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Abstract
Let QmC1 denote the family of regular Sasakian manifolds whose base manifold

M2m is a compact symmetric space. We provide a classification of the totally geo-
desic submanifolds ofQmC1 which are invariant, anti-invariant of maximal dimension
or contact CR with respect to the Sasakian structure. Such submanifolds are closely
related to complex and totally real totally geodesic submanifolds of the Hermitian
symmetric spaceM2m.

1. Introduction

Totally geodesic submanifolds of a Riemannian manifold area fundamental ob-
ject of study in submanifold geometry, generalizing the geodesics of the manifold to
higher dimensional submanifolds. Their classification fora given manifold is a central
problem and examples of totally geodesic submanifolds are explicitly known in some
very special cases. For space forms all totally geodesic submanifolds were classified
by Cartan (see [1] for an overview). The classification is also tractable in the case of
symmetric spaces. Here the classification is equivalent to the classification of Lie triple
systems, which is an algebraic problem. All the totally geodesic submanifolds of non-
spherical rank one symmetric spaces were classified by Wolf [13] and [14]; we note
that they are all distinguished with respect to the naturally defined geometric structures.
For example, in quaternionic projective spaceHPn the maximal totally geodesic sub-
manifolds areHPn�1 and CPn. The first is quaternionic, i.e. invariant under a local
sectionJ1, J2, J3 of the quaternionic-Kähler structureJ , and the second is totally com-
plex with respect to one of the local sections, i.e.J1(TpS) � TpS and Ji (TpS) � �p(S),
the normal bundle ofS, for i D 2, 3 and all pointsp 2 S. In recent years the clas-
sification has been completed in the rank two case by Klein (see [6], [7], [8] and
[9]), who found an error in the previous classification of totally geodesic submanifolds
in compact rank two symmetric spaces due to Chen and Nagano. In a series of pa-
pers he resolved the errors and the classification is now watertight. Aside from two
exceptional examples and one exceptional family (none of which are maximal unless
the ambient symmetric space has dimension four) all of thesein complex two-plane
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Grassmannians are again distinguished with respect to its natural geometric structures
(the complex structureJ and the quaternionic-Kähler structureJ ). Hence, for sym-
metric spaces with additional geometric structures it is important to study the totally
geodesic submanifolds which respect these structures.

The other fruitful field of study has been Hermitian symmetric spaces (M,J). Most
known examples here are either totally real (i.e. forX 2 0(T S), J X 2 0(�(S))) or else
complex (i.e. J X 2 0(T S) for X 2 0(T S)). Complex totally geodesic submanifolds
are completely classified in Hermitian symmetric spaces dueto a theorem of Ihara
[10]. Leung’s work [11] provides a classification of all realforms of Hermitian sym-
metric spaces (i.e. totally real, totally geodesic submanifolds S of M with dimR(S) D
dimC(M), but in general totally real totally geodesic submanifolds are more difficult
to understand.

Sporadic new examples have been recently found in other symmetric spaces, and
there has been progress on the classification of such submanifolds (see [7] for a sur-
vey). There has been no progress at all to date on the classification of totally geo-
desic submanifolds for non-symmetric spaces, as the existing techniques which reduce
it to an algebraic problem do not generalize. This paper aimsto address this deficit by
investigating regular Sasakian manifoldsQmC1 (which are circle bundles over Hermit-
ian manifolds) whose baseM2m is also a symmetric space. Hence their base space
is a Hermitian symmetric space, and all real forms and complex totally geodesic sub-
manifolds in the base space are known. The totally geodesic submanifolds of QmC1

which satisfy similar geometric conditions to those of totally real and complex sub-
manifolds in Hermitian symmetric spaces are classified in this paper. QmC1 does not
have a complex structure, but it does have a Sasakian structure '. The analogous class
of submanifoldsS� QmC1 which respect this structure are those which are invariant
(i.e. for X 2 0(T S), '(X) 2 0(T S)) and those which are anti-invariant (i.e. forX 20(T S), '(X) 2 0(�(S)), the normal bundle ofS). The third distinguished family of
submanifolds that have been investigated are contact CR submanifolds. We define a
submanifoldS� QmC1 to be contact CR if there exists a distributionD of non-zero
dimension such that there is a decomposition

