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Abstract
In this paper, of concern is the singular impulsive funciibimtegral equations
subject to nonlocal conditions in a Banach space. Sufficentditions, ensuring the
existence of solutions, are presented. An example is alg@ngdbo illustrate the ap-
plications of the abstract results. Our results essept@ltend some existing results
in this area.

1. Introduction

In recent years, the theory of various functional integralaions in Banach spaces
has been studied deeply due to their important values imsegeand technologies, and
many significant results have been established (see, &3y.16, 23, 24, 26, 29, 30] and
references therein). Let us point out that many systemdvievmemory effects can be
modelled by functional integral equations. Moreover, fim@l integral equations de-
scribe systems with continuously distributed memory oher éntire past of the system;
consequently, they have features that are substantidfgreit from those of memory-
less systems (i.e. ordinary or partial differential equagiand differential inclusions), and
also very different from those of systems with concentratemmory effects (i.e. delay-
differential equations, with either constant or variab&ags). In particular, there has a
significant development in the research area of impulsitegial equations; see for in-
stance [4, 15]. Impulsive conditions arise in a variety oplagations; as shown in, e.g.,
[2,5, 21, 28], the dynamics of many evolutionary processa® fsome research fields are
subject to abrupt changes of states at certain moments eftigtween intervals of con-
tinuous evolution, such changes can be well-approximatdzbang instantaneous changes
as state, that is, in the form of “impulses”.
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Let X be a Banach space with norjn|. In the present paper we consider the sin-
gular impulsive functional integral equation involving antocal condition in the form
(1.1)

u(t) =T({)H () + m / (t—9)* Tt —s)F(s,u(s))ds, 0<t<T,t#t,

Au(t) = li(u)), i=1,...,n,

in X, where{T (t)}>0 is @ compacCy-semigroup orX, O<ao <1,0<tj <th<--- <
t, < T are pre-fixed numbers\u(t;) represents the jump of the functianat t;, which
is defined byu(t;")—u(t"), whereu(t™) = limp_o+ u(t +h) andu(t") = limp_o- u(t +
h) denote respectively the right and left limits oft) att =t. H,F,l; (i=1,...,n)
are appropriate operators to be specified later. As can be Beeonstitutes a nonlocal
condition and the integral equation in (1.1) is singular.

As usual, the solutiort — u(t) with the points of discontinuity at the moments
t (i =1,...,n) follows that u(ti) = u(t7”), that is, at which it is continuous from
the left.

We adopt the following concept of solution for (1.1).

DEFINITION 1.1. By a solution of (1.1) we mean a functione PC([0, T]; X)
satisfying the integral equation

(1.2) t
T@EH () + % (t —9)* 1T (t —S)F(s, u(s)) ds, if te Jo,
ti
TOHWU) + — (t —9)* 1T (t —s)F(s, u(s)) ds
oo w2
F( ) (t S)* 1T (t — s)F(s, u(s)) ds
+ ) T t)huE)), fted (i=1,...,n).

O<tj <t

We refer to Section 2 for a complete definition of the §E([0, T]; X), and to,
e.g., [7, Lemma 3.1] and [25, Lemma 3.3] for more details ofifdgon 1.1.

Interest in the problems incorporating nonlocal condgimiems mainly from the
observation that nonlocal conditions have better effest¢reating physical problems
than the usual ones, see [8, 11, 12] and the referencesrtHeremore detailed infor-
mation about the importance of nonlocal conditions in aggtions. Here, it is worth
mentioning that much attention is attracted by questionsx@ftence of solutions to the
impulsive functional integral equations with nonlocal ddions in recent years, where
the integral equations are regarded as mild solutions ofctireesponding impulsive
functional differential equations incorporating nonlb@aitial conditions. For signifi-
cant works along this line, see, e.g., [1, 6, 9, 10, 14, 22] twedreferences therein for
more comments and citations. However, it is easy to see thhnof these research
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on the existence of solutions was done under the restrictiahthe impulsive item;

(i =1,...,n) are compact or Lipschitz continuous. This condition tuons to be quite
restrictive and is not satisfied usually in practical apgliens. Thus, there naturally
arises a question: “whether there exists a solution for tijguisive functional integral
equations with nonlocal conditions when the impulsive iterss the compactness and
Lipschitz continuity”.

