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SINGULAR Q-HOMOLOGY PLANES OF
NEGATIVE KODAIRA DIMENSION HAVE SMOOTH LOCUS OF

NON-GENERAL TYPE
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Abstract
We show that if a normalQ-acyclic complex surface has negative Kodaira dimen-

sion then its smooth locus is not of general type. This generalizes an earlier result
of Koras–Russell for contractible surfaces.
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1. Main result

We work in the category of complex algebraic varieties. We continue the program of
classification ofQ-homology planes. A normal surfaceS0 is called aQ-homology plane
if its rational cohomology is the same as that of the affine planeC2, i.e. H�(S0,Q) � Q.
Properties of these surfaces have been analyzed for a long time, motivations come from
studies on the cancellation conjecture of Zariski, on the two-dimensional Jacobian con-
jecture, on quotients of actions of reductive groups on affine spaces or on exoticCn’s.
For a review in the smooth case see [16, §3.4] and in the singular case [21]. Here
we study singularQ-homology planes. The basic invariants ofS0 are the (logarithmic)
Kodaira dimensionN�(S0) and the (logarithmic) Kodaira dimension of the smooth locus
S0, N�(S0). They take values in{�1, 0, 1, 2} and satisfy the inequalityN�(S0) � N�(S0) (see
[9] for the definition and properties of the logarithmic Kodaira dimensionN�). The classi-
fication of singularQ-homology planes with smooth locus of non-general type, i.e. with
N�(S0) � 1, built on work of many authors, has been completed by the first author in
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[23] and [22]. We therefore concentrate on the case when the smooth locus is a surface
of general type. While a priori there is no bound on the Kodaira dimension ofS0, we
show that it is necessarily non-negative. Formulating it inanother way we obtain the
following result.

Theorem 1.1. SingularQ-homology planes of negative Kodaira dimension have
smooth locus of non-general type.

The theorem is a generalization of a result of Koras–Russell[13] on contractible sur-
faces and their earlier analysis of quotients of smooth contractible threefolds by hyper-
bolic actions ofC�, which was a crucial step in the proof of linearizability ofC�-actions
(and hence actions of connected reductive groups) onC

3, see [12].
It follows from the logarithmic Bogomolov–Miyaoka–Yau inequality proved by

Kobayashi [10] that ifS0 is a Q-homology plane withN�(S0) D 2 then S0 has only
one singular point and this point is of analytical typeC2

=G for some finite subgroup
G < GL(2,C) (see for example [23, 3.3]). By a theorem of Pradeep–Shastri [24] S0

is rational. SingularQ-homology planes of this type do exist (see for example [17,
Theorem 1]). Even with these results in hand the proof of the theorem is long. This
is mainly due to the lack of structure theorems for surfaces of (log-) general type.
We assume, a contrario, thatN�(S0) D �1 and N�(S0) D 2 and we analyze the conse-
quences. We use methods developed by Koras and Russell in [13], a significant part
of which can be adapted to our situation, where we do not have the assumption that
S0 is contractible. The result for contractible surfaces is recovered as a special case.
The final contradiction is obtained in a series of steps restricting more and more the
possible geometry and derived numerical properties of the boundary and of the excep-
tional divisor of the resolution.

We now give a more detailed overview. In Section 3 we describehomological and
geometric properties of aQ-homology planeS0, of its minimal resolutionS and its
smooth locusS0. Basic properties of the snc-minimal boundaryD, the exceptional div-
isor OE of the minimal resolution and of the logarithmic canonical divisor K C DC

OE,
where K is a canonical divisor on a minimal smooth completion (NS, DC OE) of S0, are
derived. In particular, OE and D are connected trees andOE has at most one branch-
ing component. In the whole paper the fact thatS0 does not contain curves which are
topologically contractible is essential. By an inequalityof Miyaoka [15] the number�
defined by (K C D C

OE)2
D �1� � is non-negative. A major step is Proposition 4.2,

where we show that except one case the inequalityK � E C 2� � 5 holds. This gives
strong bounds onK �E and� and allows us to list possible dual graphs ofOE (see Prop-
osition 4.6). We decompose the divisorOE as OE D EC1, where1 consists of external
(�2)-curves of OE. The assumptionN�(S0)D �1 is used to find an affine ruling ofS for
which 1 is contained in fibers. Next it is proved in Section 5 that ifE is irreducible
then the process of resolving the base point of this ruling onNS can be well controlled.



SINGULAR Q-HOMOLOGY PLANES 63

The second step (Section 6) is to show that the boundaryD has only one branching
component. This leads to a precise description of the Fujita–Zariski decomposition of
K C DC

OE. The third step is done in Section 7, where it is proved that modifying S0

by including the branching component ofD does not decrease the Kodaira dimension,
i.e. the new surface is still of general type. This takes considerable amount of work,
but then applying the logarithmic Bogomolov–Miyaoka–Yau inequality limits possible
shapes of OE to four cases (see Corollary 7.7). These are finally excludedin Section 8
by analyzing properties of the affine ruling ofSn1. In Sections 7 and 8 we need to
support our analysis by referring to results of computer programs.

Let us mention that the complete counterparts of smoothQ-homology planes are
complex surfaces with rational cohomology ofP2, called fake projective planes(they
are algebraic by [1, V.1.1]). The smooth ones are well understood, for example it has
been shown recently in [3] that there are exactly 100 of them up to biholomorphism,
hence up to algebraic isomorphism. For recent results on singularQ-homology project-
ive planes see for example [8].

2. Notation and preliminaries

We use standard notions and notation of the theory of open algebraic surfaces, we
recall some of them. The reader is referred to [16] for a detailed treatment as well as
for basic theorems of the theory. We denote the linear and numerical equivalences of
divisors by� and� respectively.

Let T be a divisor with simple normal crossings on a smooth complete surface.
We write -T for the reduced divisor with the same support and #T for the number of
irreducible components of-T . If U is a component ofT then �T (U ) D U � (-T �U ) is
called thebranching number of U in Tand anyU with �T � 3 is called abranching
componentof T . If T is reduced and its dual graph contains no loops then we say that
T is a forest, it is a tree if it is connected. A component with�T � 1 is called atip of
T . The dual graph ofT is weighted, the weights of vertices are the self-intersections
of the corresponding components ofT . We define the discriminantd(T) as equal to 1
if T D ; and as the determinant of the minus intersection matrix ofT otherwise. By
elementary expansion properties of determinants we have:

Lemma 2.1. Let C be a component of a rational tree R, let R1, : : : , Rk be the
connected components of R� C. Let Ci be the irreducible component of Ri meeting
C. Then

d(R) D �C2
Y

i

d(Ri ) �
X

i

d(Ri � Ci )
Y

j¤i

d(Rj ).

SupposeT is a (reduced) rational chain, i.e. it can be written asT D T1C� � �CTn,
where Ti � P

1, �T (Ti ) � 2 and Ti � TiC1 D 1 for i D 1, : : : , n � 1. There are at most
two choices of the first component of a chain, each defines a linear order on the set
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of its components. We writeT D [�T2
1 , : : : ,�T2

n ] and by T t we mean the same chain
considered with an opposite ordering (there is only one ordering if n D 1). We define
d0(T) D d(T � T1) and we putd0(;) D 0. In caseT2

1 D � � � D T2
n D �2 we write

T D [(n)]. We call T admissibleif T2
i � �2 for eachi . If d(T) ¤ 0 we define

Æ(T) D
1

d(T)
, e(T) D

d0(T)

d(T)
and Qe(T) D e(T t ).

SupposeT is a tree with exactly one branching componentT0. Then T is called a
wide fork and is calleda fork if �T (T0) D 3. The fork T is admissibleif it is rational,
the three connected components ofT � T0 are admissible chains and the intersection
matrix of T is negative definite. Admissible chains and forks are exactly the excep-
tional snc-divisors of minimal resolutions of quotient singular points. A singular point
on a surface is of quotient type if and only if locally analytically it is isomorphic to
the singular point ofC2

=G for some finite subgroupG < GL(2,C).
A normal pair (X, D) consists of a complete normal surfaceX and a reduced

simple normal crossing divisorD, whose support is contained in the smooth locus of
X. If X is smooth then (X, D) is a smooth pair. An n-curve is a smooth rational
curve with self-intersectionn. If D contains no non-branching (�1)-curves then the
pair (X, D) is snc-minimal. If X0 is a normal (smooth) surface then any normal pair
(X,D), such thatXnD D X0 is called anormal (smooth) completionof X0. If ( X,D) is
a normal pair then a blow-up ofX with centerc 2 D is called sprouting (subdivisional)
for D if c belongs to exactly one (two) irreducible component ofD.

Let (X, D) be a smooth pair. Denote the canonical divisor onX by KX. If � W Y !
X is a blow-up we denote its exceptional divisor by Exc� , the total transform, the re-
duced total transform and the proper transform ofD by � �D, ��1D, � 0D respectively.
We need the following easy observations.

Lemma 2.2. Let (X, D) be a smooth pair and let� W Y ! X be a blow-up.
(i) If A, B are divisors on X then A� B D �

0A � � �B D �

�A � � �B.
(ii) If � is sprouting for D or if DD 0 then � �(KX C D) D KY C �

�1D �Exc� and

KX � (KX C D) D KY � (KY C �

�1D)C 1.

(iii) If � is subdivisional for D then� �(KX C D) D KY C �

�1D and

KX � (KX C D) D KY � (KY C �

�1D).

To compute the negative part of the Zariski–Fujita decomposition of the logarith-
mic canonical divisorKX C D it is useful to compute thebark of D (Bk D). Barks
are defined independently for all connected components ofD, so in what follows we
will assume thatD is connected. IfD is an admissible chain or an admissible fork we
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define BkD as a uniqueQ-divisor with support in SuppD satisfying

(KX C D � Bk D) � Di D 0

for each componentDi of D. If D D T D T1 C � � � C Tn is an admissible chain then
it is also convenient to define a ‘one-sided bark’Bk(T, T1) with support contained in
SuppT by

Ti � Bk(T, T1) D �Æi ,1

(Kronecker’s delta). If in the last case the choice ofT1 is clear from the context we
write Bk0 T for Bk(T, T1). Clearly, BkT D Bk(T, T1)C Bk(T, Tn).

To define the bark in general we need some additional notions.SupposeD is not
a chain. A chainT � D is a twig of D if �D � 2 for all components ofT and�D D 1
for some (unique in fact) component ofT . If T is a twig of D then by adefault order-
ing of T we mean the one in which the tip ofD contained inT is the first component
(T1) of T . Analogously, ifD is not an admissible chain (it may or may not be a chain)
we define admissible twigs and maximal admissible twigs ofD.

Suppose nowD is neither an admissible chain nor an admissible fork. LetR1,:::, Rs

be all the maximal admissible twigs ofD. We define

Bk D D Bk0 R1 C � � � C Bk0 Rs.

We put D#
D D � Bk D,

Æ(D) D
s
X

iD1

Æ(Ri ), e(D) D
s
X

iD1

e(Ri ) and Qe(D) D
s
X

iD1

Qe(Ri ).

We will need the following properties of barks, most of whichfollow by a straightfor-
ward calculation (cf. [16, §2.3]).

Lemma 2.3. Let T D T1 C � � � C Tn be an admissible chain, write Bk0 T D

Pn
iD1 m0

i Ti and Bk T D

Pn
iD1 mi Ti , then:

(i) d0(T) � d(T) � 1, e(T) D (�T2
1 � e(T � T1))�1, Æ(T) � e(T) � 1� Æ(T),

(ii) m0

i D d(TiC1 C � � � C Tn)=d(T),
(iii) 0 < m0

i < 1 and 0 < mi � 1 (in particular Supp Bk0 T D Supp BkT D SuppT).
Moreover, if mi D 1 for some i then TD [2, 2, : : : , 2] and mi D 1 for each i,
(iv) Bk02 T D �e(T) and

Bk2 T D �e(T) � Qe(T) � 2Æ(T) D �

d0(T)C d0(T t )C 2

d(T)
� �2.

REMARK . The formulae(T)D (�T2
1 �e(T�T1))�1 shows that knowinge(T) one

can recoverT in terms of continued fractions.
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Lemma 2.4. Let F D B C R1 C R2 C R3 be an admissible fork with maximal
twigs Ri . Write Bk F D

Pn
iD1 mi Fi , where Fi are the irreducible components of F.

Then:
(i) 0 < mi � 1 (in particular Supp BkF D SuppF). Moreover, if mi D 1 for some i
then F consists of(�2)-curves and mi D 1 for each i,
(ii) (d(R1), d(R2), d(R3)) is one of the Platonic triples: (2, 3, 3), (2, 3, 4), (2, 3, 5)or
(2, 2,k) for some k� 2,
(iii) 1 < Æ(F) � Qe(F) < 2� �B2,
(iv) d(F) D d(R1)d(R2)d(R3)(�B2

� Qe(F)),
(v) Bk2 F D �(Æ(F) � 1)2(�B2

� Qe(F))�1
� e(F) < �e(F) < �1.

REMARK 2.5. Note that sinceQe(T) C Æ(T) � 1 (and e(T) C Æ(T) � 1 too) for
an admissible chainT , we have Bk2 T D �2 if and only if T consists of (�2)-curves.
Then for an admissible forkF we get by Lemma 2.4 (iii) thatÆ(F) C Qe(F) � 3 �
1� B2, so � Bk2 F � Æ(F) � 1C e(F) � 2 and again the equality occurs if and only
if F consists of (�2)-curves (is a (�2)-fork).

Lemma 2.6. For every d> 2 there exist at least two admissible chains with dis-
criminant d: [d] and [(d � 1)]. Here is a full list of all other admissible chains for
d � 11:
d D 5: [3, 2],
d D 7: [4, 2], [3, (2)],
d D 8: [3, 3], [2, 3, 2],
d D 9: [5, 2], [3, (3)],
d D 10: [4, (2)],
d D 11: [6, 2], [4, 3], [3, (4)], [2, 3, (2)].

A P

1-ruling of a complete normal surface is a surjective morphism of the surface
onto a smooth curve, for which general fibers are isomorphic to P1. Let (X, D) be
a smooth pair and letp W X ! P

1 be aP1-ruling. The multiplicity of an irreducible
componentL of a fiber will be denoted by�(L). The horizontal partDh of D is
defined as an effective divisor with support in SuppD, such thatD�Dh is effective and
intersects trivially with fibers. A horizontal irreduciblecurveC is called ann-section of
p (or simply ‘section’ if n D 1) if C � F D n for any fiber F of p. The components of
any fiberF are eitherD-components (the ones contained inD) or (X�D)-components.
We denote the number of (X�D)-components ofF by � (F), by � the number of fibers
with � D 0 (which are contained inD) and by6X�D the sum of numbers (� (F)� 1)
taken over the set of fibers not contained inD. Of course, for a general fiber� D 1.
Put h D #Dh. The basic observation is that if one contracts a vertical (�1)-curve and
simultaneously changes (X, D) for its image then the numbersb2(X)� b2(D)�6 C �
andh do not change. So since for aP1-bundle over a smooth complete curveb2(D) D
hC �, b2(X) D 2 and6 D 0, we get the following relation (cf. [5, 4.16]).
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Proposition 2.7. If (X, D) is a smooth pair then for anyP1-ruling of X

6X�D D hC � � 2C b2(X) � b2(D).

Any 0-curve on a smooth surface induces aP1-ruling with this curve as one of the
fibers (see [1, V.4.3]). The structure of singular fibers of such rulings is well known
(we will mostly rely on properties listed in [23, 2.10]).

DEFINITION 2.8. A rational ruling of a surface is a surjective morphism of the
surface onto a smooth curve, for which general fibers are rational curves. Ifp0W X0 !

B0 is a rational ruling of a normal surface then by acompletion of p0 we mean a triple
(X, D, p), where (X, D) is a normal completion ofX0 and pW X ! B is an extension
of p0 to a P1-ruling with B being a smooth completion ofB0. We say thatp is a
minimal completion of p0 if p does not dominate any other completion ofp0.

If p is a minimal completion ofp0 then every vertical (�1)-curve contained inD
intersects at least three other components ofD.

We recall the notion of Hamburger–Noether pairs. For details see [25] and [12,
Appendix].

DEFINITION 2.9. Suppose we are given an irreducible germ of a singular ana-
lytic curve (�1, q1) on a smooth algebraic surface and a curveC1 passing throughq1,
smooth atq1. Put c1 D (C1 ��1)q1 and choose a local coordinatey1 at q1 in such a way
that Y1 D {y1 D 0} is transversal toC1 at q1 and p1 D (Y1 ��1)q1 is not bigger thanc1.
Blow up over q1 until the proper transform�2 of �1 meets the reduced total inverse
image F1 of C1 in a point q2, which does not belong to components ofF1 other than
the unique exceptional componentC2 of -F1 � C1. We then say thatC2 (and F1) is

produced from C1 by the pair
�c1

p1

�

. Put c2 D (C2 � �2)q2. We repeat this procedure and
we define successively (�i , qi ) and Ci until �hC1 is smooth for someh � 1. Then we
refer to the sequence

�c1

p1

�

,
�c2

p2

�

, : : : ,
�ch

ph

�

as the sequence ofHamburger–Noether pairs

(or characteristic pairsfor short) of the resolution of(�1, q1) or the sequence ofchar-
acteristic pairs of F, where F is the (reduced) total transform ofC1. It is convenient
to extend the definition to the case when (�1, q1) is smooth by defining its sequence
of characteristic pairs to be

�1
0

�

.

The conventionci � pi seems artificial, but will be useful in our situation. Note
also that the definitions make sense for (�1, q1) reducible, as long as each blow-up
(except possibly the last one) leaves irreducible branchesof �1 unsplitted, so that the
center of the succeeding blow-up is uniquely determined.
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Lemma 2.10. Assume that the sequence of blow-ups(� j ) j2I i , leading from(�i ,qi )
to (�iC1,qiC1) is described as above by the characteristic pair

�ci

pi

�

. Let� j be the multi-
plicity of the center of� j . Then we have:
(i) ciC1 D gcd(ci , pi ),
(ii)

P

I i
� j D ci C pi � gcd(ci , pi ),

(iii)
P

I i
�

2
j D ci pi .

Proof. The formulas hold in caseci D pi . If ci > pi then perform the first blow-
up and note that the remaining part of the sequence (� j ) j2I i is described by

�ci�pi

pi

�

in

caseci � pi � pi or by
� pi

ci�pi

�

otherwise. The multiplicity of the first center isp. Now

the result follows by induction on max(ci , pi ).

