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Abstract
We study the structure of Stanley–Reisner rings associatedto cyclic polytopes,

using ideas from unprojection theory. Consider the boundary simplicial complex1(d, m) of the d-dimensional cyclic polytope withm vertices. We show how to ex-
press the Stanley–Reisner ring of1(d, mC 1) in terms of the Stanley–Reisner rings
of 1(d,m) and1(d�2,m�1). As an application, we use the Kustin–Miller complex
construction to identify the minimal graded free resolutions of these rings. In partic-
ular, we recover results of Schenzel, Terai and Hibi about their graded Betti numbers.

1. Introduction

Gorenstein commutative rings form an important class of commutative rings. For
example, they appear in algebraic geometry as canonical rings of regular surfaces and
anticanonical rings of Fanon-folds and in algebraic combinatorics as Stanley–Reisner
rings of sphere triangulations. In codimensions 1 and 2 theyare complete intersections
and in codimension 3 they are Pfaffians [2], but, to our knowledge, no structure the-
orems are known for higher codimensions.

Unprojection theory [11], which analyzes and constructs complicated commutative
rings in terms of simpler ones, began with the aim of partly filling this gap. The first
kind of unprojection which appeared in the literature is that of type Kustin–Miller, stud-
ied originally by Kustin and Miller [8] and later by Reid and the second author [9,
10]. Starting from a codimension 1 idealJ of a Gorenstein ringR such that the quo-
tient R=J is Gorenstein, Kustin–Miller unprojection uses the information contained in
HomR(J, R) to construct a new Gorenstein ringS which is birational toR and corres-
ponds to the contraction ofV(J) � SpecR. See Subsection 2.2 for a precise definition
of Kustin–Miller unprojection and the introduction of [3] for references to applications.

In the paper [3], the authors proved that on the algebraic level of Stanley–Reisner
rings, stellar subdivisions of Gorenstein* simplicial complexes correspond to Kustin–
Miller unprojections and gave applications to Stanley–Reisner rings associated to stacked
polytopes. In the present paper, we use unprojection theoryto study the structure of
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Stanley–Reisner rings associated to cyclic polytopes. This setting is different from the
one studied in [3] since here, except for some easy subcases,stellar subdivisions do not
appear and the unprojection ideals are more complicated.

Our main result, which is stated precisely in Theorems 3.3 and 4.4, can be de-
scribed as follows. Assumed � 4 anddC 1< m. Consider the cyclic polytope which
hasm vertices and dimensiond, and denote by1(d, m) its boundary simplicial com-
plex. We show how to express the Stanley–Reisner ring of1(d,mC1) in terms of the
Stanley–Reisner rings of1(d, m) and1(d� 2, m� 1) via Kustin–Miller unprojection.
Moreover, a similar result is also true for the remaining cases d D 2, 3 andmD dC1,
see Subsections 3.1, 3.2, 4.1 and 4.2. In Section 5 we give a combinatorial interpreta-
tion of our construction.

As an application, in Section 6 we inductively identify the minimal graded free reso-
lutions of the Stanley–Reisner ringsk[1(d, m)]. We use this identification in Propos-
ition 6.6 to calculate the graded Betti numbers of these rings, recovering results originally
due to Schenzel [12] ford even and Terai and Hibi [13] ford odd. Our derivation is more
algebraic than the one in [13], and does not use Hochster’s formula or Alexander duality.
Finally, Subsection 6.2 contains examples and a link to related computer algebra code.

An interesting open question is whether there are other families of Gorenstein
Stanley–Reisner rings related by unprojections in a similar way as cyclic polytopes,
compare also the discussion in [3, Section 6].

2. Preliminaries

Assumek is a field, andm a positive integer. An (abstract) simplicial complex on
the vertex set{1, : : : , m} is a collection1 of subsets of{1, : : : , m} such that (i) all
singletons{i } with i 2 {1, : : : , m} belong to1 and (ii) � � � 2 1 implies � 2 1. The
elements of1 are calledfacesand those maximal with respect to inclusion are called
facets. The dimension of a face� is defined as one less than the cardinality of� . The
dimension of1 is the maximum dimension of a face. Any abstract simplicial complex1 has a geometric realization, which is unique up to linear homeomorphism.

For any subsetW of {1, : : : , m}, we denote byxW the square-free monomial in
the polynomial ringk[x1, : : : , xm] with support W, in other wordsxW is the product
of xt for t 2 W. The ideal I1 of k[x1, : : : , xm] which is generated by the square-free
monomialsxW with W � 1 is called theStanley–Reisner idealof 1. The face ring,
or Stanley–Reisner ring, of 1 over k, denotedk[1], is defined as the quotient ring of
k[x1, : : : , xm] by the ideal I1.