In this paper, among others, we will give an affirmative ansteethis question.
Some new ideas will be given to obtain the desired resultsficRunt conditions, en-
suring the existence of solutions for the singular imp@siunctional integral equation
involving a nonlocal condition (1.1), are established. S¢heonditions allows us to re-
lax the compactness and Lipschitz continuity on the impalsiem|; (i =1,...,n).

In fact, in the proof of one of main results we only need to figgpthe continuity and
the growth conditions on the impulsive item and nonlocahitend do not impose any
other conditions. The main tools in our study are approximgatechnique in terms of
the theory of compacCy-semigroup and the fixed point theorems due to Schauder and
Darbo-Sadovskii. Our results essentially extend sometiegisesults in this area.

REMARK 1.1. As the reader will see, the hypotheses on the impulséra and
nonlocal item in our theorems are reasonably weak and diffefrom those in many
previous papers such as [1, 6, 9, 10, 14] (where the integraat®ons considered are
defined as mild solutions of the corresponding impulsivectiomal differential equa-
tions incorporating nonlocal initial conditions and thesuks obtained are based upon
stronger restrictions on the nonlocal item and the impealsigm), and the proofs pro-
vided are concise.

REMARK 1.2. Let us note that the approximating technique plays arkéy in
the proof of our main results, which enable us to get rid ofdbmpactness or Lipschitz
continuity of impulsive item and nonlocal item. Furthermpthis approach can be eas-
ily extended to other functional integral equations inuady impulsive conditions and
nonlocal conditions.

REMARK 1.3. We mention that in recent paper [25], the solutions aégral
equation (1.2) are defined as mild solutions of the followimgulsive fractional func-
tional differential equation with nonlocal initial conitih

Dfu(t) = Au(t) + F(t,u(t)), tel0, T]\{ts, ta ..., ta},
(1.3) u(0) = H(u),
Au(t) = li(u(t)), i=1,...,n,

where®Dy, 0 < « < 1, is the Caputo fractional derivative of orderand A: D(A) C
X — X is the infinitesimal generator @o-semigroup{T (t)}>0. However, from the re-
sults in [19] it is easy to see that this concept of mild solusi of (1.3) is not appropriate
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(though this fashion of definitions of mild solutions was di$e some situations of pre-
vious research (see, e.g., [20])).

This work is organized as follows. In Section 2, we presemhes@reliminaries
and assumptions. Section 3 is devoted to our main resultsthaeid proof. Finally in
Section 4, an example is given to illustrate the feasibitifyour abstract results.

2. Preliminaries

Throughout this paper, we |€i(X) be the space of bounded linear operators from
X to X and M be a constant such that

M= sup [T()llcw:-
te[0,T+1]

Write
b=[0t] J=0,t+], i=1....n,

with to =0, t,.1 = T, and letu; be the restriction of a function to J (i =0,1,...,n).
Consider the set of functions

PC([0, T]: X)
={u:[0,T] > X; u € C(J;X), i =0,1,...,n, andu(t")
and u(t") exist and satisfyu(tj) = u(t") fori =1,...,n}.

Endowed with the norm

[ullpc = max{suqlui(t)n; i=0,1,..., n}.

teJ

It is easy to show that, with this nornR C([0, T]; X) is a Banach space (see [17]).
The following lemma will play an important role in this paper

Lemma 2.1. A set BC PC([0, T];X) is precompact in PO, T];X) if and only
if, for each i=0, 1,..., n, the set B, is precompact in @i X).

For the sake of convenience, we put
Qr ={ue PC(0, T: X); Ju®)|| <r, VYt [0, T]},

wherer is any positive constant, and list the assumptions to be usetiis work
as follows:
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(Hg) F: [0, T] x X — X is a Carathéodory function, and there exists a constaat
[0, @) and a positive functionf,(-) € LY#(0, T:R*) such that for a.et € [0, T] and
all x € X satisfying||x|| <r,

[l fr O)llLve,T)
— = o < 00.

