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Abstract
We obtain a partial classification result for generic 3-dimensional conformally flat

hypersurfaces in the conformal 4-sphere: explicit analytic data are obtained for con-
formally flat hypersurfaces with Bianchi-type canonical Guichard net. This is the first
classification result for conformally flat hypersurfaces without additional symmetry.
We discuss the curved flat associated family for conformallyflat hypersurfaces and
show that it descends to an associated family of conformallyflat hypersurfaces. The
associated family of conformally flat hypersurfaces with Bianchi-type Guichard net
is investigated.

1. Introduction

A generic conformally flat hypersurface of the conformal 4-sphere comes with a
special coordinate system, its “canonical principal Guichard net”. These are curvature
line coordinates (x, y, z) so that, in particular, the coordinate system defines a triply or-
thogonal system in the intrinsic geometry of the hypersurface, i.e., the coordinate sur-
faces of different families, sayx D const andyD const, intersect orthogonally. Further,
these coordinates form a Guichard net, that is, they satisfya zero trace condition (2.1)
for the induced conformal structure. This condition allowsto encode the induced con-
formal structure in terms of a single real-valued function (x, y, z) 7! '(x, y, z), which
in turn allows to classify conformally flat hypersurfaces interms of these functions,
satisfying a system of partial differential equations, see[6, Lemma 1].

As a conformally flat hypersurface also admits conformal coordinates, these can
be used to map the system of coordinate surfaces to Euclidean3-space to obtain a
Guichard net inR3. The conformally flat hypersurface can then (locally) be recon-
structed in an essentially unique way from this Guichard netin Euclidean space, that is,
from the intrinsic geometry of the hypersurface equipped with this special coordinate
system, see [5, §2.4.6]. Thus the classification of generic 3-dimensional conformally
flat hypersurfaces inS4 is equivalent to a classification of such Guichard nets in Euclid-
ean 3-space or, equivalently, the conformal 3-sphere. In this context it is an interesting
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question to understand the relation between the geometriesof the hypersurface and its
canonical principal Guichard net.

Note that this correspondence between conformally flat hypersurfaces and their ca-
nonical principal Guichard nets is established forparametrizedGuichard nets. The
Guichard condition allows for rescaling of the coordinate functions by a real constant
�: this is closely related to the associated family of a conformally flat hypersurface, as
we shall discuss in the last section of this paper. Thus the aforementioned relation be-
tween conformally flat hypersurfaces and Guichard nets in Euclidean 3-space requires
fixing the scaling of the coordinate functions to obtain uniqueness up to Möbius trans-
formation in the correspondence, cf. [9, Corollaries 3.1.1and 3.2.1].

Some examples and simple classification results were obtained in [4] and [5, Sec-
tion 2.4]. Based on [9], we obtained a classification of the fairly large class of conform-
ally flat hypersurfaces with cyclic Guichard net, that is, where one family of coordinate
lines are circular arcs in the intrinsic geometry of the hypersurface, in [6]. This class
is characterized by separation of variables in the system ofdifferential equations for the
real valued function' describing the induced conformal class.

The aim of this paper is to provide a class of examples, where the characterizing
function ' cannot be written as the sum of a function of one variable and one of two
variables. Or, otherwise said, where the canonical principal Guichard net is not cyclic.

After clarifying the technology to be used in Section 2, we discuss the intrinsic
geometry of the conformally flat hypersurfaces obtained from a relatively simple class
of solutions' that do not give rise to cyclic Guichard nets in general. We find that
there is a constant sectional curvature representative of the induced conformal struc-
ture so that all (coordinate) surfaces of the canonical Guichard net have constant Gauss
curvature, that is, the triply orthogonal system is a Bianchi system in three different
ways, see [8, §22]:

We say that a triply-orthogonal system of surfaces in a constant sectional curvature
space is of Bianchi-type if all surfaces have constant Gausscurvature.

Imposing this geometric condition for a non-cyclic Guichard net, the corresponding
conformally flat hypersurface turns out to have an induced conformal structure given by
a function' of that type as we shall see in Section 4. Hence we obtain a classifica-
tion result:

Main Theorem. Let '(x, y, z) D g(axC byC cz), where g02 D C� Acos 2g and
a, b, c, A, C 2 R satisfy abc¤ 0 and A¤ 0, �C. Then' defines a conformally flat
hypersurface f in the conformal4-sphere so that its canonical principal Guichard net
is non-cyclic and of(triply) Bianchi type for a suitable choice of constant sectional
curvature representative of the induced conformal structure. Conversely, any conform-
ally flat hypersurface with this intrinsic geometry comes from such a function'.
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In the process of proving the latter part of the theorem in Section 4, we obtain
another class of conformally flat hypersurfaces, satisfying milder conditions on its ca-
nonical Guichard net.

The classifications of 3-dimensional generic conformally flat hypersurfaces, Guichard
nets and the functions' satisfying a certain set of partial differential equations, respect-
ively, are all equivalent. However, it is a highly non-trivial task to establish relations be-
tween the geometric properties of a hypersurface and its canonical Guichard net and the
analytic properties of the induced conformal structure. InSection 2 we also discuss some
alternative analytic data that may facilitate the understanding of the interplay between
geometry and analysis. However, as this paper shows, the analysis of even seemingly sim-
ple classes of conformally flat hypersurfaces is getting increasingly laborious as symmetry
is lost. Hence another, more geometric characterization ofconformally flat hypersurfaces
seems desirable for obtaining a complete classification.

2. The setup

We will work in a Möbius geometric realm, within the same framework as in our
previous paper [6] (for more background details on the formalism the reader is referred
to Blaschke’s classic [1], to Cartan’s original paper [3], or to [5]). In particular, our
hypersurfaces will “live” in the projective light cone

S4
� L5

=R, where L5
WD {y 2 R6

1 j jyj
2
D 0}

denotes the light cone in Minkowski 6-spaceR6
1: by j � j2 we denote the quadratic form

of the Minkowski inner product onR6
1, so thatjyj2 > 0, jyj2 D 0 or jyj2 < 0 accord-

ing to whethery is spacelike, lightlike or timelike, respectively; note that rescaling
of a light cone lift of a hypersurface corresponds to a conformal change of the in-
duced metric,

f ! f 0 D e f ) I D hd f, d f i ! I0 D hd(e f ), d(e f )i D e2 I.

Hyperspheres of the conformal 4-sphere are, in this framework, encoded by spacelike
lines in R6

1 or either of two unit representatives

s 2 S5
1 WD {y 2 R6

1 j jyj
2
D 1}.

Note that the quadrics

Q4
WD {y 2 L5

j hy, Qi D �1}

are spaces of constant curvature� D �jQj2 (see [5, Section 1.4]), and that the “stereo-
graphic projections” between any two such quadrics are conformal. In particular, a
conformally flat hypersurface in the conformal 4-sphere canbe placed in any of these
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quadrics by means of the scaling� f =h f, Qi (provided thath f, Qi ¤ 0, that is, f does
not hit the infinity boundary ofQ4 in casejQj2 � 0). Thus, if (!1, !2, !3) denotes a
principal orthonormal co-frame for a hypersurfacef W M3

! Q4 with principal curva-
tures�i (in the space formQ4) then its (real) conformal fundamental forms are

1 D
p

j�3 � �1j j�1 � �2j!1,

2 D
p

j�1 � �2j j�2 � �3j!2,

3 D
p

j�2 � �3j j�3 � �1j!3.

We shall see later (Section 2.2 below) that thei are indeed conformal invariants—
up to permutation and choice of sign: in the case of ageneric hypersurface, that is,
a hypersurface with pairwise distinct principal curvatures, an ordering of the princi-
pal curvatures can be used to remove the permutation ambiguity. The sign ambiguity
will play no geometric role other than sign choices for a tangential frame and we will
therefore not account for it.

