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Abstract
We prove global subelliptic estimates for systems of quadratic differential opera-

tors. Quadratic differential operators are operators defined in the Weyl quantization
by complex-valued quadratic symbols. In a previous work, wepointed out the exist-
ence of a particular linear subvector space in the phase space intrinsically associated
to their Weyl symbols, called singular space, which rules a number of fairly gen-
eral properties of non-elliptic quadratic operators. About the subelliptic properties of
these operators, we established that quadratic operators with zero singular spaces ful-
fill global subelliptic estimates with a loss of derivativesdepending on certain alge-
braic properties of the Hamilton maps associated to their Weyl symbols. The purpose
of the present work is to prove similar global subelliptic estimates for overdetermined
systems of quadratic operators. We establish here a simple criterion for the sub-
ellipticity of these systems giving an explicit measure of the loss of derivatives and
highlighting the non-trivial interactions played by the different operators composing
those systems.

1. Introduction

1.1. Miscellaneous facts about quadratic differential operators. In a recent
joint work with M. Hitrik, we investigated spectral and semigroup properties of non-
elliptic quadratic operators. Quadratic operators are pseudodifferential operators defined
in the Weyl quantization
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quadratic forms. Since these symbols are quadratic forms, the corresponding operators
in (1.1) are in fact differential operators. Indeed, the Weyl quantization of the quadratic
symbol x��� , with (�, �) 2 N2n and j� C �j D 2, is the differential operator
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One can also notice that quadratic differential operators are a priori formally non-
selfadjoint since their Weyl symbols in (1.1) are complex-valued.

Considering quadratic operators whose Weyl symbols have real parts with a sign,
say here, Weyl symbols with non-negative real parts

(1.2) Req � 0,

we pointed out in [2] the existence of a particular linear subvector spaceS in the phase
spaceRn

x � R
n
�

intrinsically associated to their Weyl symbolsq(x, � ), called singular
space, which seems to play a basic rôle in the understanding of a number of fairly
general properties of non-elliptic quadratic operators. More specifically, we first proved
in [2] (Theorem 1.2.1) that when the singular spaceS has a symplectic structure then
the associated heat equation

(1.3)

8

<

:

�u

�t
(t, x)C qw(x, Dx)u(t, x) D 0,

u(t, � )jtD0 D u0 2 L2(Rn),

is smoothing in every direction of the orthogonal complement S�? of S with respect
to the canonical symplectic form� on R2n,

(1.4) � ((x, � ), (y, �)) D � � y� x � �, (x, � ) 2 R2n, (y, �) 2 R2n,

that is, that, if (x0, � 0) are some linear symplectic coordinates on the symplectic space
S�? then we have for allt > 0, N 2 N and u 2 L2(Rn),

(1.5) ((1C jx0j2C j� 0j2)N)we�tqw(x,Dx)u 2 L2(Rn).

We also proved in [2] (See Section 1.4.1 and Theorem 1.2.2) that when the Weyl sym-
bol q of a quadratic operator fulfills (1.2) and an assumption of partial ellipticity on
its singular spaceS in the sense that

(1.6) (x, � ) 2 S, q(x, � ) D 0) (x, � ) D 0,

then this singular space always has a symplectic structure and the spectrum of the operator
qw(x, Dx) is only composed of a countable number of eigenvalues of finite multiplicity,
with a similar structure as the one established by J. Sjöstrand for elliptic quadratic oper-
ators in his classical work [21]. Elliptic quadratic operators are the quadratic operators
whose symbols satisfy the condition of global ellipticity

(x, � ) 2 R2n, q(x, � ) D 0) (x, � ) D 0,

on the whole phase spaceR2n. Let us recall here that spectral properties of quadratic
operators are playing a basic rôle in the analysis of partialdifferential operators with
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double characteristics. This is particularly the case in some general results about hypo-
ellipticity. We refer the reader to [4], [21], as well as Chapter 22 of [7] together with
all the references given there.

In the present paper, we are interested in studying the subelliptic properties of over-
determined systems of non-selfadjoint quadratic operators. This work can be viewed as
a natural extension of the analysis led in [20], in which we investigated in the scalar
case the rôle played by the singular space when studying subelliptic properties of quad-
ratic operators. We aim here at showing how the analysis led in this previous work
can be pushed further when dealing with overdetermined systems of quadratic opera-
tors. We shall see that the techniques introduced in [20] aresufficiently robust to be
extended to the system case and that they turn out to be sufficiently sharp to highlight
phenomena of non-trivial interactions between the different quadratic operators compos-
ing a system. In this paper, we shall therefore be interestedin establishing some global
subelliptic estimates of the type

(1.7) k(h(x, � )i2(1�Æ))wukL2
.

N
X

jD1

kqwj (x, Dx)ukL2
C kukL2,

where h(x, � )i D (1C jxj2 C j� j2)1=2 and Æ > 0; for systems of theN quadratic op-
eratorsqwj (x, Dx), with 1 � j � N. The positive parameterÆ > 0 appearing in (1.7)
will measure the loss of derivatives with respect to the elliptic case (caseÆ D 0). As
in the scalar case studied in [20], we aim at giving a simple criterion for systems of
quadratic operators ensuring that a global subelliptic estimate of the type (1.7) holds to-
gether with an explicit characterization of the associatedloss of derivatives. This loss
of derivativesÆ will be characterized in terms of algebraic conditions on the Hamilton
maps associated to the Weyl symbols of the quadratic operators composing the system.

In this work, we study the subellipticity of overdeterminedsystems in the sense
given by P. Bolley, J. Camus and J. Nourrigat in [1] (Theorem 1.1). In this seminal
work, these authors study the microlocal subellipticity ofoverdetermined systems of
pseudodifferential operators. More specifically, they establish the subellipticity of sys-
tems composed of pseudodifferential operators with real principal symbols satisfying the
Hörmander–Kohn condition. More generally, in the case of overdetermined systems of
non-selfadjoint pseudodifferential operators, the greatest achievements up to now were
obtained by J. Nourrigat in [11] and [12]. In these two major works, J. Nourrigat studies
the microlocal subellipticity and maximal hypoellipticity for systems of non-selfadjoint
pseudodifferential operators by the mean of representations of nilpotent groups. We
shall explain in the following how the algebraic condition on the Hamilton maps (1.18)
in Theorem 1.2.1 relates with these former results. More specifically, we shall comment
on its link with the Hörmander–Kohn condition appearing in [1] (Theorem 1.1).

Before giving the precise statement of our main result, we shall recall miscel-
laneous notations about quadratic differential operatorsand the results obtained in the
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scalar case. In all the following, we consider

q j W R
n
x � R

n
�

! C,

(x, � ) 7! q j (x, � ),

with 1� j � N, N complex-valued quadratic forms with non-negative real parts

(1.8) Req j (x, � ) � 0, (x, � ) 2 R2n, n 2 N�.

We know from [9] (p. 425) that the maximal closed realizationof a quadratic operator
qw(x, Dx) whose Weyl symbol has a non-negative real part, i.e., the operator onL2(Rn)
with the domain

D(q) D {u 2 L2(Rn) W qw(x, Dx)u 2 L2(Rn)},

coincides with the graph closure of its restriction toS(Rn),

qw(x, Dx) W S(Rn)! S(Rn).

Associated to a quadratic symbolq is the numerical range6(q) defined as the closure
in the complex plane of all its values

(1.9) 6(q) D q(Rn
x � R

n
�

).

We also recall from [7] that the Hamilton mapF 2 M2n(C) associated to the quadratic
form q is the map uniquely defined by the identity

(1.10) q((x, � )I (y, �)) D � ((x, � ), F(y, �)), (x, � ) 2 R2n, (y, �) 2 R2n,

where q( � I � ) stands for the polarized form associated to the quadratic form q. It
directly follows from the definition of the Hamilton mapF that its real part and its
imaginary part

ReF D
1

2
(F C F) and ImF D

1

2i
(F � F),

are the Hamilton maps associated to the quadratic forms Req and Imq, respectively.
One can also notice from (1.10) that an Hamilton map is alwaysskew-symmetric with
respect to� . This is just a consequence of the properties of skew-symmetry of the
symplectic form and symmetry of the polarized form

(1.11) 8X, Y 2 R2n, � (X, FY) D q(XI Y) D q(YI X) D � (Y, F X) D �� (F X, Y).
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Associated to the symbolq, we defined in [2] its singular spaceS as the following
intersection of kernels

(1.12) SD

 

C1

\

jD0

Ker[ReF(Im F) j ]

!

\ R

2n,

where the notations ReF and ImF stand respectively for the real part and the im-
aginary part of the Hamilton map associated toq. Notice that the Cayley–Hamilton
theorem applied to ImF shows that

(Im F)k X 2 Vect(X, : : : , (Im F)2n�1X), X 2 R2n, k 2 N,

where Vect(X, : : : , (Im F)2n�1X) is the vector space spanned by the vectorsX, : : : ,
(Im F)2n�1X; and therefore the singular space is actually equal to the following finite
intersection of the kernels

(1.13) SD

 

2n�1
\

jD0

Ker[ReF(Im F) j ]

!

\ R

2n.

Considering a quadratic operatorqw(x, Dx) whose Weyl symbol

q W Rn
x � R

n
�

! C,

(x, � ) 7! q(x, � ),

has a non-negative real part, Req � 0, we established in [20] (Theorem 1.2.1) that
when its singular spaceS is reduced to{0}, the operatorqw(x,Dx) fulfills the following
global subelliptic estimate

(1.14) 9C > 0, 8u 2 D(q), k(h(x, � )i2=(2k0C1))wukL2
� C(kqw(x, Dx)ukL2

C kukL2),

where k0 stands for the smallest non-negative integer, 0� k0 � 2n � 1, such that the
intersection of the followingk0C1 kernels with the phase spaceR2n is reduced to{0},

(1.15)

 

k0
\

jD0

Ker[ReF(Im F) j ]

!

\ R

2n
D {0}.

Notice that the loss of derivativesÆ D 2k0=(2k0C1), appearing in the subelliptic estimate
(1.14) directly depends on the non-negative integerk0 characterized by the algebraic
condition (1.15).

More generally, considering a quadratic operatorqw(x, Dx) whose Weyl symbol
has a non-negative real part with a singular spaceS which may differ from{0}, but
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does have a symplectic structure in the sense that the restriction of the canonical sym-
plectic form � to S is non-degenerate, we proved in [20] (Theorem 1.2.2) that the op-
erator qw(x, Dx) is subelliptic in any direction of the orthogonal complement S�? of
the singular space with respect to the symplectic form� in the sense that, if (x0, � 0)
are some linear symplectic coordinates onS�? then we have

9C > 0, 8u 2 D(q), k(h(x0, � 0)i2=(2k0C1))wukL2
� C(kqw(x, Dx)ukL2

C kukL2),

with h(x0, � 0)i D (1C jx0j2 C j� 0j2)1=2, where k0 stands for the smallest non-negative
integer, 0� k0 � 2n� 1, such that

(1.16) SD

 

k0
\

jD0

Ker[ReF(Im F) j ]

!

\ R

2n.

Finally, we end these few recalls by underlining that the assumption about the sym-
plectic structure of the singular space is always fulfilled by any quadratic symbolq
which satisfies the assumption of partial ellipticity on itssingular spaceS,

(x, � ) 2 S, q(x, � ) D 0) (x, � ) D 0.

We refer the reader to Section 1.4.1 in [2] for a proof of this fact.

1.2. Statement of the main result. Considering a system ofN quadratic oper-
atorsqwj (x, Dx), 1� j � N, whose Weyl symbolsq j have all non-negative real parts

(1.17) Req j (x, � ) � 0, (x, � ) 2 R2n, n 2 N�,

and denoting byF j their associated Hamilton maps, the main result contained in this
article is the following:

Theorem 1.2.1. Consider a system of N quadratic operators qw

j (x, Dx), 1� j �
N, satisfying(1.17). If there exists k0 2 N such that

(1.18)

0

B

B

�

\

0�k�k0

\

jD1,:::,N,
(l1,:::,lk)2{1,:::,N}k

Ker(ReF j Im Fl1 � � � Im Flk )

1

C

C

A

\ R

2n
D {0},

then this overdetermined system of quadratic operators is subelliptic with a loss ofÆ D
2k0=(2k0C 1) derivatives, that is, that there exists C> 0 such that for all u2 D(q1)\
� � � \ D(qN),

(1.19) k(h(x, � )i2=(2k0C1))wukL2
� C
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C kukL2
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,
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with h(x, � )i D (1C jxj2C j� j2)1=2.

REMARK . Let us make clear that the intersection of kernels
\

jD1,:::,N,
(l1,:::,lk)2{1,:::,N}k

Ker(ReF j Im Fl1 � � � Im Flk ),

is to be understood as
\

jD1,:::,N

Ker ReF j ,

when k D 0.