Consider a fiberF of a P1-ruling of some smooth complete surface, such thatF
contains at most one (�1)-curve. SupposeU is a component ofF with �F (U ) D 1.
There is a uniquely determined sequence of contractions of (�1)-curves inF and its
subsequent images which makesF a smooth 0-curve and does not contractU . The
reverting sequence of blow-ups orders naturally the set of components ofF in order
they are produced. LetB1, : : : , Bk be the branching components ofF ordered as de-
scribed. We call the chain consisting ofU , the components produced beforeB1 and
of B1 the first branch of F, the chain consisting of components produced afterB1 but
before B2 and of B2 the second branch of F, etc. The (kC 1)-st branchis a chain of
components produced afterBk.

DEFINITION 2.11. Let F andU be as above. Denote the birational transform of
U after contractions (the image ofF) by the same letter. IfF is singular letL be
the (�1)-curve of F . For someq 2 L let (� , q) be an irreducible germ of a smooth
analytic curve intersectingL transversally atq. Denote its image after contractions by
(�1,q1). Then the sequence of characteristic pairs of the resolution of (�1,q1) produces
L (and F) from U (cf. Definition 2.9). If the choice ofU is clear from the context
we refer to this sequence asthe sequence of characteristic pairs of F.

Note that by definition if
�ci

pi

�

, i D 1,: : : ,h is the sequence of characteristic pairs of
F then gcd(ch, ph) D 1 and the last curve produced by the sequence (the unique (�1)-
curve in caseF is singular) has multiplicityc1. As in Definition 2.9 the sequence of
characteristic pairs of a smooth fiber is

�c1

p1

�

D

�1
0

�

.

EXAMPLE 2.12. Consider aP1-ruling of some complete surface. Let the nota-
tion be as above. Let

F D An C � � � C A1 C L C B1 C � � � C Bm
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be a non-branched singular fiber with a unique (�1)-curve L. Only the tips ofF , An

and Bm, have multiplicity one.F is produced fromAn by one characteristic pair, call
it
�c

p

�

(we have gcd(c, p) D (� � L)q D 1). The algorithm to recoverF when
�c

p

�

is
known reduces to some simple observations. LetC1 be the birational transform ofAn

after the contraction of the remaining components of the fiber. We havecD (C1 ��1)q1

and p D (Y1 � �1)q1. Consider a blow-up atq1, let E be the exceptional curve and
let (� 0, q0), q0 2 E be the proper transform of (�1, q1). If c D p then q0 does not
belong toC1 C Y1 and we are done. Ifc > p then q0 2 C1, (C1 � �

0)q0 D c � p and
(E � � 0)q0 D p. In casec� p � p we continue with the pair

�c�p
p

�

and with (C1, E, � 0)

replacing (C1, Y1, �1). In casec � p < p we continue with the pair
� p

c�p

�

and with

(E, C1, � 0) replacing (C1, Y1, �1). Put AD An C � � � C A1. One proves that

cD d(A) and p D d0(A).

Here are some examples. IfF D [k, 1, (k � 1)] then
�c

p

�

D

�k
1

�

. If F D [(k � 1), 1,k]

then
�c

p

�

D

� k
k�1

�

. If F D [5, 3, 1, 2, 3, (3)] then
�c

p

�

D

�14
3

�

.

Lemma 2.13. Let A and B beQ-divisors on a smooth complete surface, such
that the intersection matrix of B is negative definite and A� Bi � 0 for each irreducible
component Bi of B. Denote the integral part of aQ-divisor by [ ] .
(i) If AC B is effective then A is effective.
(ii) If n 2 N and n(AC B) is a Z-divisor then h0(n(AC B)) D h0([n A]).

Proof. See Lemma 2.2 [23].

For a divisorD on a smooth complete surfaceX we define the arithmetic genus of
D by pa(D) D (1=2)D � (KXCD)C1. We havepa(D1CD2) D pa(D1)C pa(D2)CD1 �

D2�1. One shows by induction that ifD is a rational reduced snc-tree thenpa(D)D 0.
For the notion and properties of the Kodaira dimension of a divisor see [9].

Lemma 2.14. Let D be an effective divisor on a complete smooth rational sur-
face X.
(i) We have h0(KX C D)C h0(�D) � pa(D). If jKX C Dj D ; then -D is a rational
snc-forest and if moreover DD D1C D2 with pa(D1) D pa(D2) D 0 then D1 � D2 � 1.
(ii) If D has smooth rational components and X in neither a Hirzebruch surface nor
P

2 then D�
P

Ci , where Ci � P

1 and C2
i � �1.

(iii) If �(KX C D) D �1 then for any divisor F one has�(F Cm(KX C D)) D �1

for m� 0.

Proof. (i) The Riemann–Roch theorem on a rational surface givesh0(KXCD)C
h0(�D) � pa(D) and the other properties follow by applying it in various ways (cf. [25,
2.1, 2.2]). For (ii) see [12, 4.1], for (iii) see [4, 2.5].
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One of the fundamental facts used in this paper is the inequality of Bogomolov–
Miyaoka–Yau type proved by Kobayashi ([10]). It is most convenient for us to refer to
the following corollary from a generalization proved by Langer (see [14, 5.2] for the
generalization and [20, 2.5] for the proof of the proposition).

Proposition 2.15. Let (X, D) be a smooth pair with�(KX C D) � 0.
(i) The following inequality holds:

3�(X � D)C
1

4
((KX C D)�)2

� (KX C D)2.

(ii) For each connected component of D, which is a connected component ofBk D
(hence contractible to a quotient singularity) denote by GP the local fundamental group
of the respective singular point P, put D#

D D � Bk D. Then

�(X � D)C
X

P

1

jGPj
�

1

3
(KX C D#)2.

3. Basic properties and some inequalities

Let S0 be a complexQ-homology plane, i.e. a normal complex algebraic surface,
such thatH�(S0,Q) � Q. We assume thatS0 is singular. We denote by� W S! S0 the
snc-minimal resolution of singularities and byOE be the reduced exceptional divisor of
�. In the whole paper we assume for a contradiction thatN�(S0) D �1 and N�(S0) D 2
and we derive consequences. SinceN�(S0) D 2, S0 is neither affine- norC�-ruled, so it
admits a unique snc-minimal completion (NS, D C

OE) (see [22, 1.1 (1)]).
We call a curveC on ( NS, DC OE) simple if and only if C � P

1 and C has at most
one common point with each connected component ofD C

OE. Once we know thatS0

is affine we get thatC on ( NS, DC OE) is simple if and only if�(C\S) is topologically
contractible. DecomposeOE as OE D E C 1, where1 is the divisor of external (�2)-
curves in OE, i.e. 1 is a reduced divisor with the smallest support, such thatE does
not contain a (�2)-tip.

Let us first collect some basic results, mainly following from [23]. For open sur-
faces and for smooth pairs we have a notion of minimality called almost minimality,
which generalizes the notion of minimality for complete smooth surfaces, we refer to
[16, 2.3.11] for the details. We use the fact that for almost minimal pairs the Zariski
decomposition of the logarithmic canonical divisor can be computed in terms of barks.
Denote the canonical divisor ofNS by K .

Proposition 3.1. With the notation as above one has:
(i) S0 is affine, rational and its singular locus consists of one singular point of quo-
tient type,
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(ii) there is no simple curve on( NS, DC OE), in particular the pair ( NS, DC OE) is almost
minimal and(K C D C

OE)� D Bk D C Bk OE,
(iii) not every component ofOE is a (�2)-curve, i.e. OE ¤ 1,
(iv) d(D) D �d( OE) � jH1(S0, Z)j2, �1(S0) D �1(S) and Hi (S0, Z) D 0 for i > 1,
(v) D is a rational tree and if it has a component with non-negative self-intersection
then this component is branching and D is not a fork,
(vi) the inclusion D[ OE !

NS induces an isomorphism on H2(�, Q),
(vii) 6S0 D hC � � 2 and � � 1,

(viii) Pic S0 � H1(S0, Z) is of order d( OE) � jH1(S0, Z)j.

Proof. (i) S0 is affine and logarithmic by [23, 3.2, 3.3], so it is rational by [24].
(ii) The non-existence of simple curves is proved for example in [20, 3.4] (or one can
refer to the nonexistence of contractible curves onS0, see [6]). Then (NS, D C

OE) is
almost minimal and (KCDC OE)� D BkDCBk OE by [16, 2.3.15] and by the uniqueness
of the Zariski decomposition. (iii) If OE D 1 then (K C D) � OE D 0, so sinceN�(S0) � 0
and since OE has negative definite intersection matrix,�(K C D) � 0 by Lemma 2.13,
a contradiction. For (iv), (vi)–(viii) see [23, 3.1, 3.2].

(v) Since S0 is affine, D is connected, so it is a rational tree by 3.4 loc. cit.
Let B be a component ofD with B2

� 0. We blow up overB until B2
D 0. Let

( QS, QD) ! ( NS, D) be the resulting birational morphism. We can choose the centers of
subsequent blow-ups so thatQD contains at most one non-branching (�1)-curve and,
unlessD D B, so that the blow-ups are subdivisional forD and its total transforms.
In any case it follows thatB has to be a branching component (�D(B) � 3), otherwise
we get aP1-, aC1- or aC�-ruling of S0, henceN�(S0) � 1 by Iitaka’s addition theorem
(cf. [9, 10.4]), which is a contradiction. Suppose now thatD is a fork andB is its
unique branching component. ThenB gives aP1-ruling of QS for which QDh consists of
three sections. By Proposition 3.1 (vii) we have6S0 D 2, becauseOE is vertical. Note
that every vertical (�1)-curve is anS0-component. Suppose there is a singular fiber
F containing a unique (�1)-curve L. We have�(L) > 1, so QDh does not intersect
L. However, -F � L has at most two connected components, soQD contains a loop, a
contradiction. Thus every singular fiber has at least two (�1)-curves. Denote the fiber
containing OE by F0. Let D0 be the divisor of QD-components ofF0 and let L1, L2

be some (�1)-curves inF0. We haveD0 ¤ 0, otherwise one of theS0-components of
F0 would be simple. Any (�1)-curve in F0 intersecting OE is a tip of F0, otherwise it
would have� > 1 and so it could not intersectQDh, hence would be simple. We have
� (F0) � 3, so sinceF0 is connected, there is anS0-componentM � F0 intersecting OE
and D0 which is not exceptional (not a (�1)-curve). It follows that� (F0) D 3, so F0

is the only singular fiber.
SupposeF0 is branched. LetT be a maximal twig containingL1 and let R be

the component of-F0 � T meeting T . Since L1, L2 are the only (�1)-curves of F0,
renamingL1 and L2 if necessary by a sequence of contractions of (�1)-curves different
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than L2 we can contract the wholeT . We have�(R) > 1, otherwise this contraction
would makeR into a non-tip component of a fiber with a unique (�1)-curve, which is
impossible for�(R) D 1 (cf. [23, 2.10 (i)]). It follows that all components ofT have
multiplicity bigger than 1, soQDh �T D 0. But QD is connected, so this givesQD � L1 � 1,
a contradiction with (ii).

Since F0 is a chain,M is not branching, so (ii) implies that it intersectsQDh, hence
QDh � (L1 C L2 C D0) � 2. Since QDh � D0 > 0, this gives, say, QDh � L1 D 0. As L1

is not simple, L1 intersects two different connected components ofD0, which gives
QDh � D0 D 2 and QDh � L2 D 0. Thus L2 is simple, a contradiction.

The unique singular point ofS0 is analytically of typeC2
=G for someG <GL(2,C).

We can and will assume thatG is small, i.e. it does not contain pseudo-reflections.
ThenG is isomorphic to the local fundamental group of the singularpoint (see [2], [16,
1.5.3.5]). The divisor OE is an admissible chain ifG is cyclic and an admissible fork
otherwise. The discriminant is given byd( OE) D jG=[G, G]j (see [19]). From (v) we
see that the maximal twigs ofD are admissible, so sinced(D) < 0 by (iv), D is not a
chain. Moreover, (v) implies that (NS, DC OE) is the unique snc-minimal completion ofS0

(see [22, 2.8]). LetTi for i D 1,: : : ,s be the maximal twigs ofD, put T D T1C� � �CTs.
We put

di D d(Ti ), Æi D Æ(Ti ), ei D e(Ti ), Qei D e(T t
i )

and

Æ D Æ(D), eD e(D), QeD Qe(D).

We write P for (K C D C

OE)C andN for (K C D C

OE)�.

Lemma 3.2. The integer� defined by the equality(KCDC OE)2
D �1�� depends

only on the isomorphism type of S0 and has the following properties(cf. [13, 5.3]):
(i) � � 0,
(ii) K � (K C D) D 3� � � K � E � 0,
(iii) # OE C #D D 7C � C K � D C K � E,
(iv) Æ � eD � Bk2 D � 1C � C Bk2

OE C 3=jGj.

Proof. Since the snc-minimal completion ofS0 is unique,� is determined by the
isomorphism type ofS0. (i) Since N ¤ 0, by Proposition 2.15 (i) we get�1 � � D
(K CDC OE)2

< 3�(S0) D 3(�(S0)�1)D 0. (iii) Since D and OE are connected rational
trees, their arithmetic genera vanish and we getK � (K C D C

OE) D 3� �, so K 2
D

3���K �D�K �E and the formula follows from the Noether formulaK 2
C�( NS)D 12.

(ii) SupposeK � E C � � 2. By the Riemann–Roch theorem

h0(�K � D)C h0(2K C D) � K � (K C D)C pa(D) D 3� � � K � E > 0,
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so �K � D � 0, otherwise we would have�(K C D) � 0. We haveK �

OE > 0 and
K � Ei � 0 for every componentEi of OE, hence OE is in the fixed part of�K � D, so
�K � D �

OE � 0, which contradicts�(K C D C

OE) D 2. (iv) We have Bk2 D D �e
by Lemma 2.3 (iv) andN D Bk D C Bk OE by Proposition 3.1 (ii), so

�1� � D (K C D C

OE)2
D P2

C Bk2 D C Bk2
OE

and then (iv) is a consequence of Proposition 2.15 (ii) applied to (NS, D C

OE).

Lemma 3.3. Suppose� < 2. Then:
(i) j2K C D C Ej ¤ ;,
(ii) s� 2� 6=jGj � Æ,
(iii) s� 3� �CBk2

OEC 9=jGj, and if the equality holds then all twigs of D are tips,
(iv) if 1 D ; then eC Æ � sC � C K � E=4� 5=2.

Proof. (i) Riemann–Roch’s theorem givesh0(�K �D�E)Ch0(2K CDCE) �
2��. If �K �D�E � 0 then�K �D� OE � 0, which contradicts�(K CDC OE) D 2.
Thus 2KCDCE � 0. (ii) Let RD D�T . Each component ofOECT is in the support
of N , hence intersects trivially withP. By (i) and Proposition 2.15 (ii) we have

0� P � (2K C D C

OE) D 2P � (K C D C

OE) � P � (D C

OE) D 2P2
� P � R

�

6

jGj
� P � R.

As R is a rational tree, its arithmetic genus vanishes, so

P � RD (K C D � Bk D) � RD �2C (T � Bk D) � RD �2C s� Æ

by Lemma 2.3 (ii). (iii) is a consequence of Lemma 3.2 (iv), (ii) and the fact that the
inequality can become an equality only ifeD Æ.

(iv) Let m be the biggest natural number for whichjE Cm(K C D)j ¤ ;; m� 2
by (i). Write

E Cm(K C D) �
X

ai Ci ,

whereai are positive integers andCi are distinct irreducible curves. We have
�

�KCDC
P

ai Ci

�

�

D ;, so by Lemma 2.14 (i)Ci are smooth rational curves, such thatCi �D � 1.
By Lemma 2.14 (ii) we can assume that they have negative self-intersections. Since
E C m(K C D) is effective, E C m(K C D#) is effective by Lemma 2.13, so we can
write it as

E Cm(K C D#) �
X

ci Ci ,

where ci > 0 andCi are as above. Note thatK � E � 2, otherwiseE D

OE D [3] and
E � (2K C D C E) D �1 < 0, which would lead toN�(K C D) � 0 by (i). Suppose
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(E C 2K ) � Ci < 0 for somei , say i D 1. If C1 � E then, sinceC1 � D � 1 and since
1 D ;, we haveC1 � E � 2 by Proposition 3.1 (ii), soK � C1 < �(1=2)C1 � E � �1,
which contradictsC2

1 < 0, asC1 � P

1. Thus C1 � E. But then K � C1 � 0 and

0> (E C 2K ) � C1 D K � C1 C �E(C1) � 2,

so since1 D ;, we get E D C1 and K � E � 1, a contradiction. We infer that 0�
(E C 2K ) � (E Cm(K C D#)). We have

(E C 2K ) � (K C D) D 2K � (K C D C E) � K � E D 6� 2� � K � E

and

Bk D � K D Bk D � (K C D#)C Bk2 D � Bk D � (D � T) � Bk D � T

D 0� e� Æ C s,

so from the above inequality we get

s� Æ � e�
1

2m
(K � E � 2)C 3� � �

1

2
K � E �

1

4
(K � E � 2)C 3� � �

1

2
K � E,

which gives (iv).

4. Bounding the shape of the exceptional divisor

Proposition 4.1. Let X beZ-homology plane with a unique singular point, which
is of analytical typeC2

=Za. Then there exists a smooth affine surface Y with an action
of Za on it, which has a unique fixed point, is free on its complement and for which
X � Y=Za.

Proof. We modify a bit the arguments of [11, 2.2]. Letq 2 X be the singular
point. Then there is a (contractible) neighborhoodN � X of q, which is analytically
isomorphic toC2

=Za. Let p W (C2, 0)! (N, q) be the quotient map and letj be the
embedding ofN � q into X � q. Let G be the commutator of�1(X � q) and let
Y0 ! X � q be the covering corresponding to the inclusionG ,! �1(X � q). We show
that Y D Y0 [ {0} is smooth. SinceC2

� 0 is simply connected,p
jC

2
�0 has a lifting

QpW C2
�0! Y0. The embedding (N, N�q) ,! (X, X�q) induces a morphism of long

homology exact sequences of respective pairs. The reduced homology groups ofN and
X vanish, so in both sequences the boundary homomorphisms areisomorphisms. By
the excision theoremH2(N, N�q,Z)� H2(X, X�q,Z), henceH1(N�q,Z)! H1(X�
q, Z) is an isomorphism. Since�1(N � q) is abelian, it follows that the composition

�1(N � q) ! �1(X � q) ! H1(X � q, Z)
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is an isomorphism. Lety1, y2 2 C
2
� 0 be two points lying over the same point in

N � q, such that Qp(y1) D Qp(y2). The path joiningy1 and y2 in C2
� 0 maps by Qp to a

loop Y0. Let � 2 �1(N � q) be a loop which is the image inN � q of the same path.
Then�1( j )(�) 2 �1(X � q) belongs toG, hence� is in the kernel of the composition

�1(N � q) ! �1(X � q) ! H1(X � q, Z),

which is trivial. We get thaty1 D y2, so Qp is a monomorphism and we see that the
local fundamental group ofY at 0 is trivial. By [19] (the proof is topological and
works for non-algebraic surfaces) we see thatY is smooth.