The conformal fundamental forms are closed,di D 0, if and only if the hyper-
surface is conformally flat, see [5, §2.3.3]. Consequently,by (locally) integrating the
conformal fundamental forms, we obtain a canonical coordinate system (x, y,z) for any
conformally flat hypersurface as soon as we assume the hypersurface to be generic: its
canonical principal Guichard net,

dx D 1, dyD 2, dzD 3.

It is obvious that the obtained coordinate system is principal; in order to see that it
defines a Guichard net (cf. [5, §2.4.4]) assume, without lossof generality, that�3 is
the middle principal curvature, that is,

(�2 � �3)(�3 � �1) > 0 W

then the induced metric off becomes

(2.1) ID l 2
1 dx2

C l 2
2 dy2

C l 2
3 dz2 with l 2

1 C l 2
2 D l 2

3.

Hence we can write

(2.2) ID e2 {cos2 ' dx2
C sin2

' dy2
C dz2}

on the coordinate domainU � R

3 with suitable functions' and .
Here the function reflects the choice of liftf, taking values in a particular

space formQ4
� L5, whereas the function' encodes the conformal geometry of the

hypersurface.



CONFORMALLY FLAT HYPERSURFACES 5

By [11], see also [5, §2.3.5], the conformal fundamental forms and Wang’s Möbius
curvature

W WD

�2 � �3

�2 � �1

form a complete set of conformal invariants for generic hypersurfaces in the conformal
4-sphere: two hypersurfaces are conformally equivalent ifand only if they have the
same conformal fundamental forms and Möbius curvature.

2.1. Canonical lift. The meaning of' for the conformal geometry off be-
comes clear from the following consideration, cf. [5, §2.4.6]: let f WD e� f with  

from (2.2) denote a rescaling of the immersionf into Q4 and note that such a rescaling
does not change the conformally flat hypersurface as an immersion into the conformal
4-sphereS4

� L5
=R. Then we choose an adapted Möbius geometric frame

(s1, s2, s3, s, f, Of ) ' F W U ! O1(6),

wheres1 D fx=j fxj, etc.,s is an enveloped sphere congruence, that is, it defines a unit
normal field for f W U ! L5, and Of ? si , s is the unique lightlike vector field so that
h

Of , f i D 1, cf. [6, Section 2] or [5, Section 1.7]. Additionally, we may use the freedom
of choice of an enveloped sphere congruence to fixs to be the curvature sphere congru-
ence for thez-direction, that is, we chooses to satisfysz ? fz or, equivalently,�3 D 0
in (2.3): if t ? Q denotes the unit normal field off in Q4 then we takes D tC �3f.
Then, using the compatibility conditions, the structure equationsd F D F8 for F can
be written entirely in terms of':

8 D

0

B

B

B

B

B

B

B

�

0 !12 �!31 ��1 !1 �1

�!12 0 !23 ��2 !2 �2

!31 �!23 0 ��3 !3 �3

�1 �2 �3 0 0 �

��1 ��2 ��3 �� 0 0
�!1 �!2 �!3 0 0 0

1

C

C

C

C

C

C

C

A

,

where

(2.3)

!12 D �('y dxC 'x dy), !1 D cos' dx, �1 D sin' dx, �1 D �1 C
1

2
!1,

!23 D 'z cos' dy, !2 D sin' dy, �2 D � cos' dy, �2 D �2 C
1

2
!2,

!31 D 'z sin' dx, !3 D dz, �3 D 0, �3 D �3 �
1

2
!3,

� D 'z dz
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and�i are the Schouten forms of the induced metric ID cos2 ' dx2
C sin2

' dy2
Cdz2,

see [6, (3.10)]:

(2.4)

�1 D �

�

'xx � 'yy � 'zz

sin 2'
�

'

2
z

2

�

!1 �
'xz

sin'
!3,

�2 D �

�

'xx � 'yy C 'zz

sin 2'
�

'

2
z

2

�

!2 C
'yz

cos'
!3,

�3 D �

'xz

sin'
!1 C

'yz

cos'
!2 C

�

'xx � 'yy � 'zz cos 2'

sin 2'
C

'

2
z

2

�

!3.

The remaining compatibility conditions then yield a systemof partial differential equa-
tions for ' as a necessary and (locally) sufficient condition for the existence of a con-
formally flat hypersurface with' defining its induced conformal structure via (2.2),
cf. [6, Lemma 1]:

Lemma 1. Parametrizing a conformally flat hypersurface fW R3
� U ! S4 in

the conformal4-sphere by its canonical principal Guichard net, its induced conformal
structure is given by

(2.5) ID cos2 ' dx2
C sin2

' dy2
C dz2,

where' satisfies

(2.6)

0D ('yz tan')x C ('xz cot')y,

0D

�

'xx � 'yy C 'zz

sin 2'

�

x

�

'

2
z

sin2
'

�

'x

'z

�

z

,

0D

�

�'xx C 'yy C 'zz

sin 2'

�

y

C

'

2
z

cos2 '

�

'y

'z

�

z

,

0D

�

'xx C 'yy C 'zz

sin 2'

�

z

�

'

2
z

cos2 '

�

'y

'z

�

y

C

'

2
z

sin2
'

�

'x

'z

�

x

.

Conversely, if ' satisfies(2.6) then it gives(locally) rise to a unique(up to Möbius
transformation) generic conformally flat hypersurface with(2.5) as its induced con-
formal class in terms of its canonical principal Guichard net.

Note that sin 2' ¤ 0 as we assume (2.5) to define a non-degenerate metric; the
formal requirement'z ¤ 0 in the equations (2.6) is clearly analytically unproblematic.
However, note that the case'z � 0 leads to a special case of our previous classification
in [6]: the normal bundle span{s, f, Of } is flat,

0D d� D 'yz dy^ dz� 'xz dz^ dx,
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if the z-lines are circular arcs, cf. [6, Lemma 2]; in particular, inthis case the canonical
Guichard net (x, y, z) is a cyclic system. We will come back to this case later, in
Section 4.1.

Equivalent formulations of the equations (2.6) may facilitate finding further solu-
tions: for example, the first three of these conditions can beformulated as the integra-
bility d� D 0 of the 1-form

� WD �'xz cot' dxC 'yz tan' dyC
'xx � 'yy � 'zz cos 2'

sin 2'
dz

see [6, Lemma 1], whereas the last can be formulated as the integrability of the 2-form

� WD 'xz cot' dy^ dzC 'yz tan' dz^ dx�
('xx � 'yy) cos 2' � 'zz

sin 2'
dx^ dyI

on the other hand, the last equation can also be formulated asa condition on the di-
vergence of�:

(�'xz cot')x C ('yz tan')y C

�

'xx � 'yy � 'zz cos 2'

sin 2'

�

z

D ('2
x C '

2
y C '

2
z)z.

Here we compute divergence and gradient with respect to the flat metricdx2
C dy2

C

dz2 of the coordinate domain of the canonical principal Guichard net.
If we let ? denote the Hodge-? operator with respect to this metric and set� WD

�!12, another interesting formulation of (2.6) can be given in terms of the forms

�

�

WD � � ? � D

�

tan'(? d�C d'z),
cot'(? d� � d'z).

Clearly, the compatibility conditions (2.6) now read

d�C D �d�� and d(? �C) D d(? ��).

