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BUBBLETONS ARE NOT EMBEDDED
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Abstract
We discuss constant mean curvature bubbletons in Euclidean3-space via dressing

with simple factors, and prove that single-bubbletons are not embedded.

Introduction

A key feature of an integrable system is the presence of an algebraic transform-
ation method which generates new solutions from old ones. Inparticular even by start-
ing with a trivial solution one obtains a hierarchy of interesting global solutions. For
the KdV equation one thus obtains the solitons via a Bäcklundtransform. Solitons are
solitary traveling waves with localized energy that are stable when interacting with each
other. Many of the modern techniques in integrable systems theory stem from classical
surface theory, developed by Bäcklund, Bianchi and Darbouxamongst others for the
structure equations of special surface classes.

Away from umbilic points the structure equation of a constant mean curvature (CMC)
surface is the sinh-Gordon equation, whose trivial solution gives rise to the round cylin-
der. The term ‘bubbleton’ is due to Sterling and Wente [19], and the bubbletons are
the solitons of the sinh-Gordon equation. The single-bubbletons are obtained by trans-
forming the round cylinder by a Bianchi–Bäcklund transform. The resulting transformed
CMC cylinder globally looks like the round cylinder except for alocalized part in which
bubble-like pieces are glued into the underlying surface, see Fig. 1.1. A video of how
bubbles interact when they move through each other can be seen at [15].

Recently the classical transformations have received a treatment from the modern
point of view of dressing [2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 21]. Bubbletons can be realized
by dressing the round cylinder by a class of very simple maps,called simple factors
[21]. By repeatedly applying the Bianchi–Bäcklund transformation to the round cylin-
der one produces the ‘multi-bubbletons’ classified by Sterling and Wente [19]. While
graphics of bubbletons clearly suggest that they are not embedded (see Fig. 1.1), there
does not seem to be a direct proof of this fact in the literature. An indirect proof when
the target is the 3-sphere is given in [10].

The purpose here is to prove that no member in the infinite family of single-
bubbletons is embedded. This is done by showing that all single-bubbletons possess

2000 Mathematics Subject Classification. Primary 53A10; Secondary 58E20.



654 M. K ILIAN

a planar curve which is not homologous to zero on the surface.It is shown that this
curve has turning number at least three, which implies that the surface cannot be em-
bedded. We reveal how the choice of the ‘singularity’ in the simple factor is reflected
in the geometry of the resulting bubbleton. The monotone sequence of the singular-
ities are indexed by an integerK 2 N for K � 2, and K is the number of ‘bubbles’
of the bubbleton, as 2K � 1 turns out to be the turning number of the planar curve.

1. The round cylinder

If i D
p

�1, then in the spinor representation of Euclidean 3-spaceR

3 we identify
R

3
� su2 via

(x1, x2, x3) �

�

ix3 x1C ix2

�x1C ix2 �ix3

�

.

The extended frame of a round cylinder (up to isometry and conformal change of co-
ordinate) is

(1.1) F
�

(z) D

�

cos�
�

i�

�1=2 sin�
�

i�

1=2 sin�
�

cos�
�

�

,

where

(1.2) �

�

D �

�

(z) D
�

2
(z��1=2

C Nz�1=2).

The Sym–Bobenko formula [20, 1] for aCMC surface in Euclidean 3-spaceR3 is a
formula of the immersion in terms of its extended frameF

�

. In our conventions [18],
the associated family with constant mean curvatureH 2 R� is given by

(1.3) f
�

(z) D �2i�H�1F 0

�

(z)F�1
�

(z)

where F 0

�

denotes the derivative with respect to�. If we pick one member of the as-
sociated family f

�

with � 2 S

1 and choose� D 1, and insert the extended frame (1.1)
of the round cylinder, we obtain

f1(x, y) D H�1

�

i sin2(�x) � cos(�x) sin(�x) � �iy
cos(�x) sin(�x) � �iy �i sin2(�x)

�

�

1

2H

0

�

sin(2�x)
�2� y

1� cos(2�x)

1

A.

This is clearly a round cylinder which is generated by a circle in thex1x3-plane of radius
1=(2jH j) centered at the point (0, 1=(2H )) parallel translated along thex2-axis. Any
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Fig. 1.1. Parts of a two-lobed single-bubbleton, and a multi-
bubbleton with 2 and 3 lobes. Further graphics of bubbletonscan
be viewed at [16, 17].

curve x2 � c for some constantc 2 R is not contractible on the cylinder. By restricting
the x-coordinate to any interval of length one we obtain an embedded round cylinder.