IFt, x)| < f(t), and rIim+inf

(Hy) (i) H: PC(0, T]; X) — X is continuous, there exists a nondecreasing function
®: Rt — R* such that

IHW) = &(),
for all u € ©,, and

(o}
Iiminfﬂz,u<oo.

r—+o00 r

(i) There is anc¢ € (0,t;) such that for anyu,w € PC([0, T]; X) satisfyingu(t) =
w(t) (t€ls, T]), H) = H(w).
(H{,) There exists a positive constaht; such that

[H) = Hw)[ < Lu[u—w]ec,

for all u, w € PC([0, T]; X).
(H,) For everyi =1,...,n, I;: X — X is continuous, there exists a nondecreasing
function ¥; : Rt — R such that

il = wi(r),
for all y € X satisfying||y|| <r, and

Iiminf\piT(r)zy, < 00.

r—+400

Define

a ta=p 1-B 1-8
Coslt) = F(a)(a—ﬂ) Ctelo,T].

It is not difficult to see that linLgy Cy p(t) = 0.
REMARK 2.1. Note that the assumptioidg) (ii) is the case when the values of

the solutionu(t) for t near zero do not affedt (u). A case in point was presented in
[12], where the operatoH is given as follows:

p
Hu) = Ciu(s),
i=1
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whereC; (i =1,..., p) are given constants and9s; < -+ < Sp_1 < Sp < +00
(p € N), which is used to describe the diffusion phenomenon of allsamount of
gas in a transparent tube.

3. Main results

Let m> 1 be fixed. Define an operatdi* on PC(0, T; X) by

T(l)T(t)H(u)+m/ (t—s)* T (t—s)F(s, u(s)) ds, if teJo,
T(l)T(t)H(u)+F— Z (ti —9)* T (t—9) F(s, u(s)) ds
a _ ( )O<ti<t tig
(reu)(n = Lo
+m : (t—s)*"T(t—s)F(s, u(s)) ds
+ > ( )T(t—t.)l (u(t)), if ted,
O<tj <t
wherei =1,...,n.

Firstly, we are in a position to show the following result.

Lemma 3.1. Let the hypothesefHg), (Hy) (i) and (H,) hold. Then for every
m > 1, the operatorI’® has at least a fixed pointue PC(0, T; X) provided that

(3.1) M (M +0Cp(MM P + 1)+ V.) <1

i=1

Proof. It is clear that™®: PC(0, T; X) — PC(0, T; X). In the sequel, we prove
that there is a positive number such thatl'* maps<2, into itself. In fact, if this is
not the case, then for eaghe N, there would exisu, € Q, andt, € [0, T] such that
[(Tuy)(t,)ll > p. Thus, from Holder inequality and the assumptioft), (Hu) (i),
(H,) we deduce that

p < [(Tu,) ()

1
T(— + tp)
m L(X)

< Md)(,o)—l—r( )[ (t, —s)* f,(s)ds

= M®(p) + MCo (M) follLveo,r),

=

1 (v
IH (o)l + @ / (t, =) T —9lealF(s uy(s) ds
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for the case when, € Jo, and

p < I(T%u,)(E)
= [IH (u)

1
T(=+t,
m LX)

ti
F(a) > (t =9 Tt — 9lellF(s uy(s)] ds

O<tj<t, ti

tig | G 9T~ 9leanlFGs uy oM ds

ST (5 =) el )

O<tj <t,

k t;
M®(p) + m Z (t. —9)*71f,(s)ds
=1

M b a—1 :
; @ft =9 1 ds+ M 3 (o)

M [(1-p8)\*" X
MO() + s (—’3) 1o S0 — 1)
i=1

k

+ MCo g (M f,ll 15 g1y + M D Wilp)
i=1

n
< M®(p) + MCa, (T f, [l s o1y ("4 + 1)+ M Y Wi (p)
i=1

for the case whet, € J (k =1,...,n). Dividing on both sides by and taking the
lower limit as p — oo one has

M (M + 0Cop(TYN**HF + 1) + Z M) > 1,

i=1

which contradicts (3.1). This means that for some posititegerp > 0, T'*(£2,) C €2,,.