As

d�C D
2d'

sin 2'
^ �

C

C tan' d ? d�, d ? �C D
2d'

sin 2'
^ ? �

C

C tan' d ? d'z,

d�� D
�2d'

sin 2'
^ �

�

C cot' d ? d�, d ? �� D
�2d'

sin 2'
^ ? �

�

� cot' d ? d'z,

these become

0D d ? d�C d' ^ (�C � ��) and 0D d ? d'z C d' ^ ?(�C C �

�).

A key problem, however, in determining conformally flat hypersurfaces from either the
forms � and � or from �

� will be to extract' or the connection form (2.3) from
these forms.
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2.2. Change of lift. In our analysis below, we will repeatedly need to change
our light cone lift f of the conformally flat hypersurface and, consequently, itsadapted
frame F . Thus we change the lift of the hypersurface,

(2.7) f ! f 0 WD e f,

where denotes some function, while keeping the curvature sphere congruences as
part of our frame:

F D (s1, s2, s3, s, f, Of ) ! F 0

D (s01, s02, s03, s, f 0, Of 0),

where

si ! s0i WD si C �i f and Of ! Of 0 WD e� 
(

Of �
X

j

� j sj �
1

2

X

j

(� j )2 f

)

since Of 0 ? s0i , s, Of 0 is lightlike and satisfiesh Of 0, f 0i D 1; here (�1, �2, �3) denotes
the dual frame field of the orthonormal co-frame (!1, !2, !3) of the induced metric
I D hd f, d f i.

It is then straightforward to compute the effect on the structure equations,8!8

0.
Clearly,

(2.8) !i ! !

0

i D e !i and �i ! �

0

i D �hds, s0i i D �i

since f envelopss so thatds? f . Then

(2.9)

!i j ! !

0

i j D hs0i , ds0j i D !i j C � j !i � �i ! j ,

� ! �

0

D �hds, Of 0i D e� 
(

� �

X

j

� j � j

)

,

�i ! �

0

i D �hds0i , Of
0

i D e� {�i � �i }

with

(2.10) �i WD
X

j

�

� j �i ! j C � j !i j � �i � j ! j C
1

2
(� j )2

!i

�

.

From the Gauss equations

!

0

i ^ �
0

j C �

0

i ^ !
0

j D �

0

i ^ �
0

j C !

0

i ^ �
0

j C �

0

i ^ !
0

j

D �i ^ � j C !i ^ (� j � � j )C (�i � �i ) ^ ! j

D !i ^ (� j � � j )C (�i � �i ) ^ ! j
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we infer that the�i carry, up to scaling, the change of the Schouten tensor undercon-
formal change of metric:

(2.11) �i ! �

0

i D e� (�i � �i ).

Observe that these computations also show that the conformal fundamental forms
and Wang’s Möbius curvature are indeed conformal invariantsand, in particular, do not
depend on a choice of ambient space form of a hypersurface. Namely, as long as we
work with a principal frame so that�i D ai!i with the “principal curvatures”ai of f
with respect tos as a unit normal field—note that iff D f takes values in a space form
Q4 and s D t, t ? Q, is its tangent plane congruence, thenai D �i are the principal
curvatures off in Q4—we learn from (2.8) that a renormalizationf ! f 0 D e f does
neither affect the conformal fundamental forms

(2.12)

1 D
p

ja3 � a1j ja1 � a2j!1,

2 D
p

ja1 � a2j ja2 � a3j!2,

3 D
p

ja2 � a3j ja3 � a1j!3

nor Wang’s Möbius curvature

(2.13) W D

a2 � a3

a2 � a1

as!0i D e !i and a0i D e� ai . Moreover, as thei and W only depend on the differ-
ences of theai , a changes ! sC a f of the enveloped sphere congruence does not
change these invariants either asai ! ai � a.

Starting from the structure equations (2.3), we hence obtain
(2.14)
!

0

1 D e cos' dx, �

0

1 D sin' dx, !

0

12 D ( y cot' � 'y) dx� ( x tan' C 'x) dy,

!

0

2 D e sin' dy, �

0

2 D � cos' dy, !

0

23 D ( z sin' C 'z cos') dy�
 y

sin'
dz,

!

0

3 D e dz, �

0

3 D 0, !

0

31 D
 x

cos'
dz� ( z cos' � 'z sin') dx

and

(2.15) �

0

D e� {� x tan' dxC  y cot' dyC 'z dz}.

Now the principal curvaturesk0i j of the coordinate surfaces!0i D 0 in direction� 0j are
given by

(2.16) k0i j D �I0
�

r

0

�

0

j
�

0

i , �
0

j

�

D �h�

0

j s
0

i , s0j i D !

0

i j (�
0

j ),
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that is, !0i j D k0i j !
0

j � k0j i !
0

i as expected from Dupin’s theorem. Hence, in particular
(cf. [6, p. 314]):

surface x-direction y-direction z-direction

xD const k012D�e� 
�

 x

cos'
C

'x

sin'

�

k013D�e� 
 x

cos'

yD const k021D�e� 
�

 y

sin'
�

'y

cos'

�

k023D�e� 
 y

sin'

zD const k031D�e� ( z�'z tan') k032D�e� ( zC'z cot')

Finally observe that, using the relation between�i and the Schouten forms�i from
(2.3), the Ricci equations read

0D
X

j

!

0

j ^ �
0

j D
X

j

!

0

j ^ �
0

j and 0D d� 0 C
X

j

�

0

j ^ �
0

j D d� 0 C
X

j

�

0

j ^ �
0

j ,

showing that the normal bundle off 0 as an immersion intoR6
1 becomes flat,d� 0 D 0,

if and only if the Schouten tensor becomes diagonal: writing�

0

i D a0i!
0

i as before and
�

0

i D
P

j s0i j!
0

j , these two equations yield

s0i j D s0j i and d� 0 D 0, 0D (a0i � a0j )s
0

i j

for i , j 2 {1, 2, 3}. Hence the claim follows since the hypersurface was assumedto
be generic.

3. A special solution

Let a, b, c 2 R and g a real function. With the ansatz

'(x, y, z) WD g(axC byC cz)

the integrability conditions (2.6) reduce to eithercD 0 anda2
D b2 or to

0D

�

g00

sin 2g

�

0

.

The first case leads to a particular class of conformally flat hypersurfaces with cyc-
lic Guichard net: asc D 0 the coordinate surfacesz � const become totally umbilic
in the intrinsic geometry of the hypersurface which is therefore a “conformal product
hypersurface”, see [5, §2.4.12].
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The second case is the one of interest to us: here

g00 D A sin 2g , g02 D C � A cos 2g

with suitable constantsA, C 2 R, that is,g satisfies a pendulum equation and hence is
an elliptic function:

g(t) D �p(
p

(C � A)t), where p2
D

2A

A� C

and �p denotes the Jacobi Amplitude function; in particular,

sing(t) D snp(
p

C � At) and cosg(t) D cnp(
p

C � At).

Our aim is to investigate the intrinsic geometry of the lift

f 0 WD
1

g0
f

of the generic conformally flat hypersurface obtained from' via Lemma 1: it will turn
out that the intrinsic structure induced by this lift leads to the Bianchi-type Guichard
nets with constant ambient curvature that we seek.

First note that we can expect the intrinsic geometry to be independent of our initial
distinction of thez-direction as the induced metric of this lift is independentof that
choice in the following sense: let�' denote any directional derivative of' and rewrite

I0 D
1

(�')2
{cos2 ' dx2

C sin2
' dy2

C dz2}

D

cos2 '

(�')2
{dx2

C sinh2
Q' dy2

C cosh2 Q' dz2}

by choosingQ' so that coshQ' D 1=cos' and sinhQ' D tan'; then� Q' D �'=cos' so that

I0 D
1

(� Q')2
{dx2

C sinh2
Q' dy2

C cosh2 Q' dz2},

leading to an alternative representation of the induced metric of f 0, but now distin-
guishing thex-direction, cf. [6, (2.3)]. Clearly, with coshQ' D 1=sin' and sinhQ' D cot'
a similar argument holds for a distinction of they-direction.