1.3. Examples of subelliptic systems of quadratic operators. The following
examples of subelliptic systems of quadratic operators show that Theorem 1.2.1 really
highlights new non-trivial interaction phenomena betweenthe different operators com-
posing a system, which cannot be derived from the result of subellipticity known in
the scalar case (Theorem 1.2.1 in [20]).

Indeed, consider the first system of quadratic operators whose Weyl symbols are

q j (x, � ) D x2
1 C �

2
1 C i (�2

1 C x jC1�1) and Qq j (x, � ) D x2
1 C �

2
1 C i (�2

1 C � jC1�1),

for 1� j � n� 1 and (x, � ) 2 R2n, with n � 2. A direct computation using (1.10) and
(1.13) shows that the singular space of the quadratic form

n�1
X

jD1

(� j q j C Q� j Qq j ),

for some real numbers� j , Q� j verifying

n�1
X

jD1

(� j C Q� j ) > 0I

is given by

SD
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<

:

(x, � ) 2 R2n
W x1 D �1 D

n�1
X

jD1

(� j x jC1C Q� j � jC1) D 0

9

=

;

,

which is always a non-zero subvector space. It then follows that one cannot deduce
any result about the subellipticity of the scalar operator

n�1
X

jD1

(� j q
w

j (x, Dx)C Q� j Qq
w

j (x, Dx)),
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in order to get the subellipticity of the overdetermined system composed by the 2n �
2 operatorsqwj (x, Dx) and Qqwj (x, Dx), for 1 � j � n � 1. Nevertheless, by denoting

respectivelyF j and QF j the Hamilton maps of the quadratic formsq j and Qq j , another
direct computation using (1.10) shows that

Ker ReF j \ Ker(ReF j Im F j ) \ R
2n
D {(x, � ) 2 R2n

W x1 D �1 D x jC1 D 0}

and

Ker Re QF j \ Ker(Re QF j Im QF j ) \ R
2n
D {(x, � ) 2 R2n

W x1 D �1 D � jC1 D 0}.

One can then deduce from Theorem 1.2.1 the following global subelliptic estimate with
a loss of 2=3 derivatives

k(h(x, � )i2=3)wukL2
.

n�1
X

jD1

(kqwj (x, Dx)ukL2
C k Qqwj (x, Dx)ukL2)C kukL2.

Consider now the second system of two quadratic operators whose Weyl symbols are

q1(x, � ) D x2
1 C �

2
1 C i (x2�1 � x1�2C x3�2 � x2�3) and q2(x, � ) D i (x3�1 � x1�3),

with (x,� )D (x1,x2,x3,�1,�2,�3) 2 R6. The subellipticity of this system may be derived
from the result known in the scalar case (Theorem 1.2.1 in [20]). Indeed, defineq D
q1C �q2, with � 2 R. Explicit computations of the kernels show that

Ker(ReF) D {(x, � ) 2 R6
W x1 D �1 D 0},

Ker(ReF) \ Ker(ReF Im F) D {(x, � ) 2 R6
W x1 D �1 D x2C �x3 D �2C ��3 D 0},

Ker(ReF) \ Ker(ReF Im F) \ Ker(ReF(Im F)2)

D {(x, � ) 2 R6
W x1 D �1 D x2C �x3 D �2C ��3 D ��x2C x3 D ���2C �3 D 0}

D {0},

with F being the Hamilton map of the quadratic symbolq. The result of subellipticity
known in the scalar case proves the subellipticity of the overdetermined system

k(h(x, � )i2=5)wukL2
. kqw(x, Dx)ukL2

C kukL2

. kqw1 (x, Dx)ukL2
C kqw2 (x, Dx)ukL2

C kukL2,

with a loss of 4=5 derivatives; whereas the result of subellipticity for overdetermined
systems proved in this paper allows to highlight interaction phenomena between the
operatorsqw1 (x, Dx) and qw2 (x, Dx), and to get a better subelliptic estimate

k(h(x, � )i2=3)wukL2
. kqw1 (x, Dx)ukL2

C kqw2 (x, Dx)ukL2
C kukL2,
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with a loss of 2=3 derivatives, because

Ker(ReF1) D {(x, � ) 2 R6
W x1 D �1 D 0},

Ker(ReF1 Im F1) D {(x, � ) 2 R6
W x2 D �2 D 0},

Ker(ReF1 Im F2) D {(x, � ) 2 R6
W x3 D �3 D 0},

with F1 and F2 being the Hamilton maps of the quadratic symbolsq1 andq2. Of course,
Theorem 1.2.1 can highlight more complex interactions between the different operators
composing the system when we consider operators with different real parts.

1.4. Comments on the condition for subellipticity. Theorem 1.2.1 gives a very
explicit and simple algebraic condition on the Hamilton maps of quadratic operators en-
suring the subellipticity of the system. Let us notice that this condition is very easy to
handle and allows to directly measure the associated loss ofderivatives by a straight-
forward computation. We shall now explain how this is related to the Hörmander–
Kohn condition. Recall from [1] (Theorem 1.1) that the Hörmander–Kohn condition
for microlocal subellipticity of overdetermined systems of pseudodifferential operators
with real principal symbols; reads as the existence of an elliptic iterated commutator of
the operators composing the system. In the case of a system ofnon-selfadjoint quad-
ratic operators (qwj )1� j�N , if we assume in addition that this system is maximal hypo-

elliptic1, the natural condition becomes to ask the ellipticity of an iterated commutator
of the real parts ((Req j )w)1� j�N and imaginary parts ((Imq j )w)1� j�N of the operators
composing the system. Coming back to our specific condition for subellipticity (1.18),
we first notice that in the scalar case, it reads as the existence of a non-negative integer
k0 such that

 

k0
\

jD0

Ker[ReF(Im F) j ]

!

\ R

2n
D {0},

with F standing for the Hamilton map of the unique operatorqw(x, Dx) composing the
system. As recalled in [20] (Section 1.2), this condition implies that, for any non-zero
point in the phase spaceX0 2 R

2n, we can find a non-negative integerk such that

80� j � 2k � 1, H j
Im q Req(X0) D 0 and H2k

Im q Req(X0) ¤ 0,

where HIm q stands for the Hamilton vector field of Imq,

HIm q D
� Im q

��

�

�

�x
�

� Im q

�x
�

�

��

.

1We refer to [11] and [12] for conditions and general results of maximal hypoellipticity for over-
determined systems of non-selfadjoint pseudodifferential operators.
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This shows that the 2kth iterated commutator

[Im qw, [Im qw, [ : : : , [Im qw, Reqw]]] � � � ] D (�1)k(H2k
Im q Req)w,

with exactly 2k terms Imqw in left-hand-side of the above formula; is elliptic atX0;
and underlines the intimate link between (1.18) and the Hörmander–Kohn condition in
the scalar case. In the system case, the situation is more complicated and this link is
less obvious to highlight explicitly. More specifically, we shall see in this case that the
algebraic condition (1.18) implies that the quadratic form

k0
X

kD0

X

jD1,:::,N,
(l1,:::,lk)2{1,:::,N}k

Req j (Im Fl1 � � � Im Flk X),

is positive definite. This property implies that for any non-zero point X0 2 R
2n, one

can findk 2 N, j 2 {1, : : : , N} and (l1, : : : , lk) 2 {1, : : : , N}k such that

Req j (Im Fl1 � � � Im Flk X0) > 0.

By considering the minimal non-negative integerk with this property and using the
same arguments as the ones developed in [2] (p. 820–822), onecan actually check that
any iterated commutator of order less or equal to 2k � 1, that is,

[ P1, [P2, [P3, [ : : : , [Pr , PrC1] � � � ]]]],

with r � 2k�1, Pl D Reqws1
or Pl D Imqws2

; and where at least onePl0 is equal to Reqws3
,

for 1� s1,s2,s3 � N; are not elliptic atX0. One can also check that the non-zero term

Req j (Im Fl1 � � � Im Flk X0) > 0,

actually appears when expanding the Weyl symbol atX0 of the 2kth iterated commutator

[Im qwlk , [Im qwlk , [Im qwlk�1
, [Im qwlk�1

, [ : : : , [Im qwl1 , [Im qwl1 , Reqwj ]]] � � � ]

D (�1)k(H2
Im qlk
� � � H2

Im ql1
Req j )

w.

However, contrary to the scalar case, there may be also othernon-zero terms in this
expansion; and it is not really clear if this natural commutator associated to the term

Req j (Im Fl1 � � � Im Flk X0),

is actually elliptic atX0,

H2
Im qlk
� � � H2

Im ql1
Req j (X0)

?
¤ 0.
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Though it may be difficult to determine exactly at each point which specific commuta-
tor is elliptic, it is very likely that condition (1.18) ensures that the Hörmander–Kohn
condition is fulfilled at any non-zero point of the phase space; and that these associated
elliptic commutators are all of order less or equal to 2k0. It is actually what the loss
of derivatives appearing in the estimate (1.19) suggests; and this in agreement with the
optimal loss of derivatives obtained in [1] (Theorem 1.1) for 2k0 commutators

Æ D 1�
1

2k0C 1
D

2k0

2k0C 1
I

since we measure the loss of derivativesÆ with respect to the elliptic case as

k(32(1�Æ))wukL2
.

N
X

jD1

kqwj (x, Dx)ukL2
C kukL2,

with 32
D h(x,� )i2, because quadratic operators have their Weyl symbols in thesymbol

classS(32, 3�2 d X2) whose gain is32.
Because of the simplicity of its assumptions, Theorem 1.2.1provides a neat setting

for proving global subelliptic estimates for systems of quadratic operators. It is possible
that some of these global subelliptic estimates for systemsof quadratic operators may
also be derived from the results of microlocal subellipticity and maximal hypoellipticity
proved in [1], [11] and [12]. However, given a particular system of quadratic operators,
one can notice that only checking the Hörmander–Kohn condition in every non-zero
point turns out to be quite difficult to do in practice. The same comment applies for
checking the maximal hypoellipticity of the system. Another interest of the approach
we are developing here comes from the fact that the proof of Theorem 1.2.1 is purely
analytic and does not require any techniques of representations of nilpotent groups as
in [11] or [12]. Moreover, despite its length, the proof provided here only involves
fairly elementary arguments whose complexity has no degreeof comparison with the
analysis led in [11] and [12].

Finally, let us end this introduction by mentioning that this result of subellipticity
for systems of quadratic operators may broaden new perspectives in the understand-
ing of overdetermined systems of pseudodifferential operators with double characteris-
tics; and that the construction of the weight functions in Proposition 2.0.1 may be of
further interest and direct use in future analysis of doublycharacteristic problems. In
the scalar case, this construction of the weight function specific to the structure of the
double characteristics obtained in [20] (Proposition 2.0.1) has already allowed to derive
in [3] the precise asymptotics for the resolvent norm of certain class of semiclassical
pseudodifferential operators in a neighborhood of the doubly characteristic set. On the
other hand, this deeper understanding of non-trivial interactions between the different
quadratic operators composing overdetermined systems mayalso give hints on how to
analyze the more complex case ofN by N systems of quadratic operators, which is
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a topic of current interest. On that subject, we refer the reader to the series of recent
works on non-commutative harmonic oscillators by A. Parmeggiani and M. Wakayama
in [13], [14], [15], [16], [17] and [18].

2. Proof of Theorem 1.2.1

In the following, we shall use the notationS
�

(m(X)r , m(X)�2s d X2), where� is
an open set inR2n, r, s 2 R and m 2 C1(�, R�

C

), to stand for the class of symbols
a verifying

a 2 C1(�), 8� 2 N2n, 9C
�

> 0, j��Xa(X)j � C
�

m(X)r�sj�j, X 2 �.

In the case where�D R2n, we shall drop the index� for simplicity. We shall also use
the notationsf . g and f � g, on �, for respectively the estimates9C > 0, f � Cg
and, f . g and g . f , on �.

The proof of Theorem 1.2.1 will rely on the following key proposition. Consider-
ing for 1� j � N,

q j W R
n
x � R

n
�

! C,

(x, � ) 7! q j (x, � ),

with n 2 N�, N complex-valued quadratic forms with non-negative real parts

(2.1) Req j (x, � ) � 0, (x, � ) 2 R2n, 1� j � N,

we assume that there exist a positive integerm 2 N� and an open set�0 in R

2n such
that the following sum of non-negative quadratic forms satisfies

(2.2)

9c0 > 0, 8X 2 �0,
m
X

kD0

X

jD1,:::,N,
(l1,:::,lk)2{1,:::,N}k

Req j (Im Fl1 � � � Im Flk X) � c0jXj
2,

where the notation ImF j stands for the imaginary part of the Hamilton mapF j associ-
ated to the quadratic formq j . Under this assumption, one can then extend the construc-
tion of the bounded weight function done in the scalar case in[20] (Proposition 2.0.1)
to the system case as follows:

Proposition 2.0.1. If (q j )1� j�N are N complex-valued quadratic forms onR2n

verifying (2.1) and (2.2) then there exist N real-valued weight functions

g j 2 S
�0(1, hXi�2=(2mC1) d X2), 1� j � N,
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such that

(2.3)

9c, c1, : : : , cN > 0, 8X 2 �0,

1C
N
X

jD1

(Req j (X)C c j HIm q j g j (X)) � chXi2=(2mC1),

where the notation HIm q j stands for the Hamilton vector field of the imaginary part
of qj .