Next, we shall prove thal* is continuous on2,. Let {uq}gZ; C 2, be a se-
quence such thaiq — u asq — oo on PC(0, T; X). From the continuity ofF with
respect to second variable it is not difficult to see that

F(s, uq(s)) = F(s,u(s)), ae. se[0,T] as q— oo.
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Also, from the assumptionHg) note that

t 1-B 1-p
(t—s)* fy(s)ds < (ﬂ) (T—t)* P f,llimory (=0,1,...,n t=1),
ti -

t; . 1-8 1-p B )
(t —9)* 1f () ds < (ﬁ) (&t P fll v r, G =1,...,0).

tica

Hence, by the continuity of operatotd, I; (i = 1,...,n), the Lebesgue dominated
convergence theorem gives that for edch [0, T],

I(Mug)(t) — (C*u)(®)|l - 0, as q — oo,
which implies that
I(Mug)(t) = (M“u)(t)llpc — 0, as q— oo.

That is to say thal® is continuous orez,,.

Finally, to be able to apply Schauder’s second fixed poinbrin@ to obtain a fixed
point of I'“, we need to prove thaf“ is compact on2,. Let us decompose the op-
eratorI'* as follows:

I =T¢ +T'§ + Y,
where
(Fhu® =T (%)T(t)H(u), teo,T],
1 t a—1 _ i
m/o (t—s)*"T(t —s)F(s, u(s)) ds, if teJdp,

1 ' : a—1 _
rewn = | T@ 2 Jy 19T T IR uehds

t(t —9)*7IT(t — s)F(s, u(s)) ds,
if ted (i=21...,n),

Y T(%) Tt —t)li(ut), ted (=1,...,n).

O<tj <t

T

From the assumptionHy) (i) and the compactness df(t) for t > 0 we deduce that
'Y, which maps$2, into PC(0, T; X) is compact. Also, by the assumptiokif) and

the compactness of (t) for t > 0 a standard argument yields th&g|; is compact
on ,.
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Lett € J; be fixed and O< &1 < min{t;, t —t1}. Foru e Q,, we define the map
e by

m,e 1 e a—1
CE00 = 15 /O (t— 9 *T(t — )F(s, u(9)) ds

t—eq
" % (- 8" T(t —9)F (s, u(s)) ds
— -Ir*((zl)) otl_gl(h -9 IT(t — &1 — S)F(s, u(s)) ds

SinceT(t) for t > 0 is compact, for each € J;, the set
{(TEU)(t): u e Q,, 0< e <min{ty, t —t}}

is precompact inX. Moreover, fort € J;, from Hoélder inequality and the assumption
(Hg) it follows that

IFEU)(®) — (FEPu)E) < ——

ty
J— C{*l J—
=T /t (ty —9)* " T(t —s)F(s, u(s)) ds

1—¢€1

1

t
+ o) (t —s)* T (t — S)F(s, u(s)) ds

t—é‘l

v ) ot t a—1

1—€1 t—ep

=< ZMCayﬂ(é‘]_)” fp”Ll/f"(O,T) —0 as & — ot.

Therefore, using the total boundedness we conclude thadont € J;, {(T'fu)(t):u €
Q,} is precompact irX.
Note that

(T¢ u)(tl+) = tl(tl - s)"’lT(tl —s)F(s, u(s)) ds.
0

The same idea can be used to prove that the ($&tu)(t;"); u € Q,} is precompact in
X. In fact, for each O< ¢, < t;, the compactness of (t) for t > 0 implies that

{/ - 9 MT( - 9F (s ue) ds; u e Qp}
0

t1—e2
= {T(sz) /0 (tp —)* 1T(ty — &2 — S)F(s, u(s)) ds; u € Szp}
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is precompact irX. Thus, the result that the set"#u)(t;"); u € ©,} is precompact in
X follows from the estimate:

H § (tp — 9)* 1T (ty — S)F (s, u(s)) ds— / e (tp —9)* 1T (t, — S)F(s, u(s)) ds
0 0