T SD {U} �D �D?
with '(D) D D and '(D?) 2 �(S), the normal bundle ofS. Here {U} denotes the
distribution spanned by the Killing vector fieldU tangential to the fibres of the sub-
mersion. Our objective is to establish:

Theorem. Let � W (QmC1, ') ! (M2m, J) denote the canonical submersion from
a regular Sasakian manifold to a Hermitian symmetric space.
• S is an invariant totally geodesic submanifold of QmC1 if and only if it is locally
isometric to��1(P), where P is a complex totally geodesic submanifold of M2m.
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• S is an anti-invariant totally geodesic submanifold of QmC1 of maximal dimension
m if and only if it is locally isometric to NH , where NH is a horizontal lift of a real
form of M2m.
• There are no contact CR submanifolds of QmC1 which are totally geodesic.

If we assume further thatS is a closed submanifold it is easy to extend this local
classification to deduce that ifS is invariant it is isometric to��1(P) for P a closed to-
tally geodesic complex submanifold ofM2m. If S is anti-invariant the horizontal liftNH
might not patch together to give a closed submanifold inQmC1, so one can only con-
clude that it is locally isometric to a horizontal lift of thesame totally real, totally geo-
desic submanifold ofM2m. Applying the work of Ihara mentioned above together with
this result yields an explicit classification for invariantsubmanifolds. Leung’s work im-
plies that the anti-invariant totally geodesic submanifolds of QmC1 of maximal dimen-
sion m are also classified as a corollary of this theorem.

For symmetric spaces of low rank, specifically of rank one or two, there are com-
plete explicit classifications of totally geodesic submanifolds [13], [7], and one may eas-
ily read off from this a list of real forms and complex totallygeodesic submanifolds. In
these cases, the theorem yields an explicit list of the invariant andm-dimensional anti-
invariant totally geodesic submanifolds of the corresponding regular Sasakian manifolds.
As an illustration of this, consider the case� W SU(mC 2)=SU(m)SU(2) ! G2(CmC2),
m > 3, where the base space is the complex two-plane Grassmannian, a rank-two sym-
metric space. From the list in [7] there are three families ofsubmanifolds in the first
class, namely��1(P) whereP is isometric to a neighbourhood ofCPl

1, G2(ClC2), where

in both cases 1� l � n, and finallyCPl1
1 � CPl2

1 , wherel1 C l2 D m. There is also an
exceptional example, whereP is isometric to a neighbourhood of anGC

2 (R5). For the
second class,S is a horizontal lift of a real form of the base space. These arelocally iso-
metric to one of;RPm

1 , RPm
1=p5

, RPm
1=2, CPm

1=2,HPm
1=2, G2(RmC2), or RPl1

1 �RPl2
1 where

l1C l2 D m. The subscripts here refer to nonstandard scalings of the metric; we refer the
reader to [8] for explanations of this notation and further details.

This work was undertaken as part of a Ph.D. under the supervision of Prof Jürgen
Berndt at University College Cork, Ireland. The author thanks him and Sebastian Klein
for their helpful comments. The author was supported in the course of this research
by a postgraduate fellowship of the Irish Research Council for Science, Engineering
and Technology.

2. Proof of main result

To begin, well-known facts about the geometry of regular Sasakian manifolds are
briefly summarized. A good general reference is [4]. LetM2m denote a compact Hermit-
ian symmetric space, whereG is the identity component of the full isometry group. This
is a connected semisimple Lie group. The stabilizerK has one-dimensional centerU1,
and soK is diffeomorphic toHU1. The homogeneous spaceQmC1 D G=H is a regular
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Sasakian manifold of dimension 2mC 1 and the canonical projection� W Q ! M is the
corresponding Riemannian submersion withU1 fibres. This paper is concerned with the
geometry of the submanifolds ofQmC1.

The metric h � , � i is invariant along the fibre of the circle bundle. Denote the
corresponding Killing vector field onQmC1 by U , whose value atp is denotedU (p).
There is a foliationF on QmC1 induced by the flow of the unit Killing vector field
U and the maximal integral curves ofU are closed geodesics inQmC1. F is a totally
geodesic Riemannian foliation onQmC1, with QmC1=F isometric to (M2m, J). Setting' WD �rU , wherer denotes the Levi-Civita connection of (QmC1,h � , � i), we also have
that (', U, h � , Ui) is a Sasakian structure onQmC1, and it is related to the complex
structure on the base space by the fundamental formula

(2.1) J�� D ��'.