As in [20], the construction of these weight functions will be really the core of this
work. This construction will be an adaptation to the system case of the one performed
in the scalar case.

To check that we can actually deduce Theorem 1.2.1 from Proposition 2.0.1, we
begin by noticing, as in [20], that the assumptions of Theorem 1.2.1 imply that the
following sum of non-negative quadratic forms

(2.4) 9c0 > 0, r (X) D
k0
X

kD0

X

jD1,:::,N,
(l1,:::,lk)2{1,:::,N}k

Req j (Im Fl1 � � � Im Flk X) � c0jXj
2,

is actually a positive definite quadratic form. Let us indeedconsider X0 2 R
2n such

that r (X0) D 0. Then, the non-negativity of quadratic forms Req j induces that for all
0� k � k0, j D 1, : : : , N and (l1, : : : , lk) 2 {1, : : : , N}k,

(2.5) Req j (Im Fl1 � � � Im Flk X0) D 0.

By denoting Req j (XIY) the polar form associated to Req j , we deduce from the Cauchy–
Schwarz inequality, (1.10) and (2.5) that for allY 2 R2n,

jReq j (YI Im Fl1 � � � Im Flk X0)j2 D j� (Y, ReF j Im Fl1 � � � Im Flk X0)j2

� Req j (Y) Req j (Im Fl1 � � � Im Flk X0) D 0.

It follows that for all Y 2 R2n,

� (Y, ReF j Im Fl1 � � � Im Flk X0) D 0,

which implies that for all 0� k � k0, j D 1, : : : , N and (l1, : : : , lk) 2 {1, : : : , N}k,

(2.6) ReF j Im Fl1 � � � Im Flk X0 D 0,

since� is non-degenerate. We finally deduce (2.4) from the assumption (1.18).
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In the case wherek0 D 0, we notice that the quadratic form

q D q1C � � � C qN ,

has a positive definite real part. This implies in particularthat q is elliptic onR2n. One
can therefore directly deduce from classical results aboutelliptic quadratic differential
operators proved in [21] (See Theorem 3.5 in [21] or commentsabout the elliptic case
in Theorem 1.2.1 in [20]), the natural elliptic a priori estimate

9C > 0, 8u 2 D(q1)\ � � � \ D(qN), k(h(x, � )i2)wukL2
� C(kqw(x, Dx)ukL2

CkukL2),

which easily implies (1.19).
We can therefore assume in the following thatk0 � 1 and find from Proposition 2.0.1

some real-valued weight functions

(2.7) g j 2 S(1, hXi�2=(2k0C1) d X2), 1� j � N,

such that

(2.8) 9c,c1,:::,cN > 0, 8X 2 R2n, 1C
N
X

jD1

(Req j (X)Cc j HIm q j g j (X)) � chXi2=(2k0C1).

For 0< " � 1, we consider the multipliers defined in the Wick quantization by symbols
1� "c j g j . We recall that the definition of the Wick quantization and some elements of
Wick calculus are recalled in Section 4.1. It follows from (2.7), 4.4, 4.7, 4.8 and the
Cauchy–Schwarz inequality that

(2.9)

N
X

jD1

Re(qWick
j u, (1� "c j g j )

Wicku)

D

N
X

jD1

(Re((1� "c j g j )
WickqWick

j )u, u)

�

N
X

jD1

k1� "c j g j kL1kq
Wick
j ukL2

kukL2
.

N
X

jD1

kqWick
j uk2L2 C kuk2L2

.

N
X

jD1

k Qqwj uk2L2 C kuk2L2,

where

(2.10) Qq j (x, � ) D q j

�

x,
�

2�

�

,
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because the operators (1� "c j g j )Wick whose Wick symbol are real-valued, are formally
selfadjoint. Indeed, symbolsr (q j ) defined in (4.8) are here just some constants since
q j are quadratic forms. The factor 2� in (2.10) comes from the difference of normal-
izations chosen between (1.1) and (4.9) (See remark in Section 4.1). Since from (4.10),

(1� "c j g j )
WickqWick

j D

h

(1� "c j g j )q j C
"

4�
c jrg j � rq j �

"

4i�
c j {g j , q j }

iWick
C Sj ,

with kSj kL(L2(Rn)) . 1, we obtain from the fact that real Hamiltonians get quantized in
the Wick quantization by formally selfadjoint operators that

N
X

jD1

Re((1� "c j g j )
WickqWick

j )

D

N
X

jD1

ReSj C

N
X

jD1

h

(1� "c j g j ) Req j C
"

4�
c jrg j � r Req j C

"

4�
c j HIm q j g j

iWick
,

becauseg j are real-valued symbols. Since Req j � 0 andg j 2 L1(Rn), we can choose
the positive parameter" sufficiently small such that

81� j � N, 8X 2 R2n, 1� "c j g j (X) �
1

2
,

in order to deduce from (2.8), (2.9) and (4.3) that

(2.11) ((hXi2=(2k0C1))Wicku, u) . kuk2L2 C

N
X

jD1

k Qqwj uk2L2 C

N
X

jD1

j((rg j � r Req j )
Wicku, u)j,

because from (4.1) and (4.2), 1Wick
D Id.

One can then complete the proof of Theorem 1.2.1 by followingexactly the same
reasoning as the one used in [20]. We recall this reasoning here for the sake of com-
pleteness of this work.

By denoting QX D (x, �=(2�)) and Opw(S(1, d X2)) the operators obtained by the
Weyl quantization of symbols in the classS(1, d X2), it follows from (4.7), (4.8) and
usual results of symbolic calculus that

(2.12) (hXi2=(2k0C1))Wick
� (h QXi2=(2k0C1))w 2 Opw(S(1, d X2))

and

(2.13) (h QXi1=(2k0C1))w(h QXi1=(2k0C1))w � (h QXi2=(2k0C1))w 2 Opw(S(1, d X2)),

sincek0 � 0. By using that

((h QXi1=(2k0C1))w(h QXi1=(2k0C1))wu, u) D k(h QXi1=(2k0C1))wuk2L2,
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we therefore deduce from (2.11) and the Calderón–Vaillancourt theorem that

(2.14) k(h QXi1=(2k0C1))wuk2L2 . kuk2L2 C

N
X

jD1

k Qqwj uk2L2 C

N
X

jD1

j((rg j .r Req j )
Wicku, u)j.

Then, we get from (2.7) and (4.3) that

(2.15) j((rg j � r Req j )
Wicku, u)j . (jr Req j j

Wicku, u).

Recalling now the well-known inequality

(2.16) j f 0(x)j2 � 2 f (x)k f 00kL1(R),

fulfilled by any non-negative smooth function with bounded second derivative, we de-
duce from another use of (4.3) that

(2.17) (jr Req j j
Wicku, u) . (((Req j )

1=2)Wicku, u) . ((1C Req j )
Wicku, u),

since Req j is a non-negative quadratic form and that

2(Req j )
1=2
� 1C Req j .

By using the same arguments as in (2.9), we obtain that

((1C Req j )
Wicku, u) D ((Req j )

Wicku, u)C kuk2L2 D Re(qWick
j u, u)C kuk2L2

� kqWick
j ukL2

kukL2
C kuk2L2 . kqWick

j uk2L2 C kuk2L2

. k Qqwj uk2L2 C kuk2L2.

It therefore follows from (2.14), (2.15) and (2.17) that

(2.18) k(h QXi1=(2k0C1))wuk2L2 . kuk2L2 C

N
X

jD1

k Qqwj uk2L2.

In order to improve the estimate (2.18), we carefully resumeour previous analysis and
notice that our previous reasoning has in fact established that

k(h QXi1=(2k0C1))wuk2L2

. kuk2L2 C

N
X

jD1

jRe(qWick
j u, (1� "c j g j )

Wicku)j C
N
X

jD1

j((rg j � r Req j )
Wicku, u)j

. kuk2L2 C

N
X

jD1

jRe(qWick
j u, (1� "c j g j )

Wicku)j C
N
X

jD1

jRe(qWick
j u, u)j

. kuk2L2 C

N
X

jD1

jRe(Qqwj u, (1� "c j g j )
Wicku)j C

N
X

jD1

jRe(Qqwj u, u)j,
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because (1� "c j g j )Wick is a bounded operator onL2(Rn),

(2.19) k(1� "c j g j )
Wick
kL(L2) � k1� "c j g j kL1(R2n).

By applying this estimate to (h QXi1=(2k0C1))wu, we deduce from (2.13) and the Calderón–
Vaillancourt theorem that

(2.20)

k(h QXi2=(2k0C1))wuk2L2

.

N
X

jD1

jRe(Qqwj (h QXi1=(2k0C1))wu, (h QXi1=(2k0C1))wu)j

C

N
X

jD1

jRe(Qqwj (h QXi1=(2k0C1))wu, (1� "c j g j )
Wick(h QXi1=(2k0C1))wu)j

C k(h QXi1=(2k0C1))wuk2L2 C kuk2L2.

Then, by noticing that the commutator

(2.21) [Qqwj , (h QXi1=(2k0C1))w] 2 Opw(S(hXi1=(2k0C1), hXi�2 d X2)),

becauseQq j is a quadratic form, and that

(2.22) (h QXi�1=(2k0C1))w(h QXi1=(2k0C1))w � Id 2 Opw(S(hXi�2, hXi�2 d X2)),

we deduce from standard results of symbolic calculus and theCalderón–Vaillancourt
theorem that

(2.23)

k[ Qqwj , (h QXi1=(2k0C1))w]ukL2

. k[ Qqwj , (h QXi1=(2k0C1))w](h QXi�1=(2k0C1))w(h QXi1=(2k0C1))wukL2
C kukL2

. k(h QXi1=(2k0C1))wukL2
C kukL2.

By introducing this commutator, we get from the Cauchy–Schwarz inequality and
(2.23) that

jRe(Qqwj (h QXi1=(2k0C1))wu, (h QXi1=(2k0C1))wu)j

. jRe(Qqwj u, (h QXi1=(2k0C1))w(h QXi1=(2k0C1))wu)j C k(h QXi1=(2k0C1))wuk2L2 C kuk2L2.

Another use of the Cauchy–Schwarz inequality and the Calderón–Vaillancourt theorem
with (2.13) gives that

jRe(Qqwj u, (h QXi1=(2k0C1))w(h QXi1=(2k0C1))wu)j

. k Qqwj ukL2
k(h QXi2=(2k0C1))wukL2

C k Qqwj ukL2
kukL2.
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We then deduce from (2.18) and the previous estimate that

N
X

jD1

jRe(Qqwj (h QXi1=(2k0C1))wu, (h QXi1=(2k0C1))wu)j

. k(h QXi2=(2k0C1))wukL2

N
X

jD1

k Qqwj ukL2
C

N
X

jD1

k Qqwj uk2L2 C kuk2L2.

By using again the Cauchy–Schwarz inequality, (2.18), (2.19), (2.20) and (2.23), this
estimate implies that

(2.24)

k(h QXi2=(2k0C1))wuk2L2

.

N
X

jD1

jRe([Qqwj , (h QXi1=(2k0C1))w]u, (1�"c j g j )
Wick(h QXi1=(2k0C1))wu)j

C

N
X

jD1

jRe(Qqwj u, (h QXi1=(2k0C1))w(1�"c j g j )
Wick(h QXi1=(2k0C1))wu)jC

N
X

jD1

k Qqwj uk2L2Ckuk2L2

.

N
X

jD1

jRe(Qqwj u, (h QXi1=(2k0C1))w(1�"c j g j )
Wick(h QXi1=(2k0C1))wu)jC

N
X

jD1

k Qqwj uk2L2Ckuk2L2

.

N
X

jD1

k Qqwj ukL2
k(h QXi1=(2k0C1))w(1�"c j g j )

Wick(h QXi1=(2k0C1))wukL2
C

N
X

jD1

k Qqwj uk2L2Ckuk2L2,

because we get from (2.19) and (2.23) that

jRe([Qqwj , (h QXi1=(2k0C1))w]u, (1� "c j g j )
Wick(h QXi1=(2k0C1))wu)j

. k(h QXi1=(2k0C1))wuk2L2 C k(h QXi1=(2k0C1))wukL2
kukL2.

