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Abstract
Consider the Cauchy problem for a system of weakly coupled heat equations,

whose typical one is
�

ut �1u D jvj

p�1
v,

vt �1v D jujq�1u, (t, x) 2 R
C

� RN ,

with p, q � 1, pq> 1. When p, q satisfy max((pC1)=(pq�1), (qC1)=(pq�1))<
N=2, the exponentsp, q are supercritical. In this paper we assort the supercritical
exponent case to two cases. In one case bothp andq are bigger than the Fujita ex-
ponent�F (N)D 1C2=N, while in the other case�F (N) is betweenp andq. In both
cases we obtain the time-global and unique existence of solutions for small data and
their asymptotic behaviors. These observation will be applied to the corresponding
system of the damped wave equations in low dimensional space.

1. Introduction

We consider the Cauchy problem for the weakly coupled systemof heat equations

(1.1)

8

<

:

ut �1u D g(v),
vt �1v D f (u), (t, x) 2 R

C

� RN ,
(u, v)(0, x) D (u0, v0)(x), x 2 RN ,

and the Cauchy problem for the corresponding system of damped wave equations

(1.2)

8

<

:

ut t �1uC ut D g(v),
vt t �1v C vt D f (u), (t, x) 2 R

C

� RN ,
(u, v, ut , vt )(0, x) D (u0, v0, u1, v1)(x), x 2 RN .

Here the typical examples of (f, g) are

(1.3) (f (u), g(v)) D (jujq�1u, jvjp�1
v), (jujq, jvjp) etc.
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for p, q � 1, pq > 1. For (1.1) and (1.2) there are many literatures [1, 3, 4, 16,17]
and [12, 14, 15, 18, 19] etc. respectively. See also references therein. Our final aim is
to consider (1.2), but, by the “diffusion phenomenon” it is essential to investigate (1.1).

In [3] Escobedo and Herrero showed that for nonnegative, continuous and bounded
data (u0, v0) and (f (u), g(v)) D (uq, v p) with p, q > 0, pq > 1, the exponentsp, q
satisfying

(1.4) � WD max

�

pC 1

pq� 1
,

qC 1

pq� 1

�

D

N

2

are critical and that
• if � � N=2, then any nontrivial, nonnegative solutions to (1.1) blowup within a
finite time,
• if � < N=2, then both global solutions and blow-up solutions coexist, when the
data are not restricted to be small.
In [18] Sun and Wang showed that, for (f (u), g(v)) D (jujq, jvjp) and N D 1, 3, the so-
lutions to (1.2) with suitably small data globally exist when � < N=2, while the global
solutions do not exist for suitable data when� � N=2.

In this paper we discuss the precise behaviors of solutions to both (1.1) and (1.2),
including the optimal decay rates and the asymptotic profile, for small data when� <
N=2. Moreover, we observe the relation between the critical exponents for the system
and the critical exponent

(1.5) �F D �F (N) D 1C
2

N

for the scalar semilinear heat equation

(1.6) wt �1w D jwj
��1
w, (t, x) 2 R

C

� RN .

As well-known, any nontrivial and nonnegative solutionw blows up within a finite time
when � � �F (N), while the solution globally exists for small data when� > �F (N)
([5, 6, 20]). The critical exponent is called the Fujita exponent, named after Fujita’s
pioneering work [5].

Here and after we assume without loss of generality

(1.7) 1� p � q, pq > 1,

and consider the small data global existence of solutions to(1.1) and (1.2). By (1.4)
and (1.7) the supercritical exponentsp, q are given by

(1.8)
qC 1

pq� 1
<

N

2
.
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Hence

(1.9) q

�

p�
2

N

�

> 1C
2

N
or q(pC 1� �F (N)) > �F (N).

By (1.9)

(1.10) p >
2

N
or pC 1> �F (N).

If both p and q are less than or equal to�F (N), then

q

�

p�
2

N

�

� �F (N) �

�

�F (N) �
2

N

�

D �F (N),

which contradicts (1.9). Hence eitherp or q is greater than�F (N) and, by (1.7),q >
�F (N). Thus, the supercritical exponentsp, q in (1.8) are decomposed to two cases:
CASE I q � p > �F (N),
CASE II q > �F (N) � p > �F (N) � 1 andq > (pC 1� �F (N))�1

�F (N).
The casep � �F (N) happens in the supercritical case, which is a different point from
the scalar heat equation. We also believe that the Cases I andII are more understand-
able than (1.8), related to the Fujita exponent.