Thus, in particular, we can expect the surfaces!i D 0 of the Guichard net and
their orthogonal lines to share similar geometric properties.
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3.1. Sectional curvature and normal connection. Thus we set (x, y, z) D
� lng0(axCbyCcz) and employ the transformation formulas of the last section: firstly,
we obtain from (2.14)

(3.1)

!

0

1 D
1

g0
cosg dx, �

0

1 D sing dx, !

0

12 D �

1

g0
{b(AC C) dx� a(A� C) dy},

!

0

2 D
1

g0
sing dy, �

0

2 D � cosg dy, !

0

23 D �

cosg

g0
{c(A� C) dy� 2bA dz},

!

0

3 D
1

g0
dz, �

0

3 D 0, !

0

31 D �

sing

g0
{2a A dz� c(AC C) dx}.

It is now much simpler to directly determine the Schouten forms � 0i of the induced
metric I0 from the curvature forms,

!

0

i ^ �
0

j C �

0

i ^ !
0

j D %

0

i j WD d!0i j C !

0

ik ^ !
0

k j

than to employ the transformation formulas (2.11).
The computation can be further facilitated by the followingobservation: from (2.15)

we learn that the normal connection

�

0

D 2a Asin2 g dx� 2bAcos2 g dyC c(C � A cos 2g) dz

D a(A� C) dx� b(AC C) dyC g02(a dxC b dyC c dz).

Hence the normal bundle span{s, f 0, Of 0} is flat as, clearly,d� 0 D 0. As a consequence,
the Schouten tensor is diagonal,

�

0

i ^ !
0

i D 0

so that only the diagonal terms need to be computed: we find that the above curva-
ture forms

%

0

i j D �!

0

i ^ !
0

j with � D �{2a2A(A� C)C 2b2A(AC C)C c2(A2
� C2)}

so that

�

0

i D
�

2
!

0

i

and the induced metric I0 has constant sectional curvature�.

3.2. Geometry of the Guichard net. From (3.1) we read off the principal curva-
tures of the coordinate surfaces (as codimension 1 submanifolds in the conformally flat
hypersurface):
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surface x-direction y-direction z-direction

x D const k012 D
a(A� C)

sing
k013 D 2a Asing

y D const k021 D
b(AC C)

cosg
k023 D 2bAcosg

zD const k031 D c(AC C) tang k032 D c(A� C) cotg

Clearly, the coordinate surfacesx D const, y D const andzD const have constant (ex-
trinsic) Gauss curvatures 2a2A(A � C), 2b2A(A C C) and c2(A2

� C2), respectively.
Note that the Gauss curvature does not change within each Lamé family, x D const,
y D const orzD const, respectively.

Thus, the triply orthogonal system is a special type of a triply Bianchi system, see
[8, §22].

Since, by Dupin’s theorem, the surfaces of a triply orthogonal system intersect in
curvature lines the dual frame field (� 01, � 02, � 03) of the orthonormal co-frame (!01,!02,!03)
yields a parallel frame along each coordinate curve, that is, the frames are torsion free
and their respective curvatures are

line normal � 01 normal � 02 normal � 03

x-lines k021 D
b(AC C)

cosg
k031 D c(AC C) tang

y-lines k012 D
a(A� C)

sing
k032 D c(A� C) cotg

z-lines k013 D 2a Asing k023 D 2bAcosg

Thus the (Frenet) curvatures�i and torsions�i of the coordinate curves are given by

�

2
1 D k0231C k0221 and �1 D

k021�
0

1k031� k031�
0

1k021

k0221C k0231

,

and cyclic permutations of the indices, so that

�

2
1 D

(AC C)2(b2
C c2 sin2 g)

cos2 g
, �1 D

abcg02

b2
C c2 sin2 g

I

�

2
2 D

(A� C)2(a2
C c2 cos2 g)

sin2 g
, �2 D

abcg02

a2
C c2 cos2 g

I

�

2
3 D 4A2(a2 sin2 gC b2 cos2 g), �3 D

�abcg02

a2 sin2 gC b2 cos2 g
.
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Consequently our coordinate lines satisfy the condition relating curvature and torsion
of a Kirchhoff rod, see [7, (3.10)]:

�

2
1

�

�1 �
abc(AC C)

b2
C c2

�

D �abc(AC C)2

�

AC
b2A� c2C

b2
C c2

�

,

�

2
2

�

�2 C
abc(A� C)

a2
C c2

�

D abc(A� C)2

�

AC
a2AC c2C

a2
C c2

�

,

�

2
3

�

�3 C
2abcA

a2
� b2

�

D �4abcA2

�

C � A
a2
C b2

a2
� b2

�

I

note that for the third equation to make sense we need to exclude the casea2
D b2,

where the curves have constant curvature�3 but non-constant torsion�3.
The elliptic differential equation [7, (3.11)] for the squared curvature of a Kirchhoff

rod is, however, not satisfied in our case—though the squaredcurvatures�2
i clearly are

elliptic functions, as algebraic expressions in snp and cnp.
We summarize the properties relevant to our main classification result:

Proposition 2. Let '(x, y, z) D g(axC byC cz), where a, b, c 2 R and the real
function g satisfies

g02 D C � A cos 2g

for some A,C 2 R. Then' defines a conformally flat hypersurface f so that its canon-
ical principal Guichard net consists of constant Gauss curvature surfaces for a suitable
choice of constant sectional curvature metric in the conformal structure induced by f
as their ambient geometry.

This proposition provides the first part of our Main Theorem.

4. Conformally flat hypersurfaces with Bianchi-type Guichard net

In this section we aim to convince ourselves of the converse:if f is a conform-
ally flat hypersurface for which we can choose a constant sectional curvature represen-
tative of the induced conformal structure so that all (coordinate) surfaces of its canon-
ical Guichard net have constant Gauss curvature, then the hypersurface comes from the
construction discussed in the previous section. In fact, weshall see that it is sufficient
to assume that we can choose a light cone liftf 0 with flat normal bundle for the hyper-
surface, that is, so that the Schouten tensor of the induced metric becomes diagonal.

Thus we start with an undetermined lift (2.7) of a conformally flat hypersurface
and assume flatness of its normal bundle,

(4.1) 0D d� 0 ,

8

<

:

0D  xy �  x y C  x'y tan' �  y'x cot',
0D  yz�  y z �  y'z cot' � 'yz tan',
0D  xz�  x z C  x'z tan' C 'xz cot'
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from (2.15); then the derivatives of the principal curvatures (2.16) simplify to

(k012)y D �

e� 

sin'
('xy � 'x'y cot'), (k013)y D �

e� 

sin'
'x yI

(k012)z D
e� 

sin'
'x( z C 'z cot'), (k013)z D

e� 

sin'
'xzI

(k021)z D �

e� 

cos'
'y( z � 'z tan'), (k023)z D �

e� 

cos'
'yzI

(k021)x D
e� 

cos'
('xy C 'x'y tan'), (k023)x D

e� 

cos'
 x'yI

(k031)x D
2e� 

sin 2'
('xzC 'x'z tan'), (k032)x D

2e� 

sin 2'
'z( x C 'x cot')I

(k031)y D �

2e� 

sin 2'
'z( y � 'y tan'), (k032)y D �

2e� 

sin 2'
('yz� 'y'z cot').