Notice now that (2.7), (4.5) and (4.6) imply that

[(h QXi1=(2k0C1))w, (1� "c j g j )
Wick] 2 Opw(S(1, d X2)),

since (1� "c j g j )Wick
D Qgwj , with Qgj 2 S(1, d X2) and k0 � 0. By introducing this

new commutator, we deduce from the Calderón–Vaillancourt theorem, (2.13), (2.18)
and (2.19) that

k(h QXi1=(2k0C1))w(1� "c j g j )
Wick(h QXi1=(2k0C1))wukL2

. k(h QXi1=(2k0C1))wukL2
C k(1� "c j g j )

Wick(h QXi1=(2k0C1))w(h QXi1=(2k0C1))wukL2

. k(h QXi1=(2k0C1))wukL2
C k(h QXi1=(2k0C1))w(h QXi1=(2k0C1))wukL2

. k(h QXi2=(2k0C1))wukL2
C k(h QXi1=(2k0C1))wukL2

C kukL2

. k(h QXi2=(2k0C1))wukL2
C

N
X

jD1

k Qqwj ukL2
C kukL2.
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Recalling (2.24), we can then use this last estimate to obtain that

(2.25) k(h QXi2=(2k0C1))wuk2L2 .

N
X

jD1

k Qqwj uk2L2 C kuk2L2.

By finally noticing from the homogeneity of degree 2 ofQq j that we have

( Qq j Æ T)(x, � ) D
1

2�
q j (x, � ),

if T stands for the real linear symplectic transformation

T(x, � ) D ((2�)�1=2x, (2�)1=2
� ),

we deduce from the symplectic invariance of the Weyl quantization (Theorem 18.5.9
in [7]) that

k(hXi2=(2k0C1))wuk2L2 .

N
X

jD1

kqwj uk2L2 C kuk2L2,

which proves Theorem 1.2.1.

3. Proof of Proposition 2.0.1

We prove Proposition 2.0.1 by induction on the positive integer m � 1 appearing
in (2.2). Let m � 1, we shall assume that Proposition 2.0.1 is fulfilled for anyopen
set�0 of R2n, when the positive integer in (2.2) is strictly smaller thanm.

In the following, we denote by , � andw someC1(R, [0, 1]) functions respect-
ively satisfying

 D 1 on [�1, 1], supp � [�2, 2],(3.1)

� D 1 on {x 2 R W 1� jxj � 2}, supp� �

�

x 2 R W
1

2
� jxj � 3

�

,(3.2)

and

(3.3) w D 1 on {x 2 R W jxj � 2}, suppw � {x 2 R W jxj � 1}.

More generically, we shall denote by j , � j andw j , j 2 N, some otherC1(R, [0, 1])
functions satisfying similar properties as respectively , � andw with possibly differ-
ent choices for the positive numerical values which define their support localizations.



582 K. PRAVDA -STAROV

Let �0 be an open set ofR2n such that (2.2) is fulfilled. Considering the quad-
ratic forms

Qr1,p(X)D
N
X

jD1

Req j (XI Im FpX),(3.4)

Qrk, p(X)D
X

jD1,:::,N
(l1,:::,lk�1)2{1,:::,N}k�1

Req j (Im Fl1 � � � Im Flk�1 XI Im Fl1 � � � Im Flk�1 Im FpX),(3.5)

for any 1� p � N, 2� k � m;

(3.6) r0(X) D
N
X

jD1

Req j (X), rk(X) D
X

jD1,:::,N
(l1,:::,lk)2{1,:::,N}k

Req j (Im Fl1 � � � Im Flk X),

for any 1� k � m; and defining

(3.7) Qgm, p(X) D  (rm�1(X)hXi�2(2m�1)=(2mC1))hXi�4m=(2mC1)
Qrm, p(X),

where is the function defined in (3.1) and 1� p� N, we get from Lemma 4.2.1 that
(3.8)

HIm qp Qgm, p(X)

D 2 (rm�1(X)hXi�2(2m�1)=(2mC1))

�

X

jD1,:::,N
(l1,:::,lm�1)2{1,:::,N}m�1

Req j (Im Fl1 � � � Im Flm�1 Im FpX)

hXi4m=(2mC1)

C 2 (rm�1(X)hXi�2(2m�1)=(2mC1))

�

X

jD1,:::,N
(l1,:::,lm�1)2{1,:::,N}m�1

Req j (Im Fl1 � � � Im Flm�1 XI Im Fl1 � � � Im Flm�1(Im Fp)2X)

hXi4m=(2mC1)

C HIm qp( (rm�1(X)hXi�2(2m�1)=(2mC1)))
Qrm, p(X)

hXi4m=(2mC1)

C  (rm�1(X)hXi�2(2m�1)=(2mC1))HIm qp(hXi
�4m=(2mC1)) Qrm, p(X).

We first check that

(3.9) Qgm, p 2 S(1, hXi�2(2m�1)=(2mC1) d X2).
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In order to verify this, we notice from Lemma 4.2.6 that the quadratic forms

(3.10) Req j (Im Fl1 � � � Im Flm�1 XI Im Fl1 � � � Im Flm�1 Im FpX)

and

(3.11) Req j (Im Fl1 � � � Im Flm�1 XI Im Fl1 � � � Im Flm�1(Im Fp)2X),

belong to the symbol class

(3.12) S
�

(hXi4m=(2mC1), hXi�2(2m�1)=(2mC1) d X2),

for any open set� in R

2n where rm�1(X) . hXi2(2m�1)=(2mC1). To check this, we just
use in addition to Lemma 4.2.6 the obvious estimates

Req j (Im Fl1 � � � Im Flm�1 Im FpX)1=2
. hXi

and

Req j (Im Fl1 � � � Im Flm�1(Im Fp)2X)1=2
. hXi.

Moreover, since

(3.13) hXi�4m=(2mC1) 2 S(hXi�4m=(2mC1), hXi�2 d X2),

we obtain (3.9) from (3.1), (3.5), (3.6), (3.7), (3.10), (3.12) and Lemma 4.2.2.
Denoting respectivelyA1,p, A2,p, A3,p and A4,p the four terms appearing in the right

hand side of (3.8), we first notice from (3.1), (3.10), (3.12), (3.13) and Lemma 4.2.2 that

(3.14) A2,p 2 S(1, hXi�2(2m�1)=(2mC1) d X2).

Next, by using that

Im qp 2 S(hXi2, hXi�2 d X2),

since Imqp is a quadratic form, we get from (3.1), (3.5), (3.6), (3.10),(3.12), (3.13)
and Lemma 4.2.2 that

(3.15) A3,p 2 S(hXi2=(2mC1), hXi�2(2m�1)=(2mC1) d X2),

since

HIm qp( (rm�1(X)hXi�2(2m�1)=(2mC1))) 2 S(hXi2=(2mC1), hXi�2(2m�1)=(2mC1) d X2).

By using now that

HIm qp(hXi
�4m=(2mC1)) 2 S

�

hXi�4m=(2mC1), hXi�2 d X2),
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we finally obtain from another use of (3.1), (3.5), (3.6), (3.10), (3.12) and Lemma 4.2.2
that

(3.16) A4,p 2 S(1, hXi�2(2m�1)=(2mC1) d X2).

Since the termA3,p is supported in

supp 0(rm�1(X)hXi�2(2m�1)=(2mC1)),

we deduce from (3.8), (3.14), (3.15) and (3.16) that there exists�0 a C1(R,[0,1]) func-
tion satisfying similar properties as in (3.2), with possibly different positive numerical
values for its support localization, such that,9c1, c2 > 0, 8X 2 R2n,

(3.17)

c1C c2�0(rm�1(X)hXi�2(2m�1)=(2mC1))hXi2=(2mC1)
C

N
X

pD1

HIm qp Qgm, p(X)

� 2 (rm�1(X)hXi�2(2m�1)=(2mC1))
rm(X)

hXi4m=(2mC1)
.

Recalling (2.2), one can find some positive constantsc3, c4 > 0 such that

(3.18)
m�1
X

kD0

rk(X) � c3jXj
2,

on the open set

(3.19) �1 D {X 2 R2n
W rm(X) < c4jXj

2} \�0.

When m � 2, one can find according to our induction hypothesis some real-valued
functions

(3.20) Qgm, p 2 S
�1(1, hXi�2=(2m�1) d X2), 1� p � N,

such that

(3.21) 9c5,p > 0, 8X 2 �1, 1C
N
X

pD1

(Reqp(X)C c5,pHIm qp
Qgm, p(X)) & hXi2=(2m�1).

For convenience, we set in the followingQg1,p D 0 whenmD 1. By choosing suitably
 0 andw0 someC1(R, [0, 1]) functions satisfying similar properties as the functions
respectively defined in (3.1) and (3.3), with possibly different positive numerical values
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for their support localizations, such that

(3.22) supp 0(rm(X)jXj�2)w0(X) � {X 2 R2n
W rm(X) < c4jXj

2},

and setting

(3.23) Gm, p(X) D Qgm, p(X)C  0(rm(X)jXj�2)w0(X) Qgm, p(X), X 2 �0,

we deduce from a straightforward adaptation of the Lemma 4.2.2 by recalling (3.1) and
(3.3) that

(3.24)  0(rm(X)jXj�2)w0(X) 2 S(1, hXi�2 d X2).

According to (3.9) and (3.20), this implies that

(3.25) G1,p 2 S
�0(1, hXi�2=3 d X2) and Gm, p 2 S

�0(1, hXi�2=(2m�1) d X2),

when m � 2. Since from (3.24),

HIm qp( 0(rm(X)jXj�2)w0(X)) 2 S(1, hXi�2 d X2),

because Imqp is a quadratic form, we first notice from (3.19), (3.20) and (3.22) that

HIm qp( 0(rm(X)jXj�2)w0(X)) Qgm, p(X) 2 S
�0(1, hXi�2=(2m�1) d X2),

and then deduce from (3.17), (3.19), (3.21), (3.22) and (3.23) that there exist some
positive constantsc6,p, c7 > 0 such that for allX 2 �0,

N
X

pD1

(Reqp(X)C c6,pHIm qp Gm, p(X))C 1C c7�0(rm�1(X)hXi�2(2m�1)=(2mC1))hXi2=(2mC1)

&  (rm�1(X)hXi�2(2m�1)=(2mC1))
rm(X)

hXi4m=(2mC1)
C  0(rm(X)jXj�2)w0(X)hXi2=(2m�1),

when m � 2. Since

hXi2=(2m�1)
& hXi2=(2mC1) and

rm(X)

hXi4m=(2mC1)
& jXj2=(2mC1),

when rm(X) & jXj2, we deduce from the previous estimate by distinguishing there-
gions in�0 where

rm(X) . jXj2 and rm(X) & jXj2,

according to the support of the function

 0(rm(X)jXj�2),
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that one can find aC1(R, [0, 1]) function w1 with the same kind of support as the
function defined in (3.3) such that
(3.26)
9c8,p, c9 > 0, 8X 2 �0,

N
X

pD1

(Reqp(X)C c8,pHIm qp Gm, p(X))C c9w1(rm�1(X)hXi�2(2m�1)=(2mC1))hXi2=(2mC1)
C 1

& hXi2=(2mC1),

when m� 2. WhenmD 1, we notice from (2.2) that

(3.27) r1(X) & hXi2,

on any set where

(3.28) jXj � c10 and r0(X) D
N
X

pD1

Reqp(X) � hXi2=3,

if the positive constantc10 is chosen sufficiently large. Moreover, since in this case
G1,p D Qg1,p and that Reqp � 0, one can deduce from (3.1), (3.3), (3.17), (3.27) and
(3.28), by distinguishing the regions in�0 where

r0(X) . hXi2=3 and r0(X) & hXi2=3,

according to the support of the function

 (r0(X)hXi�2=3),

that the estimate (3.26) is also fulfilled in the casemD 1. Continuing our study of the
case wheremD 1, we notice from (3.3) and Reqp � 0, that one can estimate

w1(r0(X)hXi�2=3)hXi2=3 . r0(X) D
N
X

pD1

Reqp(X),

for all X 2 R2n. It therefore follows that one can findc11,p > 0 such that for all
X 2 �0,

N
X

pD1

(Reqp(X)C c11,pHIm qp G1,p(X))C 1& hXi2=3,

which proves Proposition 2.0.1 in the case wheremD 1, and our induction hypothesis
in the basis case.