The solution (u, v) to (1.1) is obtained by those of the integral equations

(1.11)

u(t, x) D
Z

G(t, x � y)u0(y) dyC
Z t

0

Z

G(t � � , x � y)g(v(� , y)) dy d� ,

v(t, x) D
Z

G(t, x � y)v0(y) dyC
Z t

0

Z

G(t � � , x � y) f (u(� , y)) dy d� ,

where the domainRN of integration is often abbreviated and the Gauss kernel is given by

(1.12) G(t, x) D (4� t)�N=2e�jxj
2
=(4t), jxj2 D x2

1 C � � � C x2
N .

By (1.11) we can obtain a unique time-global solution and itsasymptotic profile
for small data in Case I. In [15] the Case I is treated for much more general system.
But, our system is simple, which helps us to understand more interesting Case II. So,
we first state the result in Case I.

Denoting Lr
� Lr

D Lr etc. simply without confusions, our first theorem is the
following.

Theorem 1.1 (Case I). Suppose that q� p > �F (N) and

(1.13)
j f (u1) � f (u2)j � C(ju1j

q�1
C ju2j

q�1)ju1 � u2j (u1, u2 2 N(0)),

jg(v1) � g(v2)j � C(jv1j
p�1
C jv2j

p�1)jv1 � v2j (v1, v2 2 N(0)),
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for small neighborhood N(0) of 0 2 R. If (u0, v0) 2 L1
\ L1 and ku0, v0kL1

\L1 D

ku0,v0kL1
Cku0,v0kL1 is suitably small, then there exists a unique time-global solution

(u, v) 2 [C([0,1)I L1
\ L1)]2 to (1.1), which satisfies for1� r � 1

(1.14) k(u, v)(t, � )kLr
� C(t C 1)�(N=2)(1�1=r ), t � 0.

Moreover, as t!1,

(1.15) k(u � �1G, v � �2G)(t, � )kLr
D o(t�(N=2)(1�1=r )),

where
(1.16)

(�1, �2)

D

�

Z

u0(x) dxC
Z

1

0

Z

g(v(t, x)) dx dt,
Z

v0(x) dxC
Z

1

0

Z

f (u(t, x)) dx dt

�

.

For the proofs below the following inequality plays an important role.

Lemma 1.1 (Hausdorff and Young).Let1� p,q,r �1 with 1=r D 1=pC1=q�1.
If f 2 L p and g2 Lq, then( f � g)(x) D

R

RN f (x � y)g(y) dy 2 Lr and

(1.17) k f � gkLr
� Ck f kL p

kgkLq .

In the Case II we heuristically observe the decay rates of solutions. Sinceq >
�F (N), we once assume

(1.18) v0 2 L1
\ L1 and

Z

1

0
k f (u(t, � ))kL1

\L1 dt � C
Z

1

0
ku(t, � )kqLq

\L1 dt <1.

Then, by (1.17), (1.11)2 (which implies the second equation of (1.11)) yields

(1.19) kv(t)kLr
� C(t C 1)�(N=2)(1�1=r ), 1� r � 1.

Here and after, byC denote a generic constant independent of timet , whose value
is changed from a line to the next line. Therefore, denoting�F (N) simply by �F ,
we have









Z t

0

Z

G(t � � , x � y)g(v(� , y)) dy d�









L1
x

� C
Z t

0
kv(� )kp

L p d� � C
Z t

0
(� C 1)�(N=2)(p�1) d�

�

�

C(t C 1)(N=2)(�F�p), �F � 1< p < �F ,
C log (t C 2), p D �F ,

(1.20)1
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and








Z t

0

Z

G(t � � , x � y)g(v(� , y)) dy d�









L1x

� C
Z t=2

0
(1C t � � )�N=2

kv(� )kp
L p
\L1 d� C

Z t

t=2
1 � kv(� )kp

L1 d�

�

�

C(t C 1)�(N=2)(pC1��F ), �F � 1< p < �F ,
C(t C 1)�N=2 log (t C 2), p D �F .

(1.20)2

That is, L1-norm of u may grow up andL1-norm decays. Hence, when�F �1< p<
�F (N),





R t
0

R

G(t � � , x � y)g(v(� , y)) dy d�




Lr
x
� C if r satisfies

�

N

2
(pC 1� �F ) � (r � 1)C

N

2
(�F � p) D 0

by interpolation. Then

r D

�

p�
2

N

�

�1

D (pC 1� �F )�1.