Hence the coordinate surfaces have constant Gauss curvatures (not necessarily the same
in each Lamé family) if and only if

(4.2)

0D  x

�

'xy �
2'x'y cos 2'

sin 2'

�

C 'x{ x y �  x'y tan' C 'x y cot'}

D ( x C 'x cot')

�

'xzC
2'x'z

sin 2'

�

C 'x

�

 x z �  x'z tan' �
'x'z

sin2
'

�

,

0D  y

�

'xy �
2'x'y cos 2'

sin 2'

�

C 'y{ x y �  x'y tan' C 'x y cot'}

D ( y � 'y tan')

�

'yz�
2'y'z

sin 2'

�

C 'y

�

 y z C  y'z cot' �
'y'z

cos2 '

�

,

0D ( z C 'z cot')

�

'xzC
2'x'z

sin 2'

�

C 'z

�

 x z �  x'z tan' �
'x'z

sin2
'

�

D ( z � 'z tan')

�

'yz�
2'y'z

sin 2'

�

C 'z

�

 y z C  y'z cot' �
'y'z

cos2 '

�

.

Eliminating the quadratic expressions of the derivatives of  we then arrive at three
equations

(4.3)

0D ( x'y � 'x y)('xy cos' sin' � 'x'y(cos2 ' � sin2
')),

0D ( y'z � 'y z)('yz cos' sin' � 'y'z),

0D ( z'x � 'z x)('xz cos' sin' C 'z'x)

that will govern our analysis.
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4.1. The case study. Clearly, (4.3) yields eight cases to consider.
First note that, if' only depends on two variables, then the corresponding coordi-

nate surfaces become totally umbilic and our hypersurface is a conformally flat “con-
formal product hypersurface”, see [5, §2.4.12]. Hence, disregarding this case in our
analysis, we shall assume that everywhere

'x'y'z ¤ 0.

Secondly, we disregard the case of cyclic Guichard nets, which was fully analysed
in [6]: as already mentioned above (see Section 2.1),

(4.4) 0D 'xz D 'yz

leads to a cyclic system formed by the (then circular)z-lines; thex- or y-lines form
a cyclic system if Q'xy D Q'xz D 0, where tanhQ' D sin' so thatdx2

C sinh2
Q' dy2

C

cosh2 Q' dz2 gives the induced conformal structure, that is,

(4.5) 0D 'xy C 'x'y tan' D 'xzC 'x'z tan'I

or Q'xy D Q'yz D 0, where tanhQ' D cos' so that sinh2 Q' dx2
C dy2

C cosh2 Q' dz2 yields
the induced conformal structure, that is,

(4.6) 0D 'xy � 'x'y cot' D 'yz� 'y'z cot',

respectively. Thus the equations (4.4)–(4.6) characterize conformally flat hypersurfaces
with cyclic Guichard nets.

Now, from (4.3), we have the following cases to consider:
(i) At least two of the quantities'xy � 2'x'y cos 2'=sin 2', 'yz � 2'y'z=sin 2' and
'xzC 2'z'x=sin 2' do not vanish. In this case, since'x'y'z ¤ 0,

(4.7)
 x

'x
D

 y

'y
D

 z

'z
.

We will see in Section 4.3 that this case leads to the class of conformally flat hyper-
surfaces discussed in the previous section.
(ii) At least two of the quantities'xy � 2'x'y cos 2'=sin 2', 'yz � 2'y'z=sin 2' and
'xzC2'z'x=sin 2' vanish identically. We shall see below, by algebra, that this implies
that the third vanishes as well,

(4.8) 'xy �
2'x'y cos 2'

sin 2'
D 'yz�

2'y'z

sin 2'
D 'xzC

2'z'x

sin 2'
� 0.

This case will not lead to conformally flat hypersurfaces with the sought intrinsic struc-
ture but it will provide a new class of conformally flat hypersurfaces, see Section 4.2.
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To convince ourselves of the first claim in (ii) note that, with the ansatz

 x D ��'x cot',  y D �'y tan',  z D
2�'z

sin 2'
,

our original six equations (4.2) yield

'xy �
2'x'y cos 2'

sin 2'
D 0) 0D ��� C � C � I

'yz�
2'y'z

sin 2'
D 0) 0D � (�C cos2 ') � 1I

'xzC
2'z'x

sin 2'
D 0) 0D � (� � sin2

')C 1.

The three right hand side equations are not independent: if any two of them are sat-
isfied then so is the third; hence one of the functions, say�, remains free while the
other two are determined:

� D �

1

� � sin2
'

and � D

1

�C cos2 '
.

Now consider case (ii): two of'xy� 2'x'y cos 2'=sin 2', 'yz� 2'y'z=sin 2' and
'xzC 2'z'x=sin 2' vanish identically, say

'yz�
2'y'z

sin 2'
D 'xzC

2'z'x

sin 2'
D 0.

Then, from (4.2), either

'xy �
2'x'y cos 2'

sin 2'
D 0 or � D � D 0I

however, we have 1D �� (��sin2
')D � (�Ccos2') so that the case� D � D 0 cannot

occur. Similar arguments show that the vanishing of any other two of the considered
quantities implies the vanishing of all three.

Thus we are left to consider the consequences of (4.7) and (4.8) above.

4.2. A new class of conformally flat hypersurfaces. We start by considering
case (ii): the equations (4.8) can be reformulated as

(4.9) (ln tan')xy D (ln sin')yz D (ln cos')zx � 0,

showing that

sin'(x, y, z) D
�(x, z)

 (x, y)
and cos'(x, y, z) D

�(y, z)

 (x, y)
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with suitable functions�, � and  . The Pythagorean law then yields



2(x, y) D �

2(x, z)C �

2(y, z)

so that there are functionsX, Y and Z of one variable with



2(x, y) D X(x) � Y(y), �

2(x, z) D X(x) � Z(z), �

2(y, z) D Z(z) � Y(y)

and, consequently,X > Z > Y and

sin' D

r

X � Z

X � Y
, cos' D

r

Y � Z

Y � X
, tan' D

r

X � Z

Z � Y
.

It is now a laborious but straightforward computation to seethat the first of the equa-
tions (2.6) for' to define a conformally flat hypersurface is identically satisfied whereas
the remaining three become

X000

X � Y
�

2X0X00

(X � Y)2
C

X0(X02
� Y02)

(X � Y)3
D

X000

X � Z
�

2X0X00

(X � Z)2
C

X0(X02
C Z02)

(X � Z)3
,

Y000

Y � X
�

2Y0Y00

(Y � X)2
C

Y0(Y02
� X02)

(Y � X)3
D

Y000

Y � Z
�

2Y0Y00

(Y � Z)2
C

Y0(Y02
C Z02)

(Y � Z)3
,

Z000

Y � Z
C

2Z0Z00

(Y � Z)2
C

Z0(Z02
C Y02)

(Y � Z)3
D

Z000

X � Z
C

2Z0Z00

(X � Z)2
C

Z0(Z02
C X02)

(X � Z)3
.

Again, we obtain separation of variables: writing both sides in each equation as
�2AX0, �2BY0 and �2C Z0 with functions A D A(x), B D B(y) and C D C(z), re-
spectively, these equations become

(4.10)

0D Y02
C 2A(Y � X)3

�

X000

X0

(Y � X)2
� 2X00(Y � X) � X02,

0D Z02
� 2A(Z � X)3

C

X000

X0

(Z � X)2
C 2X00(Z � X)C X02

I

0D X02
C 2B(X � Y)3

�

Y000

Y0

(X � Y)2
� 2Y00(X � Y) � Y02,

0D Z02
� 2B(Z � Y)3

C

Y000

Y0

(Z � Y)2
C 2Y00(Z � Y)C Y02

I

0D Y02
C 2C(Y � Z)3

C

Z000

Z0

(Y � Z)2
C 2Z00(Y � Z)C Z02,

0D X02
C 2C(X � Z)3

C

Z000

Z0

(X � Z)2
C 2Z00(X � Z)C Z02.