In general, or when the parametrization is less explicit, one can describe the period
problem as follows. Suppose we have an extended frameF

�

and an associated family
of CMC surfaces as in (1.3). Then periodicityf

�

(zC � ) D f
�

(z) for all z 2 C can in
general not hold for all� 2 S1. But if we fix �0 2 S

1, then periodicity reads

(1.4) F 0

�0
(zC � )F�1

�0
(zC � ) D F 0

�0
(z)F�1

�0
(z).

If we define the monodromy matrixM
�

(� ) with respect to the translationz 7! zC �
of F

�

by

(1.5) M
�

(� ) D F
�

(zC � )F�1
�

(z)

then the period problem (1.4) is equivalent to

(1.6) M
�0(� ) D �1 and M 0

�0
(� ) D 0.

The monodromy matrix is not well defined, since it depends on the choice of a base
point, and so is only defined up to conjugacy. However, the periodicity conditions (1.6)
are invariant under conjugation.

Since we need some of the above in the special case of the roundcylinder, let us
specialize again to this case. IfF

�

is the extended frame (1.1) of a round cylinder, we
choose the base pointz0 D 0 and note thatF

�

(0)D 1 for all � 2 C�. As before pick
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�0 D 1. The monodromy ofF
�

(z) with respect to the translation� W z 7! zC 1 is then

(1.7) M
�

(� ) D F
�

(1),

and a quick computation confirms thatF1(1)D �1 and F 0

1(1)D 0.

2. Simple factors

There is a deformation technique in the theory of harmonic maps calleddress-
ing [4]. In particular, dressing by specific very simple maps corresponds to the classi-
cal Bianchi–Bäcklund transformation [14], and amounts to adding ‘bubbletons’ to the
standard round cylinder—these simple maps are calledsimple factors[21]. Let us
briefly review the theory of simple factors in the context ofCMC surfaces inR3. Let
�L W C

2
! L be the hermitian projection onto a lineL 2 CP1, and�?L D 1 � �L . For

� 2 C

�, set

(2.1)  L ,�(�) D �L C
� � �

1� N��
�

?

L .

To normalize we make the determinant equal to 1 and do a Gram–Schmidt factoriza-
tion at � D 0 to obtain (det L ,�(0))�1=2

 L ,�(0) D QR with Q 2 SU2 and R 2 SL2

upper triangular with positive real entries on the diagonal. A simple factoris a map of
the form

(2.2) hL ,� D (det L ,�)�1=2Q�1
 L ,�.

By Proposition 4.2 in [21] dressing by simple factors is explicit, and adapted to the
case at hand in Theorem 1.2 in [11]: Generally, suppose thatF

�

is an extended frame,
and hL ,� a simple factor with� 2 C�, j�j < 1, andL 2 P1. Then the dressed extended
frame is given by dressing on anr -circle with r < j�j < 1, and is

(2.3) hL ,� # F
�

D hL ,�F
�

h�1
QL,�

with QL D F
�

(z)
t
L.

We next show that to obtain the single-bubbletons we can choose diagonal simple fac-
tors with very specific singularities�.

Lemma 2.1. Up to isometry and conformal coordinate change any single-
bubbleton can be obtained by dressing the round cylinder by asimple factor hL ,� with
line L D [1 W 0], so of the form

(2.4) hL ,� D

r

1� ��

� � �

0

�

1 0

0
� � �

1� ��

1

A,
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with real � 2 (0, 1) given by

(2.5) � D 2K 2
� 1� 2K

p

K 2
� 1 for some integer K� 2.

Proof. If we want to dress the extended frame of the round cylinder, then we
will have to choose the lineL and the singularity� in such a way that the resulting
bubbleton remains periodic with the same period as the underlying round cylinder. To
get the conditions onL and � we will need to look at the monodromy of the dressed
extended frame (2.3), with respect to the same translation�W z 7! zC1. SinceF

�

(0)D 1
for all � 2 C�, for the dressed frame we also havehL ,� # F

�

jzD0 D 1 since QL D L for
zD 0. Hence with the monodromyM

�

(� ) in (1.7) of the round cylinder we obtain for
the bubbleton monodromy

(2.6) hL ,� # F
�

jzD1 D hL ,�M
�

(� )h�1
L ,�� M

�

(� )
t
L D L.