Therefore, definer0 by

(1.21) r0 D

�

(pC 1� �F )�1, �F � 1< p < �F ,
1C Æ, p D �F ,

and assume

(1.22) u0 2 Lr0,

where Æ > 0 is so small asq > �F (N) � (1C Æ). Note that (N=2r0)(q � r0) > 1 not
only for pD �F , r0 D 1C Æ but also for p < �F sinceq > r0�F in Case II. Thus, by
(1.11)1 and (1.20),

ku(t)kLr
� C(t C 1)�(N=2)(1=r0�1=r ), r0 � r � 1.(1.23)

Then, by applying (1.23) to (1.11)2, we get

kv(t)kL1
� kv0kL1

C C
Z t

0
ku(� )kqLq d�

� kv0kL1
C C

Z t

0
(� C 1)�N=2r0(q�r0) d�

� C by (N=2r0)(q � r0) > 1,

(1.24)1
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and

kv(t)kL1 � C(t C1)�N=2
kv0kL1

\L1

CC
Z t=2

0
(1C t � � )�N=2

ku(� )kqLq
\L1 d� CC

Z t

t=2
ku(� )kqL1 d�

� C(t C1)�N=2
CC

Z t=2

0
(1C t � � )�N=2(� C1)�(N=2r0)(q�r0) d�

C

Z t

t=2
(� C1)�Nq=2r0 d�

� C(t C1)�N=2 by (N=2r0)(q� r0) > 1.

(1.24)
1

Hence we again obtain (1.18) which was once assumed. This fact implies the global ex-
istence of solutions to (1.11) in a suitable space. In fact, we have the following theorem.

Theorem 1.2 (Case II). Let q > �F (N) � p > �F (N) � 1 and q > (p C 1 �
�F (N))�1

�F (N). Suppose that, for r0 defined by(1.21),

(1.25) (u0, v0) 2 (Lr0
\ L1) � (L1

\ L1) and ku0kLr0
\L1 C kv0kL1

\L1 is small.

Then there exists a unique solution(u,v) 2 C([0,1)I Lr0
\ L1)�C([0,1)I L1

\ L1),
which satisfies

(1.26)
ku(t)kLr

� C(t C 1)�(N=2)(1=r0�1=r ), r0 � r � 1,

kv(t)kLr
� C(t C 1)�(N=2)(1�1=r ), 1� r � 1.

More precisely, for �2 defined in(1.16) and 1� r � 1

(1.27) k(v � �2G)(t, � )kLr
D o(t�(N=2)(1�1=r )) as t!1,

and, though u(t, � ) is not necessarily in L1, (u � G � u0)(t, � ) is in L1 and

(1.28) k(u � G � u0)(t, � )kLr
�

�

Ct�(N=2)(1=r0�1=r ), p < �F (N),
Ct�(N=2)(1�1=r ) log t, p D �F (N),

as t!1

for 1� r � 1. Moreover, if g(v) � C�1
jvj

p in v 2 N(0), the estimate from below

k(u � G � u0)(t, � )kLr
�

�

C�1t�(N=2)(1=r0�1=r ), p < �F (N),
C�1t�(N=2)(1�1=r ) log t, p D �F (N),

(1.28)0

for t � t1� 1 and 1� r � 1 holds, too, provided that�1 > 0.

Similar consideration to the system for heat equations can be applied to the Cauchy
problem (1.2) for the system of damped wave equations in low dimensional space. By
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w D [SN(t)h](x), denote the solution to

(1.29)

�

wt t �1w C wt D 0, (t, x) 2 R
C

� RN ,
(w, wt )(0, x) D (0, h)(x), x 2 RN ,

then the solution (u, v) to (1.2) is given by the integral equations

(1.30)

u(t, � ) D SN(t)(u0C u1)C �t (SN(t)u0)C
Z t

0
SN(t � � )g(v(� , � )) d� ,

v(t, � ) D SN(t)(v0C v1)C �t (SN(t)v0)C
Z t

0
SN(t � � ) f (u(� , � )) d� .

DEFINITION 1.1. If (u, v)(t, x) is the solution to the integral equations (1.30),
then we call (u, v) the weak solution to the system (1.2).

The solution for the damped wave equation has the diffusion phenomenon, that is,
the solution behaves like that for the corresponding diffusion equation as time tends
to infinity. In fact, this is observed by the explicit formulaof SN(t)h in each space
dimensionN D 1, 2, 3:

[S1(t)h](x)

D

e�t=2

2

Z

jzj�t
I0

�

1

2

p

t2
� jzj2

�

h(x C z) dz

D e�t=2
�

1

2

Z

jzj�t
h(x C z) dzC

e�t=2

2

Z

jzj�t

�

I0

�

1

2

p

t2
� jzj2

�

� 1

�

h(x C z) dz,

(1.31)1

[S2(t)h](x)