Because a finite unbranched cover of an algebraic varietyY0 is algebraic and the
map Y0 ! X � q is finite, C[Y0] is an integral extension ofC[X � q] � C[X], hence
it is a finitely generated and integrally closedC-algebra. The homomorphismC[X] !
C[Y0] induces a morphismr W SpecC[Y0] ! X. The natural embedding W Y0 !

SpecC[Y0] is an isomorphism ontor �1(X � q) and extends to a morphism by the
smoothness ofY. The inverse extends to a morphism from SpecC[Y0] to X by the
normality of SpecC[Y0].

The following theorem is a key step in the proof of the main result of the paper.
It is based on the method of finding well-behaved exceptionalcurves on open surfaces
of negative Kodaira dimension introduced in [12, 4.2, 4.3] and which has its origin in
Lemma 2.14 (iii).

Proposition 4.2. Either K � E C 2� � 5 or � D 2, OE D [4] and D consists of
(�2)-curves.

Proof. Note that

(2K C E) � (K C D) D 6� 2� � K � E,

so K � E C 2� � 5 is equivalent to (2K C E) � (K C D) > 0. Under two additional
assumptions, that there exists a (�1)-curve A � NS, such thatA � OE � 1 and thatS0 is
contractible, it is proved in [13, 5.10, 5.11] that the inequality (2K C E) � (K C D) � 0
implies the existence of an exceptional simple curve on (NS, D C 1), which intersects
1. Of course, it also intersectsD, as S0 is affine. Moreover, it is shown that under
the above assumptions the process of contracting and findingsuch (�1)-curves can be
iterated to infinity. By the definition of simplicity this is acontradiction, because the
number of connected components of1 is finite. The proof of 5.10 loc. cit. does not
require the contractibility, but only theQ-acyclicity of S0, so it can be simply repeated
in our situation. However, the case when the ‘initial’ curveA does not exist has to be
reconsidered in our situation.

SupposeK �EC2� > 5. From the above remarks it follows that we can assume that
there is no (�1)-curve A� NS with A � OE � 1. We can repeat the proof by contradiction
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in 5.7 loc. cit. up to 5.7.4 (i). In 5.7.4 (ii) an argument referring to [11] (and hence to
contractibility) is used and it needs to be modified in our situation. We are therefore
in a situation whereK C

OE#
� 0, Bk2

OE is an integer andD consists of (�2)-curves.
As OE does not consist of (�2)-curves, by Remark 2.5 and Lemma 2.4 (v) Bk2

OE D �1
and OE is a chain. We have now

�1� � D (K C D C

OE)2
D (D C Bk OE)2

D D2
� 1,

hence� D �D2
D 2C K � D D 2. By Riemann–Roch’s theorem

h0( OE C 2K )C h0(�K �

OE) � K � (K C

OE) D 3� � � K � D D 1.

If �K �

OE � U for an effective divisorU then K C

OE#
� 0 implies U C Bk OE � 0,

hence Bk OE D 0, which is impossible by Lemma 2.3 (iii). Recall that for aQ-divisor
T we denote the integral and fractional parts ofT by [T ] and {T} respectively. We
get 2(K C

OE) � 0, which by Lemma 2.13 (ii) implies that [2(K C

OE#)] � U for some
effective divisorU . Then

0� 2(K C

OE#) � [2(K C

OE#)] C {2(K C

OE#)} � U C {�2 Bk OE},

so since{�2Bk OE} is effective,{�2Bk OE} D U D 0. Thus 2BkOE is aZ-divisor. Since
OE is not a (�2)-chain, OE ¤ Bk OE and we get 2 BkOE D

OE and

2K C

OE D 2K C 2 OE#
� U D 0.

It follows that1D 0 andK �E D 2. Moreover, asEi �(2KC OE)D 0 for each component
Ei of OE, we get that eitherOE D [4] or OE D [3, (k), 3] for somek � 0 (recall that [(k)]
is a chain of (�2)-curves of lengthk). To finish the proof we need to exclude cases
other than OE D [4].

Suppose OE D [3,(k),3] for somek � 0. We have #D D 9�k by Lemma 3.2 (iii), so
there are only finitely many possibilities for the weighted dual graph ofD. Lemma 3.2
(iv) gives

e(D) � 3C Bk2
OE C

3

jGj
D 2C

3

d(E)
D 2C

3

4(kC 2)
.

D consists of (�2)-curves, soe(D) D s� Æ. Taking a square of the equality in Propos-
ition 3.1 (ii) we get�3D P2

� e(D)� 1, soP2
D s� 2� Æ. SinceP2

> 0, we obtain:

0< s� 2� Æ �
3

4(kC 2)
D

3

4(11� #D)
.
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In particular,s� 2 � Æ C 3=8 � s=2C 3=8, so s � 4. Another condition is given by
Proposition 3.1 (iv):

s

�

d(D)

d(E)
2 N.

We check by a direct computation that there are only two pairsof weighted dual graphs
of D and OE satisfying both conditions (one checks first that the first condition implies
that k � 1 for sD 3 andk � 2 for sD 4):
(1) sD 3, T1 D [2, 2], T2 D [2, 2, 2], T3 D [2, 2, 2], OE D [3, 3],
(2) sD 4, T1 D [2], T2 D [2], T3 D [2], T4 D [2, 2, 2], OE D [3, 3].
Note that in case (2)D � T1 � T2 � T3 � T4 has three components. In both cases
�d(D) D d( OE) D 8, so H1(S0, Z) D 0 by Proposition 3.1 (iv). By Proposition 4.1S0

can be identified with the image of a quotient morphismpW Y ! Y=Z8 of some smooth
affine surfaceY. Let (x, y) be local parameters which are semi-invariant with respect
to the action ofZ8 (recall thatt 2 C(Y) is semi-invariant with respect to the action of
G on Y if there exists a character� W G ! C

�, such thatg�t D �(g)t). As in the case
of C2

! C

2
=Z8, if C is the proper transform onS of p({x D 0}) then C �

OE D 1 and
C meets OE is a tip (cf. [7]). Thus

K � C D �

1

2
OE � C D �

1

2
,

a contradiction.

Corollary 4.3. If � D 0 then K � E 2 {3, 4, 5}. If � D 1 then K � E 2 {2, 3}. If
� D 2 then either K� E D 1 or OE D [4].

Proof. We haveK � E C � � 3 and � � 0 by Lemma 3.2 (i), (ii). By Propos-
ition 4.2 we haveK � E C 2� � 5 for ( OE, �) ¤ ([4], 2), so the corollary follows.

Proposition 4.4. (i) If � D 0 then OE is irreducible and D is a fork,
(ii) If OE is a fork then� D 2,
(iii) 1 does not contain a fork.

Proof. (i) SinceD is not a chain we haves� 3. For� D 0 Lemma 3.3 (iii) gives

0� s� 3� Bk2
OE C

9

jGj
.

If OE is a fork then Bk2 OE < �1 by Lemma 2.4 (v), sojGj � 8. SinceG is small
and non-abelian, it is the quaternion group, for which the resolution consist of (�2)-
curves (the abelianization of the group isZ2 � Z2, row 2 is the table [2, Satz 2.11]),
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a contradiction with Proposition 3.1 (iii). ThusOE is a chain, sod( OE) D jGj and we
get d0( OE)C d0( OEt ) � 7 by Lemma 2.3 (iv). SupposeOE has more than one component.
Taking into account Corollary 4.3 there are two possibilities for OE: [3, 4] and [2, 5]. In
both cases we obtain Bk2

OEC9=jGj D 0, sosD 3 and the inequalities Lemma 3.2 (iv)
and Lemma 3.3 (ii) become equalities. We geteD Æ < 1, which is possible only if
maximal twigs ofD are irreducible. Denoting the branching component ofD by B we
haved(D) D d1d2d3(�B2

�Æ), so sinced(D) < 0, we get�B2
< Æ < 1, a contradiction

with Proposition 3.1 (v). Therefore #OE D 1. If s¤ 3 then Lemma 3.3 (iii) and Corol-
lary 4.3 give subsequently (s� 3)d( OE) � 5, sD 4 and OE D [5]. Then eD Æ D 4=5, so
the inequality Lemma 3.3 (iv) fails, a contradiction.

(ii) Let OE be a fork. By (i) � ¤ 0. Suppose� D 1. Then

Bk2
OE C

9

jGj
C 1� 0,

so since Bk2 OE < �e( OE), we getjGj(e( OE)�1)� 9. One checks using [2, Satz 2.11] that
the last inequality is satisfied only for the forkOE, which has [2], [2], [3] as maximal
twigs and [2] as a branching curve. In this case Bk2

OE D �(3=2) and jGj D 24, so the
initial inequality fails.

(iii) Suppose1 contains a fork. Then� D 2 by (ii), so #E D 1 by Corollary 4.3.
By Lemma 2.13 we have

N�(Sn1) D �(K
NSC D C1) D �(K

NSC D) D N�(S) D �1.

SupposeSn1 is affine-ruled. Consider a minimal completion (QS, QDC1) ! B of this
ruling (cf. Definition 2.8). SinceS0 is affine, the horizontal component is contained in
QD. If E is vertical thenS0 is affine-ruled, which contradictsN�(S0) D 2. Thus there are

two horizontal components inQD C E. Since E \ QD D ;, we have� D 0, so6S0 D 0
by Proposition 3.1 (vii), hence each singular fiber has a unique (�1)-curve. Then each
connected component of1 is a chain, a contradiction. By [18]Sn1 contains an open
subsetU , which is PlatonicallyC�-fibred. In particularS n 1 is C�-ruled (we have
shown that it is not affine-ruled). The componentE cannot be vertical for this ruling,
otherwiseS0 is C�-ruled, which contradictsN�(S0) D 2. Consider a minimal completion
of this ruling. We have� D 0, so6S0 D 1. By the description of the Platonic fibration
in loc. cit. the branching component of the fork contained in1 is horizontal. LetF0

be the fiber containing twoS0-components, call themL1 and L2. By minimality only
these curves can be (�1)-curves ofF0. Decompose1 into 11 C 12, where11 is a
fork and12 is a chain (possibly empty). SinceQD \ F0 is connected and sinceS0 is
affine, we haveL1 � QD D L2 � QD D 1. This gives (L1 C L2) � 11 D 1 becauseF0 and
11 are trees. SayL1 �11 D 1 and L2 �11 D 0. If only one of theL i ’s is a (�1)-curve
then it follows from the structure of a singular fiber with a unique (�1)-curve that it
has to beL2, as11 intersects a component ofF0 of multiplicity one. In any case we



SINGULAR Q-HOMOLOGY PLANES 79

get thatL2
2 D �1, L2 �11 D 0 and by the negative semi-definiteness of the intersection

matrix of a fiberL2C12 is a chain. Analyzing the contraction of this chain as in [13,
6.1] one shows that the fact thatK � E D 1 leads toL2 � OE D 1, i.e. L2 is simple on
( QS, QD C

OE), hence on (NS, D C

OE), which contradicts Proposition 3.1 (ii).

Corollary 4.5. Sn1 is affine-ruled.

Proof. The logarithmic Kodaira dimension ofSn1 is negative, so by the structure
theorems mentioned aboveSn1 is affine-ruled or it contains a Platonic fibration as an
open subset. The last case is possible only if1 contains a fork, which is excluded by
Proposition 4.4 (iii).

Recall that [(k)] denotes a chain of (�2)-curves of lengthk and that the default
ordering of a twig is the one in which the first component is a tip of the divisor and
the last component intersects some component of the divisornot contained in the twig.

Proposition 4.6. OE is of one of the following types:
(a) [5], [6], [7]
(b1) fork:

A �2 B

�2

with (A, B) equal to: ([3], [2, 2]), ([3], [2, 2, 2]), ([3], [2, 2, 2, 2]), ([2, 3], [2, 2]) or
([(n), 3], [2]), where n� 0,
(b2) fork:

A �3 B

�2

with (A, B) equal to one of: ([2, 2], [2, 2]), ([2, 2], [2, 2, 2]), ([2, 2], [2, 2, 2, 2])or
([2], [(n)]), where n� 0,
(b3) [(r ), 3, (x)] for r, x � 0,
(c1) [(r ), 4] or [(r ), 5] for r � 0,
(c2) [(x), 3, (y), 3] or [(x), 3, (y), 4] or [(x), 4, (y), 3] for x, y � 0,
(c3) [(r ), 3, (x), 3, (y), 3] for r, x, y � 0,
(c4) [2, 4, 2], [2, 5, 2], [2, 3, 3, 2], [2, 3, 4, 2], [2, 4, 2, 2], [2, 5, 2, 2].

Proof. If OE is a fork then� D 2 by Proposition 4.4 (ii), soE D [3] by Corollary 4.3.
We know that1 does not contain a fork, so all possibleOE’s satisfying Lemma 2.4 (ii)–
(iii) are listed in (b1) and (b2). Chains for� D 2 other than [4] are in (b3) andOE’s for
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� D 0 are in (a) (cf. Corollary 4.3 and Proposition 4.4 (i)). Now we can assume thatOE is
a chain and� D 1, soK � E 2 {2, 3} by Corollary 4.3. The possibilities withE �1 � 1 are
listed in (c1), (c2) and (c3), so we can now assumeE � 1 D 2. If T is an ordered chain
with the first componentT1 then we writed00(T) for d0(T �T1). From Lemma 3.3 (iii) we
getd0( OE)C d0( OEt ) � d( OE)C 7 and since

d( OE) D 2d0( OE) � d00( OE) D 2d0( OEt ) � d00( OEt ),

we have
1

2
(d( OE)C d00( OE))C

1

2
(d( OE)C d00( OEt )) � d( OE)C 7,

so d00( OE)Cd00( OEt ) � 14. This gives six possibilities forOE: [2, 4, 2], [2, 5, 2], [2, 3, 3, 2],
[2, 3, 4, 2], [2, 4, 2, 2] and [2, 5, 2, 2], which are listed in (c4).

5. Special affine rulings of the resolution

In this section we assume that #E D 1, i.e. the exceptional divisor of the snc-
minimal resolutionS! S0 has a unique component with self-intersection different than
(�2) (in terms of the list in Proposition 4.6 this holds in cases(a), (b), (c1) and part
of (c4)). Under this assumption we will produce and analyze special affine rulings of
Sn1 (hence ofS).

We keep the notation (NS, D) for the unique snc-minimal smooth completion ofS.
Consider an affine ruling ofSn1 (it exists by Corollary 4.5). There exists a modifi-
cation (NS†, D†) ! ( NS, D) and aP1-ruling f W ( NS†, D†

C1) ! P

1, which is a minimal
completion of the affine ruling. Clearly,E is horizonal, otherwiseS0 is affine-ruled,
which contradictsN�(S0) D 2. It follows that � D 0 and since #E D 1, we haveh D 2
and hence6S0 D 0 by Proposition 3.1 (vii). Thus every fiber off contains a unique
S0-component and sincef is minimal, it is the unique (�1)-curve of the fiber in case
the fiber is singular. As we have seen in Definition 2.11, once we fix a component
of F of multiplicity one, F can be uniquely described by a sequence of characteristic
pairs recoveringF from (the birational transform of) the component. In our situation
the default choice is the component ofF intersecting the horizontal component ofD†.

NOTATION 5.1. Let f be a completion of an affine ruling ofS n 1 as above.
Let F be some fiber off and let H be the section contained inD†. Put  D �E2,
n D �H2 and d D E � F . Let h be the number of characteristic pairs ofF . We write
1 \ F D 11 C � � � C 1k, k � 0 where1i are irreducible and1k is a tip of F . If
the fiber is singular then it follows that the last pair ofF is

�ch

ph

�

D

�kC1
1

�

. If 1 ¤ ;

then E �1i0 D 1 for a unique 1� i0 � k, becauseOE is a tree. In case1\ F D ; put
i0 D 0. Define F 0 as the image ofF after contraction of curves produced by

�ch

ph

�

and

let the sequence of characteristic pairs forF 0 be
�

-ci

-pi

�

with i D 1, : : : , h � 1 (if h D 1
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then
�

-c1

-p1

�

D

�1
0

�

). Put c0h D ch � i0 and� D �F (C), whereC is the unique (�1)-curve

of F . We define

� D chC � E C c0h and � D �C � E C c0hC � E C c0h.

If f has exactly two singular fibers, we write the analogous quantities for the second
fiber with Q( ): Q�, QC,

-
Qpi , Qc0h etc. If f has more singular fibers then instead of�, C,

-
pi ,

c0h, etc. we write�(F), CF ,
-
pi (F), c0h(F), etc.

It follows from the definition that-ci D ci =ch and
-
pi D pi =ch, so gcd(-ci , -

pi ) D -ciC1

for i D 1, : : : , h� 1 and gcd(-ch�1,
-
ph�1) D 1 if h > 1. The multiplicities ofC and1i0

in F are� D -c1ch and -c1c0h, so

d D E � F D c1E � C C -c1c0hE �1i0 D -c1�.

Note thatc0h D 0 if and only if 1 \ F D ; if and only if ch D 1.
We denote the least common multiple of a setM of natural numbers by lcm(M).

Proposition 5.2. With the notation as inNotation 5.1the following equations hold
(cf. [13, 6.10, 6.11]):

d(nC 2)C  � 2D
X

F

�(F)(-c1(F)C
h(F)�1
X

iD1
-
pi (F)),(5.1)

nd2
C  D

X

F

 

�

2(F)
h(F)�1
X

iD1
-ci (F)

-
pi (F)C �(F)

!

,(5.2)

d � jH1(S0, Z)j D
Y

F
-c1(F),(5.3)

d D lcm
F

{-c1(F)},(5.4)

where F runs over all singular fibers of f .

Proof. First we derive the equations (5.1) and (5.2). For simplicity we assume
that there is a unique singular fiber, the general case follows. We have6S0 D 0. Con-
sider the sequence of blow-downs

NSD S(m) �m
�! S(m�1) �m�1

��! � � �

�1
�! S(0),

S(0) a Hirzebruch surface, which contractsF to a smooth 0-curve without touchingH .
Denote byK ( j ) and E( j ) the canonical divisor ofS( j ) and the birational transform of
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E on S( j ) respectively. Denoting the multiplicity of the center of� j on E( j�1) by � j

we have

K ( j )
� E( j )

� K ( j�1)
� E( j�1)

D � j and (E( j�1))2
� (E( j ))2

D �

2
j ,

j D 1, : : : , m. We haveE(0)
� d(nF(0)

C H ), where F (0) is some fiber of the induced
P

1-ruling of S(0) and d D E(0)
� F (0)

D E � F . We compute

K (m)
� E(m)

� K (0)
� E(0)

D K � E C d(nC 2)D  � 2C d(nC 2)

and

(E(0))2
� (E(m))2

D nd2
C  ,

which gives left sides of the above equations. We thus need tocompute
P

� j and
P

�

2
j . Let F 0,-ci , -

pi ,� be as defined above. Let us first consider the case1\F D ;. We

then have� D C �E and the sequence of characteristic pairs forF is
�

-c1

-p1

�

, : : : ,
�

-ch�1

-ph�1

�

,
�1

1

�

.