Taking second derivatives with respect toy and x, respectively, of the last two equa-
tions we find

0D

�

X000

X0

C 6C X

�

C

�

Z000

Z0

� 6C Z

�

D

�

Y000

Y0

C 6CY

�

C

�

Z000

Z0

� 6C Z

�

,
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which shows that 0D C0(X � Y) so thatC is constant and hence

0D X000

C (6C XC L)X0

D Y000

C (6CYC L)Y0

D Z000

� (6C ZC L)Z0

with some L 2 R. Thus integrating the equation forZ we learn thatZ satisfies an
elliptic equation

Z02
D p(Z) WD 2C Z3

C L Z2
C 2M Z C N,

where M, N 2 R are suitable coefficients; re-inserting this result into the last two equa-
tions yields similar elliptic equations forX and Y:

0D X02
C p(X) D Y02

C p(Y).

The first and third of the equations (4.10) then read

0D Y02
C p(Y) � 2(A� C)(X � Y)3

D X02
C p(X)C 2(B � C)(X � Y)3,

implying that A D B D C; the remaining two equations then just recover the elliptic
equation forZ. Thus the equations (4.10) are equivalent to a set of three similar elliptic
equations forX, Y and Z, respectively:

Lemma 3. Given three functions X, Y, Z of one variable with X> Z > Y and
non-vanishing derivatives,

I D
Y � Z

Y � X
dx2

C

X � Z

X � Y
dy2

C dz2

represents the induced conformal structure of a conformally flat hypersurface in terms
of its canonical principal Guichard net(x, y, z) if and only if

0D X02
C p(X) D Y02

C p(Y) D Z02
� p(Z),

where p(t) is a cubic polynomial that changes sign at least twice.

Here, the last assertion follows from the observation thatY < Z < X while

p(X) D �X02, p(Y) D �Y02
< 0< Z02

D p(Z).

Note that, as a consequence,p(t) has degree 2 or 3.
Next we wish to convince ourselves that these conformally flat hypersurfaces do

not have the intrinsic structure sought, that is, that theirinduced conformal structure
does not have a constant sectional curvature representative so that all coordinate sur-
faces of the Guichard net have constant Gauss curvature.
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To this end, observe that equations (4.2) now read

(4.11)

0D  x y �  x'y tan' C 'x y cot',

0D  y z C  y'z cot' �
'y'z

cos2 '
,

0D  x z �  x'z tan' �
'x'z

sin2
'

I

using these, flatnessd� 0 D 0 of the normal bundle (4.1) simplifies to

0D  xy D  yzC (ln cos')yz D  zxC (ln sin')zx.

Together with the equations (4.9) these yield

0D ( C ln tan')xy D ( C ln tan')xz,

0D ( � ln tan')xy D ( � ln tan')yz,

implying that

 D � C � C  � ln
p

(X � Z)(Z � Y)

with three functions� D �(x), � D �(y) and  D  (z) of one variable. Hence

 x D �

0

�

1

2

X0

X � Z
,  y D �

0

�

1

2

Y0

Y � Z
,  z D 

0

C

1

2

�

Z0

X � Z
C

Z0

Y � Z

�

and equations (4.11) read

�

0(Y0

� 2� 0Y) D �

0(X0

� 2�0X),

�

0(Z0

� 2 0Z) D 

0(Y0

� 2� 0Y),



0(X0

� 2�0X) D �

0(Z0

� 2 0Z).

Consequently,�0 D �

0

D 

0

D 0 or, with someA 2 R,

�

0

D

X0

2(X � A)
, �

0

D

Y0

2(Y � A)
and 

0

D

Z0

2(Z � A)

so that (up to an irrelevant constant of integration)

 D ln

s

1

(X � Z)(Z � Y)
or  D ln

s

(X � A)(Y � A)(Z � A)

(X � Z)(Z � Y)
.

We consider the two corresponding representatives of the induced conformal structure
in turn.
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Firstly, suppose that�0 D �

0

D 

0

D 0 so that we arrive at

I D
dx2

(X � Y)(X � Z)
C

dy2

(Y � X)(Y � Z)
C

dz2

(Z � Y)(X � Z)

as a representative of the induced conformal structure.
In this case the Gauss curvatures of the coordinate surfacesare

k012k
0

13 D
1

4
X02, k021k

0

23 D
1

4
Y02, k031k

0

32 D �

1

4
Z02.

Hence, all coordinate surfaces have constant Gauss curvature. However observe that, in
contrast to the conformally flat hypersurfaces studied in the previous section, the Gauss
curvatures are now not constant in each Lamé family. On the other hand, the sectional
curvatures of I are

�12D
1

4

�

X02
CY02

CZ02
C2

�

X0

X�Y

�

x

(X�Y)(X�Z)C2

�

Y0

X�Y

�

y

(X�Y)(Y�Z)

�

,

�23D
1

4

�

�X02
CY02

�Z02
�2

�

Y0

Y�Z

�

y

(X�Y)(Y�Z)C2

�

Z0

Y�Z

�

z

(X�Z)(Y�Z)

�

,

�31D
1

4

�

X02
�Y02

�Z02
C2

�

X0

X�Z

�

x

(X�Y)(X�Z)C2

�

Z0

X�Z

�

z

(X�Z)(Y�Z)

�

.

Assuming that these are constant we find

0D (�12)z ) p0(Z) D 2(X � Y)

(

�

X0

X � Y

�

x

C

�

Y0

X � Y

�

y

)

,

0D (�23)x ) p0(X) D 2(Y � Z)

(

�

Y0

Y � Z

�

y

�

�

Z0

Y � Z

�

z

)

,

0D (�31)y ) p0(Y) D 2(X � Z)

��

X0

X � Z

�

x

�

�

Z0

X � Z

�

z

�

,

where we used the elliptic differential equationsX02
D �p(X), Y02

D �p(Y) and Z02
D

p(Z) that X, Y and Z satisfy. Hencep0(t) must be constant, contradicting the fact that
p has to be a polynomial of degree at least 2: for example, taking a furtherz-derivative
of p0(Z) we obtain p00(Z) D 0 since Z0

¤ 0.
Hence we cannot have constant sectional curvatures of the induced metric in

this case.
Secondly, suppose that

ID (X�A)(Y�A)(Z�A)

�

dx2

(X�Y)(X�Z)
C

dy2

(Y�X)(Y�Z)
C

dz2

(Z�Y)(X�Z)

�



22 U. HERTRICH-JEROMIN AND Y. SUYAMA

is the sought representative of the induced conformal structure.
In this case, the Gauss curvatures of the coordinate surfaces become

k012k
0

13 D
1

4

X02

(X � A)3
, k021k

0

23 D
1

4

Y02

(Y � A)3
, k031k

0

32 D �

1

4

Z02

(Z � A)3
I

while the sectional curvatures of our representative of theinduced conformal struc-
ture are

�12D
1

4

1

Z�A

�

X02

(X�A)2
C

Y02

(Y�A)2
C

Z02

(Z�A)2

C2(X�Y)

��

X0

(X�A)(X�Y)

�

x

(X�Z)

(X�A)
C

�

Y0

(Y�A)(X�Y)

�

y

(Y�Z)

(Y�A)

��

,

�23D
1

4

1

X�A

�

�

X02

(X�A)2
C

Y02

(Y�A)2
�

Z02

(Z�A)2

C2(Y�Z)

�

�

�

Y0

(Y�A)(Y�Z)

�

y

(X�Y)

(Y�A)
C

�

Z0

(Z�A)(Y�Z)

�

z

(X�Z)

(Z�A)

��

,

�31D
1

4

1

Y�A

�

X02

(X�A)2
�

Y02

(Y�A)2
�

Z02

(Z�A)2

C2(X�Z)

��

X0

(X�A)(X�Z)

�

x

(X�Y)

(X�A)
C

�

Z0

(Z�A)(X�Z)

�

z

(Y�Z)

(Z�A)

��

.