D

e�t=2

2�

Z

jzj�t

cosh(
p

t2
� jzj2=2)

p

t2
� jzj2

h(x C z) dz

D e�t=2
�

1

2�

Z

jzj�t

h(x C z)
p

t2
� jzj2

dzC
e�t=2

2�

Z

jzj�t

cosh(
p

t2
� jzj2=2)� 1

p

t2
� jzj2

h(x C z) dz,

(1.31)2

[S3(t)h](x)

D

e�t=2

4� t
�t

Z

jzj�t
I0

�

1

2

p

t2
� jzj2

�

h(x C z) dz

D e�t=2
�

t

4�

Z

j!jD1
h(x C t!) d!C

e�t=2

8�

Z

jzj�t
I1

�

1

2

p

t2
� jzj2

�

h(x C z)
p

t2
� jzj2

dz.

(1.31)3
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Here I
�

(� D 0, 1, 2,: : :) is the modified Bessel function of order�, which is given by

I
�

(y) D
1

X

mD0

1

m! (mC �)!

� y

2

�2mC�
.

From the D’Alembert, Poisson and Kirchhoff formulas for thewave equations without
dissipation, denoted by [WN(t)h](x), (1.31) has the form

(1.32) SN(t)h D e�t=2
�WN(t)hC J0N(t)h, N D 1, 2, 3,

together with its derivative

�t (SN(t)h) D e�t=2

�

�

1

2
WN(t)hC �t (WN(t)h)

�

C �t (J0N(t)h)

DW e�t=2
�

QWN(t)hC J1N(t)h, N D 1, 2,

(1.33)1,2

�t (S3(t)h) D e�t=2

��

�

1

2
C

t

8

�

W3(t)hC �t (W3(t)h)

�

C

Z

jzj�t
�t

"

e�t=2I1((1=2)
p

t2
� jzj2)

8�
p

t2
� jzj2

#

h(x C z) dz

DW e�t=2
�

QWN(t)hC J1N(t)h, N D 3.

(1.33)3

For the solution formulas of damped wave equations, refer [2]. For the decompos-
ition and the following estimates on the operatorsJi N (t) (i D 1, 2) andWN(t), QWN(t),
see [10] forN D 1, [8] for N D 2, and [13] for N D 3, where the properties of mod-
ified Bessel functions play an important role. See also [7, 19, 14] for N D 2 and [11]
for general dimensionN, where the method of Fourier transformation is applied.

Lemma 1.2. Let Ji N (i D 1, 2) and WN , QWN with N D 1, 2, 3 be defined in
(1.30)–(1.33), respectively. Then it holds that, for 1� q � p � 1

kJ0N(t)hkL p
� C(t C 1)�(N=2)(1=q�1=p)

khkLq , t � 0,(1.34)

k(J0N(t) � et1)hkL p
� Ct�(N=2)(1=q�1=p)�1

khkLq , t > 0,(1.35)

kJ1N(t)hkL p
� C(t C 1)�(N=2)(1=q�1=p)�1

khkLq , t � 0,(1.36)

and, for 1� r � 1

kWN(t)hkLr
� C(t C 1)khkL1

\L1 , t � 0,(1.37)

k

QWN(t)hkLr
� C(t C 1)khkW[N=2],1

\W[N=2],1 , t � 0,(1.38)

where et1h D G(t, � ) � h and Wm,r
D {hI ��x h 2 Lr (j�j � m)} with khk2Wm,r D

Pm
j�jD0k�

�

x hk2Lr .
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By (1.35) we call J0N(t)h the “diffusion part”, ande�t=2WN(t)h the “wave part”.
Thus, the solutionSN(t)h is decomposed to the wave part decaying rapidly and the dif-
fusion part, and so we expect that the solution for the dampedwave equation behaves
like that for the corresponding diffusion equation. Thus, we will have the global ex-
istence of solutions to (1.30) whenN D 1, 2, 3, though suitable regularity assumptions
on the data are necessary.

However, whenN � 4, WN(t)h includesrh etc. and (1.37) is not available. For
example, whenN D 4, we have

kW4(t)hkLr
� C(t C 1)2kh, rhkL1

\L1 .

Hence, it is difficult to obtain the solution to (1.30) by the iteration method, because
the regularity problem happens.

Theorem 1.3 (Case I). Suppose(1.13) with q� p> �F (N) with N D 1, 2, 3 and

(1.39)
(u0, u1), (v0, v1) 2 (W[N=2],1

\W[N=2],1) � (L1
\ L1) DW Y1

with their norms ku0, u1kY1 C kv0, v1kY1 � 1,

whereku0, u1kY1 D ku0kW[N=2],1
\W[N=2],1

Cku1kL1
\L1 . Then there exists a unique global

weak solution(u, v) 2 [C([0, 1)I L1
\ L1)]2 to (1.2), which satisfies(1.14) and

(1.15) with

(�1, �2)

D

�

Z

(u0Cu1)(x)dxC
Z

1

0

Z

g(v(t, x))dx dt,
Z

(v0Cv1)(x)dxC
Z

1

0

Z

f (u(t, x))dx dt

�

.