The sequence of blow-downs� j is divided into groups described by these pairs. The
set of indicesj , for which the blow-up� j is a part of the group of blow-downs deter-
mined by the characteristic pair

�ci

pi

�

will be denoted byI i . In case� D C � E D 1 we
get by Lemma 2.10

X

j2I i

� j D ci C pi � gcd(ci , pi ) and
X

j2I i

�

2
j D ci pi .

Now for C � E D � � 1 the multiplicity of each center is� times bigger, hence in
general we get

X

j2I i

� j D �(ci C pi � gcd(ci , pi )) and
X

j2I i

�

2
j D �

2ci pi .

We havec0h D 0 andch D 1, so this gives

X

� j D �

h
X

iD1

(-ci C -
pi � gcd(-ci , -

pi )) D �

 

-c1 C

h
X

iD1
-
pi � 1

!

D �

 

-c1 C

h�1
X

iD1
-
pi

!

and

X

�

2
j D �

2
h
X

iD1
-ci -

pi D �

2

 

h�1
X

iD1
-ci -

pi C 1

!

,

as required.
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We now consider the case1\ F ¤ ;. Let E0 be the image ofE after contracting
F to F 0. It follows from the above arguments that

K 0

� E0

� K (0)
� E(0)

D �

 

-c1 C

h�1
X

iD1
-
pi � 1

!

and (E(0))2
� (E0)2

D �

2
h�1
X

iD1
-ci -

pi ,

so we need to computeK � E�K 0

� E0 and E02
� E2. We are now left with the last pair

�ch

ph

�

, which groupsch D c0h C i0 blow-ups. The proper transform ofE0 after making

first c0h blow-ups is E(m�i0). The multiplicity of the center of each of these blow-ups

is C �

OE D C � E C 1, so

K (m�i0)
� E(m�i0)

� K 0

� E0

D c0h(C � E C 1) and E02
� (E(m�i0))2

D c0h(C � E C 1)2.

Now E(m�i0) may intersect the fiber in more than one point. The multiplicity of the
center of each of the remainingi0 blow-ups isC � E, hence

K � E � K (m�i0)
� E(m�i0)

D i0C � E and (E(m�i0))2
� E2

D i0(C � E)2.

This gives (5.1) and (5.2).
We now derive (5.3). PutQ(F) D

Ph(F)�1
iD1 -ci (F)

-
pi (F) and

e(F) D d(F \1 �1i0(F))=ch(F) D c0h(F)(ch(F) � c0h(F))=ch(F).

Then, as in [12, 3.4.6]�(F) D �(F)2
=ch(F)C e(F), so we can rewrite (5.2) as:

nd2
C  �

X

F

e(F) D
X

F

�

2(F)(Q(F)C 1=ch(F)),

which by 3.5.5 loc. cit. gives

nd2
C d( OE)

,

Y

F

ch(F) D
X

F

�

2(F)(Q(F)C 1=ch(F)).(5.5)

Pic NS is a free abelian group with generatorsf (general fiber),H and vertical com-
ponents not intersectingH . Let G(F) be the component ofF intersectingH . Then
PicS0 is a generated byf and S0-componentsCF with defining relations coming from
E � 0 andG(F) � 0 for any singular fiberF . The latter givesf � �(CF )CF . Expand
E in terms of the above generators, let�kF be the coefficient ofCF and leta,b be the
coefficients of f and H . Intersecting with f and then withH we getb D d D E � f
and a D bn D dn, hence the relation coming fromE � 0 is

P

F kFCF � dn f . In
the proof of 3.6 loc. cit. it is shown thatkF D �(F)(ch(F)Q(F) C 1), so taking the
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determinant of the defining relations we obtain

�jPic S0j

,

Y

F

�(CF ) D �ndC
X

F

�(F)=�(CF )(ch(F)Q(F)C 1).

Multiplying both sides byd we have

nd2
� djPic S0j

,

Y

F

�(CF ) D
X

F

d�(F)ch(F)=�(CF )(Q(F)C 1=ch(F)).

Since

dch(F)=�(CF ) D -c1(F)�(F)ch(F)=(-c1(F)ch(F)) D �(F),

left sides of the above equation and of (5.5) are the same, which gives

d � jPic S0j D d( OE) �
Y

F
-c1(F).

Now (5.3) follows from by Proposition 3.1 (viii).
We have�1(S0) D �1(S) by Proposition 3.1 (iv). Note that the greatest common

divisor of S-components of a fiber equals-c1(F). Then by [5, 4.19, 5.9]�1(S) is gen-
erated by�F , where F runs over singular fibers ofF , and the defining relations are
(�F )-c1(F)

D 1 and
Q

�F D 1. HenceH1(S, Z), which is the abelianization of�1(S),
is the quotient of

L

F Z-c1(F) by the subgroup generated by (1,: : : , 1). We obtain

jH1(S0,Z)j D
�

Q

F -c1(F)
�

=m, wheremD lcmF{-c1(F)}, i.e. m is the least common mul-
tiple of all -c1(F)’s. Plugging into (5.3) gives (5.4).

DEFINITION 5.3. Let� W X ! C be a dominating morphism of a normal surface
to a complete curveC. We say that� is pre-minimal if for some normal completion
( NX, NX n X) it has an extensionN� W NX ! C, such that the boundary divisorNX n X can
be made snc-minimal using only subdivisional blow-downs. Then we will say also that
N� W ( NX, NX n X) ! C is pre-minimal.

Corollary 5.4. Let #E D 1 and let f be a minimal completion of an affine rul-
ing of Sn 1. Then f has at least two singular fibers and if it has two then using
Notation 5.1one has:
(i) -c1 D Q� � jH1(S0, Z)j and -Qc1 D � � jH1(S0, Z)j,

(ii) h, Qh � 2,
(iii) d(D) D �d( OE) � gcd(-c1, -Qc1)2.

(iv) if f is pre-minimal then hC Qh D nC 1C � C K � E.
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Proof. Note that by Proposition 3.1 (ii)�(F) � 2 for every fiberF . If f has only
one singular fiber then (5.3) gives

-c1 D d � jH1(S0, Z)j D -c1� � jH1(S0, Z)j,

so � D 1, a contradiction. Assumef has two singular fibers. (i) By (5.3) we have

-c1-Qc1 D d � jH1(S0, Z)j D -Qc1 Q� � jH1(S0, Z)j,

so -c1 D Q� � jH1(S0, Z)j and analogously-Qc1 D � � jH1(S0, Z)j. (ii) If, say, Qh D 1 then by
definition -Qc1 D 1, so again� D 1, a contradiction. (iii) By (5.3) and (5.4)

jH1(S0, Z)j D -c1-Qc1=lcm(-c1, -Qc1) D gcd(-c1, -Qc1),

so (iii) follows from Proposition 3.1 (iv).
(iv) Since f is pre-minimal, contractions in' W NS†

! S are subdivisional with
respect toD†, hence

K
NS† � (K

NS† C D†) D K � (K C D) D 3� � � K � E.

Contract singular fibers to smooth fibers without touchingH , denote the image ofD
by QD and the resulting Hirzebruch surface byQS. We have

K
QS � (K QSC

QD) D K 2
QS
C K

QS � H C 2K
QS � F D 8C n� 2� 4D nC 2.

A blow-down which is sprouting for a divisorT increasesK � (K C T) by one, so

K †
� (K †

C D†
C C C

QC C1)C hC Qh D K
QS � (K QSC

QD)

and we get (iv).

We will see that in case #E D 1 one can always find a pre-minimal affine ruling
of Sn 1, often having additional good properties. We follow the original notation of
[12, 5.3].

NOTATION 5.5. Assume #E D 1. Let f W ( NS†, D†
C1) ! P

1 be a minimal com-
pletion of an affine ruling ofSn 1. We have6S0 D h C � � 2 D � D 0 by Propos-
ition 3.1 (vii), becauseE is irreducible and horizontal. LetH2

D �n, where H is the
horizontal component ofD†. If �D† (H ) > 2 then (NS†, D†) D ( NS, D) and the ruling is
pre-minimal. Assume�D† (H ) � 2. If n D 1 then D† is not snc-minimal. In any case
by successive contractions of exceptional curves inD† (and its images) we obtain a
morphism' f W NS†

!

NS. Let F be a singular fiber off , such thatF \ D† is branched.
Denote the component ofF meetingH by G. Let Z be the chain consisting of curves
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Fig. 1. Notation for affine rulings ofSn1.

produced by the first characteristic pair ofF and let Z1 be the curve of highest multi-
plicity in Z. Let Zu and Zl (upper, lower) be the connected components ofZ � Z1

with Zu meetingG (see Fig. 1). LetZlu be the component ofZl meeting Z1 and C
the unique (�1)-curve of F . Let h be the number of characteristic pairs ofF and �
the multiplicity of C. If there is another singular fiber denote it byQF . Analogously
for QF define QG, QZ1, Qh, etc. PutH†

D Zu CGC H C

QGC

QZu. Define10

D 1\ F and
Q

1 D 1 \

QF .

DEFINITION 5.6. In the situation as abovef is almost minimalif ' f does not
touch verticalS0-components.

REMARK . By Corollary 5.4 f has at least two singular fibers. If it has more
than two then�D† (H ) > 2 because each singular fiber contains aD†-component, hence
D†

D D is snc-minimal, so' f D id and f is almost (and pre-) minimal. Iff is

almost minimal with two singular fibers two thenh, Qh � 2 by Corollary 5.4 and the
contractions in' f take place withinH†. It follows that an almost minimal ruling is
pre-minimal.

Proposition 5.7 (Koras–Russell, [12, 5.3]). Let C be a(�1)-curve in NS, such that
�(K

NSC DC1CC) D �1. Then there exists a pre-minimal affine ruling of Sn1 with
C in a fiber, such that either
(i) f is almost minimal or
(ii) f has exactly two singular fibers, Q1 D 0 and ' f contracts precisely H† C QZ1. If

Z1 is touched x times in this process then x� 4 and QV2
D 2� x, where QV � D is the
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birational transform of QZlu .

Having the results established so far the proof of the above proposition and of
all preliminary results (except 5.3.3 (i) loc. cit., which is not necessary) goes with-
out modifications as in loc. cit. The proposition implies that we have a good control
over curves that are contracted when minimalizing the boundary. Note that in case (ii)
QZ2

lu D 1�x (as QZlu is touched once in the contraction process),QF has two characteristic

pairs and the second is
�1

1

�

.

Corollary 5.8. If #E D 1 then there exists a pre-minimal affine ruling of Sn 1
with properties as inProposition 5.7.

Proof. Consider a minimal completion of some affine ruling ofSn 1. Since at
least one of the branching components ofD† remains branching inD, there exists a
singular fiberF , such that itsS0-componentC is not touched by the minimalization of
D† to D. By Lemma 2.13 we have

�(K
NSC D C C C1) D �(K

NSC D C C C1 \ F),

because1�1\ F has a negative definite intersection matrix and its components inter-
sect K

NSC DCCC1\ F trivially. The snc-minimalization of a divisor or adding toa
divisor a (�1)-curve intersecting it transversally in one point do not change the Kodaira
dimension of the divisor, hence

�(K
NSC D C C C1 \ F) D �(K

NSC D) D �1.

Thus we can apply Proposition 5.7.

6. The boundary is a fork

Lemma 6.1. If � D 2 then K � E D 1.

Proof. Suppose� D 2 and K � E ¤ 1, then OE D [4] by Corollary 4.3. Let
f W ( NS†, D†) ! P

1 be a pre-minimal affine ruling ofS n 1 (we use Notation 5.5).
Let F1, : : : , FN be the singular fibers. PutU D H C -F1C� � �C -FN . We have6S0 D 0
and by Corollary 5.4N � 2. Let hi D h(Fi ) be the number of characteristic pairs of
F . By Proposition 4.2D consists of (�2)-curves and1 D ;. In particular, hi � 2.
SupposeN > 2. Then D†

D D. If we contract all Fi ’s to smooth fibers without
touching H we makeh1C h2C � � � C hN sprouting blow-downs insideU . Let QD and
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QK be the image ofD and the canonical divisor of the resulting Hirzebruch surface.
We have

K � (K CU ) D K � (K C D) � N D �1� N

and

QK � ( QK C

QD) D 8C QK � H � 2N D 8� 2N.

We obtain�1� NCh1C� � �ChN D 8�2N. ThereforeN D 3 andh1 D h2 D h3 D 2,
henceD has three maximal twigs and, sinceD consists of (�2)-curves, they are all
equal to [2, 2, 2]. By (5.4)�(F1) � -c1(F1) D d D lcm(2, 2, 2)D 2, so �(F1) D 1, a
contradiction with Proposition 3.1 (ii). ThusN D 2.

Supposef is not almost minimal. Thenn D 1 and Qh D 2, so h D 4. By Propos-
ition 5.7 ' f W NS†

!

NS contracts preciselyH†
C

QZ1 and Z1 is touched exactly 2� QV2
D 4

times, henceZ2
1 D �6. D consists of (�2)-curves, so the second branch ofF (see the

definitions after Lemma 2.10) is now necessarily [(5)] and the third [1, 2] (the first
component, [1], is a tip ofF). We have alsoZl D [(k)] and QZl D [(m), 3] for some
non-negative integersk, m, henceG D [k C 1] and QG D [mC 2]. If k ¤ 1 then QG is
contracted beforeG, so m D 0 and we see thatZ1 is touched at most once, a con-
tradiction. Thereforek D 1 and thenm D 1. Then D has two branching components
meeting each other,B1 and B2, such thatD � B1 � B2 D T1 C T2 C T3 C T4, with
T1 � B1 D T2 � B1 D 1, T1 D [2, 2], T2 D [2], T3 D [2] and T4 D [2, 2, 2, 2]. We compute
d(D) D �25, which contradicts Corollary 5.4 (iii). Thusf is almost minimal with two
singular fibers.

We have nowZl D [(k)] and QZl D [(m)] for some positive integersk, m, so Zu D

QZu D 0, QG D [m C 1] and G D [k C 1]. Supposen D 1. Then (Qh, h) D (2, 4) or
( Qh, h) D (3, 3). Consider the case (Qh, h) D (2, 4). Note that QZ2

1 D �2, so QG is not
contracted by' f , hencem > 1. If k ¤ 1 then ' f contracts onlyH , so m D k D 2
and the second branch ofF is [1, 2, 2]. In this cased(D) D �9, a contradiction with
Proposition 3.1 (iv). Thereforek D 1. We getm D 3 and Z2

1 D �3 and we infer
that the second branch ofF is [2, 2] and the third is [1, 2]. ThusD has two branching
components,B1 and B2, and D�B1�B2 D T1CT2CT3CT4 with T1 D [(5)], T2 D [2],
T3 D [2] and T4 D [2]. We get d(D) D �16 and gcd(-Qc1, -c1) D 4, a contradiction with

Corollary 5.4 (iii). Consider the case (Qh, h) D (3, 3). We can assumek � m. If mD 1
andkD 2 then the second branch ofQF is [2,2,2] and the second branch ofF is [2,2],
gcd(-Qc1, -c1) D 6 andd(D) D �36, a contradiction with Corollary 5.4 (iii). IfmD 1 and

k D 3 then the second branch ofQF is [2, 2] and the second branch ofF is [1, 2],
gcd(-Qc1, -c1) D 4 and d(D) D �16, a contradiction with Corollary 5.4 (iii). It follows

that m D k D 2. Then second branches ofQF and F are both [1, 2], sod(D) D �9,
again a contradiction with Corollary 5.4 (iii).

We have nownD 2, so (Qh,h) D (2, 5) or (Qh,h) D (3, 4). Now Zl , QZl , G and QG are
irreducible (�2)-curves. If (Qh, h) D (2, 5) then gcd(-Qc1, -c1) D 2 and the second branch
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of F is [1, 2, 2, 2], henced(D) D �4. If ( Qh, h) D (3, 4) then gcd(-Qc1, -c1) D 2, the second

branch of QF is [1, 2] and the second branch ofF is [1, 2, 2], sod(D) D �4. In both
cases we get a contradiction with Corollary 5.4 (iii).

To prove thatD is a fork we need the following lemma. Recall thats is the num-
ber of maximal twigs ofD.

Lemma 6.2. Assume#E D 1.
(i) If no twig of D of length� 2 contains a(�2)-tip then there exists an affine ruling
of Sn1 with no base points onNS.
(ii) If s D 4 and1 is connected then D has a twig of length� 2.

Proof. (i) Let f W ( NS†, D†
C1) ! P

1 be a minimal completion of a pre-minimal
affine ruling of Sn1. SupposeD†

¤ D. Then f has two singular fibers,F and QF , and
nD 1 (cf. Notation 5.5). By Proposition 5.7 (ii) we can assume that the components of
Zl are not contracted by' f . Sinceh � 2, by our assumption about maximal twigs of
D either Zl D [2] or Zl has a� (�3)-tip, in any caseG D [2]. Analogous argument
holds for QF , hence H meets two (�2)-curves in D†. Therefore D contains a non-
branching component with non-negative self-intersection, a contradiction with Propos-
ition 3.1 (v).

(ii) Suppose thats D 4 and all maximal twigs ofD are tips. ThenD†
D D by

the first part of the lemma. From the geometry of the ruling we see thatH does not
intersect a branching component ofD, so it cannot be a maximal twig ofD. If H
is non-branching inD then D has at least two branching components, which being
contained in fibers, cannot be (�1)-curves, a contradiction with [20, 4.2]. ThusH is
branching inD, so there are at least three singular fibers. Two of them (at least) do
not contain a branching component ofD, hence contain uniqueD-components by our
assumption. Then they both contain a component of1, so1 is not connected.

Proposition 6.3. D is a fork.

Proof. SupposeD is not a fork. We first show thatOE D [5], � D 1 and s D 4
and then we eliminate this case in several steps. We prove successive statements.