SUBELLIPTICITY FOR SYSTEMS OF QUADRATIC OPERATORS 587

Assuming in the following thatm � 2, we shall now work on the term

w1(rm�1(X)hXi�2(2m�1)=(2mC1))hXi2=(2mC1),

appearing in (3.26). By considering some constants3 j � 1, for 0� j � m� 2, whose
values will be successively chosen in the following, we shall prove that one can write
that for all X 2 R2n,

(3.29)

w1

�

rm�1(X)

hXi2(2m�1)=(2mC1)

�

�

QW0(X)90(X)

C

m�2
X

jD1

QW0(X)

 

j
Y

lD1

Wl (X)

!

9 j (X)C QW0(X)

 

m�1
Y

lD1

Wl (X)

!

,

with

9 j (X) D  

�

3 j rm� j�2(X)

rm� j�1(X)(2m�2 j�3)=(2m�2 j�1)

�

, 0� j � m� 2,(3.30)

Wj (X) D w2

�

3 j�1rm� j�1(X)

rm� j (X)(2m�2 j�1)=(2m�2 jC1)

�

, 1� j � m� 1,(3.31)

QW0(X) D w1

�

rm�1(X)

hXi2(2m�1)=(2mC1)

�

,(3.32)

where is the C1(R, [0, 1]) function defined in (3.1), andw2 is a C1(R, [0, 1]) func-
tion satisfying similar properties as the function defined in (3.3), with possibly different
positive numerical values for its support localization, inorder to have that

(3.33) supp 0

� {w2 D 1} and suppw0

2 � { D 1}.

In order to check (3.29), we begin by noticing from (3.3), (3.31) and (3.32) that for
0� j � m� 1,
(3.34)

rm� j�1(X)1=(2m�2 j�1)
& rm� j (X)1=(2m�2 jC1)

& � � � & rm�1(X)1=(2m�1)
& hXi2=(2mC1),

on the support of the function

supp

 

QW0

j
Y

lD1

Wl

!

, if 1 � j � m� 1, or supp QW0, if j D 0.

Notice that the constants in the estimates (3.34) only depend on the values of the par-
ameters30, : : : , 3 j�1 but not on3l , when l � j . This shows that the functions

90I

 

j
Y

lD1

Wl

!

9 j , for 1� j � m� 2I and
m�1
Y

lD1

Wl ,
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are well-defined on the support of the functionQW0. Now, by noticing from (3.1), (3.3),
(3.30), (3.31) and (3.33) that

(3.35) 1� 9 j CWjC1,

on the support of the function

supp

 

QW0

j
Y

lD1

Wl

!

, if 1 � j � m� 2, or supp QW0, if j D 0,

we deduce the estimate (3.29) from a finite iteration by usingthe following estimates

QW0 � QW090C QW0W1

and

QW0

 

j
Y

lD1

Wl

!

�

QW0

 

j
Y

lD1

Wl

!

9 j C QW0

 

jC1
Y

lD1

Wl

!

,

for any 1� j � m� 2. One can also notice that (3.35) implies that

(3.36) 1� 9 j C

m�2
X

kD jC1

 

k
Y

lD jC1

Wl

!

9k C

m�1
Y

lD jC1

Wl ,

on the support of the function

supp

 

QW0

j
Y

lD1

Wl

!

, if 1 � j � m� 2, or supp QW0, if j D 0.

Since Reqp � 0, we then get from (3.34) that

(3.37) 8X 2 R2n, QW0(X)

 

m�1
Y

lD1

Wl (X)

!

hXi2=(2mC1)
� Qa

30,:::,3m�2

N
X

pD1

Reqp(X),

where Qa
30,:::,3m�2 is a positive constant whose value depends on the parameters

(3l )0�l�m�2.

We define for 1� p � N,

(3.38) p j , p(X) D QW0(X)

 

j
Y

lD1

Wl (X)

!

9 j (X)
Qrm� j�1,p(X)

rm� j�1(X)(2m�2 j�2)=(2m�2 j�1)
,
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for 1� j � m� 2, and

(3.39) p0,p(X) D QW0(X)90(X)
Qrm�1,p(X)

rm�1(X)(2m�2)=(2m�1)
,

where the quadratic formsQrk, p are defined in (3.4) and (3.5). We get from (3.1),
(3.3), (3.30), (3.31), (3.32), (3.34), Lemma 4.2.2, Lemma 4.2.4, Lemma 4.2.5 and
Lemma 4.2.7 that

(3.40) p j , p 2 S(1, hXi�2(2m�2 j�3)=(2mC1) d X2).

for any 0� j � m� 2.
We shall now study the Poisson bracketsHIm qpp j , p. In doing so, we begin by

writing that

(3.41)

HIm qpp j , p(X)

D (HIm qp
QW0)(X)

 

j
Y

lD1

Wl (X)

!

9 j (X)
Qrm� j�1,p(X)

rm� j�1(X)(2m�2 j�2)=(2m�2 j�1)

C

QW0(X)

 

j
Y

lD1

Wl (X)

!

(HIm qp9 j )(X)
Qrm� j�1,p(X)

rm� j�1(X)(2m�2 j�2)=(2m�2 j�1)

C

QW0(X)

 

j
Y

lD1

Wl (X)

!

9 j (X)HIm qp(rm� j�1(X)�(2m�2 j�2)=(2m�2 j�1)) Qrm� j�1,p(X)

C

QW0(X)

 

j
Y

lD1

Wl (X)

!

9 j (X)
HIm qp Qrm� j�1,p(X)

rm� j�1(X)(2m�2 j�2)=(2m�2 j�1)

C

j
X

lD1

QW0(X)(HIm qp Wl )(X)

0

B

�

j
Y

kD1
k¤l

Wk(X)

1

C

A

9 j (X)
Qrm� j�1,p(X)

rm� j�1(X)(2m�2 j�2)=(2m�2 j�1)
,

for 1 � j � m� 2. We denote by respectivelyB1, j , p, B2, j , p, B3, j , p, B4, j , p and B5, j , p

the five terms appearing in the right hand side of (3.41). We also write in the case
where j D 0,

(3.42)

HIm qpp0,p(X) D (HIm qp
QW0)(X)90(X)

Qrm�1,p(X)

rm�1(X)(2m�2)=(2m�1)

C

QW0(X)(HIm qp90)(X)
Qrm�1,p(X)

rm�1(X)(2m�2)=(2m�1)

C

QW0(X)90(X)HIm qp(rm�1(X)�(2m�2)=(2m�1)) Qrm�1,p(X)

C

QW0(X)90(X)
HIm qp Qrm�1,p(X)

rm�1(X)(2m�2)=(2m�1)
,
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and denote as before by respectivelyB1,0,p, B2,0,p, B3,0,p and B4,0,p the four terms
appearing in the right hand side of (3.42).

Since the constants in the estimates (3.34) only depend on the values of the par-
ameters30, : : : , 3 j�1; but not on3l , when l � j ; we notice from (3.29), (3.34) and
(3.37) that there exista0 > 0 and some positive constantsa j ,30,:::,3 j�1, for 1� j �m�1,
whose values with respect to the parameters (3l )0�l�m�2 only depend on30, : : : ,3 j�1;
but not on3l , when l � j ; such that for any constants (� j )1� j�m�2, with � j � 1; and
X 2 R2n,

(3.43)

w1

�

rm�1(X)

hXi2(2m�1)=(2mC1)

�

hXi2=(2mC1)

� a0 QW0(X)90(X)rm�1(X)1=(2m�1)

C

m�2
X

jD1

� j a j ,30,:::,3 j�1
QW0(X)

 

j
Y

lD1

Wl (X)

!

9 j (X)rm� j�1(X)1=(2m�2 j�1)

C am�1,30,:::,3m�2

N
X

pD1

Reqp(X).

The positive constanta0 is independent of any of the parameters (3l )0�l�m�2. Setting

(3.44) pp D a0p0,p C

m�2
X

jD1

� j a j ,30,:::,3 j�1p j , p,

we know from (3.40) that

(3.45) pp 2 S(1, hXi�2=(2mC1) d X2).

For any" > 0, we shall prove that after a proper choice for the constants(3 j )0� j�m�2

and (� j )1� j�m�2, with 3 j � 1, � j � 1, whose values will depend on"; one can find a
positive constantc12," > 0 such that for allX 2 R2n,

(3.46)

c12,"

N
X

pD1

(Reqp(X)C HIm qppp(X))C "hXi2=(2mC1)

� w1

�

rm�1(X)

hXi2(2m�1)=(2mC1)

�

hXi2=(2mC1).

Once this estimate proved, Proposition 2.0.1 will directlyfollow from (3.25), (3.26),
(3.45) and (3.46), if we choose the positive parameter" sufficiently small and consider
the weight functions

gp D c13,"Gm, p C c14,"pp, 1� p � N,
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after a suitable choice for the positive constantsc13," and c14,".
Let " > 0, it therefore remains to choose properly these constants (3 j )0� j�m�2 and

(� j )1� j�m�2, with 3 j � 1, � j � 1, in order to satisfy (3.46).
Recalling from (4.22) that for all 1� p � N and 0� s � m� 2,

(3.47)
HImqp Qrm�s�1,p(X)

D 2
X

jD1,:::,N
(l1,:::,lm�s�2)2{1,:::,N}m�s�2

Req j (Im Fl1 � � � Im Flm�s�2 Im FpX)

C 2
X

jD1,:::,N
(l1,:::,lm�s�2)2{1,:::,N}m�s�2

Req j (Im Fl1 � � � Im Flm�s�2 XI Im Fl1 � � � Im Flm�s�2(Im Fp)2X),

one can notice by expanding the term

2am�1,30,:::,3m�2

N
X

pD1

Reqp C

N
X

pD1

HIm qppp,

by using (3.41), (3.42) and (3.44) that the terms in

a0

N
X

pD1

B4,0,pC

m�2
X

jD1

� j a j ,30,:::,3 j�1

 

N
X

pD1

B4, j , p

!

,

produced by the terms associated to

X

jD1,:::,N
(l1,:::,lm�s�2)2{1,:::,N}m�s�2

Req j (Im Fl1 � � � Im Flm�s�2 Im FpX),

while using (3.47), give exactly two times the term

(3.48)

a0 QW0(X)90(X)rm�1(X)1=(2m�1)

C

m�2
X

jD1

� j a j ,30,:::,3 j�1
QW0(X)

 

j
Y

lD1

Wl (X)

!

9 j (X)rm� j�1(X)1=(2m�2 j�1)

C am�1,30,:::,3m�2

N
X

pD1

Reqp(X),

for which we have the estimate (3.43). To prove the estimate (3.46), it will therefore
be sufficient to check that all the other terms appearing in (3.41) and (3.42) can also
be all absorbed in the term (3.48) after a proper choice for the constants (3 j )0� j�m�2
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and (� j )1� j�m�2; at the exception of a remainder term in

"hXi2=(2mC1).

We shall choose these constants in the following order30, �1,31, �2, : : : ,�m�2 and3m�2.
We successively study the remaining terms in (3.42) and (3.42), by increasing value

of the integer 0� j � m� 2. We first notice from (3.1), (3.3), (3.30), (3.32), (3.42),
Lemma 4.2.8 and Lemma 4.2.12 that one can choose the first constant30 � 1 such that
for all X 2 R2n,

(3.49) a0

N
X

pD1

jB1,0,p(X)j . 3�1=2
0 hXi2=(2mC1)

�

"

m� 1
hXi2=(2mC1).

By noticing from (3.34) that the estimates

(3.50) rm(X) . hXi2 . rm�1(X)(2mC1)=(2m�1),

are fulfilled on the support of the functionQW0, we deduce from (3.1), (3.30) and (3.42)
that the modulus of the termsB3,0,p can be estimated as

a0

N
X

pD1

jB3,0,p(X)j D a0

N
X

pD1

jrm�1(X)(2m�2)=(2m�1)HIm qp(rm�1(X)�(2m�2)=(2m�1))j

� jrm�1(X)�(2m�2)=(2m�1)
Qrm�1,p(X)j QW0(X)90(X)

. 3

�1=2
0
QW0(X)90(X)rm�1(X)1=(2m�1),

for all X 2 R2n; since from Lemma 4.2.8 and Lemma 4.2.10, we have for anyp in
{1, : : : , N} that

jrm�1(X)(2m�2)=(2m�1)HIm qp(rm�1(X)�(2m�2)=(2m�1))j . rm�1(X)1=(2m�1)

and

jrm�1(X)�(2m�2)=(2m�1)
Qrm�1,p(X)j . 3�1=2

0 ,

on the support of the functionQW0(X)90(X). By possibly increasing sufficiently the
value of the constant30 which is of course possible while keeping (3.49), one can
control this term with the “good” term (3.48).