<

[ ¥ (ty —8)* 1T (t, — S)F(s, u(s)) ds
t

1—€2

t
§/t (t1 —s)* 1 f,(s)ds

1762
= MCe (el fpll o)
—~0 as & — 0",

Next, we show the equicontinuity dfTC'2u)(-); - € Ji, u € Q,}. Letu € Q,,
s, S € Ji, St <s ands > 0 be small enough. We put

ty
hy = e /O (t—9)* Y T(s2—9) = T(s1— 9)|l el F (s, u(®))| ds,

ty
= iy =9I =9 = Tlsu = lco IF (s sl ds

and put
1 1
hy = —— (2=9)" "IT(s2—5) = T(s1 = )l ex) | F (s, u(9)) ds,
I'() tl
1

o) (52 9 LT(s2—9) — T(s1 — 9)ll oI F (s, u(s) ds
1 a— a—
e = F(a) n C((s -9 (= 9 Y- [ T(s - 9o F (s, u@) ds

1 . @9 T 9wl o) ds

for the case whers; > t;, and

o= :<sZ 9" HT(% - 9leco IF (s uE) ds

for the case whers; = t;. Then, making use of the assumptiod«) we obtain

t1—6
hy < mIIT(Sz S1+8)— T@)HL(X)/ (t1—9)* I T(s1—5=8)ll e fo(s) ds

o M (BN i gempia-myies
< ( 1 )
I'(x)

< IT(2=51+8) = TG cooll foll s oy
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2M b
T ') t1—58

1 5—8 )
= m||T(32—31Jrfs)—T((?)llﬁ(X)/H (82—9)* YT (s1—5-8) | cx) F(S) ds

% ( %) o (=)@ PV _ (5,5,  5)( P A-))1p
X IT (52— 51+ )~ TO) gl Tl v oy

oM [®
T(@) Jss
M [1-8
F@ﬁ(a—ﬂ

M S a—1 a—1 M * a—1
hs = fy J. (a9 —(e9) )fp(S)dSJr@[Sl(sz—S) fo(s) ds

M . 1)/(1 1)/(1 o
@) { ((sl—s)(“* )/(1-B) —(SQ—S)("* )/( fﬁ)) ds} | fp||Ll/ﬂ(0,T)
t1

M [(1-B\'"*
() (Ol —IZ) (&2=s)* Pl Tl

M (1-B8\*"*
m m I fpllLve,m)
x{((s1—tp) @ PV 4 (5, — )@ PV A=F) _ (g, ;)@= AV/A=P)Y1=F 4 (5, —5)*~F},

M
he < ——
=Ty

(ti—9)* *f,(s) ds < 2MCu s B)I| foll Lve 0.1y

IA

hy = (s2—9)" *fy(s)ds

IA

1-p
) (52— 514 8) VP — (g — ) VNP Loy,

IA

IA

%
(82=9)" f,(8) ds = MC (2= 1) ol Lveo.m)-

This together with the fact that the compactnesg ¢f) for t > 0 implies the continuity
in the uniform operator topology shows that (i = 1,..., 6) tend to zero as, >
ands — O*.

Note that

o o hi +h,+hs+hs+hs, if t1 <s,
r — (I < .
i) - reusl <t he LI
Therefore, we obtain thg(T'¢u)(-); u € ©,} is equicontinuous od;. Hence, applying
the Arzela—Ascoli theorem we can conclude tiigty, is compact onQ,. The same
idea can be used to prove that for eack 2,...,n, I't|5, is also compact o12,.
Finally, to prove the compactness of the operdi®r we note that for every € J;
i=1,...,n),

{T (%)T(t —t)i(ut)), ue Qp}

Ji
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is relatively compact inX due to the compactness daf(t) for t > 0. And, a direct
calculation yields

T(%)T(t — )1 (u(t)) — T(%)T(S—ti)'i(“(ti))H

[r(2)re-wre-9-Tomew)]

<M H (Tt -8~ TO)T (%) L (u(t) H

forti <s<t<t1, 1 =1,..,n This together with the strong continuity @f(t) yields
thatonJi, i =1,...,n, {T(L/M)T(t—t)li(ut)), ue R,} are equicontinuous. Thus,
the Arzela—Ascoli theorem indicates that the operdtpris compact and hencg® is
compact on2,. Consequently, we can make use of Schauder’s fixed pointéireo
to deduce that for eacm > 1, T'* has at least a fixed poiniy, € ©2,. The proof is
then complete. O

We now return to the problem (1.1). One of our main resultshis paper is the
following theorem.

Theorem 3.1. Let the hypotheses ihemma 3.1and hypothesigHy) (ii) hold.
Then problem(1.1) has at least one solution.