(1) #E D 1 and� D 1 or 2.
We have� ¤ 0 by Proposition 4.4 (i). To prove #E D 1 we can assume� D 1 by

Corollary 4.3. Thus OE is a chain by Proposition 4.4 (ii) and it satisfies

(s� 4)d( OE)C d0( OE)C d0( OEt ) � 7

by Lemma 3.3 (iii). Using 2� K � E � 3 this gives only two cases for which #E ¤ 1:
s D 4 and OE D [3, 3] or s D 4 and OE D [3, 4]. By Lemma 3.2 (iv) in both cases
eC Æ < 3, which is impossible by Lemma 3.3 (iv).
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(2) If K � (K C D) ¤ 0 then OE D [5], � D 1 andsD 4.
AssumeK � (K C D) ¤ 0. For � D 2 we have

K � (K C D) D 3� � � K � E D 0

by Lemma 6.1, so� D 1 by (1). Again by Lemma 3.3 (iii)

(s� 4)d( OE)C d0( OE)C d0( OEt ) � 7,

so sinceK � E D 3 and #E D 1, we obtainsD 4 and OE D [2, 5] or s� 5 and OE D [5].
In the first case we havee D Æ D 4=3 by Lemma 3.2 (iv) and Lemma 3.3 (ii), so
maximal twigs of D are tips, a contradiction with Lemma 6.2. Supposes D 5 in the
second case. Then similarlyeD Æ D 9=5, which is impossible by Lemma 3.3 (iv).

We choose a minimal completionf W ( NS†, D†) ! P

1 of a pre-minimal affine ruling
of Sn1. Subdivisional modifications ofD do not changeK � (K C D), so K †

� (K †
C

D†) D K � (K C D), where K †
D K

NS† . According to Corollary 5.4f has at least two
singular fibers.

(3) If D†
\ F is not a chain for some fiberF of f then K � (K C D) ¤ 0.

SupposeF \D† is branched andK � (K CD) D 0. Write F as F D F \D†
CCC

1

0, whereC is a (�1)-curve, and10

�1. We contract the chainCC10 and successive
(�1)-curves inF as long as they are subdivisional forD†. Denote the images ofD†,
E and F by D(1), E(1) and F (1). Let K (1) be the canonical divisor of the image of
NS. In general, if after some sequence of contractions we defineD(i ) then we denote
the respective images ofE, F , etc. by E(i ), F (i ) etc. and the canonical divisor on the
respective image ofNS by K (i ). The contraction ofCC10 and contractions subdivisional
with respect to the image ofD† do not changeK †

� (K †
C D†) and E � (K †

C D†)
(cf. Lemma 2.2), i.e.

K (1)
� (K (1)

C D(1)) D K � (K C D) D 0

and

E(1)
� (K (1)

C D(1)) D E � (K C D) D K � E.

Moreover, F (1)
\ D(1) is branched.

Let D(1)
�

be the (�1)-tip of D(1), and let D(2) be the image ofD(1) after the con-

traction of D(1)
�

. Let D(1)
�

be the uniqueD(1)-component intersectingD(1)
�

. Note that

�(K (2)
C D(2)) D N�(Sn (C [1)) D N�(S) D �1,

so since by the Riemann–Roch theorem

h0(�K (2)
� D(2))C h0(2K (2)

C D(2)) � K (2)
� (K (2)

C D(2)) D 1,
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we get�K (2)
�D(2)

� 0. For every componentV of D(2) we haveV � (�K (2)
�D(2)) D

2 � �D(2)(V). Since s � 4, D(2) is branched and every branching curve ofD(2), and
hence every component ofD(2) which is not a tip, is in the fixed part of�K (2)

� D(2).
SupposeD(2)

�

is not a tip of D(2), then�K (2)
�D(2)

�D(2)
�

� 0, so�K (1)
�D(1)

�D(1)
�

�

0. Clearly, E(1) is in the fixed part of the latter divisor, so�K (1)
� D(1)

� E(1)
� 0. It

follows that�(K †
C D†

C E) � 0, a contradiction with�(K †
C D†

C E) D 2. Thus
D(2)
�

is a tip of D(2).

Let D(3) be the image ofD(2) after the contraction ofD(2)
�

. Since D(2)
�

is a tip,

D(2) has the same number of branching components asD(1) (greater than one by our
assumptions aboutD), hence D(3) is not a chain. Moreover,F (3) is not a 0-curve,
as no branching component ofD†

\ F has been contracted. We made two sprouting
blow-downs, so

K (3)
� (K (3)

C D(3)) D K (1)
� (K (1)

C D(1))C 2D K � (K C D)C 2D 2.

Riemann–Roch’s theorem givesh0(�K (3)
�D(3)) � 2. Since f has at least two singular

fibers, H is not a tip of D(3). Since D(3) is not a chain,H is in the fixed part of
�K (3)

�D(3). Let’s write �K (3)
�D(3)

D HCRCM, whereM is effective,h0(M) � 2
and the linear system ofM has no fixed component. Intersecting with a general fiber
F 0 we have 1D 1C F 0

� RC F 0

�M, so F 0

�M D F 0

� RD 0 and R and M are vertical,
henceM � t F 0 for somet > 0. We get thatK (3)

CD(3)
CHC t F 0

CR� 0. Intersecting
with E(3) gives

0� E(3)
� (K (3)

C D(3)
C F 0) D E(2)

� (K (2)
C D(2)

� D(2)
�

C F 0)

D E(1)
� (K (1)

C D(1))C E(1)
� (F 0

� 2D(1)
�

� D(1)
�

)

D K � E C E(1)
� (F (1)

0 � 2D(1)
�

� D(1)
�

),

which implies E(1)
� (F (1)

� 2D(1)
�

� D(1)
�

) < 0. This is a contradiction, becauseF (1) is

branched, so the multiplicities ofD(1)
�

and D(1)
�

in it are greater than one.

(4) OE D [5], � D 1 andsD 4.
Suppose (4) does not hold. Then by (2) and (3)H is the only branching curve in

D†, so D†
D D, every singular fiberF of f has at most one branching component and

F\D is a chain. In particular, there are exactlys singular fibers. Letc be the number
of singular fibers which are chains. IfF is such a fiber thenF \ 1 ¤ ; and F \ D
is a tip, so Qe(F \ D) � 1=2. Sinces � 4 and since1 has at most three connected
components, we see thatc < s, so we have an inequality

Qe(D) < (s� c)C
c

2
D s�

c

2
.

Let’s contract all singular fibers to smooth 0-curves without touching H . The contrac-
tion of chain fibers does not affectK �(KCD) and the contraction of any other singular
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fiber increasesK � (K C D) by one, so if QD and QS are the images ofD† and NS† after
contractions thenQD � H C sF0 for a general fiberF 0 and

K
QS � (K QSC

QD) D K � (K C D)C s� cD s� c.

We get

s� cD K
QS � (K QSC

QD) D 8� H2
� 2� 2s,

so n D �H2
D 3s � c � 6. By the Laplace expansion we have (cf. [13, 2.1.1])

d(D) D d1 � � � � � ds(n � Qe(D)), where di are discriminants of maximal twigs, so by
Proposition 3.1 (iv)Qe(D) > n. Thus

s�
c

2
> Qe(D) > 3s� c� 6,

so 12> 4s� c > 3s and thens � 3, a contradiction.
Recall thatT is the sum of maximal twigs ofD.
(5) If R� D is a� (�4)-tip of D then for every irreducible componentV of T

we have 0� V � (2K C R) � 1 and for at most oneV � (2K C R) ¤ 0.
Let m be a maximal natural number, such thatE C m(K C D) � 0. It exists by

Lemma 2.14 (iii) and is greater than one by (4) and Lemma 3.3 (i). By Lemma 2.14 (ii)
we can write

E Cm(K C D) D
X

Ci ,

whereCi � P

1 andC2
i < 0. Moreover,Ci ¤ E, as�(K C D) D �1. Multiplying both

sides byE C 2K C R we have

K � E � 2Cm(4� 2� � K � E C R(D � R)) D
X

i

Ci � (E C 2K C R),

so
P

i Ci � (E C 2K C R) D 1 by (4). SupposeCi0 � (E C 2K C R) < 0 for somei0. If
Ci0 � K � 0 then we getCi0 D R and

0> R � (2K C R) D R � K � 2,

which is impossible by our assumption onR. Thus Ci0 � K < 0. ThenC2
i0
D �1 and

Ci0 � (E C R) � 1. SimultaneouslyjK C D C Ci0j D ; by the definition ofm, so by
Lemma 2.14 (i)D � Ci0 � 1. Thus eitherCi0 is simple or it is a non-branching (�1)-
curve in D, a contradiction. ThereforeCi � (E C 2K C R) � 0 for eachi . If V is a
component ofT then

V � (E Cm(K C D)) D m(�D(V) � 2),
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so tips of D, and hence all components ofT , appear amongCi ’s and we are done.
(6) There are no� (�4)-tips in D.
SupposeT1 contains a� �4-tip of D, denote it byR. By (5) T � R consists of

(�2)-curves and�5� R2
� �4. Maximal twigs of D other thanT1 are tips, otherwise

e� 1=5C 1=2C 1=2C 2=3 > 9=5, a contradiction with Lemma 3.2 (iv). IfR2
D �5

then V � (2K C R) D 0 for every component ofT � R, so R is a maximal twig, a
contradiction with Lemma 6.2. ThusT1 D [4, (k�1)] for some positive integerk, hence
by Lemma 3.2 (iv) 9=5 � eD 3=2C 1=(3C 1=k), so k � 3. By Lemma 6.2 there is
an affine ruling ofSn1 which extends to aP1-ruling f of ( NS, D). If F is a singular
fiber of f then, since1 D ;, D \ F contains at least four components, otherwise we
would haveF\D D [2, 2,2], which is impossible by the description of maximal twigs.
Thus for every singular fiberF the divisor F \ D is branched, so by Corollary 5.4f
has two singular fibers,h, Qh � 3 and h C Qh D n C 5. Since Zl and QZl are equal to
[4, (k�1)] or [2], G D [2] and QG D [2], so n > 1 by Proposition 3.1 (v). This implies
that one ofh or Qh, sayh, is at least 4, so the second branch of the respective singular
fiber contains at least twoD-components, hence containsT1. Let C be the uniqueS0-
component ofF . Now T1CC should contract to a smooth point. This is possible only
for k D 4, a contradiction.

(7) Maximal twigs of D are [2], [2], [3] and [3, 2].
We assume thatd1 � d2 � d3 � d4. By Lemma 3.2 (iv) and Lemma 3.3 (iv) we

havee� 9=5 and Æ � 13=4� e� 13=4� 9=5D 29=20, sod1 D 2 and 2� d2 � 3. If
d2 D 3 then the lower bound onÆ gives d3 D d4 D 3, and since by Lemma 6.2 not
all maximal twigs are tips,e � 1=2C 1=3C 1=3C 2=3 > 9=5, a contradiction. Thus
d2 D 2 and we have 1=d3C 1=d4 � 9=20, sod3 � 4. Since there are no (�4)-tips in D
by (6), e4 > 1=3, so ford3 D 4 we gete� 1C 3=4C 1=3> 9=5, which is impossible.
Thus d3 � 3. In fact T3 D [3], otherwisee � 3=2C 1=3 > 9=5. We getd4 � 8 and
e4 � 9=5� 1� 1=3< 1=2, so T4 contains a (�3)-tip, henceT4 D [3, 3] or T4 D [3, (k)]
for somek 2 {0, 1, 2}. Only T4 D [3] and T4 D [3, 2] satisfy Lemma 3.3 (iv), so other
cases are excluded. The caseT4 D [3] is excluded by Lemma 6.2.

Now we see by Lemma 6.2 that there is an affine rulingf of ( NS, D). As in (6)
we see thatf has two singular fibers and the second branch of one of them consists
of an S0-componentC and T4. Now againT4 C C should contract to a smooth point.
But this is impossible forT4 D [3, 2], a contradiction.

Lemma 6.4. Let P D (K C D C

OE)C and let B be the branching component of
D. Put bD �B2. Then:
(i) b 2 {1, 2} and b< Qe,
(ii) Æ < 1,
(iii) P � ((1� Æ)=(Qe� b))

�

BC
P3

iD1 Bk0 T t
i

�

,

(iv) Bk2
OE D �(1� Æ)2

=(Qe� b)C e� 1� �.
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Proof. (i) 0> d(D) D d1d2d3(b � Qe) � b � Qe by Lemma 2.4 (iv) and Propos-
ition 3.1 (iv). Now Qei < 1, sob< Qe< 3 and we getb 2 {1, 2} by Proposition 3.1 (v).

(ii) P � V D 0 for every componentV of T C

OE, becauseT C

OE � (K C D C

OE)�. Components ofDC

OE generate PicNS
Q by Proposition 3.1 (vi), soP � B ¤ 0,
otherwiseP � 0, which contradictsN�(S0) D 2. We infer that

0< B � P D B � (K C D � Bk D) D 1� Æ.

(iii) Both P and BC
P3

iD1 Bk0 T t
i intersect trivially with all components ofT C

OE, so they are linearly dependent in PicNS
 Q. MoreoverP � B D 1 � Æ and
�

B C

P3
iD1 Bk0 T t

i

�

� B D Qe� b.
(iv) We compute

P2
D

(1� Æ)2

(Qe� b)2

 

B2
C

3
X

iD1

Qei

!

D

(1� Æ)2

Qe� b
,

so since Bk2 D D �e, (iv) follows from Proposition 3.1 (ii).

REMARK 6.5. If K � T is bounded (for example this is the case when we can
bound the determinantsd1, d2, d3) then there are only finitely many possibilities for the
weighted dual graphs ofD and OE. Indeed, by Proposition 4.2 and Lemma 6.1K � EC
� � 5 and by Lemma 6.4 (i)b 2 {1, 2}, so K � E C K � D is bounded. It is therefore
enough to bound #OEC #D. This is possible using Noether formula (Lemma 3.2 (iii)).

Lemma 6.6. If b D #E D 1 then every affine ruling of Sn 1 has two singu-
lar fibers.

Proof. Let f W ( NS†, D†
C 1) ! P

1 be a minimal completion of an affine ruling
of S n 1. We have6S0 D 0, because #E D 1. By Corollary 5.4 f has more than
one singular fiber. Suppose it has more than two singular fibers. Each singular fiber
contains aD-component, so we infer thatD†

D D, B is horizontal and f has three
singular fibersF1,F2,F3. Let Ci and1i for i D 1,2,3 be respectively theS0-component
and the connected component of1 contained inFi (it is possible that1i D 0). By
Lemma 2.14 (iii) there exists a maximal integerm, such thatBCm(K C D) � 0. By
Lemma 2.14 (i)m � 1, becauseB � D D 3� b > 1. Write B C m(K C D) � L with
L effective. Multiplying by a general fiberF 0 we get 1� m D F 0

� L � 0, so m D 1
and L is vertical. Denote theD-component ofD intersectingB by Di . Denote the
number of characteristic pairs ofFi by hi and assumeh1 � h3 � h3. Note that for
any componentD0 of D we haveD0 � (K C D) D �2C �D(D0), so all components of
D� B�D1�D2�D3 are contained inL. Now if hi ¤ 1 thenCi C1i � L. Indeed, if
hi ¤ 1 thenCi � (K C DC B) D 0 and theD-component intersectingCi is contained in
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L, hence so isCi and then by induction all components of1i . By Proposition 3.1 (ii)
E � (Ci C1i ) � 2 for eachi , so h1 D 1, otherwise

K � E D E � (K C D C B) D E � L �
3
X

iD1

E � (Ci C1i ) � 6,

which contradicts Corollary 4.3. It follows that1¤ ;, hence� ¤ 0 by Proposition 4.4.
Then K � E � 3 by Corollary 4.3, so as above we infer thath2 D 1. By Propos-
tion 5.2(4) d D -c1(F3), so �3 D 1 andC3 is simple on (NS, D), a contradiction.

Corollary 6.7. If 1 has three connected components then bD � D 2.

Proof. If 1 has three connected components thenOE is a fork, so� D 2 by Prop-
osition 4.4 (ii) and #E D 1 by Lemma 6.1. Each connected component of1 is con-
tained in a different singular fiber of a minimal completion of an affine ruling ofSn1.
By Lemma 6.6 and Lemma 6.4 (i)bD 2.

7. Some intermediate surface containing the smooth locus

Recall thatT D D � B, where B is the branching component ofD. We define
W D

NS� T � OE. Clearly, S0 D W n B and hence�(W) D �(S0)C�(C��) D �1. Since
W is constructed fromS0 by including B into the open part, the Kodaira dimension of
W might drop, even to�1. In this section we show that this does not happen, i.e. that
N�(W) D 2. This takes a lot of work but allows later to strongly restrict possible shapes
of OE using the logarithmic Bogomolov–Miyaoka–Yau inequality. We first prove couple
of lemmas. We also need to rely on results of a computer program.

Lemma 7.1. Let R be an ordered admissible chain and let� be such that

e(R)C
�

d(R)
D 1.(∗)

Then:
(i) RD [2, : : : , 2, 2] or RD 0 if and only if � D 1,
(ii) RD [2, : : : , 2, 3] if and only if � D 2,
(iii) RD [2, : : : , 2, 3, 2] or RD [2, : : : , 2, 4] if and only if � D 3.

Proof. Note that by Lemma 2.1 we have a recurrence formula

d([a1, a2, : : : , ak]) D a1d([a2, : : : , ak]) � d([a3, : : : , ak]).

Using it we see thatRD [2, a1, : : : , ak] satisfies (∗) if and only if [a1, : : : , ak] does,
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so we may assume thatRD [a1, : : : , ak] with a1 � 3. If the equation holds then

d0(R)C � D d(R) D a1d0(R) � d00(R),

so

2d0(R) � (a1 � 1)d0(R) D d00(R)C � < d0(R)C �,

henced0(R) < � � 3 andk � 2. For d0(R) D 2 we get RD [3, 2], for d0(R) D 1 we
get RD [4] or RD [3] and for d0(R) D 0 we get RD 0.

Lemma 7.2. If R D [(k), c, a1, : : : , an] is admissible then

k(c� 1)C 1

k(c� 1)C c
� e(R) <

k(c� 2)C 1

k(c� 2)C c� 1
.

Proof. For a chainRD [u,: : : ] we haved(R)D ud0(R)�d00(R) and hencee(R)D
1=(u � e0(R)). Since 0� e0(R) < 1, we get 1=c � e(R) < 1=(c� 1). The formula for
k ¤ 0 follows by induction.

Lemma 7.3. (i) W is almost minimal and KC T C

OE � �P C Bk T C Bk OE,
where� D 1� (Qe� b)=(1� Æ).
(ii) If N�(W) � 0 then �P � (K C T C OE)C.
(iii) If N�(W) � 0 then QeC Æ � bC 1, Æ C 1=jGj � 1 and � ¤ 0. The inequalities are
strict if N�(W) D 2.
(iv) If N�(W) ¤ 2 then N�(W) � 0, QeC Æ � 2 and bD 1. The inequality is strict if
N�(W) D �1.
(v) If K � Ti D 0 for some i then h0(2K C T C OE) � 3� b� �.

Proof. (i) Recall that BkTi D Bk0 Ti C Bk0 T t
i . Using Lemma 6.4 (iii) we have

K C T C OE � P � BC Bk D C Bk OE

D P � B �
3
X

iD1

Bk0 T t
i C

3
X

iD1

Bk Ti C Bk OE

D

�

1�
Qe� b

1� Æ

�

P C Bk T C Bk OE.