(1.16)0

Theorem 1.4 (Case II). Let q > �F (N) � p > �F (N) � 1 and q > (p C 1 �
�F (N))�1

�F (N) with N D 1, 2, 3. Suppose that, for r0 defined by(1.21),

(u0, u1) 2 (W[N=2],r0
\W[N=2],1) � (Lr0

\ L1) DW Y2, (v0, v1) 2 Y1

with ku0, u1kY2 C kv0, v1kY1 � 1,

whereku0, u1kY2 D ku0kW[N=2],r0
\W[N=2],1 C ku1kLr0

\L1 . Then there exists a unique weak
solution (u, v) 2 C([0,1)I Lr0

\ L1) � C([0,1)I L1
\ L1), which satisfies(1.26),

(1.27) and (1.28) with �2 in (1.16)0. Moreover, if g(v) � C�1
jvj

p in N(0), then the
estimate(1.28)0 from below holds for t� t1� 1 provided that�1 > 0 in (1.16)0.

For more general systems the Case I is treated in [15], and both Theorem 1.1 and
Theorem 1.3 are essentially included in their results.

Our plan of this paper is simple. In the next section we consider the system of
heat equations and prove Theorem 1.1 and Theorem 1.2. In Section 3 we treat the
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system of damped wave equations on the same line as the systemof heat equations,
using the decomposition of solution formula and Lemma 1.2.

2. System of heat equations

In this section we show the global existence of solution (u, v) and its behavior for
small data.

Proof of Theorem 1.1. As stated above, the proof is essentially included in [15].
But, we sketch the proof for our simpler system, which helps us to prove Theorem 1.2
in the Case II.

Define the solution space

(2.1) X WD [C([0,1)I L1
\ L1)]2 with ku, vkX D kukX1 C kvkX2,

where X1 D X2 and for i D 1, 2

(2.2) kwkXi D sup
[0,1)

{kw(t)kL1
C (t C 1)N=2

kw(t)kL1}.

The approximate sequence{(u(n), v(n))} (n D 0, 1, 2,: : :) in X is defined by

(u(0), v(0))(t, x) D

�

Z

G(t, x � y)u0(y) dy,
Z

G(t, x � y)v0(y) dy

�

(2.3)

u(nC1)(t, x) D u(0)(t, x)C
Z t

0

Z

G(t � � , x � y)g(v(n)(� , y)) dy d� ,

v

(nC1)(t, x) D v(0)(t, x)C
Z t

0

Z

G(t � � , x � y) f (u(n)(� , y)) dy d� .

(2.4)

We seek for the solution in

(2.5) X2" D {(u, v) 2 X I kukX1 � 2", kvkX2 � 2"}

for sufficiently small" > 0. It suffices to show the following three assertions:
(i) if ku0, v0kL1

\L1 � 1, then (u(0), v(0)) 2 X
"

,
(ii) if ( u(n), v(n)) 2 X2", then (u(nC1), v(nC1)) 2 X2",
(iii) ku(nC1)

� u(n), v(nC1)
� v

(n)
kX � (1=2)ku(n)

� u(n�1), v(n)
� v

(n�1)
kX (n D 1, 2, : : :).

By (i), (ii), (u(n), v(n)) 2 X2" for all n, so that (iii) holds and{(u(n), v(n))} is the Cauchy
sequence inX. Thus, we have the desired global solution together with decay rates.

It is easy to show

(t C 1)(N=2)(1�1=r )
k(G � u0)(t)kLr

� c0ku0kL1
\L1 , t � 0
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etc. for some constantc0 > 0 and 1� r � 1, which imply (i). For (ii),

ku(nC1)(t)kL1
� ku(0)(t)kL1

C C
Z t

0
kv

(n)(� )kp
L p d�

� ku(0)(t)kL1
C C

Z t

0
(� C 1)�(N=2)(p�1) d� � kv(n)

k

p
X2

� ku(0)(t)kL1
C Ckv(n)

k

p
X2

,

and, whenN D 1, 2 andN � 3 with p � 2,

ku(nC1)(t)kL1 � ku
(0)(t)kL1 C C

Z t

0
(1C t � � )�N=2

kv

(n)(� )kp
L1
\L1 d�

� ku(0)(t)kL1 C C
Z t

0
(1C t � � )�N=2(1C � )�(N=2)(p�1) d�kv(n)

