, In particular,
AL (goym) is nontrivial.
(1) 1f Ag (¢yn) = {0}, the converse of the first assertion (@j holds.

Proof. Applying Corollary 2 for the triplekg, F,,L,), we see from Lemma 3 that
AL (¢¥nm) = {0} if and only if (i) (py¥n)(I) # 1 for alll € S= & and (i) Ag (¢¥n) =
{0}. We havey,(I) =1 forl € S™, andy,(1) # 1 for | € S\ S™. Therefore, we see
that the condition (i) is satisfied if and only §(l) # 1 for all | € S™ noting that the
orders ofgp and v, are relatively prime. From this, we obtain the proposition. []

We put M, = K,(+/d) = K,L,. On the relative class numbér, of My, the
following assertion holds.

Proposition 2. (I) When n> ng, the ratio iy, /hy,  is odd if and only if fj/h7_;
is odd.
(1) Whenn =2 and1=<n<ng, hy /hy  is even.

To prove this proposition, we need to show the following lemrfror an imaginary
abelian fieldN, we put

En = En/(N)En+.

It is well known that the unit indexQn = |En| is 1 or 2 ([9, Theorem 4.12]).
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Lemma 4. Let T and N be imaginary abelian fields with N T. If the degree
[T : N] is odd then @Qr = Qn.

Proof. We first show that the inclusion mdp — T induces an injectiorfy —
Et. For a unite of N, assume that = ¢n for some¢ € u(T) andn € Er+. Let p
be a nontrivial element of the Galois grop = Gal(T /N). Then, ase = ¢, we see
that¢'* = n°t € u(T) N Er+. Hence, ;' # = +£1. However, asNt,n(¢1 ) = 1 and
[T : N]is odd, the cas¢'” = —1 does not happen. Hencgt» =1 for all p € G. It
follows that¢ € u(N) and hence) € En+. Therefore, we can rega@y as a subgroup
of &r. In particular, Qn divides Q.

Assume thatQy # Qt. Then we haveér| = |E7/En| = 2. Regardingét as a
module overG, we have a canonical decomposition

Er=&r/En =P Er(n)

X

where x runs over a complete set of representatives of @econjugacy classes of
the nontrivial Q,-valued characters o&. Hence,|E1(x)| = 2 for some suchy. Let
Z[x] be the subring ofQ, generated by the values gf over Z,. The group&r(x) is
naturally regarded as a module over the principal ideal dordalx]. Since the order
of x is odd and> 3, we observe thaZ,[x] =~ 2‘2j as Z,-modules for somedl > 2.
Hence,|Eq(x)| is a multiple of 2, which contradictyE,(x)| = 2. Therefore, we obtain

Qn = Q. O

Proof of Proposition 2. By Lemma 4, we ha@u, = Qwm,, and Q., = Q. ,
for all n> 1. Therefore, using the class number formula [9, Theorem]4vie see that

b, /.. = PTTT1 (—% Bl,w%)

@ Yy

wherew runs over the odd Dirichlet characters associatetfgo and v, over the even
characters of conductop"*! and orderp". Further, By, denotes the generalized
Bernoulli number. We easily see that equals an odd Dirichlet character associated
to Ko or Lo since Mg/K is an imaginary biquadratic extension with the imaginary
quadratic subextensionsy and Lo. Hence, using the class number formulas Kgy,
Kn and Q., = Q., ,, we obtain

b, /Nw,, = /by g x hy/hy .

Therefore, the assertion follows from Theorem 1. O
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