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Let M be an #-dimensional analytic Riemannian manifold with a positive-definite
metric ds®=gudx'dx* where g;,(xy, -, x,) are holomorphic functions of %y, -, %,.
The “Laplacian” is defined by
4=4ds +ad.
THEOREM 1. Let 7(x, §) be the geodesic distance between x and &, and o, the
surface area of the n-dimensional unit spheve. Then for every point &, in I, the
Laplace’s eqation 45=0 has an elementary solution

- 21—,z log 7(x, &) cu(x, &) +v(x, &), (n=2)
g(x, &) = 1
m' rz‘”(x, E) 'M(x, E) +10g 7'<x» 5) -v(x, E)» (n > 2)

defined for x, & in a certain neighbourhood of &,, where v, u and v are holomorphic
with respect to x, &, and u(§, &) =1.
Proof. We shall expand # and » in & in formal power series
u=m{l+222, r*u,}
v=m> 47",
and dethrmine m, # and v so that 45=0, then we can show that these series
converge absolutely and uniformly in a certain domain. See [1].
LemMma (GREEN’s ForMURA). For C:-functions ¢, \Jr

(g, 4= (g, ¥)o= [ * (rdp—pdy)
where G is a subdomain of W with the regular boundary BG and * is the adjoint

operator.
Proof. (o, d)e— (A, dp)¢
= (QD: 6d)G— ('\I/,y adW)G
~[ (o % 3dp—pr- x adg).
Using
€Y) da=(—1D""1xdxa and xx*a=(—1)""qg

for every p-from a, we have
(g, W)=, dp)o= [ (—grdx drtped=dy).

On the other hand we have
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[ o Chdo—gd
- [ dx (bdo= gt

— [ Crdxdop—g-ddp).

Hence the Lemma is proved.

A function is said to be harmonic in G if it satisfies the Laplace’s equation at
all points of G.

THEOREM 2. If ¢ is harmonic in G and its first derivatives ave continuous in
G=G+BG and E(x, &) is defined for x, & lying in G. Then for &€ in G ¢(&) can
be rvepresented as

@)= —‘jBG* (pdE—Edp).

Proof Let S(C) be the set of all points satisfying the inequality Z(x, &) =C,
where C is a sufficiently large positive number.
Putting G'=G—S(C) and using Green’s formula we have

jB(G—S(C))* (pdE—Edp)
=(E’ A@)G’— (AE) QD)G’
=(.
Hence '
@ [, * (pdz—zdg) - JBS@* (pdE—Edp).

Since & is the constant C on BS(C),

JBS(C)* Ede ZCJBS(C)* do = CJS(C)d *dy.

Using (1) we have ds*dp=— *ddo=— + dp=0.
Hence
3 jBS(C)* Hde = 0.

Let G, be a geodesic shpere which has the radius § and the center &. Taking
6 so small that G; is cantained in S(C), then we have

® . *dE=J d+=d5=0.
J B(S(C)-Gp) S(C)-Gs

Hence

@ JBS(C>* g ~ Jaca* dg.

We introduce on BG; a coordinate system (y).
Then an arbitrary point x in the neighbourhnnd of BG; is uniquely determined
by 7(x, &) and the coordinates (y{,-,¥.-1) Of the intersection of the geodesic
between x and & with the surface BG;.

We use therefore
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X1=7, X2=Y1, """ y Xn=Yu-1
as a coordinate system in the neighbourhood of BG,;. Then for arbitrary function
f we have
*df~ Of *dr-+ gf * dy*
Since dr=0 on BGg,
We have *dy* =0 on BG;.

Hence we have =*df = af*dr on BG.

By Theorem 1 an elementary caluculation shows that

— S rusdr+hr* = dr, n>2
(5) *dE = i on BG,
—21—71' t:, *dr+< ﬂlogr%%—f—%z)‘)*dr, (n=2)

where 2(x) is continuous on BG; .
For an arbitrary point P on BG; we can choose coordinates () so that 7, y4, -
¥.-1 may be a ortho-normal coordinate system at point P. Then we have
sdr=dyt--dy"' =dS
where dS is the surface element of BG;.

k4

Using hm j dS @y, hmu(x, & =1 and (5)

Bn —1
we have easﬂy

(6) lim *dE = —1,
820 J BGs
By (2), (3) we have

* (pdE—Edy) = pd=,
Jow J

BS(C)

and by (4), (6
* pd 8= (&) lim * d5

lim j
C>oc0J BS(C) € >00) BS(C)

=(&) lim *d&

8§20/ BGg
= —p(8), g.e.d.
Now we shall put G=S(C) in Theorem 2, then by (3) we have
COROLLARY. If ¢ is harmonic in S(C) and continuous in S=S+ BS, then ¢(&)
can be writen as

0@ == oG xds, &),

BS(C)
Let (2) be a coordinate system on BS(C). Then we may use —&, 21, '+, 2n1
as a coordinate system in the neighbourhood of BS(C). Then we have
x dE=—dzl. - .dz"'=—adS, a>0
where dS is the surface element of BS(C).
Using (4) and (6) we see that
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[ eadS =1
BS(C)
and hence by the corollary of Theorem 2 we have

TuroreM 3. If ¢ is harmonic in S(C), then ¢(&) can be written as

0@ =] apds

BS(C)
where a>0 andf adS=1.
BS(C)

TueoreEM 4 (Maximmum PrincieL). If a function ¢ is not constant and havmo-
nic in a bounded domain G and continuous in G=G+BG where BG is the boundary
of G. Then the maxismum and minimum of ¢ in G are attained at points of BG.

Proof. Since G is compact and f is continuous in G, there exists a point &
at which f takes its maximum. Suppose that ¢ is in G. By [1] ¢ is holomorphic
in G, hence if ¢ is a constant in a neighbourhood of &, then ¢ would be identically
the constant in G, contrary to our assumption. Therefore in an arbitrary neighour-
hood of &, exists a point x, such that ¢(x,) < ¢(£), hence in a sufficiently small
neighbourhnnd of x,, ¢(x) < ¢(§). Hence putting & (x,, £) =C and using Theorem
3 for ¢(&), we have

Q(S) B JBS(C)aquS <JBS(C)a¢CE> dS= ¢($) fBS(C)adS: (D(S) ’

This is contradictory. Hence € is on BG. Similary the points at which ¢ takes
its minimum are on BG. g.e.d.

Cororrary. If a function is harmonic in the whole of a compact manifold I,
then it must be a constant.
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