Define the horizontal distributionH(p) WD {X 2 TpQmC1 W hX, U (p)i D 0}. Then we
note without proof that'(H) � H and '2(X) D �X C hX, UiU (see [4]). Moreover,

h'(X), '(Y)i D hX, Yi � hX, UihY, Ui.
It follows from this that thath'(X), Yi D �hX, '(Y)i if one of X, Y 2 0(H). We are
now ready to prove the theorem.

Proof. Let S be a totally geodesic submanifold in (QmC1, g) of dimensionn. We
will work in a neighbourhoodW of a point q 2 S in what follows. Suppose further
that S is an invariant or anti-invariant submanifold ofQmC1 that is not in one of the
following two families:
(1) U (p) 2 TpS for all p 2 W, or else
(2) U (p) ? TpS for all p 2 W,
i.e. U (p) is neither perpendicular to nor contained inTpS for all p 2 W. Choose a
local framing of QmC1 constructed in the following manner. At each pointp 2 W,
U jT S(p) WD U (p)jTpS denotes the vector field obtained by projectingU at each point
p 2 S to the vector subspaceTpS. Multiply U jT S by the function f 2 C1(W) so
that k f (p)U jT S(p)k D 1 and setX(p) D f (p)U jT S(p). Then choose an orthonormal
framing of T SjW: {X, Y1, : : : , Yn�1} where by constructionYi 2 0(H). The notation0(T S)jW will denote the restriction of the vector field toW, so that on all pointsq 2
W, X(q) 2 TqS, etc. SinceU � 0(T S)jW there is also a nonzero orthogonal projection
at each pointp to the normal bundle�p(S) which is again normalized to give a unit
normal vector field called�1. Then complete our framing by choosing an orthonormal
frame field of�(S)jW: {�1,: : : ,�m�n}. By our choice of framing onW we also have that

(2.2) U (p) D f1(p)X(p)C f2(p)�1(p)

for nonzero functionsf1, f2 2 C1(W). By re-choosing a smaller neighbourhoodW
of p if necessary, both functions may be chosen to be nonzero at all points p 2 W.
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Observe thath'(Y), Ui D �hrYU, Ui D 0 so, from Equation (2.2)

(2.3) h'(Yi ), Xi D � f2(p)

f1(p)
h'(Yi ), �1i.

Assume now thatS is anti-invariant of dimensionn D m. From the fact'(X) D�( f2(p)= f1(p))'(�1) it follows also that'(X) ? �1 and so

'(X) 2 Span{�2, : : : , �m},

where the framing is chosen by setting� j D '(Yj�1), j � 2. But h'(X), � j i Dh'(X), '(Yj�1)i D h�'2(X), Yj�1i, becauseYj�1 2 H. This is hX � f1U, Yj�1i which
is zero by construction. Hence'(X) 2 0(T S), contrary to assumption. It follows from
Equation (2.3) alone thatS cannot be invariant for alln. If it were, thenh'(X),Yj i ¤ 0
for at least one j � 1 and then applying Equation (2.3) leads to an immediate
contradiction.

The upshot of this is that there are exactly two possibilities:
(1) U 2 0(T S)jW, or else
(2) U 2 0(�S)jW.
In Case (1),U (q) 2 TqS and soU (p) 2 TpS for all p 2 W. Otherwise, at some point
q0 we would haveU � Tq0 S. But then, repeating the same argument as above at the
point q0, since we are not in Case (1), andS is totally geodesic, Case (2) holds atq0:
so U 2 �q0(S). Connectingq and q0 by a path�, let U 0 be the orthogonal projection
of U onto T SjW. Case (1) meanskU 0k D 1, Case (2) meanskU 0k D 0. For continuity
reasons, the continuous functionkU 0kW S! R cannot jump from being 1 to being 0
as one travels along�, so S cannot jump from being in Case (1) to being in Case (2).