Proof. We proceed in two steps.

STEP 1. We show that the sdum}y_, is precompact inPC(0, T; X).

Let n € (0,¢) be fixed, wheres is the constant in the assumptioH) (ii). Firstly,
from the compactness dff (t) for t > 0 and the assumptiorHg) (i) it is not difficult
to see that for eache (0,T], the set{T(t)T(1/m)H (un), m > 1} is precompact irX,
which together with the strong continuity df(t) yields that for the case when, s, €
[n 1], &1 < s,

T () e - 7T (5 ) e

— [T =T =TT (5 ) Hew

—0, as — 9,

uniformly for m> 1, and for the case whes, s, € Ji, s1 < (i =1,...,n),

7 () Hm - T (1) Hen

- H(T(sz—ti) —T(sl—ti))T(ti)T(%) H ()

—0, as — 9,
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uniformly for m > 1. Therefore, in view of Arzela—Ascoli theorem we deducet tha
the set{T(t)T(1/m)H(uUm), m > 1}|}, is precompact inC([n, t1]; X) and for each
i=1,...,n, the set{T(t)T(1/m)H(um), m = 1}|5 is precompact inc(J;; X). Put

1 t a—1 _ .
m/o(t—S) T(t —s)F(s, un(s)) ds, it ted,

1 ‘ a—1
(Eum)(®) = | T(@) 0;{ [ 69T 9FE un() ds
1 t a—1 _

" T'() t, (t =) Tt =9)F(s um(s)) ds,

if ted,i=1,...,n

Then, the same idea with the proof of Lemma 3.1 can be usedawe pghat the set
{EUm, m=> 1}|, is precompact irC(Jo; X) and for each = 1,...,n, {Eumn, m > 1},
is precompact irC(J;; X).

In what follows, we consider the set

O<tj <t

{ > T(%)T(t—ti)li(um(ti)), m > 1}, i=1,...,n
Notice that fort € Jp,

u (t)—T(t)T(i)H(u )+i/t(t—s)"‘1T(t—s)F(s Um(s)) ds
" m ™ T Jo o

_ T(t)T(%) H (Um) + (Etm)©)] -

Then, from the argument above we see that for any 1 < t1, {Un; M > 1}y IS
precompact inC([n, t1]; X). Without loss of generality, we let

(3.2) Un —u in C([7, t]: X)
asm — oo, which implies in particular that
Um(t)) — u(ty) in X,

asm — oo, that is, the sefun(ty); m > 1} is compact inX. This together with the
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assumption ifl;) and the strong continuity of (t) concludes that

() =T (%) )

() =T (%) 12 (Un(t2))

=

‘ + HT(%) () =T (%) 2 (Un(t2))

‘ + M| 11(u(ty)) — 11 (Um(t))]l

=

() =T (%) )

—0 as m— oo,

which implies that the sefT(1/m)l1(un(ty)); m> 1} is relatively compact irX. Since
T(t) is compact fort > 0, for eacht € T the set{T(1/m)T(t — t1) l1(Um(t1)); m > 1}
is also relatively compact i&X. On the other hand, fos;, s; € J1, 1 < S, from the
compactness of the sétin(t1); m > 1} and the strong continuity of (t) we get

A

HT (%) T8 — ) i(Un(t) = T (%) T (81— ) 1 (Um(t))
< HT (1 b8 tl) 1T (82— 5)— 1) a(Um(®)]
m L(X)

MII(T (82 = s1) = D) 11 (Um(t))

-0, as — 9,

IA

uniformly for m > 1. Therefore, in view of Arzela—Ascoli theorem we find that
{T(Q/m)T(t —t1)l1(Um(t1)); m= 1}3, is precompact inC(J1; X). A similar argument
enable us to conclude that for eath=2,...,n,

{ > T(%)T(t_ti)li(um(ti))v m= 1}
O<tj <t

is precompact irC(J;; X).
Finally, to prove that the sedtum}m_, is precompact inP C(0, T;X), it will suffice

to show that the set
1
froom(&)unm=1)

is precompact irC([0, n];X). Let ¢ be the constant in the assumptiddy) (ii). Write

Ji

[0.m]

un(t) if tels, T],
um(s) if tel0,c¢l].