k

p
X2

� ku(0)(t)kL1 C C(t C 1)�N=2
kv

(n)
k

p
X2

,

since (N=2)(p�1)> 1 and (N=2)(p�1)� N=2 if p� 2. WhenN � 3, �F (N)< q < 2
and p0 WD p=(p� 1)> 1,

ku(nC1)(t)kL1

� ku(0)(t)kL1 C C
Z t=2

0
(1C t � � )�N=2

kv

(n)(� )kp
L1
\L1 d�

C C
Z t

t=2
(1C t � � )�(N=2)(1=p0)

kjv

(n)(� )jpkL p0
\L1 d�

� ku(0)(t)kL1 C C

�

Z t=2

0
(1C t � � )�N=2(1C � )�(N=2)(p�1) d�

C

Z t

t=2
(1C t � � )�(N=2)(p�1)(1C � )�N=2 d�

�

kv

(n)(� )kp
X2

,

� ku(0)(t)kL1 C C(t C 1)�N=2
kv

(n)
k

p
X2

.

Hence we have

ku(nC1)
kX1 � ku

(0)
kX1 C Ckv(n)

k

p
X2

� (1C C1(2")p�12)",

and, similarly,

kv

(nC1)
kX2 � kv

(0)
kX2 C Cku(n)

k

q
X1

� (1C C2(2")q�12)".

Taking " > 0 so small as

max{C1(2")p�12, C2(2")q�12} � 1,
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we have (ii). By the assumption (1.13), (iii) holds similar to (ii). Thus we obtain the
solution (u, v) as a limit in X.

We now show the asymptotic behavior following [9]. First,

(2.6)

(4� t)N=2

�

�

�

�

Z

G(t, x � y)u0(y) dy�

�

Z

u0(y) dy

�

G(t, x)

�

�

�

�

� (4� t)N=2
Z

jG(t, x � y) � G(t, x)j ju0(y)j dy

�

Z

jyj�t1=4
je�jx�yj2=(4t)

� e�jxj
2
=(4t)
j ju0(y)j dyC

Z

jyj>t1=4
2ju0(y)j dy

! 0 as t !1.

Secondly,

(2.7)

t N=2

�

�

�

�

Z t

0

Z

G(t � � , x � y)g(v(� , y)) dy d� �

�

Z

1

0

Z

g(v(� , y)) dy d�

�

G(t, x)

�

�

�

�

� CtN=2
Z t=2

0

Z

jG(t � � , x � y) � G(t, x)j jv(� , y)jp dy d�

C CtN=2
Z t

t=2
kv(� )kp

L1 d� C C
Z

1

t=2
kv(� )kp�1

L1 kv(� )kL1 d�

� CtN=2

�

Z

�1

C

Z

�2

�

jG(t � � , x � y) � G(t, x)j jv(� , y)jp dy d�

C CtN=2

�

t

2
C 1

�

�(N=2)p

C C
Z

1

t=2
(� C 1)�(N=2)(p�1) d� .

Here, the last two terms tend to zero ast !1, and, for 0< Æ < 1=2 the domain of
integration�i (i D 1, 2) are defined as

�1 D [0, Æt ] � {y 2 RN
I jyj � Æt1=2}, �2 D ([0, t=2] � RN) n�1.

Then, because of
R

1

0

R

jv(� , y)jp dy d� <1,

(2.8)

t N=2
Z

�2

� CtN=2
Z

�2

(t � � )�N=2
jv(� , y)jpdy d� C C

Z

�2

jv(� , y)jp dy d�

� C
Z

�2

jv(� , y)jp dy d� ! 0 as t !1.

In �1, by setting� D ts and y D
p

tz,

t N=2
� sup

(� ,y)2�1

jG(t � � , x � y) � G(t, x)j

D sup
0�s�Æ, 0�jzj�Æ

�

�(4�(1� s))�N=2e�jx=
p

t�zj2=(4(1�s))
� (4�)�N=2e�jx=

p

t j2=4
�

�.
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Hence for any small� > 0, there existsÆ0 D Æ0(�) independent of (t, x) 2 R
C

� RN

such that, if 0< Æ < Æ0, then

(2.9) t N=2
� sup

(� ,y)2�1

jG(t � � , x � y) � G(t, x)j < �.

Thus, whenr D 1, by (2.6)–(2.9) we have (1.15) foru, and (1.15) forv samely.
When r D 1, it is easier to show (1.15), which is omitted.