Thus the condition on the lineL is that it has to be an eigenline ofM
�

(� )
t
. Now

SU2 acts transitively onCP1 and hU L ,� D UhL ,�U�1 for any U 2 SU2. Since dressing
by hL ,� andUhL ,�U�1 give the same surface up to isometry and conformal coordinate
change, we may choose without loss of generality the lineL D [1 W 0].

The monodromy of an extended frame of aCMC surface should be holomorphic
in � 2 C

� and unitary for� 2 S1. Clearly away from� D �, 1=� we have

hL ,�(1=N�)
t
D h�1

L ,�(�)

so hL ,�M
�

(� )h�1
L ,� is unitary on the unit circle, if we demand that

(2.7) j�j ¤ 1.

FurtherhL ,�M
�

(� )h�1
L ,� is holomorphic for all� 2 C� away from� D �, ��1. To make

these two singularities removable, we impose the conditionthat M
�

(� ) D F
�

(1)D �1,
or equivalently that�

�

(1)D�1 for the function�
�

in (1.2). This is equivalent to there
existing an integerK 2 Z such that

(2.8) �

�1=2
C �

1=2
D 2K .

Rewriting this as a quadratic equation we obtain for eachK 2 Z two real solutions

(2.9) �

�

D 2K 2
� 1� 2K

p

K 2
� 1.

First observe that�
�

D �

�1
C

. Now  L ,��1
D  

�1
L ,� and

hL ,��1
D

r

� � �

1� ��

r

1� ��

� � �

h�1
L ,� D

r

� � �

1� ��

r

1� ��

� � �

hU L ,� for U D

�

0 �1
1 0

�

.
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But since

r

� � �

1� ��

r

1� ��

� � �

�

�

�

�

�

�D1

D �1 and
�

��

�

�

�

�

�D1

�

r

� � �

1� ��

r

1� ��

� � �

�

D 0,

dressing byhL ,� and hL ,��1 gives the same bubbleton up to isometry and conformal
coordinate change. Thus�

C

and�
�

give the same bubbleton, so we may omit the sub-
script, restrict to non-negative integersK � 0, and set� D �

�

, so that� is as in (2.5).
Then��1

�� D (��1=2
C�

1=2)(��1=2
��

1=2) D 2K (��1=2
��

1=2), and consequently

�

�1=2
� �

1=2
D 2
p

K 2
� 1.

Note that whenK D 0,�1 then � D �1, 1, 1 respectively, and it is not hard to see
that � � S1 when jK j � 2. Hence the condition (2.7) thatj�j ¤ 1 requires that we
impose K ¤ 0,�1, and consequently we may restrict to the caseK � 2. To see that
the singularities at� D �, 1=� are now apparent, we use L’Hôpital’s rule to obtain

lim
�!�

hL ,�F
�

(1)h�1
L ,� D lim

�!�

0

B

�

cos�
�

(1)
1� ��

� � �

i�

�1=2 sin�
�

(1)
� � �

1� ��
i�

1=2 sin�
�

(1) cos�
�

(1)

1

C

A

D

�

�1 0
0 �1

�

C i�

�1=2(1� �2) lim
�!�

sin�
�

(1)

� � �

�

0 1
0 0

�

D

�

�1 0
0 �1

�

� i�

�1=24K (K 2
� 1)

�

0 1
0 0

�

,

with sign depending on the parity ofK . A similar computation, or usingF1=N�
t
D F�1

�

shows that� D 1=� is also a removable singularity.

To obtain any multi-bubbleton of finite type one can dress by afinite product
Q

hL ,� j

of simple factors, but we may use each integerK � 2 only once, since otherwise the
singularities are no longer removable in the dressed monodromy. Hence on a multi-
bubbleton each lobe numberK can appear only once.

3. The main result

With the preparations of the preceding two sections we can now prove our main result.

Theorem 3.1. A single-bubbleton is not embedded.

Proof. From (2.3) the extended frame of a bubbleton ishL ,�F
�

h�1
QL,�

with

(3.1) QL D F
�

(z)
t
�

1
0

�

D

�

cos N�
�

�i�

�1=2 sin N�
�

�

.
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Fig. 3.1. Planar curve on the 2-lobed single-bubbleton. It has
turning number 3. On the right, a magnified view of one of the
two small loops of the curve.