Next, we deduce from (3.1), (3.30), (3.42), (3.50) and Lemma4.2.9 that the mod-
ulus of the second terms inB4,0,p associated to

2
X

jD1,:::,N
(l1,:::,lm�2)2{1,:::,N}m�2

Req j (Im Fl1 � � � Im Flm�2 X W Im Fl1 � � � Im Flm�2(Im Fp)2X),
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while using (3.47), denoted hereQB4,0,p,

N
X

pD1

QB4,0,p(X)D QW0(X)90(X)
N
X

pD1

0

B

�

HImqp Qrm�1,p(X)

rm�1(X)(2m�2)=(2m�1)

�2
X

jD1,:::,N
(l1,:::,lm�2)2{1,:::,N}m�2

Req j (ImFl1 ���ImFlm�2 ImFpX)

rm�1(X)(2m�2)=(2m�1)

1

C

A

D

QW0(X)90(X)

 

N
X

pD1

HImqp Qrm�1,p(X)

rm�1(X)(2m�2)=(2m�1)
�2rm�1(X)1=(2m�1)

!

can be estimated as

a0

N
X

pD1

j

QB4,0,p(X)j . 3�1=2
0
QW0(X)90(X)rm�1(X)1=(2m�1),

for all X 2 R2n. By possibly increasing sufficiently the value of the constant 30 which
is of course possible while keeping (3.49), one can also control this term with the
“good” term (3.48). The value of the constant30 is now definitively fixed. In (3.42),
it only remains to study the termsB2,0,p.

About these terms, we deduce from (3.1), (3.30), (3.42), (3.50), Lemma 4.2.8 and
Lemma 4.2.11 that for allX 2 R2n,

(3.51) a0

N
X

pD1

jB2,0,p(X)j . QW0(X)W1(X)rm�1(X)1=(2m�1).

By using now (3.34) and (3.36) withj D 1, we obtain that for allX 2 R2n,

a0

N
X

pD1

jB2,0,p(X)j � cm�1,30,:::,3m�2
QW0(X)

 

m�1
Y

lD1

Wl (X)

!

N
X

pD1

Reqp(X)

C

m�2
X

jD1

c j ,30,:::,3 j�1
QW0(X)

 

j
Y

lD1

Wl (X)

!

9 j (X)rm� j�1(X)1=(2m�2 j�1),

which implies that
(3.52)

a0

N
X

pD1

jB2,0,p(X)j � cm�1,30,:::,3m�2

N
X

pD1

Reqp(X)

C

m�2
X

jD1

c j ,30,:::,3 j�1
QW0(X)

 

j
Y

lD1

Wl (X)

!

9 j (X)rm� j�1(X)1=(2m�2 j�1),
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where the quantitiesc j ,30,:::,3 j�1 stand for positive constants whose values depend on
30, : : : ,3 j�1, but not on (3k) j�k�m�2 and (�k)1�k�m�2, according to the remark done
after (3.34). One can therefore choose the constant�1 � 1 in (3.44) sufficiently large
in order to absorb the term of the indexj D 1 in the sum appearing in the right hand
side of the estimate (3.52) by the term of same index in the “good” term (3.48). This
is possible since the constantsa1,30 and c1,30 are now fixed after our choice of the
parameter30.

This ends our step indexj D 0 in which we have chosen the values for the two
constants30 and�1 � 1. We shall now explain how to choose the remaining constants
(3 j )1� j�m�2 and (� j )2� j�m�2 in (3.44) in order to satisfy (3.46). This choice will also
determine the values of the constants (a j ,30,:::,3 j�1)1� j�m�2 appearing in (3.44). After
this step indexj D 0, we have managed to absorb all the terms appearing in (3.42)in
the “good” term (3.48) at the exception of a remainder comingfrom (3.49) and (3.52),

m�2
X

jD2

c j ,30,:::,3 j�1
QW0(X)

 

j
Y

lD1

Wl (X)

!

9 j (X)rm� j�1(X)1=(2m�2 j�1)
C

"

m� 1
hXi2=(2mC1),

where one recall that the positive constantsc j ,30,:::,3 j�1 only depend on30, : : : , 3 j�1,
but not on (3k) j�k�m�2 and (�k)1�k�m�2.

We proceed in the following by finite induction and assume that, at the beginning
of the step indexk, with 1 � k � m � 2, we have already chosen the values for the
constants (3 j )0� j�k�1 and (� j )1� j�k in (3.44); and that these choices have allowed to
absorb all the terms appearing in the right hand side of (3.42) and (3.41), when 1�
j � k � 1, in the “good” term (3.48) at the exception of a remainder term

(3.53)

k

m� 1
"hXi2=(2mC1)

C

m�2
X

jDkC1

Qcj ,30,:::,3 j�1,�1,:::,�k�1
QW0(X)

 

j
Y

lD1

Wl (X)

!

9 j (X)rm� j�1(X)1=(2m�2 j�1),

where the quantitiesQcj ,30,:::,3 j�1,�1,:::,�k�1 stand for positive constants whose values only
depend on30, : : : , 3 j�1, �1, : : : , �k�1; but not on (3l ) j�l�m�2 and (�l )k�l�m�2.

We shall now explain how to choose the constants3k and;�kC1, whenk � m� 3; in
this step indexk in order to absorb the terms appearing in the right hand side of (3.41),
when j D k, at the exception of a remainder term of the type (3.53) wherek will be re-
placed bykC1; in the “good” term (3.48). Since the constants (3 j )0� j�k�1 and (� j )1� j�k

have already been chosen, we shall only underline in the following the dependence of
our estimates with respect to the other parameters (3 j )k� j�m�2 and (� j )kC1� j�m�2, whose
values remain to be chosen.
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We notice from (3.1), (3.30), (3.31), (3.32), (3.34), (3.41), Lemma 4.2.8 and
Lemma 4.2.12 that one can assume by choosing the constant3k � 1 sufficiently large
that for all X 2 R2n,

(3.54) �kak,30,:::,3k�1

N
X

pD1

jB1,k, p(X)j . 3�1=2
k hXi2=(2mC1)

�

"

m� 1
hXi2=(2mC1),

since the constants�k, 30, : : : , 3k�1 have already been fixed.
Next, we deduce from (3.1), (3.30), (3.34) and (3.41) that the modulus of the terms

B3,k, p can be estimated as

�kak,30,:::,3k�1

N
X

pD1

jB3,k, p(X)j

D �kak,30,:::,3k�1

N
X

pD1

jrm�k�1(X)(2m�2k�2)=(2m�2k�1)HIm qp(rm�k�1(X)�(2m�2k�2)=(2m�2k�1))j

� jrm�k�1(X)�(2m�2k�2)=(2m�2k�1)
Qrm�k�1,p(X)j QW0(X)

 

k
Y

lD1

Wl (X)

!

9k(X)

. 3

�1=2
k
QW0(X)

 

k
Y

lD1

Wl (X)

!

9k(X)rm�k�1(X)1=(2m�2k�1),

for all X 2 R2n; since from Lemma 4.2.8 and Lemma 4.2.10, we have for anyp in
{1, : : : , N} that

jrm�k�1(X)(2m�2k�2)=(2m�2k�1)HIm qp(rm�k�1(X)�(2m�2k�2)=(2m�2k�1))j

. rm�k�1(X)1=(2m�2k�1)

and

jrm�k�1(X)�(2m�2k�2)=(2m�2k�1)
Qrm�k�1,p(X)j . 3�1=2

k ,

on the support of the function

QW0(X)

 

k
Y

lD1

Wl (X)

!

9k(X).

By possibly increasing sufficiently the value of the constant 3k which is of course pos-
sible while keeping (3.54), one can control this term with the “good” term (3.48).
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Next, we deduce from (3.1), (3.30), (3.34), (3.41) and Lemma4.2.9 that the mod-
ulus of the second terms inB4,k, p associated to

2
X

jD1,:::,N
(l1,:::,lm�k�2)2{1,:::,N}m�k�2

Req j (Im Fl1 � � � Im Flm�k�2 XI Im Fl1 � � � Im Flm�k�2(Im Fp)2X),

while using (3.47), denoted hereQB4,k, p,

N
X

pD1

QB4,k, p(X)

D

QW0(X)

 

k
Y

lD1

Wl(X)

!

9k(X)
N
X

pD1

0

B

B

�

HImqpQrm�k�1,p(X)

rm�k�1(X)(2m�2k�2)=(2m�2k�1)

�2
X

jD1,:::,N
(l1,:::,lm�k�2)2{1,:::,N}m�k�2

Req j(ImFl1���ImFlm�k�2ImFpX)

rm�k�1(X)(2m�2k�2)=(2m�2k�1)

1

C

C

A

D

QW0(X)

 

k
Y

lD1

Wl(X)

!

9k(X)

0

�

N
X

pD1

HImqpQrm�k�1,p(X)

rm�k�1(X)(2m�2k�2)=(2m�2k�1)
�2rm�k�1(X)1=(2m�2k�1)

1

A

can be estimated as

�kak,30,:::,3k�1

N
X

pD1

j

QB4,k, p(X)j . 3�1=2
k
QW0(X)

 

k
Y

lD1

Wl (X)

!

9k(X)rm�k�1(X)1=(2m�2k�1),

for all X 2 R2n. By possibly increasing sufficiently the value of the constant 3k which
is of course possible while keeping (3.54), one can also control this term with the
“good” term (3.48).

For 1� l � k and 1� p � N, we shall now study the term

B5,k, p,l (X) D QW0(X)(HIm qp Wl )(X)

0

B

B

�

k
Y

jD1
j¤l

Wj (X)

1

C

C

A

9k(X)
Qrm�k�1,p(X)

rm�k�1(X)(2m�2k�2)=(2m�2k�1)
,

appearing in the termB5,k, p in (3.41). By noticing that

rm�l�2(X) � 3�1
l rm�l�1(X)(2m�2l�3)=(2m�2l�1),
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on the support of the functionHIm qp WlC1, it follows from (3.1), (3.3), (3.30), (3.31),
(3.32), (3.34), (3.50), Lemma 4.2.8 and Lemma 4.2.13 that for all X 2 R2n,

�kak,30,:::,3k�1

N
X

pD1

jB5,k, p,1(X)j . 3�1=2
k
QW0(X)90(X)rm�1(X)1=(2m�1)

and

�kak,30,:::,3k�1

N
X

pD1

jB5,k, p,l (X)j . 3�1=2
k
QW0(X)

 

l�1
Y

jD1

Wj (X)

!

9l�1(X)rm�l (X)1=(2m�2lC1),

when l � 2. By possibly increasing again the value of the constant3k, one can there-
fore control the term

�kak,30,:::,3k�1

N
X

pD1

B5,k, p,

with the “good” term (3.48). The value of the constant3k is now definitively fixed.
About the termsB2,k, p, we deduce from (3.1), (3.30), (3.34), (3.42), Lemma 4.2.8

and Lemma 4.2.11 that for allX 2 R2n,

(3.55) �kak,30,:::,3k�1

N
X

pD1

jB2,k, p(X)j . QW0(X)

 

kC1
Y

lD1

Wl (X)

!

rm�k�1(X)1=(2m�2k�1).

By distinguishing two cases, we first assume in the followingthat k � m� 3. In this
case, by using (3.34) and (3.36) withj D kC 1, we obtain that for allX 2 R2n,

�kak,30,:::,3k�1

N
X

pD1

jB2,k, p(X)j

� c0m�1,30,:::,3m�2,�1,:::,�k
QW0(X)

 

m�1
Y

lD1

Wl (X)

!

N
X

pD1

Reqp(X)

C

m�2
X

jDkC1

c0j ,30,:::,3 j�1,�1,:::,�k
QW0(X)

 

j
Y

lD1

Wl (X)

!

9 j (X)rm� j�1(X)1=(2m�2 j�1),

which implies that

(3.56)

�kak,30,:::,3k�1

N
X

pD1

jB2,k, p(X)j

� c0m�1,30,:::,3m�2,�1,:::,�k

N
X

pD1

Reqp(X)

C

m�2
X

jDkC1

c0j ,30,:::,3 j�1,�1,:::,�k
QW0(X)

 

j
Y

lD1

Wl (X)

!

9 j (X)rm� j�1(X)1=(2m�2 j�1),
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where the quantitiesc0j ,30,:::,3 j�1,�1,:::,�k
stand for positive constants whose values only

depend on30, : : : ,3 j�1, �1, : : : ,�k, but not on (3l ) j�l�m�2 and (�l )kC1�l�m�2. Indeed,
we recall that the constants appearing in the estimates (3.34) only depend on the values
of the parameters30, : : : , 3 j�1; but not on (3l ) j�l�m�2 and (�l )1�l�m�2. One can
therefore choose the constant�kC1 � 1 in (3.44) sufficiently large in order to absorb
the term of index j D k C 1 in the sum (3.53); and the term of indexj D k C 1 in
the sum appearing in the right hand side of the estimate (3.56), by the term of same
index in the “good” term (3.48).