Proof of Theorem 1.2. Define the solution space by

(2.10)
X0

D C([0,1)I Lr0
\ L1) � C([0,1)I L1

\ L1)

with ku, vkX0

D kukX0

1
C kvkX2,

wherek � kX2 is the same as in (2.2) and

(2.11) kukX0

1
D sup

[0,1)
{ku(t)kLr0 C (t C 1)N=2r0

ku(t)kL1}.

The approximate sequence{(u(n), v(n))} is defined by (2.3)–(2.4). The solution (u, v) to
(1.11) is sought in

(2.12) X0

2" D {(u, v) 2 X0

I kukX0

1
� 2", kvkX2 � 2"}

for suitably small" > 0. It is almost the same as in Theorem 1.1 to show that{(u(n),v(n))}
is the Cauchy sequence inX0. So, we omit the details. Once we obtain (1.26), then
R

1

0

R

f (u(t, y)) dy d� <1, and (1.27) follows from the same line as in (2.6)–(2.9). We
now estimate

(2.13) Iu(t, x) WD (u � G � u0)(t, x) D
Z t

0

Z

G(t � � , x � y)g(v(� , y)) dy d� .

For L1-estimate we have

kIu(t)kL1
� C

Z t

0
kv(� )kp�1

L1 kv(� )kL1 d� � C
Z t

0
(� C 1)�(N=2)(p�1) d�

�

�

C(t C 1)�(N=2)(p�1)C1, p < �F (N),
C log (t C 2), p D �F (N),

(2.14)1
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and, for L1-estimate,

kIu(t)kL1 � C
Z t

t=2
kv(� )kp

L1 d� C C
Z t=2

0
(1C t � � )�N=2

kv(� )kp�1
L1 kv(� )kL1 d�

� C(t C 1)�(N=2)pC1
C C(t C 1)�(N=2)

�

�

(t C 1)�(N=2)(p�1)C1, p < �F (N),
log (t C 2), p D �F (N),

�

�

C(t C 1)�(N=2)(pC1��F ), p < �F (N),
C(t C 1)�(N=2) log (t C 2), p D �F (N).

(2.14)
1

Thus we have (1.28). Note thatL1-norm of Iu(t) decays sincep > �F (N) � 1.
Moreover, wheng(v) � C�1

jvj

p, we have the estimate (1.28)0 from below. In fact,
by (1.27)

(2.15) v(t, x) � �2G(t, x) DW h(t, x), kh(t)kLr
D o(t�(N=2)(1�1=r )), t !1,

for 1� r � 1. Hence

kIu(t)kL1
D

Z t

0

Z

g(v(� , y)) dy d� � C�1
Z t

0

Z

jv(� , y)jpdy d�

� C�1
�

p
2

Z t

0

Z

G(� , y)pdy d� � C
Z t

0

Z

h(� , y)pdy d�

�

�

C�1t�(N=2)(p�1)C1, p < �F (N),
C�1 log t, p D �F (N),

t � t1� 1,

provided that�2>0. Note that�(N=2)(p�1)C1D�(N=2)(p��F )D�(N=2)(1=r0�1)>
0 andL1-norm of Iu(t) grows up. TheL1-estimate from below is similar to the above.

3. System of damped wave equations

Denote the solutionw D [SN(t)h](x) to (1.29), then the weak solution (u, v) to
(1.2) is the solution to the integral equation (1.30) by Definition 1.1. As we observe
in Introduction, whenN D 1, 2, 3, SN(t)h and its derivative are decomposed in the
following forms:

SN(t)h D e�t=2
�WN(t)hC J0N(t)h,(1.32)

�t (SN(t)h) D e�t=2
�

QWN(t)hC J1N(t)h.(1.33)
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The L p-Lq estimates onWN(t)h, QWN(t)h, J0N(t)h, J1N(t)h are given in Lemma 1.2.
Therefore we rewrite (1.30) to

u(t, � ) D [e�t=2(WN(t)(u0C u1)C QW(t)u0)C J0N(t)(u0C u1)C J1N(t)u0]

C

Z t

0
e�(t�� )=2

�WN(t � � )g(v(� , � )) d� C
Z t

0
J0N(t � � )g(v(� , � )) d�

DW D0(u0, u1)(t, � )C GW(v)(t, � )C GJ(v)(t, � ),

(3.1)1

v(t, � ) D [e�t=2(WN(t)(v0C v1)C QW(t)v0)C J0N(t)(v0C v1)C J1N(t)v0]

C

Z t

0
e�(t�� )=2

�WN(t � � ) f (u(� , � )) d� C
Z t

0
J0N(t � � ) f (u(� , � )) d�

DW D0(v0, v1)(t, � )C FW(u)(t, � )C FJ(u)(t, � ).