Following the same procedure as in the simpler first case, theassumption of the sec-
tional curvatures to be constant leads to a differential equation for the polynomialp(t)
of the elliptic equations forX, Y and Z:

4�12Z0

D

�

p(Z)

(Z�A)2

�

z

�2(X�Y)

��

X0

(X�A)(X�Y)

�

x

1

X�A
C

�

Y0

(Y�A)(X�Y)

�

y

1

Y�A

�

Z0,

4�23X0

D

�

p(X)

(X�A)2

�

x

�2(Y�Z)

��

Y0

(Y�A)(Y�Z)

�

y

1

Y�A
�

�

Z0

(Z�A)(Y�Z)

�

z

1

Z�A

�

X0,

4�31Y
0

D

�

p(Y)

(Y�A)2

�

y

�2(X�Z)

��

X0

(X�A)(X�Z)

�

x

1

X�A
�

�

Z0

(Z�A)(X�Z)

�

z

1

Z�A

�

Y0.
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Hence
�

p(t)

(t � A)2

�

0

� const

so that p(t) has a perfect square factor; on the other hand,p(t) has degree at most 3
so that, in particular, it cannot change sign twice as required for the functionsX, Y
and Z to define a conformally flat hypersurface.

Thus, again, we cannot have constant sectional curvatures of this representative of
the induced conformal structure either.

Consequently, the conformally flat hypersurfaces characterized in the previous lemma
do not have the desired intrinsic structure and we can safelyignore them in our classifi-
cation. Although the geometry of their Guichard nets may be interesting—for example,
it is easy to see that all surfaces of the canonical Guichard net are isothermic—a more
detailed analysis will be left for another time.

4.3. Conformally flat hypersurfaces with Bianchi-type Guichard net. We now
turn to our main case (i): thus we assume now that the equations (4.7) hold, that
is, that

d D � d'

with a suitable multiplier�. Using the linear dependence of the gradients of and',
the equations (4.2) governing our analysis become

(4.12)

0D  x('xy C 'x y) D  x('xy C  x'y),

0D  y('xy C 'x y) D  y('xy C  x'y)I

0D ( y � 'y tan')('yzC 'y z) D ( y � 'y tan')('yzC  y'z),

0D ( z � 'z tan')('yzC 'y z) D ( z � 'z tan')('yzC  y'z)I

0D ( z C 'z cot')('xzC 'x z) D ( z C 'z cot')('xzC  x'z),

0D ( x C 'x cot')('xzC 'x z) D ( x C 'x cot')('xzC  x'z).

Now, if � D 0, � D tan' or � D � cot', the remaining four equations yield (4.4),
(4.5) or (4.6), respectively—that is, the Guichard net is cyclic. Hence, ignoring this
case, (4.12) further simplify to

0D ('xe )y D ('xe )z,

0D ('ye )z D ('ye )x,

0D ('ze
 )x D ('ze

 )y,

which imply that

d' D e� dt, where t(x, y, z) D �(x)C �(y)C  (z)
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with suitable functions�, � and of one variable. In particular,' and t are function-
ally dependent so that there is a functiong of one variable withg0 Æ t D e� and

'(x, y, z) D (g Æ t)(x, y, z) D g(�(x)C �(y)C  (z)).

Now the first of the differential equations (2.6) for' to define a conformally flat
hypersurface reads

0D 'xyzC 'x'yz tan' � 'y'xz cot'

D �

0

�

0



0

�

g00

sin 2g

�

0

(t) sin 2'

so thatg is an elliptic function,

g00 D A sin 2g and g02 D C � A cos 2g

with suitable constantsA and C. Note that

� D �

g00

g02
Æ t D

8

<

:

0 if AD 0,
� cot' if AD C,
tan' if AD �C

so that we can assume thatA¤ 0, C, �C.
The remaining three equations of (2.6) then take the form

0D
g0

sin 2g
(t)
�

000

�

0

C (AC M)�00 C (A� M)� 00 C (AC N) 00,

0D
g0

sin 2g
(t)
�

000

�

0

C (A� M)�00 C (AC M)� 00 C (A� N) 00,

0D
g0

sin 2g
(t)


000



0

C (AC N)�00 C (A� N)� 00 C (AC M) 00,

where M WD 2(A� C cos 2g)=sin2 2g and N WD 2(C � A cos 2g)=sin2 2g. Hence

0D

�

�

000

�

0

C

�

000

�

0

�

C

2A sin 2g

g0
{�00 C �

00

C 

00},

0D

�

�

000

�

0

�



000



0

�

C

2(A� C) cotg

g0
{�00 � � 00 �  00},

0D

�

�

000

�

0

�



000



0

�

C

2(AC C) tang

g0
{��00 C �

00

� 

00}

and taking derivatives with respect toz, y and x, respectively, and using the original
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equations to eliminate third order derivatives we arrive at

0D

0

�

(M C N) (M � N) 2M
�(M C N) 2AC (M C N) 2A

2AC (M � N) �(M � N) 2A

1

A

0

�

�

00

�

00



00

1

A

so that�00 D �

00

D �

00

� const sinceAC M ¥ 0 on any open set; the original equa-
tions then imply that

�

00

D �

00

D 

00

� 0.

Consequently, up to a coordinate translation,' is of the sought form:

Proposition 4. Let f be a conformally flat hypersurface with canonical Guichard
net (x,y,z) and induced conformal structure given by' satisfying(2.5). If the Guichard
net is not cyclic and consists of constant Gauss curvature surfaces for a suitable con-
stant sectional curvature representative of the induced conformal structure then there
are constants a, b, c, A, C 2 R with abc¤ 0 and A¤ 0,�C so that, up to a coordi-
nate translation,

'(x, y, z) D g(axC byC cz), where g02 D C � A cos 2g.

This proposition yields the second statement of our Main Theorem, thus complet-
ing its proof.

5. The associated family

Conformally flat hypersurfaces give rise to cyclic systems with the original con-
formally flat hypersurface as an orthogonal hypersurface and so that all other orthog-
onal hypersurfaces of the cyclic system are conformally flatas well, see [5, §2.2.15]:
choosing a lift f 0 D e f of the conformally flat hypersurface, given in terms of its
canonical lift

f W M3
! L5

� R

6
1

of Section 2.1, so that the induced metric becomes flat, its normal bundle as an im-
mersion into the Minkowski spaceR6

1 becomes flat as well [5, §2.1.4], hence defining
a curved flat in the symmetric spaceO(5, 1)=(O(3) � O(2, 1)) of circles in the con-
formal 4-sphere which, geometrically, is an orthogonal cyclic system, see [5, §2.2.3].
Note that this cyclic system depends on the choice of a function  , that is, on a choice
of a flat lift f 0 of f .