WhenkDm�2 and taking3m�2D 1, it follows from (3.34), used withj Dm�1,
and (3.55) that for allX 2 R2n,

(3.57)

�m�2am�2,30,:::,3m�3

N
X

pD1

jB2,m�2,p(X)j . QW0(X)

 

m�1
Y

lD1

Wl (X)

!

r1(X)1=3

.

N
X

pD1

Reqp(X).

This process allows us to achieve the construction of the weight functionspp, 1� p �
N, satisfying (3.46), which ends the proof of (3.46). This also ends the proof of Prop-
osition 2.0.1.

4. Appendix

4.1. Wick calculus. The purpose of this section is to recall the definition and
basic properties of the Wick quantization that we need for the proof of Theorem 1.2.1.
We follow here the presentation of the Wick quantization given by N. Lerner in [10]
and refer the reader to his work for the proofs of the results recalled below.

The main property of the Wick quantization is its property ofpositivity, i.e., that
non-negative Hamiltonians define non-negative operators

a � 0) aWick
� 0.

We recall that this is not the case for the Weyl quantization and refer to [10] for an explicit
example of non-negative Hamiltonian defining an operator which is not non-negative.

Before defining properly the Wick quantization, we first needto recall the defin-
ition of the wave packets transform of a functionu 2 S(Rn),

Wu(y, �) D (u, 'y,�)L2(Rn) D 2n=4
Z

R

n

u(x)e��(x�y)2
e�2i�(x�y).� dx, (y, �) 2 R2n,

where

'y,�(x) D 2n=4e��(x�y)2
e2i�(x�y).�, x 2 Rn,
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and x2
D x2

1 C � � � C x2
n. With this definition, one can check (see Lemma 2.1 in [10])

that the mappingu 7!Wu is continuous fromS(Rn) to S(R2n), isometric fromL2(Rn)
to L2(R2n) and that we have the reconstruction formula

(4.1) 8u 2 S(Rn), 8x 2 Rn, u(x) D
Z

R

2n

Wu(y, �)'y,�(x) dy d�.

By denoting6Y the operator defined in the Weyl quantization by the symbol

pY(X) D 2ne�2� jX�Yj2, Y D (y, �) 2 R2n,

which is a rank-one orthogonal projection

(6Yu)(x) D Wu(Y)'Y(x) D (u, 'Y)L2(Rn)'Y(x),

we define the Wick quantization of anyL1(R2n) symbol a as

(4.2) aWick
D

Z

R

2n

a(Y)6Y dY.

More generally, one can extend this definition when the symbola belongs toS 0(R2n)
by defining the operatoraWick for any u and v in S(Rn) by

haWicku, viS 0(Rn),S(Rn) D ha(Y), (6Yu, v)L2(Rn)iS 0(R2n),S(R2n),

whereh�, �iS 0(Rn),S(Rn) denotes the duality bracket between the spacesS 0(Rn) andS(Rn).
The Wick quantization is a positive quantization

(4.3) a � 0) aWick
� 0.

In particular, real Hamiltonians get quantized in this quantization by formally self-adjoint
operators and one has (see Proposition 3.2 in [10]) thatL1(R2n) symbols define bounded
operators onL2(Rn) such that

(4.4) kaWick
kL(L2(Rn)) � kakL1(R2n).

According to Proposition 3.3 in [10], the Wick and Weyl quantizations of a symbola
are linked by the following identities

(4.5) aWick
D Qaw,

with

(4.6) Qa(X) D
Z

R

2n

a(X C Y)e�2� jYj22n dY, X 2 R2n,



600 K. PRAVDA -STAROV

and

(4.7) aWick
D aw C r (a)w,

wherer (a) stands for the symbol

(4.8) r (a)(X) D
Z 1

0

Z

R

2n

(1� �)a00(X C �Y)Y2e�2� jYj22n dY d� , X 2 R2n,

if we use here the normalization chosen in [10] for the Weyl quantization

(4.9) (awu)(x) D
Z

R

2n

e2i�(x�y)��a

�

x C y

2
, �

�

u(y) dy d� ,

which differs from the one chosen in this paper. Because of this difference in nor-
malizations, certain constant factors will naturally appear in the core of the proof of
Theorem 1.2.1 while using certain formulas of Section 4.1, but these are minor adapta-
tions. We also recall the following composition formula obtained in the proof of Prop-
osition 3.4 in [10],

(4.10) aWick bWick
D

�

ab�
1

4�
a0 � b0 C

1

4i�
{a, b}

�Wick

C S,

with kSkL(L2(Rn)) � dnkakL1
2(b), when a 2 L1(R2n) and b is a smooth symbol
satisfying


2(b) D sup
X2R2n,

T2R2n, jT jD1

jb(2)(X)T2
j < C1.

The termdn appearing in the previous estimate stands for a positive constant depending
only on the dimensionn, and the notation{a, b} denotes the Poisson bracket

{a, b} D
�a

��

�

�b

�x
�

�a

�x
�

�b

��

.

4.2. Some technical lemmas. This second part of the appendix is devoted to
the proofs of several technical lemmas.

Lemma 4.2.1. For any 1 � j � N, 1 � p � N, (l1, : : : , lk) 2 {1, : : : , N}k and
s1, s2 2 N, we have

(4.11)

HIm qp(Req j (Im Fl1 � � � Im Flk (Im Fp)s1 XI Im Fl1 � � � Im Flk (Im Fp)s2 X))

D 2 Req j (Im Fl1 � � � Im Flk (Im Fp)s1C1XI Im Fl1 � � � Im Flk (Im Fp)s2 X)

C 2 Req j (Im Fl1 � � � Im Flk (Im Fp)s1 XI Im Fl1 � � � Im Flk (Im Fp)s2C1X),
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whereReq j (XIY) stands for the polarized form associated to the quadratic form Req j .

Proof. We begin by noticing from (1.10) and the skew-symmetry property of
Hamilton maps (1.11) that the Hamilton map of the quadratic form

Qr (X) D Req j (Im Fl1 � � � Im Flk (Im Fp)s1 XI Im Fl1 � � � Im Flk (Im Fp)s2 X),

is given by

(4.12)

QF D
1

2
(�1)kCs1(Im Fp)s1 Im Flk � � � Im Fl1 ReF j Im Fl1 � � � Im Flk (Im Fp)s2

C

1

2
(�1)kCs2(Im Fp)s2 Im Flk � � � Im Fl1 ReF j Im Fl1 � � � Im Flk (Im Fp)s1,

since

(4.13)

(�1)kCs1
� (X, (Im Fp)s1 Im Flk � � � Im Fl1 ReF j Im Fl1 � � � Im Flk (Im Fp)s2 X)

D � (Im Fl1 � � � Im Flk (Im Fp)s1 X, ReF j Im Fl1 � � � Im Flk (Im Fp)s2 X)

D Req j (Im Fl1 � � � Im Flk (Im Fp)s1 XI Im Fl1 � � � Im Flk (Im Fp)s2 X
�

D Req j (Im Fl1 � � � Im Flk (Im Fp)s2 XI Im Fl1 � � � Im Flk (Im Fp)s1 X)

D � (Im Fl1 � � � Im Flk (Im Fp)s2 X, ReF j Im Fl1 � � � Im Flk (Im Fp)s1 X)

D (�1)kCs2
� (X, (Im Fp)s2 Im Flk � � � Im Fl1 ReF j Im Fl1 � � � Im Flk (Im Fp)s1 X).

Then, a direct computation (see Lemma 2 in [19]) shows that the Hamilton map of the
quadratic form

HIm qp Qr D {Im qp, Qr } D
� Im qp

��

�

� Qr

�x
�

� Im qp

�x
�

� Qr

��

,

is given by the commutator�2[Im Fp, QF ], that is,

HIm qp Qr (X) D �2� (X, [Im Fp, QF ]X).

A computation as in (4.13) then allows to directly get (4.11).

Lemma 4.2.2. Let f be a C1(R) function such that

f 2 L1(R), 9c1, c2 > 0, suppf 0 � {x 2 R W c1 � jxj � c2},

and r a non-negative quadratic form. Then, for all 0< � � 1,

(4.14) f (r (X)hXi�2�) 2 S(1, hXi�2� d X2).
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Proof. It is sufficient to check that

(4.15) r(r (X)hXi�2�) 2 S
�

(hXi��, hXi�2� d X2),

where� is a small open neighborhood of suppf 0(r (X)hXi�2�). We deduce from (2.16)
and the fact thatr (X) is a non-negative quadratic form that

r (X) � hXi2�

and

jrr (X)j . r (X)1=2
. hXi�,

on �. By noticing that 0< � � 1, hXir 2 S(hXir , hXi�2 d X2), for any r 2 R; and that
the functionr (X) is just a quadratic form, we directly deduce (4.15) from theprevious
estimates and the Leibniz’s rule, since

r (X) 2 S
�

(hXi2�, hXi�2� d X2).

In all the following lemmas, we shall denote byrk the quadratic forms defined in
(3.6) for 0� k � m.

Lemma 4.2.3. For all s 2 R and 0� j � m� 2, we have

rm� j�1(X)s
2 S

�

(rm� j�1(X)s, rm� j�1(X)�1 d X2),

if � is any open set where

rm� j�1(X) & hXi2(2m�2 j�1)=(2mC1).

Proof. Recalling from (3.6) that the symbolrm� j�1(X) is a non-negative quadratic
form and that we have from (2.16) that

(4.16) jrrm� j�1(X)j . rm� j�1(X)1=2,

which implies that for alls 2 R,

(4.17)

jr(rm� j�1(X)s)j

rm� j�1(X)s
.

jrrm� j�1(X)j

rm� j�1(X)

. rm� j�1(X)�1=2,

on �, we notice that the result of Lemma 4.2.3 is therefore a straightforward conse-
quence of the Leibniz’s rule.
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Lemma 4.2.4. Let 9 j be the function defined in(3.30). Then, for any 0 � j �
m� 2,

9 j 2 S
�

(1, rm� j�1(X)�(2m�2 j�3)=(2m�2 j�1) d X2),

if � is any open set where

rm� j�1(X) & hXi2(2m�2 j�1)=(2mC1).

This implies in particular that

9 j 2 S
�

(1, hXi�2(2m�2 j�3)=(2mC1) d X2).

Proof. We first notice from (3.1) and (3.30) that

rm� j�2(X) � rm� j�1(X)(2m�2 j�3)=(2m�2 j�1),

on � \ supp9 0

j . Since from (2.16),

(4.18)
jrrm� j�2(X)j . rm� j�2(X)1=2

. rm� j�1(X)(2m�2 j�3)=(2(2m�2 j�1)),

on � \ supp9 0

j , we deduce that the quadratic symbolrm� j�2(X) belongs to the class

(4.19) S
�\supp9 0

j

�

rm� j�1(X)(2m�2 j�3)=(2m�2 j�1),
d X2

rm� j�1(X)(2m�2 j�3)=(2m�2 j�1)

�

.

It follows from Lemma 4.2.3 that

rm� j�2(X)

rm� j�1(X)(2m�2 j�3)=(2m�2 j�1)
2 S

�\supp9 0

j

�

1,
d X2

rm� j�1(X)(2m�2 j�3)=(2m�2 j�1)

�

,

which implies that

9 j 2 S
�

(1, rm� j�1(X)�(2m�2 j�3)=(2m�2 j�1) d X2).

This ends the proof of Lemma 4.2.4.

Lemma 4.2.5. Let Wj be the function defined in(3.31). Then, for any 1 � j �
m� 1,

Wj 2 S
�

(1, rm� j�1(X)�1 d X2),

if � is any open set where

rm� j�1(X) & hXi2(2m�2 j�1)=(2mC1).
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This implies in particular that

Wj 2 S
�

(1, hXi�2(2m�2 j�1)=(2mC1) d X2).

Proof. By noticing from (3.3) and (3.31) that

rm� j�1(X) � rm� j (X)(2m�2 j�1)=(2m�2 jC1)

and

rm� j (X) & hXi2(2m�2 jC1)=(2mC1),

on � \ suppW0

j , and that the two derivatives 0 and w0

2 of the functions appearing
in (3.30) and (3.31) have similar types of support as the function defined in (3.2), we
notice that we are exactly in the setting studied in Lemma 4.2.4 with j replaced by
j � 1. We therefore deduce the result of Lemma 4.2.5 from our analysis led in the
proof of Lemma 4.2.4.