(3.1)2

The approximate solution{(u(n), v(n))} (n D 0, 1, 2,: : :) is defined by

(u(0), v(0))(t, x) D
�

D0(u0, u1), D0(v0, v1)
�

(t, x),(3.2)0

u(nC1)(t, x) D u(0)(t, x)C GW(v(n))(t, x)C GJ(v(n))(t, x),

v

(nC1)(t, x) D v(0)(t, x)C FW(u(n))(t, x)C FJ(u(n))(t, x).
(3.2)n

Sketch of the proof of Theorem 1.3. As same as the proof of Theorem 1.1, we
define the solution spaceX by (2.1) and (2.2), and seek for the solution to (3.1) in
X2" defined in (2.5) for small" > 0. To do so, it suffices to show the following
three assertions:
(i)0 If ku0, u1kY1 C kv0, v1kY1 � 1, then (u(0), v(0)) 2 X

"

.
and (ii), (iii). By (1.34), (1.36)–(1.38) in Lemma 1.2, forr D 1,1

ku(0)(t)kLr
� C0(t C 1)�(N=2)(1�1=r )

ku0, u1kY1, t � 0,

kv

(0)(t)kLr
� C0(t C 1)�(N=2)(1�1=r )

kv0, v1kY1, t � 0,

for some positive constantC0. Hence

(3.3) ku(0), v(0)
kX � C0(ku0, u1kY1 C kv0, v1kY1),

and so (i)0 holds. Since

kGW(v(nC1))(t)kL1
� C

Z t

0
e�(t�� )=2(t � � C 1)kv(n)(� )kp�1

L1 kv
(n)(� )kL1 d�

� C
Z t

0
(� C 1)�(N=2)(p�1) d� � kv(n)

k

p
X � C(2")p,
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kGJ(v(nC1))(t)kL1
� C

Z t

0
(� C 1)�(N=2)(p�1) d� � kv(n)

k

p
X � C(2")p,

kGW(v(nC1))(t)kL1 � C
Z t

0
e�(t�� )=2(t � � C 1)kv(n)(� )kp

L1 d�

� C
Z t

0
e�(t�� )=2(t � � C 1)(� C 1)�(N=2)p d� � kv(n)

k

p
X

� C(t C 1)�N=2(2")p,

and

kGJ(v(nC1))(t)kL1

� C
Z t=2

0
(t � � C 1)�N=2

kv

(n)(� )kp�1
L1 kv

(n)(� )kL1 d� C C
Z t

t=2
kv

(n)(� )kp
L1 d�

� C

�

Z t=2

0
(t � � C 1)�N=2(� C 1)�(N=2)(p�1) d� C

Z t

t=2
(� C 1)�(N=2)p d�

�

� kv

(n)
k

p
X

� C(t C 1)�N=2(2")p,

we have the desired estimate

ku(nC1)
kX � ku

(0)
kX C C(2")p

� (1C C1(2")p�12)".

We also have the estimate onv, and the assertion (ii) by taking" > 0 as

max{C1(2")p�12, C2(2")q�12} � 1.

The assertion (iii) is almost similar. Thus we have the solution (u, v) in X satisfying
(3.1), which decays with the rate (1.14).

For the asymptotic behavior the estimate (1.35) in Lemma 1.1plays an important
role. For examples,

(3.4)
J0N(t)(u0C u1) �

�

Z

(u0C u1)(y) dy

�

G(t, � )

D (J0N(t) � et1)(u0C u1)C
Z

(G(t, � � y) � G(t, � ))(u0C u1)(y) dy,

and
(3.5)
Z

J0N(t � � )g(v(� , � )) d� �

�

Z

1

0

Z

g(v(� , y)) dy d�

�

G(t, � )

D

Z t

0
(J0N(t � � ) � e(t�� )1)g(v(� , � )) d�

C

�

Z t

0

Z

G(t � � , � � y)g(v(� , y)) dy d� �

�

Z

1

0

Z

g(v(� , y)) dy d�

�

G(t, � )

�

.



WEAKLY COUPLED SYSTEM 347

Each first term in the right hand side of (3.4) and (3.5) decaysfast by (1.35) and
last terms in (3.4) and (3.5) decay fast, as shown in the proofof Theorem 1.1. The
other terms in (3.1)1 decays fast. Estimates onv are similar. Thus we have (1.15)
with (1.16)0.

The proof of Theorem 1.4 is a little bit complicated comparedto that of The-
orem 1.3, but it is almost similar to that of Theorem 1.2 by applying Lemma 1.2. So
we omit the details.
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