SupposeW is not almost minimal. Then by [16, 2.3.11] there exists a (�1)-curve C,
such thatCCBk OECBk T has negative definite intersection matrix. Since the support
of Bk OE C Bk T is OE [ T , (K C T C OE)� has at least #T C # OE C 1D b2( NS) numeri-
cally independent components (cf. Proposition 3.1 (vi)), acontradiction with the Hodge
index theorem.
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(ii) From (i) and from the definition of Bk we see thatP intersects trivially with
every component ofT C

OE. If N�(W) � 0 then by the properties of Fujita–Zariski de-
composition the same is true for (K C T C

OE)C. Since PicNS
 Q is generated by
the components ofD C

OE, we get (K C T C

OE)C � �P for some� 2 Q. We have
P � B D 1� Æ and

(K C T C OE)C � B D (K C T C OE) � B � Bk T � B D bC 1� Qe� Æ,

hence� D �.
(iii) We have�(W) D �1, soÆC1=jGj � 1C (1=3)�2P2 by Proposition 2.15 (ii).

By (ii) and [5, 6.11] N�(W) > 0 (N�(W) D 0) if and only if � > 0 (respectively� D 0),
which is equivalent tobC1> QeC Æ (respectivelybC1D QeC Æ). Suppose� D 0. Then
OE D [jGj] by Proposition 4.4 (i), so by Lemma 3.2 (iv)Æ C 1=jGj � eC 1=jGj � 1.

Together with the inequality above this implieseD Æ, so maximal twigs ofD are tips,
a contradiction with Lemma 3.2 (iii).

(iv) SupposeN�(W) D 1. Then by (ii)�2P2
D 0, so� D 0 and hence (K C T C

OE)C � 0 and N�(W) D 0 by [5, 6.11], a contradiction. ThusN�(W) � 0. Note that if
N�(W) D �1 then �(K C D C T) D �1 and by rationality ofW the divisor K C

T C OE cannot be numerically equivalent to an effective divisor, hence� < 0. Thus for
N�(W) � 0 we havebC1� QeC Æ and the inequality is strict forN�(W) D �1. Suppose
b D 2. Since Qei C 1=di � 1, we get Qei C 1=di D 1 for eachi , so D consist of (�2)-
curves by Lemma 7.1(i). By Lemma 6.4 (iv) 0> Bk2

OE D 1 � �, so � D 2, OE is a
chain by Lemma 2.4 (v) andd0( OE) C d0( OEt ) C 2 D d( OE). By Lemma 7.2 if1 is not
connected thene( OE), Qe( OE) � 1=2, so d0( OE)C d0( OEt ) � d( OE). Thus1 is connected and
by Lemma 6.1 OE D [3, (k)] for somek � 0. Thend0( OE)C d0( OEt )C 2� d( OE) D kC 1,
a contradiction.

(v) AssumeK � T1 D 0. Riemann–Roch’s theorem gives

h0(�K � T2 � T3 � OE)C h0(2K C T2 C T3 C OE)

�

1

2
(K C T2 C T3 C OE) � (2K C T2 C T3 C OE)C 1D 3� � � b.

If �K �T2�T3� OE � 0 then B, and henceT1, is in the fixed part, so�K �D� OE � 0,
which contradictsN�(S0) D 2. Thush0(2K C T2 C T3 C OE) � 3� b� �.

Proposition 7.4. If D contains [2, 1, 2] or [3, 1, 2, 2] then #E > 1 and N�(W) D 2.

Proof. AssumeD containsF
1

D [2, 1, 2] or F
1

D [3, 1, 2, 2]. SinceD is snc-
minimal, the (�1)-curve of F

1

is B, the branching component ofD. The divisor F
1

snc-minimalizes to a 0-curve, hence gives aP1-ruling p W NS! P

1 with F
1

as a fiber.
OE is vertical becauseF

1

�

OE D 0, so6S0 D hC � � 2D h � 1 � 2. Denote the fiber

of p containing OE by FE. We haveFE � D � 5 because�(B) � 3. Note that for every
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S0-componentL we haveL � OE � 1, becauseFE is a tree, so by Proposition 3.1 (ii)
#L \ D � 2. There are no (�1)-curves inD other thanB, so all vertical (�1)-curves
are S0-components. We prove successive statements.

(1) If N�(W) ¤ 2 then E D [3].
SupposeN�(W) ¤ 2. By Lemma 7.3 (iv) N�(W) � 0, QeC Æ � 0 and � � 0. We

first show that allS0-components are exceptional. For anyS0-componentL we have
L � (K C T#

C

OE#) D �L � P. By Lemma 6.4 SuppP D D, so L � P > 0 because
L � D > 0. SupposeL2

� �2. Then L � (T#
C

OE#) � �L � P, which, since� � 0, is
possible only if� D L � T#

D L � OE#
D 0. If L intersects at least two twigs ofD, say,

T1 and T2 then L � T#
D 0 implies thatT#

1 D T#
2 D 0, so T1 and T2 are (�2)-chains

and then� D 0 gives Qe3C1=d3 D 0, which is impossible. ThusL � T1 D L � T2 D 0 and
#L \ T3 � 2, which implies thatT3 contains the multiple section ofD and, as before,
that it consists of (�2)-curves. We getQe3C1=d3 D 1 and now� D 0 gives Qe1C Qe2 < 1.
However, by Lemma 7.2 in caseF

1

D [3, 1, 2, 2] we haveQe1 C Qe2 � 1=3C 2=3 D 1
and in caseF

1

D [2, 1, 2] we haveQe1 C Qe2 � 1=2C 1=2D 1, a contradiction.
Let Dh and D

v

be respectively the divisor of horizontal components ofD and the
divisor of D-components contained inFE. Let D1 be the multiple section contained in
Dh. Denote theS0-components ofFE by L1, L2, : : : , L

� (FE ). Clearly, D
v

has at most
three connected components and they are chains. We prove that Dh contains a section
and D

v

¤ 0. SupposeDh does not contain a section. In this caseDh is irreducible, so
6S0 D 0 and� (FE)D 1. We have nowFE �D � 3 and�(L1) � 2, so since #L1\D � 2,
Dh intersectsL1 in exactly one point andD

v

¤ 0. This gives

�(L1)C 1� FE � Dh � 3,

so�(L1)D 2 and we get OE D [2], a contradiction. SupposeD
v

D 0. Since #L i \D � 2
for eachi , � (FE) � 2. As Dh contains a section, theS0-component intersecting it, say
L1, has multiplicity one, so� (FE) D 2. Then�(L2) D 1, otherwiseL2 could intersect
no other component ofD than D1, which would imply

FE � D1 � �(L2)D1 � L2 � 4.

This shows thatFE D [1, (k), 1] for somek � 0, which contradictsK �

OE ¤ 0.
Let � � 1 be the number of connected components ofD

v

. We can assume that
L1 intersects OE and D

v

, becauseFE is connected. In particular�(L1) � 2. Note that
every vertical (�1)-curve intersects at most two other vertical components,hence each
L i meeting OE intersectsDh, otherwise it would be simple. Moreover, if suchL i does
not intersectD

v

, which happens for example if�(L i ) D 1, then #L i \ Dh � 2. We
consider two cases.

SupposeL i � OE D 0 for i ¤ 1, i.e. L1 is the only S0-component intersectingOE.
Consider the contraction of (�1)-curves inFE different thanL1 (if there are any) until
L1 is the unique exceptional component in the imageF 0

E of the fiber. This contraction
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does not touchOE C L1, so OE is one of the connected components of-F
0

E � L1. Since
L1 � Dh > 0, we have�(L1) � 3, otherwiseDh would have to contain ann-section for
somen > 3. It follows that eitherF 0

E D [2, 1, 2] or F 0

E D [3, 1, 2, 2], hence OE D [3].
We have also�(L1) D 3, so Dh contains a 3-section, which impliesF

1

D [3, 1, 2, 2].
Now suppose OE intersects more than oneL i , say L2 � OE > 0. We have

5� FE � Dh � (D
v

C �(L1)L1 C �(L2)L2) � Dh

and �(L2)L2 � Dh � 2, so � C �(L1)L1 � Dh � 3, hence� D 1 and�(L1) D 2. This
gives FE � D D 5, so F

1

D [3, 1, 2, 2] andD contains three horizontal components. In
particular, no maximal twig ofD is contained inF

1

. We have nowL2 � D
v

D 0 and
#L2\ D � 2, so�(L2) D 1. Moreover, there are no more (�1)-curves inFE. Defining
F 0

E as the fiberFE with L1 contracted we find thatF 0

E has at most two (�1)-curves
and they are of multiplicity one. Hence all components ofF 0

E have multiplicity one,
so F 0

E D [1, (k), 1] for somek � 0. It follows that FE D [1, (k � 1), 3, 1, 2], hence
E D [3] and we are done.

(2) If #E D 1 then (B,T1,T2,T3, OE)D ([1], [(5)], [3], [2,2,3], [3]) and N�(W)D �1.
Suppose #E D 1 (and N�(W) any). By Corollary 5.8 there exists a pre-minimal

affine ruling of Sn1, let f be its extension as in Notation 5.5. We use Notation 5.5.
In general f need not be defined onNS, but at least the components of-F � Z1 � Zu

are not touched by' f (F is the fiber of f , not of p). In particular, the divisor ofD-
components of the second branch ofF and Zl are maximal twigs ofD, denote them
by T1 and T2 respectively. The unique (�1)-curveC contained inF is not touched by
' f , so it is exceptional onNS and satisfiesC � D D 1, C � B D 0 and, since it is not

simple, #C\ OE � 2. Now let us look at howC behaves with respect top. Fibers of p
cannot contain loops, so sinceOE is connected and vertical forp, C is horizontal for p
and F

1

�C D FE �C � 2. We haveC � D D 1, soC intersectsF
1

� B in a component
D0 � T1 of multiplicity greater than one, henceF

1

D [3, 1, 2, 2], D0 � B D 1 and
D2

0 D �2. In particular, we may assume thatD does not contain [2, 1, 2].
We now look back at the fiberF of f and we find that sinceD2

0 D �2, 10

D 0
and T1 consists of (�2)-curves. Note that iff is almost minimal then applying the
above argument toQC instead ofC we get that QC intersectsD0, which contradicts the
fact thatC and QC intersect different maximal twigs ofD. Thus f is not almost min-
imal. Contraction ofT1 C C touchesZ1 precisely x D #T1 times, soZ2

1 D �x � 1,

hence' f touchesZ1 precisely x times, becauseb D 1. We have QZ2
lu D 1 � x. The

proper transform ofQZlu on NS is not a (�2)-curve, otherwiseD would contain the chain
[2, 1, 2], which was already ruled out. Therefore by Proposition 5.7 (ii) we getx � 5
and1 D 0.

Note that at least one ofT2, T3, contains a (�2)-tip, otherwise we get a contradic-
tion as in Lemma 6.2. We check now that this impliesN�(W) D �1 and OE D [3]. In-
deed, if N�(W) � 0 then by Lemma 7.3QeCÆ � 2 andÆC1=d( OE) � 1, so if, say,T2 con-
tains a (�2)-tip thend2 � 5 and we get 1=d1C1=d( OE) � 1�1=6�1=5D 19=30, hence
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d1 D d( OE) D 3. But thenT2 D [2, 3] and T3 D [3], so QeC Æ D 1C (3=5)C (2=3)> 2,
a contradiction. By Lemma 7.3 (v) we infer that� D 2, hence OE D [3].

SupposeQe2C1=d2 > 1=2 and writeT t
2 D [c]C R. We havec� 3, becauseD does

not contain [2, 1, 2]. The inequality givescd(R) � d0(R) � 2d(R)C 1, hence

(c� 2)d(R) � d0(R)C 1� d(R).

Thus cD 3 ande(R)C 1=d(R) D 1, so RD [(y)] for some y � 0 by Lemma 7.1. We
have nowZl D T2 D [(y), 3], so Zu D [2], G D [yC 2] and, since f is pre-minimal,
QGC QZu D [(y), 4, (x�3)] and henceQZl D [yC2, 2,x�1]. We getT3 D [yC2, 2,x�2],

and the inequalityQeC Æ > 2 reduces now tox(3C 5yC 2y2) < 9y2
C 27yC 20. Since

x � 5, we get (x,y) 2 {(6,0),(5,3),(5,2),(5,1),(5,0)}. By Corollary 5.4 (iii)�(1=3)d(D)
should be a square, which happens only for (x, y) D (5, 0), i.e. in the case listed above.

Thus we can assumeQe2C 1=d2 < 1=2. Since N�(W) D �1, by Lemma 7.3 (iv) we
get Qe3 C 1=d3 > 1=2. As before, this is possible only ifT3 D [(y), 3] for somey � 0.
It follows that QZl D [(y), 4], becauseQZlu is touched once by' f . Then QZu D [2, 2] and
QG D [yC 2], so since the ruling is pre-minimal,GC Zu D [(y)] and henceT2 D Zl D

[y C 1]. Now Z1 D [x C 1] and Z1, which is a proper transform ofB, is touched 5
times by ' f , so x D 5. Now the inequalityQeC Æ > 2 yields y � 3. We check that
�(1=3)d(D) is a square only fory D 2, which again gives the case listed above.

We are therefore left with the case (B,T1,T2,T3, OE)D ([1], [(5)], [3], [2,2,3], [3]). To
exclude it we look more closely at the rulingp induced byF

1

D [3, 1, 2, 2] contained
in D (the case is quite difficult to rule out, as one can check that all the equalities and
inequalities derived so far in this paper are satisfied). We use the notation from (1). In
fact there are two different chains [3, 1, 2, 2] contained inD, we consider the one not
containingT2. We have thereforeFE � D D 5. By (1) we know thatFE D [1, 3, 1, 2] or
[3, 1, 2, 2] (F 0

E D FE becauseD
v

consists of (�2)-curves), but in the second case the
1-section contained inT3 would have to intersectL1, which is impossible, as�(L1) D
3. Thus FE D [1, 3, 1, 2] and, as above, we denote the (�1)-curve intersectingD

v

by
L1 and the second one byL2. Let D0 denote the divisor of vertical components of
D not contained inF

1

[ FE. Clearly, D0

D [2, 2] � T1. Let F 0 be the singular fiber
containingD0. SinceF 0, which satisfiesd(F 0)D 0, consists ofD0 and some number of
(�1)-curves, we necessarily haveF 0

D [1,2,2,1]. Denote the (�1)-curves ofF 0 by M1,
M2, where M1 intersectsT3. A fiber of p other thanF

1

, FE and F 0 consists only of
S0-components, hence is smooth, because6S0 D 2. Let � W NS! QS be the contraction of

BC F
1

\ T1 C M2 C F 0

\ T1 C L2 C L1 C T3 \ F
1

C T 0

3,

whereT 0

3 is the section contained inT3. Since the contracted divisor consists of disjoint

chains of type [1, (t)], QS is smooth, henceQSD P

2. As �(L1) D 2, we haveT2 � L1 D 1,
so T2�L2 D 1. The contractions ofBCF

1

\T1, L2CL1CT3\F
1

CT 0

3 and M2CF 0

\T1

touch T2 respectively 3, 4 and 3(T2 � M2)2 times. The curve� (T2) has degree 3, which
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yields T2
2 C 3C 4C 3(T2 � M2)2

D 9, so 3(T2 � M2)2
D 5, a contradiction.

Lemma 7.5. If N�(W) � 0 then� D 2 and one of the maximal twigs of D equals[2].

Proof. By Lemma 7.3 (iv)bD 1. By Proposition 7.4D does not contain [2, 1, 2]
or [3, 1, 2, 2] and by Lemma 7.3 (iv) we haveQeC Æ � 2. We explore intensively these
facts. Note thatQei C 1=di � 1 for eachi . Assume thatd1 � d2 � d3 and write Ti D

[: : : , t 0i , ti ] with t 0i D ; if #Ti D 1. Recall that by our convention the last component of
Ti , the one with self-intersectionti , intersectsB. We prove successive statements.

(1) T1 D [3] or t1 D 2.
Supposet1 D 3. Then (t 02, t2), (t 03, t3) ¤ (2, 2) by Proposition 7.4 and ift2 D 2

(or t3 D 2) then t3 ¤ 2 (t2 ¤ 2), so using Lemma 7.2 we getQe1 < 1=2, Qe2 C Qe3 <

2=3C 1=2, henceQe< 5=3. We use continuously this type of argument below having
in mind Proposition 7.4 and the inequalityQeC Æ � 2. Supposet1 � 4. If some otherti
equals 3 thenQe< 1=3C 1=2C 2=3 D 3=2 and if not thenQe< 1=3C 1=3C 1 D 5=3.
Thus in any caset1 ¤ 2 implies 3=d1 � Æ � 2 � Qe > 2� 5=3 D 1=3, so d1 � 8. By
Lemma 2.6 we have to consider the following possibilities for T1: [4], [5], [6], [7],
[8], [2, 3], [2, 4], [2, 2, 3], [3, 3].

CASE 1. T1 is one of [2, 4], [5], [6], [7] or [8]. In each caseQe1 C 1=d1 � 3=7.
If ( t 03, t3) D (2, 2) (or similarly (t 02, t2) D (2, 2)) then Qe2 < 1=3 and we get 1=d2 > 2�
3=7 � 1 � 1=3, so d2 � 4, a contradiction withd2 � d1. In other caseQeC 1=d1 <

3=7C 2=3C 1=2, so 2=d2 � 1=d2 C 1=d3 � 2� Qe� 1=d1 > 17=42 and againd2 � 4,
a contradiction.

CASE 2. T1 is [2, 2, 3] or [3, 3]. ThenQe1C 1=d1 � 4=7 and Qe2C Qe3 < 1=2C 2=3,
so 2=d2 � 2 � Qe� 1=d1 > 1=4 and d2 � 7. Sinced1 � d2 we get T1 D [2, 2, 3] and
d1 D d2 D 7. By renamingT1 and T2 we can assume thatt2 ¤ 2. In fact we can
assume thatT2 D [2, 2, 3] because other cases ([7] and [2, 4]) were excluded above.
Thus Qe3C1=d3 � 6=7. We haveQe3 < 2=3, because (t 03, t3) ¤ (2, 2), so 1=d3 > 6=7�2=3
and thend3 � 5< d1, a contradiction.