Lemma 4.2.6. If s1, s2 2 N, 1� j , p� N, (l1, : : : , lk) 2 {1,: : : , N}k then we have

jReq j (Im Fl1 � � � Im Flk (Im Fp)s1 XI Im Fl1 � � � Im Flk (Im Fp)s2 X)j

� Req j (Im Fl1 � � � Im Flk (Im Fp)s1 X)1=2 Req j (Im Fl1 � � � Im Flk (Im Fp)s2 X)1=2

� rkCs1(X)1=2rkCs2(X)1=2

and

jr[Req j (Im Fl1 � � � Im Flk (Im Fp)s1 XI Im Fl1 � � � Im Flk (Im Fp)s2 X)]j

. Req j (Im Fl1 � � � Im Flk (Im Fp)s1 X)1=2
C Req j (Im Fl1 � � � Im Flk (Im Fp)s2 X)1=2

. rkCmax(s1,s2)(X)1=2.

Proof. By reason of symmetry, we can assume in the following that s1 � s2. Re-
calling that the quadratic form Req j is non-negative, the first estimate is a direct con-
sequence of (3.6) and the Cauchy–Schwarz inequality. Aboutthe second estimate, we
recall from (4.12) that the Hamilton map of the quadratic form

Req j (Im Fl1 � � � Im Flk (Im Fp)s1 XI Im Fl1 � � � Im Flk (Im Fp)s2 X),

is

1

2
(�1)kCs1(Im Fp)s1 Im Flk � � � Im Fl1 ReF j Im Fl1 � � � Im Flk (Im Fp)s2

C

1

2
(�1)kCs2(Im Fp)s2 Im Flk � � � Im Fl1 ReF j Im Fl1 � � � Im Flk (Im Fp)s1.
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A direct computation as in (3.18) of [19] shows that

(4.20)

r[Req j (Im Fl1 � � � Im Flk (Im Fp)s1 XI Im Fl1 � � � Im Flk (Im Fp)s2 X)]

D (�1)kCs1C1
� (Im Fp)s1 Im Flk � � � Im Fl1 ReF j Im Fl1 � � � Im Flk (Im Fp)s2

C (�1)kCs2C1
� (Im Fp)s2 Im Flk � � � Im Fl1 ReF j Im Fl1 � � � Im Flk (Im Fp)s1

where

� D

�

0 In

�In 0

�

.

The notationIn stands here for then by n identity matrix. We deduce from (2.16) and
(4.20) that for anys 2 N,

(4.21)

j(Im Fp)s Im Flk � � � Im Fl1 ReF j Im Fl1 � � � Im Flk (Im Fp)sXj

. jr[Req j (Im Fl1 � � � Im Flk (Im Fp)sX)]j

. Req j (Im Fl1 � � � Im Flk (Im Fp)sX)1=2.

By using twice the estimate (4.21) with respectivelyX and (ImFp)s2�s1 X, and the index
sD s1, we deduce from (3.6) and (4.20) the second estimate in Lemma4.2.6.

Lemma 4.2.7. Let Qrm� j�1,p be the quadratic form defined in(3.4) and (3.5). Then,
for any 0� j � m� 2 and 1� p � N,

Qrm� j�1,p(X)

rm� j�1(X)(2m�2 j�2)=(2m�2 j�1)
2 S

�

(1, rm� j�1(X)�(2m�2 j�3)=(2m�2 j�1) d X2),

if � is any open set where

rm� j�1(X) & hXi2(2m�2 j�1)=(2mC1)

and

rm� j�2(X) . rm� j�1(X)(2m�2 j�3)=(2m�2 j�1).

This implies in particular that

Qrm� j�1,p(X)

rm� j�1(X)(2m�2 j�2)=(2m�2 j�1)
2 S

�

(1, hXi�2(2m�2 j�3)=(2mC1) d X2).
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Proof. Since from Lemma 4.2.6,

j Qrm� j�1,p(X)j . rm� j�1(X)(2m�2 j�2)=(2m�2 j�1)

and

jr Qrm� j�1,p(X)j . rm� j�1(X)1=2
C rm� j�2(X)1=2

. rm� j�1(X)1=2,

on �, we get that the quadratic formQrm� j�1,p belongs to the symbol class

S
�

(rm� j�1(X)(2m�2 j�2)=(2m�2 j�1), rm� j�1(X)�(2m�2 j�3)=(2m�2 j�1) d X2).

One can then deduce the result of Lemma 4.2.7 from Lemma 4.2.3.

When adding a large parameter3 j � 1 in the description of the open set�, a
straightforward adaptation of the proof of the previous lemma gives the followingL1(�)
estimate with respect to this parameter.

Lemma 4.2.8. Let Qrm� j�1,p be the quadratic form defined in(3.4) and (3.5). Then,
for any 0� j � m� 2 and 1� p � N,

krm� j�1(X)�(2m�2 j�2)=(2m�2 j�1)
Qrm� j�1,p(X)kL1(�) . 3

�1=2
j ,

if � is any open set where

rm� j�1(X) & hXi2(2m�2 j�1)=(2mC1)

and

rm� j�2(X) . 3�1
j rm� j�1(X)(2m�2 j�3)=(2m�2 j�1),

with 3 j � 1.

In the following lemmas, we shall carefully study the dependence of the estimates
with respect to the large parameter3 j � 1.

Lemma 4.2.9. For any 0� j � m� 2, we have for all X2 �,
�

�

�

�

�

�

N
X

pD1

HIm qp Qrm� j�1,p(X)

rm� j�1(X)(2m�2 j�2)=(2m�2 j�1)
�2rm� j�1(X)1=(2m�2 j�1)

�

�

�

�

�

�

.3

�1=2
j rm� j�1(X)1=(2m�2 j�1),
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if � is any open set where

rm� j�1(X) & hXi2(2m�2 j�1)=(2mC1),

rm� j�2(X) . 3�1
j rm� j�1(X)(2m�2 j�3)=(2m�2 j�1),

rm� j (X) . rm� j�1(X)(2m�2 jC1)=(2m�2 j�1),

with 3 j � 1.

Proof. We begin by writing from (3.4), (3.5) and Lemma 4.2.1 that
(4.22)
HImqp Qrm� j�1,p(X)

D 2
X

sD1,:::,N
(l1,:::,lm� j�2)2{1,:::,N}m� j�2

Reqs(Im Fl1 � � � Im Flm� j�2 Im FpX)

C 2
X

sD1,:::,N
(l1,:::,lm� j�2)2{1,:::,N}m� j�2

Reqs(Im Fl1 � � � Im Flm� j�2 XI Im Fl1 � � � Im Flm� j�2(Im Fp)2X).

Lemma 4.2.9 is then a consequence of the following estimate

jReqs(Im Fl1 � � � Im Flm� j�2 XI Im Fl1 � � � Im Flm� j�2(Im Fp)2X)j

� Reqs(Im Fl1 � � � Im Flm� j�2 X)1=2 Reqs(Im Fl1 � � � Im Flm� j�2(Im Fp)2X)1=2

� rm� j�2(X)1=2rm� j (X)1=2

. 3

�1=2
j rm� j�1(X),

fulfilled on � that we obtain from the Cauchy–Schwarz inequality.

Lemma 4.2.10. For any 0� j � m� 2 and 1� p � N, we have for all X2 �,

jrm� j�1(X)(2m�2 j�2)=(2m�2 j�1)HIm qp(rm� j�1(X)�(2m�2 j�2)=(2m�2 j�1))j

. rm� j�1(X)1=(2m�2 j�1),

if � is any open set where

rm� j�1(X) & hXi2(2m�2 j�1)=(2mC1),

rm� j�2(X) . 3�1
j rm� j�1(X)(2m�2 j�3)=(2m�2 j�1),

rm� j (X) . rm� j�1(X)(2m�2 jC1)=(2m�2 j�1),

with 3 j � 1.
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Proof. We begin by writing from (3.6) and Lemma 4.2.1 that

(4.23)

HIm qprm� j�1(X)

D 4
X

sD1,:::,N
(l1,:::,lm� j�1)2{1,:::,N}m� j�1

Reqs(Im Fl1 � � � Im Flm� j�1 XI Im Fl1 � � � Im Flm� j�1 Im FpX).

Since

rm� j�1(X)(2m�2 j�2)=(2m�2 j�1) HIm qp(rm� j�1(X)�(2m�2 j�2)=(2m�2 j�1))

D �

2m� 2 j � 2

2m� 2 j � 1

HIm qprm� j�1(X)

rm� j�1(X)
,

Lemma 4.2.10 is then a consequence of the following estimate

(4.24)

jReqs(Im Fl1 � � � Im Flm� j�1 XI Im Fl1 � � � Im Flm� j�1 Im FpX)j

� Reqs(Im Fl1 � � � Im Flm� j�1 X)1=2 Reqs(Im Fl1 � � � Im Flm� j�1 Im FpX)1=2

� rm� j�1(X)1=2rm� j (X)1=2

. rm� j�1(X)1C1=(2m�2 j�1),

fulfilled on � that we obtain from the Cauchy–Schwarz inequality.

Lemma 4.2.11. Let 9 j and WjC1 be the functions defined in(3.30) and (3.31).
Then, for any 0� j � m� 2 and 1� p � N, we have for all X2 �,

jHIm qp9 j (X)j . 31=2
j rm� j�1(X)1=(2m�2 j�1)WjC1(X),

if � is any open set where

rm� j�1(X) & hXi2(2m�2 j�1)=(2mC1),

rm� j�2(X) . 3�1
j rm� j�1(X)(2m�2 j�3)=(2m�2 j�1),

rm� j (X) . rm� j�1(X)(2m�2 jC1)=(2m�2 j�1),

with 3 j � 1.

Proof. We begin by noticing from (3.31) and (3.33) that

(4.25)

�

�

�

�

 

0

�

3 j rm� j�2(X)

rm� j�1(X)(2m�2 j�3)=(2m�2 j�1)

�

�

�

�

�

. WjC1(X),
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and by writing from Lemma 4.2.1 that

(4.26)

HIm qprm� j�2(X)

D 4
X

sD1,:::,N
(l1,:::,lm� j�2)2{1,:::,N}m� j�2

Reqs(Im Fl1 � � � Im Flm� j�2 XI Im Fl1 � � � Im Flm� j�2 Im FpX).

It follows from the Cauchy–Schwarz inequality that for allX 2 �,

(4.27)

jReqs(Im Fl1 � � � Im Flm� j�2 XI Im Fl1 � � � Im Flm� j�2 Im FpX)j

� Reqs(Im Fl1 � � � Im Flm� j�2 X)1=2 Reqs(Im Fl1 � � � Im Flm� j�2 Im FpX)1=2

� rm� j�2(X)1=2rm� j�1(X)1=2

. 3

�1=2
j rm� j�1(X)(2m�2 j�2)=(2m�2 j�1).

Then, by writing that

HIm qp

�

3 j rm� j�2(X)

rm� j�1(X)(2m�2 j�3)=(2m�2 j�1)

�

D

3 j HIm qprm� j�2(X)

rm� j�1(X)(2m�2 j�3)=(2m�2 j�1)
�

2m� 2 j � 3

2m� 2 j � 1

3 j rm� j�2(X)HIm qprm� j�1(X)

rm� j�1(X)1C(2m�2 j�3)=(2m�2 j�1)
.

Lemma 4.2.11 is a consequence of (3.30), (4.23), (4.24), (4.26), (4.27) and (4.28),
since

rm� j�2(X) � 3�1
j rm� j�1(X)(2m�2 j�3)=(2m�2 j�1),

on the support of9 0

j .

Lemma 4.2.12. Let m� 2 and QW0 be the function defined in(3.32). Then, for
all X 2 R2n and 1� p � N,

jHIm qp
QW0(X)j . hXi2=(2mC1).

Proof. Sincejr Imqp(X)j . hXi, because Imqp is a quadratic form, Lemma 4.2.12
is then a consequence of (3.3), (3.6), (3.32) and Lemma 4.2.2

Lemma 4.2.13. Let WjC1 be the function defined in(3.31). Then, for any 0 �
j � m� 2 and 1� p � N, we have for all X2 �,

jHIm qp WjC1(X)j . 31=2
j rm� j�1(X)1=(2m�2 j�1)

9 j (X),
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if � is any open set where

rm� j�1(X) & hXi2(2m�2 j�1)=(2mC1),

rm� j�2(X) . 3�1
j rm� j�1(X)(2m�2 j�3)=(2m�2 j�1),

rm� j (X) . rm� j�1(X)(2m�2 jC1)=(2m�2 j�1),

with 3 j � 1.

Proof. One can notice from (3.1), (3.3), (3.30), (3.31) and (3.33) that

(4.28) 80� j � m� 2,

�

�

�

�

w

0

2

�

3 j rm� j�2(X)

rm� j�1(X)(2m�2 j�3)=(2m�2 j�1)

�

�

�

�

�

. 9 j (X),

and that the derivatives of9 j and WjC1 are exactly the same types of functions. It
follows that Lemma 4.2.13 is just a straightforward consequence of Lemma 4.2.11.
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