Writing the structure equations for an adapted Möbius frame of such a flat lift
f 0 as

d F0 D F 0

8

0 with 8

0

D 8

0

k C8

0

p,
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where80

k W T M ! o(3)� o(2, 1) takes values in the isotropy algebra of the symmet-
ric space of circles and80

p encodes the derivative of the Gauss mapp 7! dp f 0(TpM)
of f 0 with values in the Grassmannian of spacelike 3-planes, the compatibility condi-
tions decouple:

0D d80

k C
1

2
[80

k ^8
0

k],

0D d80

p C [80

k ^8
0

p],

0D [80

p ^8
0

p],

where the last equation encodes the simultaneous flatness ofthe tangent and normal
bundles of f 0. As a consequence,

(5.1) 8

0�

WD 8

0

k C �8

0

p, � 2 (0,1),

defines a loop of flat connections: this yields the curved flat associated family of the
Gauss map off 0, that is, an associated family of the cyclic system associated to a con-
formally flat hypersurface. Note that we restrict to� > 0 here: a change of sign of80

p

is realized by a simple gauge transformation and does therefore not affect the geom-
etry; using a�-dependent gauge transformation to blow up the limiting hypersurface in
the limiting case� D 0, reveals that the hypersurface obtained cannot be generic.

We shall see that this associated family of the cyclic systemdescends to an asso-
ciated family for the conformally flat hypersurface, cf. [2].

To this end, we start with our original structure equations (2.3) and investigate the
effect of changing the light cone lift as in (2.7) so that the induced metricjd f 0j2 be-
comes flat. In particular, the Schouten forms (2.11) of the new metric

0D �

0

i D e� (�i � �i )

so that�i D �i ; as a consequence the transformation formulas (2.8) and (2.9) read

!i ! !

0

i D e !i ,

�i ! �

0

i D �i ,

!i j ! !

0

i j D !i j C � j !i � �i ! j ,

� ! �

0

D e� 
(

� �

X

j

� j � j

)

,

�i ! �

0

i D e� {�i � �i }.

Now the curved flat associated family is obtained by integrating the structure equa-
tions with

!

0

i j , �
0 and �!

0

i , ��
0

i , ��
0

i ,
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where� > 0, to obtain a 1-parameter family of framesF 0� for the corresponding as-
sociated family of cyclic systems. In particular,

F 0�

' (s0�1 , s0�2 , s0�3 , s�, f 0�, Of 0�)

providing a 1-parameter family of conformally flat hypersurfaces f 0�. A priori, this
family of conformally flat hypersurfaces depends on our earlier choice of flat lift f 0;
we shall see that it does not by providing a lift-independentmethod to define the hyper-
surfaces.

To this end, we undo the earlier change of lift by letting

f 0� ! f � WD e� f 0�

so that, in particular,f 0 D f 01 ! f 1
D f . Employing the transformation formulas (2.8)

and (2.9) again, with� 0�i D (e� =�)�i , we find

!

0�

i ! !

�

i D �!i ,

�

0�

i ! �

�

i D ��i ,

!

0�

i j ! !

�

i j D !i j ,

�

0�

! �

�

D � ,

�

0�

i ! �

�

i D ��i �

�

� �

1

�

�

�i .

Thus, the 1-parameter family� 7! f � of conformally flat hypersurfaces obtained from
the curved flat associated family of an associated orthogonal cyclic system can be de-
fined using any light cone lift of the hypersurface (see also [2] for a more general
statement and different proof):

Theorem 5. Let f W U ! L5 (U simply connected) be a light cone lift of a con-
formally flat hypersurface and let

(s1, s2, s3, s, f, Of ) ' F W U ! O1(6)

denote an adapted Möbius geometric frame for f with structure equations d FD
F8, where

8 D

0

B

B

B

B

B

B

B

�

0 !12 �!31 ��1 !1 �1

�!12 0 !23 ��2 !2 �2

!31 �!23 0 ��3 !3 �3

�1 �2 �3 0 0 �

��1 ��2 ��3 �� 0 0
�!1 �!2 �!3 0 0 0

1

C

C

C

C

C

C

C

A

.
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Then the1-parameter family of structure equations d F� D F�

8

� obtained by changing

!i ! �!i , �i ! ��i and �i ! ��i �

�

� �

1

�

�

�i ,

where �i denote the Schouten forms of the induced metric, while leaving!i j and �
unchanged, is integrable.

Moreover, the F� are adapted Möbius geometric frames for the conformally flat
hypersurfaces f� obtained from the curved flat associated family given by any flat light
cone lift of f .

In particular, the curved flat associated family for the Gauss map of a flat light
cone lift of a conformally flat hypersurface descends to an associated family for the
conformally flat hypersurface, as sought.

From (2.12) and (2.13) we learn that the effect of the associated family on the
conformal fundamental forms is a rescaling

i ! 

�

i D �i

while Wang’s Möbius curvatureW does not change, as!�i D �!i and ��i D ��i . As
these form a complete set of invariants for a hypersurface inthe conformal 4-sphere
the hypersurfaces of the family are not Möbius equivalent, see [11] and [5, §2.3.5],
see also [9, Corollaries 3.1.1 and 3.2.1].

The coordinate functions of the canonical Guichard net of a generic conformally
flat hypersurface are given by integrating its conformal fundamental forms. Hence
these become

(x�, y�, z�) D (�x, �y, �z).

Assuming that the original liftf of the conformally flat hypersurface was the canonical
lift of Section 2.1 the induced metric off � is

I� D jd f �j2 D cos2 '(dx�)2
C sin2

'(dy�)2
C (dz�)2

so that all f � are canonical lifts and

'

�(x�, y�, z�) D '(x, y, z) D '

�

x�

�

,
y�

�

,
z�

�

�

.

Note that the structure equations (2.3) now hold for all�:

!12D�('�y� dx�C'�x� dy�), !

�

1 D cos'� dx�, �

�

1 D sin'� dx�, �

�

1 D �
�

1 C
1

2
!

�

1,

!23D'
�

z� cos'� dy�, !

�

2 D sin'� dy�, �

�

2 D� cos'� dy�, �

�

2 D �
�

2 C
1

2
!

�

2,

!31D'
�

z� sin'� dx�, !

�

3 Ddz�, �

�

3 D0, �

�

3 D �
�

3 �
1

2
!

�

3,

� D'

�

z� dz�
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since��i D �(�i � �i )C (1=�)�i and � �i D (1=�)�i .
In particular, we learn that for a conformally flat hypersurface f with Bianchi-

type canonical Guichard net all conformally flat hypersurfaces f � of the family have
Bianchi-type Guichard net:

'

�(x�, y�, z�) D g

�

a

�

x� C
b

�

y� C
c

�

z�
�

.

Hence the induced metric of the constant curvature lifts (1=g0) f � become

�

�

�

�

d

�

1

g0
f �
�

�

�

�

�

2

D

1

C� A cos 2g
{cos2 g(dx�)2

Csin2 g(dy�)2
C (dz�)2}D �2

�

�

�

�

d

�

1

g0
f

�

�

�

�

�

2

and the (constant) Gauss curvatures as well as their ambientsectional curvature are
scaled by 1=�2.

However, the canonical Guichard nets are, in general, not Möbius equivalent as
parametrizedtriply orthogonal systems (cf. [5, §2.4.6]): for example, the surfacesx D
const andx� D �x D const are not Möbius equivalent even if they have the same con-
stant Gauss curvature after rescaling. In fact, the lifts (1=�g0) f � induce the same metric
for all �, but the principal curvatures of the surfacex D � are

k012(y, z) D
a(A� C)

sing(a� C byC cz)
and k013(y, z) D 2a Asing(a� C byC cz)

while the principal curvatures of the surfacex� D � are

k0�12(y, z) D
a(A� C)

sing(a�=�C byC cz)
and k0�13(y, z) D 2a Asing

�a�

�

C byC cz
�

showing that these surfaces are not congruent in general.
Thus we conclude with the following

Theorem 6. The associated family of a conformally flat hypersurfaces with
Bianchi-type Gui-chard net consists of conformally flat hypersurfaces with Bianchi-
type Guichard net.
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