CASE 3. T1 D [4]. We haveQe1C1=d1 D 1=2, so 1=d2C1=d3 � 3=2� Qe2� Qe3. We
havet2Ct3 � 5. If t2 � 4 (or similarly t3 � 4) then 1=d2 � 3=2� Qe2�1> 1=6, sod2 � 5.
If t2 D 3 (or similarly t3 D 3) then 2=d2 > 3=2� 2=3� 1=2 D 1=3, so againd2 � 5.
Note that sinceQe3C1=d3 � 1, Qe2C1=d2 � 1=2, soT2 ¤ [5] (and similarly T3 ¤ [5]). If
T2 is one of [2, 3], [3, 2] or [2, 2, 2, 2] then we have respectivelyQe2C1=d2 D 3=5, 4=5, 1
and using Proposition 7.4 we boundQe3 from above respectively by 2=3, 1=2 and 1=3,
which gives d3 D 5. However, we check easily that ford2 D d3 D 5 the inequality
1=d2C Qe2C 1=d3C Qe3 � 3=2 cannot be satisfied. Thusd2 D 4. By renamingT1 and T2

we can assume thatT2 ¤ [2, 2, 2], soT2 D [4]. Then Qe3 C 1=d3 � 1 so T3 D [2, 2, 2]
by Lemma 7.1 and after renamingT1 and T3 we are done.

CASE 4. T1 D [2,3]. We haveQe2CQe3C1=d2C1=d3 � 7=5 and Qe2CQe3 < 2=3C1=2,
so d2 � 8. Supposed2 D 5. We can assume thatT2 D [2, 3], because the caseT1 D

[5], T2 D [2, 3] was considered above and in other casest2 D 2, so after renamingT1
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and T2 we are done. Ifd3 ¤ 5 then Qe3 � 4=5� 1=d3 > 3=5, hence (t 03, t3) D (2, 2), a
contradiction. Therefored3 D 5 and again we can assume thatT3 D [2, 3], so Qe2C Qe3C

1=d2 C 1=d3 D 6=5, a contradiction. Thus 6� d2 � 8. If T2 D [d2] then 1=d3 C Qe3 >

7=5�2=5D 1, a contradiction. It follows thatT2 is one of [2, 2, 3], [2, 4], [3, 3], [4, 2]
or [2, 3, 2] (in particulard2 > 6). By Proposition 7.4Qe3 < 2=3 in first three cases and
Qe3 < 1=2 in the latter two cases. In each case we obtainQe3 C Qe2 C 1=d2 � 5=4, hence
d3 � 6< d2, a contradiction.

(2) T1 D [3] or T1 D [2].
Suppose #T1 ¤ 1. We haveQe2C Qe3C1=d2C1=d3 � 1. By (1) t1 D 2, so t2, t3 ¤ 2,

henceQe2C Qe3 < 1=2C1=2D 1 and from the inequalityQeC Æ � 2 we get Qe1C3=d1 > 1.
This givesd0(T t

1 ) D d(T t
1 )� 1 or d0(T t

1 ) D d(T t
1 )� 2, so T1 D [(k)] or [3, (k)] for some

k > 0 by Lemma 7.1.
Supposek � 2. In this caset2, t3 � 4, so Qe2, Qe3 < 1=3. Then 1=d2 C 1=d3 > 1=3

and we getd1 � d2 � 5, which is possible only ifT2 is a tip andT1 D [(k)] for some
k 2 {2, 3, 4}. Since now 1=d3 � 1� Qe3 � 2=d2 > 2=3� 1=2, we see thatd3 � 5, so T3

is also a tip. ThenQe2 D 1=d2 and Qe3 D 1=d3, so 1=d2 C 1=d3 � 1=2 and we conclude
that T2 D T3 D [4] and T1 D [(k)] for some k 2 {2, 3}. It follows that QeC Æ D 2,
so N�(W) D 0 and by Lemma 7.3 1=(k C 1)C 1=jGj � 1=2. Then jGj � 6, so G is
abelian, because it is a small subgroup ofGL(2, C). However, by Lemma 3.2 (iii)
# OE D 7C K � E C � � k � 7, a contradiction.

We are left with the caseT1 D [3, 2], for which Qe2 C 1=d2 C Qe3 C 1=d3 � 6=5.
Now t2, t3 ¤ 2, so Qe2, Qe3 < 1=2. Supposet2 � 4 or t3 � 4. Then Qe2 C Qe3 < 1=2C 1=3,
so 1=d1 C 1=d2 > 1=3 and we getd2 D 5, henceT2 D [5] or T2 D [2, 3]. If T2 D [5]
then 1=d3 > 4=5� 1=2D 3=10. If T2 D [2, 3] then, sincet3 � 4, Qe3 < 1=3 and 1=d3 >

3=5 � 1=3 D 4=15. In both cases we getd2 � 3, a contradiction. Thust2 D t3 D 3,
so Qe2 C Qe3 < 1 and we getd2 � 9. However, all admissible chains with discriminant
5 � d � 9 which end with a (�3)-curve satisfyQeC 1=d � 3=5 (cf. Lemma 2.6), the
equality occurs only for [2, 3]. Hence 1=d3 � 3=5 � Qe3 > 1=10, so d3 � 9 too. This
implies T2 D T3 D [2, 3], so QeC Æ D 2, which gives N�(W) D 0. By Lemma 7.3 (iii)
1=jGj � 2=5, a contradiction.

(3) T1 D [2].
SupposeT1 D [3]. We have Qe2 C Qe3 C 1=d2 C 1=d3 � 4=3, so sinceQe2 C Qe3 <

2=3C 1=2, we get 1=d1 C 1=d2 > 1=6, which givesd2 � 11.
CASE 1. SupposeT2 ¤ [3] or (t 03, t3) ¤ (3, 2). We prove thatd3 � 42. Ford2 > 6

the inequality 1=d1C 1=d2 > 1=6 givesd3 � 42. We can therefore assume thatd2 � 6.
If T2 D [3, 2] then Qe2C1=d2 D 4=5 and t3 ¤ 2, so 1=d3 > 4=3�4=5�1=2 andd3 � 29.
If T2 D [4], [5], [6] or [2, 3] then Qe2C1=d2 � 3=5 and sinceQe3 < 2=3, we getd3 � 14.
We are left with the caseT2 D [3], where we getQe3 C 1=d3 � 2=3. If t3 � 3 then
1=d3 > 2=3� 1=2, so d3 � 5. If t3 D 2 and t2 > 3 then 1=d3 > 2=3� 3=5, so d3 � 14
and we are done.
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Now note that wheneverd3 is bounded, by Remark 6.5 there are finitely many
possibilities for the weighted dual graphs ofD and OE. Using a computer program
we checked that the conditionsd2 � 11, d3 � 42, Lemma 3.2 (iii)–(iv), Lemma 3.3,
Proposition 4.6, Lemma 6.4 and Proposition 3.1 (iv) (which implies that�d(D)=d( OE)
is a square) are satisfied only in two cases:
(i) T1 D [3], T2 D [3], T3 D [3, (6)] and OE D [2, 3, 4],
(ii) T1 D [3], T2 D [4], T3 D [2, 2, 2] and OE is a fork with a (�2)-curve as a branching
component and maximal twigs [2], [2], [2, 2, 3].
In both casesD contains [3, 1, 2, 2], a contradiction.

CASE 2. SupposeT2 D [3] and (t 03, t3) D (3, 2), write T3 D T0 C [3, 2]. Using
Lemma 2.1 we check that the inequalityQeC 1=d3 � 2=3 is equivalent tod0(T t

0 )C 3�
d(T t

0 ), so by Lemma 7.1T3 D [(k), 3, 2], [3, (k), 3, 2], [4, (k), 3, 2] or [2, 3, (k), 3, 2]
for some k � 0. We conclude thatK � T � 5, hence Remark 6.5 again reduces the
problem to checking finitely many cases (here Noether formula implies k � 9, which
gives d3 � 102). We checked that each of them leads to a contradiction with one of
the conditions as in Case 1.

It remains to prove that� D 2. By (3) and Lemma 7.3 (v) we can assumeN�(W) D
0. For convenience we put formally [3, (�1), 3]D [4], then we haved([3, (k�2), 3])D
4k for any k � 1. Suppose� � 1. By Lemma 7.3 (v) 2(K

NS C T C

OE) � 0, so by

Lemma 2.13 (ii) [2(K
NSCT#

C

OE#)] � U for some effectiveU . Then K
NSCT#

C

OE#
� 0

implies U C {2(K
NSC T#

C

OE#)} � 0, hence 2 BkTi and 2 Bk OE areZ-divisors. Since

T2, T3, OE do not consist only of (�2)-curves, we obtain 2 BkOE D

OE and 2 BkTi D Ti

for i D 2, 3. The latter equality holds only ifT2 and T3 are of type [3, (k), 3] for
some k � �1. Using Lemma 6.4 (iv) we compute Bk2

OE D ��, hence by 2.5 and
Lemma 2.4 (v)� D 1 and OE is a chain. Then we can writeOE D [3, (z� 2), 3] with
z� 1. By Lemma 3.2 (iii)x C yC zD 11, hence 1� x, y � 9 and

1

x
C

1

y
C

1

11� x � y
� 2

by Lemma 7.3 (iii). This inequality is satisfied only for (x, y) D (1, 1) and (x, y) D
(1, 9). However, in the first cased(D) D 0, so (x, y) D (1, 9) and we getT2 D [4],
T3 D [3, (7),3] and OE D [4]. By Lemma 6.2 there exists an affine ruling ofS extending
to a P1-ruling of NS. Since B2

D �1, B is horizontal and the ruling has three singular
fibers. This contradicts Lemma 6.6.

Proposition 7.6. N�(W) D 2.

Proof. SupposeN�(W) � 1. By Lemma 7.3N�(W) � 0 andbD 1. By Lemma 7.5
one of the maximal twigs ofD is [2]. We have also� D 2, which givesE D [3].
Denote the coefficient ofE in Bk OE by wE. We prove successive statements.
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(1) If wE > 1=2 then OE is a chain and1 is connected. IfwE D 1=2 then either
OE is a fork with maximal twigs [3], [2], [2] or OE D [2, 3, 2].

Suppose OE is a fork. By Proposition 4.4 (iii) we know that1 does not contain
a fork and by Corollary 6.7E is not the branching component ofOE, so OE is of type
(b1) (cf. Proposition 4.6) and the maximal twig ofOE containingE is equal to [(k), 3]
for somek � 0. Using Lemma 2.3 (ii) and the definition of a bark of an admissible
fork it is a straight computation to check thatwE � 1=2 in each case and the equality
occurs only for a fork with maximal twigs [3], [2], [2]. If OE is a chain then OE D

[(m� 1), 3, (Qm� 1)] for somem, Qm� 1 and

wE D
mC Qm

m QmCmC Qm
D 1�

1

1C 1=mC 1= Qm
,

so wE � 1=2 if and only if 1=mC 1= Qm � 1, hence (1) follows.
By Corollary 5.8 there exists a pre-minimal affine ruling ofSn1, let f W ( NS†, D†

C

1) ! P

1 be its minimal completion. Since6S0 D 0, every singular fiber off has a
unique S0-component and this component is a (�1)-curve. We use Notation 5.5. Since
bD 1 and Z2

1 � �2, n D 1 and by Corollary 5.4 (Qh, h) D (2, 3). Write10

D [(m� 1)],
Q

1 D [( Qm � 1)] for some m, Qm � 1. The maximal twig ofD† contained in the first
branch of F , call it T2, and the one contained in the second branch ofF , call it T1,
are not touched by' f , hence they are maximal twigs ofD.

Fibers of P1-rulings cannot contain branching (�1)-curves, so sinceb D 1, ' f

touches the birational transform ofB. Let NS†
!

QS
Q�

�!

NS be the factorization of' f ,

such that the birational transform ofB is touched by Q� exactly once. LetQ� W QS! QU
and� W NS! U be the contractions ofT1 C C C1

0 on respective surfaces.

NS†
K

QS
Q�

K

Q�

K

QU
�

K

�

K

P

1

NS
�

KU

The centers ofQ� and Q� are different, so there exists a birational morphism�W QU !

U , such that� Æ Q� D � Æ Q�. Denote the birational transform ofB contained in QU by
QB. By definition QB2

D 0. Consider theP1-ruling � W QU ! P

1 induced by QB. Denote
by QT3, QE �

QU the reduced total inverse image ofT3 and the birational transform ofE
respectively. Put QD D T2 C QB C QT3. Let D2 � T2 and D3 � QT3 be the sections of�
contained in QD and let F 0 be a general fiber. Since6S0 D 1 for the ruling� Æ Q� , there
exists a unique singular fiberF1 with � (F1) D 2. Let M1, M2 be its S0-components.

(2) M1 and M2 are (�1)-curves. If� has more than one singular fiber thenF1 D

M1 C Q

1C M2.
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Suppose there is another singular fiberF0. Note that vertical (�1)-curves areS0-
components. We have� (F0) D 1, so F0 is a chain intersected in tips byD2, D3, other-
wise there would be a loop in SuppD. Then F0 containsT3 � D2 C T2 � D2, so F1

does not contain QD-components. SinceMi � D D Mi � (D2 C D3), both Mi intersect
D2 C D3, hence both have multiplicity one. It follows thatF1 D [1, ( Qm � 1), 1], so
we are done. We can therefore assume thatF1 is the unique singular fiber of�. Sup-
pose F1 has only one (�1)-curve. ThenD2 and D3 intersect tips ofF1 belonging to
the first branch ofF1, so when we contractF1 to a smooth fiber we touchD2 C D3

at most once. This gives two disjoint sections of aP1-ruling of a Hirzebruch surface,
one negative and one non-positive, which is a contradiction.

The morphismQ� contracts the fiber consisting ofT1CCC10, so sinceh D 3, we
can write

Q� D p2 Æ �2 Æ p1 Æ �1,

where p1, p2 are sprouting blow-ups (with respect to the image of the fiber) and �i

are compositions of sequences of subdivisional blow-downs. Note that p1 Æ �1 is the
contraction ofCC1

0. Put � D �2 Æ p1 Æ �1 and let Ri for i D 1, 2 be the exceptional
divisors of pi . We now analyze the contractionQ� and singular fibers of� more closely.

(3) QE � (K
QU C

QD)C E � � �R2 D 1.
Let us use the common letterE0 for the birational transforms ofE. Using Lemma 2.2

we check how the quantityE0

� (K 0

C D0), where D0 is the reduced total transform of
QD and K 0 the canonical divisor on a respective intermediate surfacebetween QS and QU ,

changes under subsequent blow-downs. SinceQ� is subdivisional with respect toD, at
the beginning we have

E0

� (K 0

C D0) D E � (K C D C C C1

0) D 1C E � (C C1

0).

Under � it decreases byE0

� R1 D E � � �1 R1 D E � (C C1

0) and underp2 it decreases
by E0

� R2 D E � � �R2.
(4) There is a unique (�1)-curve L, such thatL � QD > 1. It satisfiesK

QU C
QD C

L � 0.
We have

K
QU � (K QU C

QD) D KU � (KU C �

�

D) D K � (K C D)C 1D 1,

so by Riemann–Roch’s theorem

h0(�K
QU �

QD)C h0(2K
QU C

QD) � K
QU � (K QU C

QD).

If 2K
QU C

QD � 0 then

0� �(K
QU C

QD) D �(KU C �

�

D) D �(K C D C C C1

0) D �(K C D),
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where the last equality follows from Lemma 2.13 (i), and thiscontradicts�(K C D) D
N�(S)D �1. We get�K

QU �
QD � 0. Write�K

QU �
QD D

P

Ci for some irreducibleCi ’s,

such thatC2
i < 0 (cf. Lemma 2.14 (ii)). For a fiberF 0 of � we haveF 0

� (K
QU C

QD)D 0,
so Ci ’s are vertical.

EachS0-componentL of a singular fiber intersectsQD and by (2) it is a (�1)-curve.
Suppose each satisfiesL � QD D 1. Then F1 is the only singular fiber of�. Indeed, if
F 0

¤ F1 is a singular fiber then� (F 0) D 1 and since SuppQD does not contain a loop,
F 0 is a chain, so its exceptional component does not satisfy ourassumption.F1 \ QD
has two connected components (which may be points), letR� M1C Q

1CM2 be a chain
connecting them. By assumptionR¤ M1,M2, so R contains bothMi . It follows that R
contains a divisor with zero discriminant, which is possible only if F1 D [1, ( Qm�1), 1],
henceT2 D D2 and T3 D D3. If we now look at the pre-minimal ruling ofSn1 then
we see thatQZl and Zl are irreducible, soQG and G are (�2)-curves, which implies that
D contains a component with non-negative self-intersection, a contradiction. Thus there
is an exceptionalS0-componentL, such thatL � QD > 1.

Note that if for somei 2 {2, 3} the sectionDi intersectsL then Di is a maximal
twig of QD, becauseDi � F D 1. It follows that L � QD D 2. Since (�K

QU �
QD) � L D

1� QD � L < 0, L appears amongCi ’s. However,�K
QU �

QD � L is vertical and satisfies

(�K
QU �

QD � L)2
D K

QU � (K QU C
QD) � 1D 0

so �K
QU �

QD � L � �F for some� � 0. Multiplying by Di for i D 2, 3 we get
�

QD(Di ) C L � Di D 2 � �. For � > 0 we would obtain�
QD(D2) D �

QD(D3) D 1 and

L � D2 D L � D3 D 0, which is impossible, asL � QD > 0. Thus K
QU C

QD C L � 0. If L 0

is another (�1)-curve, such thatL 0 � QD > 1, then�L 0 � L D L 0 � (K
QU C

QD) > 0, hence
L 0 D L.

(5) 2� E � � �R2 D 1C E � L � 3.
IntersectingK

QU C
QD C L � 0 with components of QD C

Q

1 we see thatL � Q1 D 0

and L intersects QD only in tips, each tip once. It follows that� and � do not touch
L. Intersecting

K C T C OE � �P C Bk T C Bk OE

with L we get

E � L(1� wE) � (Bk T2 C Bk T3) � L � 1.

We have (BkT1C Bk T3) � L < 2, otherwiseT2 and T3 would be (�2)-chains, which is
impossible by Proposition 7.4. ThusE � L < 1=(1� wE). By (3) we get

E � � �R2 D 1� QE � (K
QU C

QD) D 1C E � L < 1C
1

1� wE
.
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By (2) eitherwE � 1=2 or OE D [3, (n � 1)] for somen � 1 and then 1=(1� wE) D
2C 1=n � 3. In any caseE � � �R2 � 3.

Consider the ruling� Æ Q� W QS! P

1. Let �C and �
1

be the coefficients in� �R2

of C and respectively of a component of10 intersectingE (put �
1

D 0 for 10

D 0).
Clearly, Q� does not touchT1 C C C1

0

C E. We haveE � � �R2 D �CC � E C �

1

and
�

1

< �C. Note that E � �

�R2 � 2, otherwiseE � (C C 1

0) � 1, a contradiction with
Proposition 3.1 (ii).

(6) T1 D [(k), 3] for somek � 1. OE D [3, 2].
Suppose first that #T1 D 1. ThenE �� �R2 D E � F 0 for a generic fiberF 0 of � Æ Q� .

By (5) we have

2� E � L C 1D E � F 0

D �CC � E C �

1

� 3.