We next explicitly compute the parameter curvey D 0 on a bubbleton. Since single-
bubbletons are immersions [19], parameter curves are immersed. We may set the mean
curvature toH D �1=2. Inserting the bubbleton frame into the Sym–Bobenko formula
(1.3) gives three terms

(3.2) ih0L ,�h�1
L ,� C ihL ,�F 0

�

F�1
�

h�1
L ,� C ihL ,�F

�

h�10
QL,�

h
QL,�F�1

�

h�1
L ,�j�D1,yD0.

In the following we will compute these three terms. First, wehave forhL ,� in (2.4) that

(3.3) ih0L ,�h�1
L ,�j�D1 D

K

2
p

K 2
� 1

�

�i 0
0 i

�

.

The second term is

(3.4) ihL ,�F 0

�

F�1h�1
L ,�j�D1,yD0 D

1

2

0

B

�

�i sin2(�x) �
1

2
sin(2�x)

1

2
sin(2�x) i sin2(�x)

1

C

A

.

If L D [a W b], then with respect to the standard basis ofC

2 the projection�L is

�L D
1

jaj2C jbj2

�

jaj2 aNb
Nab jbj2

�

.

Hence for the lineQL in (3.1) we obtain

�

QL D

0

B

B

B

�

jcos�
�

j

2

jcos�
�

j

2
C �

�1
jsin�

�

j

2

i�

�1=2 sin�
�

cos N�
�

jcos�
�

j

2
C �

�1
jsin�

�

j

2

�i�

�1=2 sin N�
�

cos�
�

jcos�
�

j

2
C �

�1
jsin�

�

j

2

�

�1
jsin�

�

j

2

jcos�
�

j

2
C �

�1
jsin�

�

j

2

1

C

C

C

A

.
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The function�
�

defined in (1.2) evaluated at� D � along y D 0 reads�
�

D �K x.
Then 

QL,�(�) in (2.1) alongy D 0 computes to

 

QL,�(�)jyD0

D

0

B

B

B

�

��

2
�2�C�C(�2

�1)�cos(2K�x)

2(���1)(�cos2(K�x)Csin2(K�x))

i(��1)
p

�(�C1)sin(2K�x)

2(���1)(�cos2(K�x)Csin2(K�x))

�

i(��1)
p

�(�C1)sin(2K�x)

2(���1)(�cos2(K�x)Csin2(K�x))
�

�

2
�2��C(�2

�1)cos(2K�x)C1

2(���1)(�cos2(K�x)Csin2(K�x))

1

C

C

C

A

.

Evaluating at� D 0 gives

 

QL,�(0)jyD0 D

0

B

B

B

�

�

� cos2(K�x)C sin2(K�x)

i(1� �)
p

� sin(2K�x)

2(� cos2(K�x)C sin2(K�x))

i(� � 1)
p

� sin(2K�x)

2(� cos2(K�x)C sin2(K�x))

�

2
C (�2

� 1) cos(2K�x)C 1

2(� cos2(K�x)C sin2(K�x))

1

C

C

C

A

.

Now det 
QL,�(0)jyD0 D � ¤ 0, and Gram–Schmidt on��1=2

 

QL,�(0)jyD0 D QR gives

Q D

0

B

B

B

�

2
p

�

p

(� C 1)2 � (� � 1)2 cos2(2K�x)

i(� � 1) sin(2K�x)
p

(� � 1)2 sin2(2K�x)C 4�

i(� � 1) sin(2�K x)
p

(� C 1)2 � (� � 1)2 cos2(2K�x)

2
p

�

p

(� � 1)2 sin2(2K�x)C 4�

1

C

C

C

A

.

Putting everything together gives thath�1
QL,�
jyD0 D

p

det 
QL,� 

�1
QL,�

Q is equal to

0

B

B

B

B

�

p

2
p

�((�C1)(��1)�(��1)(�C1)cos(2K�x))
p

���

p

���1
p

�cos(4K�x)(��1)2C�(�C6)C1
�

i(�2
�1)sin(2K�x)

p

���

p

���1
p

(��1)2sin2(2K�x)C4�

i

p

2(�2
�1)�sin(2K�x)

p

���

p

���1
p

�cos(4K�x)(��1)2C�(�C6)C1

p

2
p

�((�C1)(��1)C(��1)(�C1)cos(2K�x))
p

���

p

���1
p

�cos(4K�x)(��1)2C�(�C6)C1

1

C

C

C

C

A

.