Then, from (3.2) we may assume, without loss of generalitgf t

Um(t) = {

im—u in PC(O,T:X),
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asm — oo. Thus, from the continuity of operatdff and the strong continuity of (t)
we get

Hw -7 ( ) )| = |He - 7( ) e
< |H(u) - T(%)H(U) +HT(%)(H(U)—H(L~Jm))‘
< W - T(5 )|+ MIHE - HE)

—0 as m— oo,

which implies that the setT(1/m)H(uy), m > 1} is relatively compact inX. This
together with the strong continuity df (t) concludes that fog;, s, € [0, 1], s1 < S,

1 1
T () P - T (1) M

T (5 ) M

—0 as s, — s,

uniformly for m > 1. Consequently, we conclude that the $&t(t) T(1/m)H (Unm),
m > 1}|j0,,; i precompact inC([0, n]; X) and hence the sdum}y_; is precompact
in PC(0, T; X).

STEP 2. Since the sefum}y_, is precompact inPC(0, T;X), there is a sub-
sequencgum,} and there is a1 € PC(0, T; X) such thatuy,, — u in PC(0, T; X) as
j — oo. Note thatun,, € PC(0, T; X) satisfies the integral equation

1 1 t o
T(m—j)T(t)H(UmiHm/O(t—s) T(t—S)F(s, Um () ds,
if teJd,
ti
T H m P — afl-l- _ F U d
(1) = (i ) TORE j 2 J, B TE9RG () ds
t
a—1
i@ J, TR un ) ds
+ ) T( )T(t ) 1 (Um, (&), if ted,
O<tj <t
wherei =1,...,n. Letting j — oo one has thati is one solution of problem (1.1).

This completes the proof. []
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Theorem 3.2. Let the hypothese@r), (H/;) and (H,) hold. Then problen{l.1)
has at least one solution provided that

(3.3) M (LH + 0Cu p(TY (NP + 1) + Z y,) <1,

i=1

Proof. We proceed in two steps.

Stepl. Letm> 1 be fixed. Consider the operatbf: PC(0,T;X) — PC(0,T;X)
which is defined by

TAHQU) + — ! /(t—s)" T(t —s)F(s, u(s)) ds, if teJdy,

F( )
TOHW + 5~ Z (t —s)* 1T (t — s)F(s, u(s)) ds
(rau)(t) — 0<t‘ <t Yl 1 .
+ @ /. (t —s)* T (t —s)F(s, u(s)) ds
+ ZT( )T(t—t.)l(u(t ), if ted (i=1,...,n),
O<tj <t

we will prove thatI'® has a fixed point. Firstly, from Holder inequality and the as-
sumptions He), (H,,), (H;) we infer that fort € J (k=1,...,n),

I u) |l

ti
S ITOle IHWI + == F( ) Yo =9 T =9l lF(s u)] ds

O<t; <t Gi1
1
F( 7). (t S)* Tt — )l F (s, u(s))| ds
Py ( +t—t|) I @)
O<tj <t L(X)

k
< M(Lup + H(0) + MCo p(M f, lLus (K + 1) + M Y~ Wi(p).
i—1

Therefore, an application of the same idea with the proof efima 3.1 together with
condition (3.3) gives that there exists a positive numbesuch thatl'* maps<2, into
itself. Moreover, similarly to the proof of Lemma 3.1 we casaldeduce, in view of
the continuity of F with respect to second variable ahtl, I; (i =1,...,n), that'*
is continuous orez,,.

Now, we assume that the operatd¥$, I'{" are defined by the same as in Lemma 3.1.
From the proof of Lemma 3.1 note that the operaidfs I'{" are compact ors2,.



THE SINGULAR IMPULSIVE FUNCTIONAL INTEGRAL EQUATIONS 681

Write
(Cuu)t) = T(t)H(u), tel0, T]

Then from the assumptiorH(,) it follows that

[(CLu)t) — (CHw)OI = ITO e H W) — H(w)]
< MLullu—=vlpc, for u,weQ,

which yields that
(3.4) [(CHu)®) — (Chw)t)lpc = MLullu—vlpc, for u, w € ;.