SupposeL � F1 (cf. (2)). The fiber containingL has� D 1, so�(L) � 2 and since
�(L)E � L � E � F 0

� 3, we getE � F 0

D E � L C 1D 2. Then F1 D M1 C Q

1C M2 by
(2), becauseL is contained in some singular fiber. Since bothMi intersect QD, we have

QD � M1 D QD � M2 D 1.

By Proposition 3.1 (ii) OE � M1, OE � M2 � 2, so Q1 ¤ 0 and then

E � Q1 D E � (F 0

� M1 � M2) � 0,

a contradiction. ThereforeL � F1, say L D M1. By (4) QD � M2 � 1, so OE � M2 � 2 by
Proposition 3.1 (ii). We have

E � M2 � E � (F1 � L) D 1,

so 0¤ Q

1 � F1 and

E � M2 � E � (F1 � L � Q

1) � 0.

Then

OE � M2 D Q

1 � M2 � 1,

a contradiction. Thus #T1 > 1.
Suppose�

1

D 0. Then10

D 0, so C � E � 2. Since�CC � E C �

1

� 3, we
get �C D 1, so T1 D [(k)] for some k � 0. Since #T1 > 1, D contains [2, 1, 2] by
Lemma 7.5, a contradiction with Proposition 7.4. Thus�

1

> 0. We get�C > 1 and
then �C D 2, �

1

D 1 and C � E D 1. As #T1 > 1, it follows that T1 is [(k), 3] or
[3, (k)] for somek � 1. However, in the latter case the equalityh D 3 does not hold.
Thus T1 D [(k), 3] for somek � 1. We conclude that10

D [2] and E � �

�R2 D 3, so
E � L D 2. SinceE � L < 1=(1� wE) (cf. (5)), we get Q1 D 0 by (1).
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(7) T2 D [2].
Recall thatT2 is the maximal twig ofD contained in the first branch ofF (a fiber

of f ). SupposeT2 ¤ [2]. By (6) and Lemma 7.5T3 D [2], so since #T3 D 1, f is
not almost minimal. Thus by Proposition 5.7 the morphism' f W NS†

!

NS minimalizing

D† contracts preciselyH†
C

QZ1 and touchesZ1 at least four times. However, since
Q

1 D ;, QG C

QZu C QZ1 consists of (�2)-curves, hence' f touchesZ1 at most once,
a contradiction.

From (7) we see thatF is produced by the following sequence of characteristic
pairs (cf. Definition 2.9 and Notation 5.1):

�4kC4
2kC2

�

,
�2kC2

2

�

,
�2

1

�

, so the pairs
�

-ci

-pi

�

are
�2kC2

kC1

�

,
�kC1

1

�

. By (6) C � E D 1 and� D 2C � E C 1D 3. The second fiberQF of f is

produced by the sequence
�c

p

�

,
�1

1

�

for somec, p � 1. We have

Q�cD d D �-c1 D 6kC 6.

By (5.1) 3dC 1D �(2kC 2C kC 1C 1)C Q�(cC p), hence Q� p D 3kC 1. Then

Q� D gcd(Q�c, Q� p) D gcd(6kC 6, 3kC 1)D gcd(4, 3kC 1),

so Q� 2 {2, 4} ( QC would be simple forQ� D 1). On the other hand (5.2) gives

d2
C 3D Q�

2cpC Q�

2
C 9(2(kC 1)2 C kC 1)C 3C � E C C � E C 1,

hence Q�2
D 3kC 1. For Q� D 2 we getk D 1, so (c, p) D (6, 2), which contradicts the

relative primeness ofc and p. Thus Q� D 4 and we getk D 5 and (c, p) D (9, 4). Then
QGC QZu D [3, 2, 2, 2] and QZl D [2, 5], so T3 D [2, 4]. Then QeC Æ D 3=7C1C7=13< 1,

a contradiction with Lemma 7.3 (iv).

Corollary 7.7. OE is one of[2, 3], [3], [4], [5] and � 2 {1, 2}.

Proof. By Proposition 7.6N�(W) D 2, so by Lemma 7.3 (iii) and Lemma 6.4 (ii)
we have� ¤ 0 and 1> Æ > 1 � 1=jGj. SupposejGj � 7 and assumed1 � d2 � d3.
For d1 � 3 we getd2 D 3 andd3 � 5. For d1 D 2 we haved2 � 3 and the inequality
gives d2 � 5 and 1=d3 > 6=7� 1=2� 1=3 D 1=42, sod3 � 41. By Remark 6.5 there
are only finitely many possibilities for the weighted dual graphs of OE and D. Using a
computer program we checked that with the above bounds conditions Lemma 3.2 (iii),
Proposition 4.6, Lemma 6.4 and Proposition 3.1 (iv) can be satisfied only for OE D [4],
which contradicts our assumption. We conclude thatjGj � 6, so OE is one of: [2, 3],
[3], [4], [5], [6]. However, [6] is ruled out by Corollary 4.3.

8. Special cases

By Section 7 we know thatN�(W)D 2 and (�, OE) 2 {(2,[2,3]),(2,[3]),(1,[4]),(1,[5])}.
We will rule out these cases now. Letf W ( NS†, D†) ! P

1 be a minimal completion of a
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pre-minimal affine ruling ofSn1 (see Fig. 1). We use Notation 5.5. Let (x, y, z) with
x � y � z be the ordering of (d1, d2, d3), where as beforedi D d(Ti ) are discriminants
of maximal twigs of D. By Lemma 7.3 we have 1> Æ > 1 � 1=jGj � 2=3, where
jGj D d( OE), so x � 4 and y � 11.

Lemma 8.1. One of the following cases occurs:
(i) (x, y) D (3, 3) and OE D [3],
(ii) (x, y) D (2, 3) and OE 2 {[2, 3], [3], [4], [5]},
(iii) ( x, y) D (2, 4) and OE is either [3] or [4],
(iv) (x, y) 2 {(2, 5), (2, 6)} and OE D [3].
In particular, the two maximal twigs of D corresponding to x and y belong toL D

{[2], [2, 2], [2, 2, 2], [2, 2, 2, 2], [2, 2, 2, 2, 2], [3], [4], [5], [6], [2, 3], [3, 2]}.

Proof. Supposez� 41. Given an upper bound forz there are finitely many pos-
sible weighted dual graphs ofD. We used a computer program, which showed that for
x � 4, y� 11, z� 41 conditions Proposition 3.1 (iv), Lemma 3.2 (iii)–(iv), Lemma 3.3,
Lemma 6.4 and Lemma 7.3 (iii) are satisfied only in three cases:
(i) bD 1, T1 D [2], T2 D [4], T3 D [(8), 4] and OE D [4],
(ii) bD 2, T1 D [2], T2 D [2, 2], T3 D [4, (6)] and OE D [4],
(iii) bD 2, T1 D [2], T2 D [2, 2, 2], T3 D [3, 3, (4)] and OE D [4].
These are included above, so we are done. Now supposez � 42. For x � 4 we get
1=z> 1� 1=jGj � 1=2� 1=6, which is impossible. Forx D 3 we have 1=yC 1=jGj >
2=3 � 1=42, which givesjGj D y D 3. SinceÆ < 1, for x D 2 we havey � 3 and
1=yC 1=jGj > 1=2� 1=42, hencey � 6 and the bounds onOE follow.

Corollary 8.2. The ruling f has two singular fibers andQh D 2.

Proof. By Corollary 5.4 f has more than one singular fiber and it has at most
three becauseD is a fork. Each contains a uniqueS0-component. Suppose it has three.
Then D†

D D and sincex � 3, for one of the singular fibers, sayF1, F1 \ D has at
most two components, henceF1 is a chain and1 \ F1 ¤ ;. Then OE D [2, 3] and
1 � F1 D [2, 1, 2]. It follows that the maximal twigs contained in other singular fibers
of f have more than two components, a contradiction with Lemma 8.1. AssumeQh � h.
Since D is a fork, Qh � 2. By Corollary 5.4 Qh D 2.

Let T1, T2 be the maximal twigs ofD contained respectively in the second and in
the first branch ofF . (The role ofTi ’s is not symmetric because of this, that is exactly
why we do not assumed1 � d2 � d3, but usex, y, z instead.) Clearly, they are also
maximal twigs of D† and ' f contracts the chainH†

C

QZ1 C QZu to T3.
We rewrite the equations of Propostion 5.2 for two fibers. Put� D nC�CK �E�4,

then hD 3C� and 0� � � n. Put
�

-Qc1

-Qp1

�

D

�

Qc
Qp

�

,
�

-c1

-p1

�

D

�c
p

�

and
�

-ch�1

-ph�1

�

D

�c0

p0
�

. SinceT1 is
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a chain, we have
�

-c2

-p2

�

D

�

-c3

-p3

�

D � � � D

�

-ch�2

-ph�2

�

D

�c0

c0
�

. Recall that� D �C �ECc0hC �ECc0h.

We have� D �

2 for 10

D 0 and� D (1=2)(�2
C 1) for 10

D [2], analogously for Q�.
In any case� � �

2 and Q�

2
� Q�

2 (in fact these bounds hold in general, which can be
shown by a straightforward computation). Recall that�, Q� � 2 by Proposition 3.1 (ii).
We haved D c� D QcQ�, so we can write (5.1) as:

dnC  � 2D �(pC �c0 C p0)C Q� Qp.(8.1)

Multiplying the above equation byd and subtracting (5.2) we obtain:

d( � 2)�  D �

2(c� c0)(�c0 C p0) � � � Q�.(8.2)

REMARK . Knowing the dual graph ofZl it is easy to determinec=c0 and p=c0.
One hasc=c0 D d(G C Zu) D d(Zl ) and p=c0 D d(Zu) D d(Zl ) � d(Zl � Zll ) (cf. Ap-
pendix of [12]).

REMARK 8.3. For a fixed weighted dual graph ofF there are finitely many pos-
sible weighted dual graphs ofQF C H .

Proof. If the (weighted) dual graph ofF is known then we knowc, p, c0, p0. The
equation (8.1) gives

n(c� c0)C
 � 2

�

D pC (� C K � E � 4)c0 C p0 C
Q� Qp

�

,

so n(c�c0) < pC p0Cc� 2c, hencen< 2C2c0=(c�c0) � 4. Since now� is bounded,
it is enough to bound�, because thend, �, and henceQc, Qp, Q�, Q� are bounded. We have
QcQ� D c�, so Q� j c � gcd(�, Q�). By (8.1) gcd(�, Q�) j  � 2 and since � 2 2 {1, 2, 3}, we
get Q� j c( � 2) and thenQ� � 3c. Therefore Q� and Q� are bounded. The coefficient of
� in (8.2) does not vanish, so (8.2) is a nontrivial polynomialequation for� of degree
at most two, so we are done.

Lemma 8.4. d1 � 6 if and only if d2 > 6.

Proof. By Lemma 8.1d1 � 6 or d2 � 6. Supposed1 � 6 andd2 � 6. Clearly, hav-
ing the dual graph ofT1, there are only finitely many possibilities for the dual graphs
of T1 C C C 1

0, in each caseZ2
1 is determined. On the other hand,T2 D Zl and

(G C Zu)t are adjoint chains(cf. [5, 4.7]), i.e. e(G C Zu) D 1 � e( QZl ), so the dual
graph ofGC Zu is determined byT2. Then by Remark 8.3 there is finitely many pos-
sibilities for the dual graphs ofQF C H . We use a computer program which for given
F (in terms of (c, p, c0, p0)) computes possible ( , n, �, �, Q�, Qc, Qp, Q�) using the algo-
rithm sketched in Remark 8.3 and checks whether (8.1) and (8.2) can be satisfied. In
each case (there may be many solutions) the maximal twigT3 is determined and the
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program returns only these, for which conditionsÆC 1=jGj > 1, Lemma 3.2 (iii)–(iv),

Lemma 6.4,
q

�d(D)=d( OE) 2 Z and Lemma 3.3 hold, these are:

(i) (n, ,�, Q�) D (1, 4, 4, 2),
�c

p

�

D

�4
1

�

,
�c0

p0
�

D

�1
1

�

,
�

Qc
Qp

�

D

�8
5

�

; bD 2, T1 D [2], T2 D [(3)],
T3 D [3, 3, (4)],
(ii) (n,  , �, Q�) D (1, 4, 4, 2),

�c
p

�

D

�4
3

�

,
�c0

p0
�

D

�1
1

�

,
�

Qc
Qp

�

D

�8
1

�

; bD 1, T1 D [2], T2 D [4],
T3 D [(8), 4],
(iii) ( n, ,�, Q�) D (2, 4, 4, 2),

�c
p

�

D

�2
1

�

,
�c0

p0
�

D

�1
1

�

,
�

Qc
Qp

�

D

�4
3

�

; bD 2, T1 D [2, 2], T2 D [2],
T3 D [4, (6)].

In cases (i) and (ii) we have�d(D)=d( OE) D 4 and gcd(c, Qc) D 4, in case (iii)
�d(D)=d( OE) D 1 and gcd(c, Qc) D 2. By Corollary 5.4 (iii) this is a contradiction.

We are ready to finish the proof of our main result.

Proof of Theorem 1.1. As before, letS0 be a singularQ-homology plane and letS0

be its smooth locus. SupposeN�(S0) D �1 and N�(S0) D 2. With the notation as above by
Lemmas 8.4 and 8.1T3 2 L. We first prove thatf is almost minimal. Suppose not. Then
by Proposition 5.7Q1D 0 and' f contractsH†

C

QZ1, whereH†
D

QZuC QGCHCGCZu.

Furthermore,' f touches QZ1 once andZ1 x times, wherex D 1� QZ2
lu � 4. It follows that

n D 1, QZ2
1 D �2 andZ2

1 D
QZ2

lu � b� 1. For a given weighted dual graph ofT3 the dual

graph of QG C

QZu is determined uniquely. Indeed,QG C

QZu and QZt
l are adjoint chains, so

e( QG C

QZu) D 1� e( QZl ). Similarly, e(G C Zu) D 1� e(Zl ). By the properties of' f the

chain QC C

QZ1 C H† has zero discriminant, so the snc-minimalization ofQG C

QZu C QC
is adjoint to (G C Zu)t , and hence has the same weighted dual graph asZl . Therefore
QZl determines the weighted dual graph ofH†

C Z1 C Zl . Note that sinceZ1 is touched
more than once,QZ1 C QZu cannot consist of (�2)-curves, so #T3 > 1. We now rule out
the remaining cases.

CASE 1. T3 D [3, 2].
We have QZl D [3, 3], so QGC

QZu D [2, 3, 2] and henced(T2) D d([2, 3, 2, 2, 1])D
d([2, 2]) D 3. Then (x, y) D (3, 5) by Lemma 8.4 and this contradicts Lemma 8.1.

CASE 2. T1 D [2, 3].
We have QZl D [2, 4], so QG C

QZu D [3, 2, 2] and henceT2 is a minimalization of
[3, 2, 2, 2, 1], which is [2]. Then (x, y) D (2, 5), so OE D [3] by Lemma 8.1. We have
�

Qc
Qp

�

D

�7
3

�

and
�c

p

�

D

�2c0

c0
�

, so � j d D 7Q� and gcd(�, Q�) j  �3, hence� D 7 and Q� D 2c0.

However, (8.1) gives 7p0 D c0 C 1 and then (8.2) implies that 3(c0)2
� 7c0 � 46D 0, a

contradiction withc0 2 N.
CASE 3. T1 D [(k)] for somek 2 {2, 3, 4, 5}.
We have QZl D [(k�1), 3], so QGC QZu D [kC1, 2] and henceT2 is a minimalization

of [kC 1, 2, 2, 1], which is [k]. Then by Lemma 8.4T1 62 L, so (x, y) D (k, kC 1) and
we getk D 2 by Lemma 8.1. We have

�

Qc
Qp

�

D

�5
2

�

and
�c

p

�

D

�2c0

c0
�

. Then 5Q� D d D 2c0�,

so by (8.1)�c0(� � 1)D  � 2� � p0 � 2Q�. The left hand side is negative, so� D 0,
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i.e. K �EC� D 3. Suppose D 3. By (8.1) gcd(�, Q�)D 1, so� D 5. We getc0 D 5p0�1
and then (8.2) implies (c0)2

� 5c0 C 3� � D 0. For � D 5 we get� D 25 or � D 13,
a contradiction withc0 2 Z. Thus  D 4 and now gcd(�, Q�) j 2, so � 2 {2, 5, 10}.
We check that (8.1) and (8.2) lead to a contradiction for� ¤ 2 and for � D 2 give
�c0

p0
�

D

�25
6

�

. Then T1 D [(3), 7, (6)] andbD 2, henced(D) D �25, a contradiction with
Corollary 5.4 (iii).

Thus f is almost minimal. Supposen > 1. Then D†
D D and Qh � 2, so #T3 � 5

and in factT3 D [(5)] becauseT3 2 L. We get QG C

QZu D [2] and G C Zu D [2], so
�c

p

�

D

�2c0

c0
�

and
�

Qc
Qp

�

D

�2
1

�

, hence Q� D d= Qc D c0�. By (8.1) we get 1< � j  � 2, so

 ¤ 3 and hence1 D 0. Then by (8.2)� j  , so � D 2 and OE D [4]. We get� D 1
and then (8.1) givesp0 D c0 C 1, which contradictsp0 � c0.

Since f is almost minimal,' does not contractQZ1, so #T3 � 2. Moreover, if
#T3 D 2 then #QZl D 1, so QGC QZu consists of (�2)-curves and since' f has to contract

G, we see thatQZ1 is touched at least twice by' f . The latter shows that if #T3 D 2

then QZ2
1 � �4, which contradicts #1 � 1. ThereforeT3 D [(k)] for somek D 3, 4, 5.

By Lemma 8.1 OE D [4] or OE D [3]. In particular,� D 0 and1 D 0. The latter
yields QZ2

1 D �2. Now QZl consists of (�2)-curves, so QZu D 0. Let’s write QZl D [(s)]

and QG D [sC 1] for somes � 1. Since' f does not contractQZ1, it cannot contract
QG. This gives s � 2, as n D 1. SupposeG ¤ [2]. Then #T3 � 5 implies s D 2,
Zu D 0 andG D [3], so d2 D 3. By Lemma 8.4 we get (x, y) D (3, 6), a contradiction
with Lemma 8.1. ThusG D [2], so ' f touches QG at least twice, which givess � 3.

Now k � 5 implies s D 3 and Zu D 0. By Lemma 8.1 OE D [3]. We have
�

Qc
Qp

�

D

�4
1

�

and
�c

p

�

D

�2c0

c0
�

. Then 4Q� D d D 2c0� and gcd(�, Q�) D 1, so � D 2. Now (8.1) gives

c0 D 2p0 � 1, so by (8.2) (c0)2
� 2c0 D 1, a contradiction.
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