For Case (1), the fact thatU 2 0(T S)jW implies that�(S)jW is a submanifold
of M. This follows from the equation��[ NX, NY] D [X, Y] Æ � for basic lifts of two
vector fieldsX, Y 2 0(T�(S)), the Frobenius theorem and the factS� Q. Choosing� to be a unit normal vector field toS, � 2 0(H) and so induces a unit normal vector
field ��� on �(S)jW, and every unit normal vector field arises that way. The next step
is to establish that�(S) is totally geodesic. If it were not, then there would existsa
vector field B 2 0(T�(S)) such thatrM

B � D �B with � ¤ 0, where� 2 �(T�(S)) is
a unit normal vector field. HererM denotes the Levi-Civita connection forM2m and
similarly rQ denotes the Levi-Civita connection ofQmC1. But then by the fundamental
equations for a Riemannian submersion

rQNB N� D � NBC AONNB N�
where AON is the O’Neill tensor for a Riemannian submersion,NB denotes the horizon-
tal lift of B, and N� is the horizontal lift of� . N� is a unit normal vector field toS. By
definition AON takes values in the tangent space to the fibres, so the vector fields on
the right hand side are normal to each other. The fact� ¤ 0 would contradict the fact
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S is totally geodesic and hence�(S) is totally geodesic. SinceU 2 TpS for all p 2 W,
therefore the integral curves ofU (which are the fibres of the submersion) are inTqS
and so��1(�(S)) D S on W. Now it is well-known that for a Riemannian submer-
sion � W Q ! M and P � M a totally geodesic submanifold of the base spaceM, then��1(P) is totally geodesic if and only if

AONNZ N� D 0,

for NZ a horizontal lift of a vector fieldZ tangent toP and N� a horizontal lift of a unit
vector field � normal to P. See [5], Theorem 2.9 for a proof of this. Calculating the
scalar component of this tensor gives

1

2
h[ NZ, N� ], Ui D 1

2

�
rQNZ N� � rQN� NZ, U
�� D 1

2

�
rQNZ N� , U
� � 
rQN� NZ, U

��
D �1

2

�
 N� , rQNZ U
� � 
 NZ, rQN� U

�� D hN� , '( NZ)i,
using the facts that' is skew-symmetric andNZ, N� 2Hq for all points q 2 W. Hence it
vanishes if and only if'(T S) � T S, and from Equation (2.1) it follows that it vanishes
if and only if P � M is complex. This proves the first case of the theorem.

The classification of all examples which fall into Case (2) isan elementary ap-
plication of a theorem of Reckziegel [12], who showed that ifone has a Riemannian
submersion� W Q ! M from a Sasakian manifoldQ to a Kähler manifoldM then
every horizontal submanifoldQH corresponds (under the map�) to a totally real sub-
manifold H in M, and vice versa. Moreover, the the second fundamental forms are
related by the formula

�H D ��� QH .

It is immediate from this that QH is totally geodesic if and only ifH is and henceQH � QmC1 is totally geodesic if and only if it is a horizontal lift of a totally geodesic
totally real submanifold.

Finally, supposeS� QmC1 is a contact CR totally geodesic submanifold, and choose
a neighbourhoodW of a point p 2 S. Recall thatT SD {U}�D�D?. Hence any CR
contact submanifold would falls into class 1 by definition. It has already been shown
that the only totally geodesic submanifolds in the first caseare invariant, so it follows
that there are no totally geodesic contact CR submanifolds of QmC1.

In general it is more difficult to classify the totally real submanifolds of a Hermit-
ian symmetric space than the complex ones, as Leung’s work illustrates. The the-
orem above actually classifies all anti-invariant submanifolds of maximal dimension
which fall into class 1 or 2, so it would be of interest to studythose which are not in
these classes.
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REMARK . A theorem in [15] was brought to our attention after this work was
completed. Here the following result is proven: Let� W Q ! M be the usual fibering
from a (2mC 1)-dimensional Sasakian manifoldQ to a 2m-dimensional Kähler mani-
fold M. Let S be an (mC 1)-dimensional invariant submanifold ofQ and N be an
m-dimensional complex submanifold ofM such that�(S) D N. Then S is totally geo-
desic in Q if, and only if, N is totally geodesic inM. Our result agrees with theirs in
the invariant submanifold case, but is stronger as we have shown that the hypothesis
that the projection of the invariant submanifold to the basespace be a complex sub-
manifold and the restriction on the dimensions of the submanifolds may be removed,
as well as actually classifying the various possibilities for S.
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