Differentiating with respect to� gives thath�10
QL,�
jyD0,�D1 is equal to

0

B

B

B

B

�

p

2
p

�(�C1)
p

�(��1)2
p

�cos(4K�x)(��1)2C�(�C6)C1

i

p

��1(�C1)sin(2K�x)

2
p

1��
p

(��1)2sin2(2K�x)C4�

i

p

��1(�C1)sin(2K�x)
p

2�2�
p

�cos(4K�x)(��1)2C�(�C6)C1

p

2
p

�(�C1)
p

�(��1)2
p

�cos(4K�x)(��1)2C�(�C6)C1

1

C

C

C

C

A

,
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and consequently

h�10
QL,�

h
QL,�jyD0,�D1

D

0

B

B

B

�

�

�

2
C (� C 1)2 cos(2K�x) � 1

2(cos(2K�x)(� � 1)2C �2
� 1)

�

i

p

�(� C 1) sin(2K�x)

cos(2K�x)(� � 1)2C �2
� 1

i

p

�(� C 1) sin(2K�x)

cos(2K�x)(� � 1)2C �2
� 1

�

2
C (� C 1)2 cos(2K�x) � 1

2(cos(2K�x)(� � 1)2C �2
� 1)

1

C

C

C

A

.

Thus the final contribution to the curvey D 0 comes from

(3.5) ihL ,�F
�

h0�1
QL,�

h
QL,�F�1

�

h�1
L ,�jyD0,�D1 D

�

iu �v

v �iu

�

with the real valued functionsu and v given by

uD
(�C1)((��1)cos(2�K x)���1)((

p

��1)2cos(2�(KC1)x)C(
p

�C1)2cos(2�(K�1)x)C2(��1)cos(2�x))

2(��1)((��1)2(�cos(4�K x))C�2
C6�C1)

,

vD

(�C1)((
p

��1)2sin(2�(KC1)x)�(
p

�C1)2sin(2�(K�1)x)C2(��1)sin(2�x))((��1)cos(2�K x)���1)

2(��1)((��1)2(�cos(4�K x))C�2
C6�C1)

.

Inspection of the three summands in (3.2) computed in (3.3),(3.4) and (3.5) show that
the y D 0 curve on the bubbleton is a planar curve, since the off-diagonal terms do
not have an imaginary part. Combining these terms then givesthe planar curvex 7!
(X(x), Z(x)) with

X(x)D
sin(2�x)

4

�

(�C1)((
p

��1)2sin(2�(KC1)x)�(
p

�C1)2sin(2�(K�1)x)C2(��1)sin(2�x))((��1)cos(2�K x)���1)

2(��1)3cos(4�K x)�(��1)(�(�C6)C1)
,

Z(x)D
((�2
�1)cos(2�K x)�(�C1)2)((

p

��1)2cos(2�(KC1)x)C(
p

�C1)2cos(2�(K�1)x)C2(��1)cos(2�x))

2(��1)((��1)2(�cos(4�K x))C�(�C6)C1)

�

sin2(�x)

2
�

K

2
p

K 2
�1

.

The turning number of this immersed planar curve [0, 1]! R

2, x 7! (X(x), Z(x)) com-
putes to

1

2�

Z 1

0

X0(x)Z00(x) � X00(x)Z0(x)

X02(x)C Z02(x)
dx D 2K � 1.

Since K � 2, the planar curve has self intersections, and thus the bubbleton is not
embedded. Plots of the curves forK D 2, 3, 4, 5 are shown in Figs. 3.1 and 3.2.
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Fig. 3.2. Planar curves on the 3, 4 and 5-lobed single-bubbletons,
with turning numbers 5,7,9 respectively. What appear to be cusps
on the immersed curves are in fact small loops, as in the curve
in Fig. 3.1.

One can also dress a multiply wrapped round cylinder by simple factors and ob-
tain topologically different single-and multi-bubbletons, than if one just dresses the em-
bedded cylinder. But if the undressed cylinder is embedded,then the dressed cylinder
again has embedded ends [19, 9, 13]. Hence far away from the bubbles, one can take
a planer cross section of a bubbleton and get a curve that is almost circular with turn-
ing number equal to one. Flowing this curve towards a bubble it deforms into a space
curve which at one instance becomes planar and has turning number at least three. The
fact that single-bubbletons have a smooth closed planar curvature line, or equivalently
a reflective symmetry is what makes our proof work for single-bubbletons. It would
be interesting to extend the result and find a more conceptualproof that also works
for multi-bubbletons.
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