That is, I'" is Lipschitz continuous orf2,. Since the condition (3.3) implies that
MLy <1, the operatol™® =T', +T'¢ +TY is an«-contraction on<2,. Therefore, ap-
plying the Darbo-Sadovskii’s fixed point theorem [3] we deelithat for eachm > 1,
the operatol® has at least a fixed poiniy, € €2,,.

STEP 2. Consider the sefuy}iy_ ;. Since for eachm > 1, uy, satisfies the inte-
gral equation

1

Um(t) = T()H (um) + '@

/t(t —9)*IT(t —s)F(s, um(s)) ds, for te Jg,
0

from our hypotheses it is not difficult to see that for each(0,t,], the set{un(t)}s>_;
is relatively compact (cf. the proof of Lemma 3.1). This glin particular that there
is a subsequencfup, (tl)}‘J?"=1 and there is aig such that

Um, (t1) = Uo in X,

as j — oo, which together with the strong continuity df(t) and the continuity ofi;
implies that

o) — T (mij) 12U, ()

< + M|[12(uo) — I1(Um, (t2))ll

l1(uo) = T (mi) I1(Uo)

j
—0, as j — oo.

That is, the se{T (1/m;j)l1(um (tl))}j-x’:l is relatively compact irX. SinceT(t) for t >
0 is compact, for eache Jo the set{T(1/m;)T(t —t1)11(Um, (tl))}‘j’o=l is also relatively
compact inX. Moreover, from the compactness of the §8(1/m;)11(um, (t))}j2; and
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the strong continuity ofT (t) note that fors;, s, € J1, 1 < S,

HT (mi]) T8 — to) 11U, () — T (mij)T(sl — )11 (U, (12))

=T —t)llex

(T —s)— )T (mij) 2 (U (1))

IA

y H (T -s)- [T (mi,) (i, (1) H
-0, as $— 9,

uniformly for j > 1, which implies that the setT(1/m;)T( - —t))l1(um (t)); - €
Ji1, j = 1} is equicontinuous onJ;. Hence, using the Arzela—Ascoli theorem we
have that the sefT(1/m;)T(t — t1)l1(um,(t2)); j = 1}|5, is precompact inC(J1; X).
By a similar argument it follows that for eadh=2,...,n, {3 o, . T(1/m)T(t —
t)li (Um(ti)), m = 1}|, is precompact irC(J;; X).

Let a(-) stand for the Hausdorff measure of noncompactness (sgeTBé¢n from
the argument above and (3.4) we have

a(fum }721) = MLua({um}72y),
which together with the fact that the condition (3.3) implitnatMLy < 1 yields that
a({umj }To=1) =0.

That is to say that the s¢tim }{2, is precompact inPC(0, T:X). Thus, we may sup-
pose without loss of generality that

Un, > U in PC(@O,T;X)

|

as j — oo, and the same reason with the last proof of Theorem 3.1 caclum® that
the limit u is one solution of problem (1.1). This completes the proof. ]

4. An example

In this section, we present an example, which does not ainemerglity but indi-
cates how our theorems can be applied to concrete problem.
Let @ = 1/2, X = L?[0, 7], and the operatoré\: D(A) C X — X be defined by

D(A) = {u € X; u, U" are absolutely continuousi” € X, andu(0) = u(r) = 0},
32
ox2’
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Clearly, A generates a strongly continuous semigrddpt)}i>=o on X and the semi-
group generated byA is compact, analytic andT(t)||zx) < e for all t > 0 (see

[18, 27)).
Define
F(t, u(t, x)) = smtul—gtgx)
L) = e
H(u(-, X)) = uo(x) + Xp: Ciu(s, x),
i=1
whereC; (i =1,..., p) are given constants, and0s, <--- <S,_1 <Sp < T and

O<ti<th<---<t, <T are pre-fixed numbers.
Then, the hypothesedHf), (Hy) and H,) hold with

1
Z<B< f(t) =t"3

3 2

p
W) =1G=1...,n), o) =|uollzpon+r Y ICil,
i=1

p
c=0, n=0(@=1,...,n, u=)Y |Gl
i=1

Hence, when|Ci| (i = 1,..., p) are small enough such that the condition (3.1) is
satisfied, the corresponding problem has at least one @oldiie to Theorem 3.1.
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