AssumeRD k[x1, : : : , xm] is a polynomial ring over a fieldk with the degrees of
all variablesxi positive, and denote bym D (x1, : : : , xm) the maximal homogeneous
ideal of R. AssumeM is a finitely generated gradedR-module. Denote by

0! Fg ! Fg�1 ! � � � ! F1 ! F0 ! M ! 0
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the minimal graded free resolution ofM as R-module, and write

Fi DM
j

R(� j )bi j .

The integerbi j is called thei j -th graded Betti numberof M and is also denoted by
bi j (M). For fixed i we setbi (M) DP

j bi j (M). The integerbi (M) is the rank of the
free R-module Fi in the category of (ungraded)R-modules, and

(2.1) bi (M) D dimR=m TorR
i (R=m, M),

cf. [7, Proposition 1.7]. For more details about free resolutions and Betti numbers see,
for example, [6, Sections 19, 20].

AssumeR is a ring. An elementr 2 R will be called R-regular if the multipli-
cation by r map R ! R, u 7! ru is injective. A sequencer1, : : : , rn of elements of
R will be called aregular R-sequenceif r1 is R-regular, and, for 2� i � n, we have
that r i is R=(r1, : : : , r i�1)-regular.

Assumek is a field, anda, m, n three positive integers withm < n and 2a �
n�mC 2. We define the idealIa,m,n � k[xm, xmC1, : : : , xn] by

Ia,m,n D (xt1xt2 � � � xta j m� t1, ta � n, t j C 2� t jC1 for 1� j � a� 1).

The assumption 2a� n�mC2 implies that there exists at least one monomial generator
of Ia,m,n, namelyxmxmC2 � � � xmC2(a�1). For example, we haveI2,3,6D (x3x5, x3x6, x4x6).

2.1. Cyclic polytopes. Recall from [1, Section 5.2] the definition of cyclic poly-
topes. We fix two integersm, d, with 2 � d < m, and define the cyclic polytope
Cd(m) � Rd as follows: Fix, for 1� i � m, ti 2 R with t1 < t2 < � � � < tm. By defin-
ition, the cyclic polytopeCd(m) D Cd(t1, : : : , tm) is the convex hull inRd of the subset
{ f (t1), f (t2), : : : , f (tm)} � Rd, where f W R! Rd with f (t) D (t, t2, : : : , td) for t 2 R.
We have thatCd(m) is a simpliciald-polytope, which up to combinatorial equivalence
does not depend on the choice of the pointsti . We denote by1(d, m) the boundary
simplicial complex ofCd(m), by definition1(d, m) has as elements the empty set and
the sets of vertices of the proper faces ofCd(m), cf. [1, Corollary 5.2.7].

AssumeW � {1, : : : , m} is a proper nonempty subset. A nonempty subsetX � W
is called contiguous if there existi , j with 2 � i � j � m� 1 such thati � 1 � W,
j C 1 � W, X D {i , i C 1, : : : , j }. A contiguousX � W is called odd contiguous if
#X is odd. AssumeW contains a contiguous subset, this is equivalent to the existence
of a 2 W and b1, b2 2 {1, : : : , m} n W with b1 < a < b2. Then, there exist a unique
integer t � 1 and a unique decomposition

W D Y1 [ X1 [ X2 [ � � � [ Xt [ Y2,
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such thatY1 is either empty or of the form{1, 2,: : : , i } for somei � 1 with i C1 � W,
Y2 is either empty or of the form{ j , j C 1, : : : , m} for some j � m with j � 1 � W,
each Xp, for 1� p � t , is a contiguous subset ofW, and for p1 < p2 each element
of Xp1 is strictly smaller than any element ofXp2.

For a real numberr we denote by [r ] the integral value ofr , i.e., the largest in-
teger which is smaller or equal thanr . The following theorem characterizing the faces
of 1(d, m) is proven in [1, Theorem 5.2.13], compare also [13, Lemma 2.2].

Theorem 2.1. Assume W� {1, : : : , m} is a nonempty subset with#W � d. W
is a face of1(d, m) if and only if the number of odd contiguous subsets of W is at
most d� #W. In particular, if #W � [d=2] then W is a face of1(d, m).

2.2. Kustin–Miller unprojection. We recall the definition of Kustin–Miller un-
projection from [10]. AssumeR is a local (or graded) Gorenstein ring, andJ � R a
codimension 1 ideal withR=J Gorenstein. Fix� 2 HomR(J, R) such that HomR(J, R)
is generated as anR-module by the subset{i , �}, where i denotes the inclusion mor-
phism. TheKustin–Miller unprojection ring Sof the pair J � R is the quotient ring

SD R[T ]

(T u� �(u) j u 2 J)
,

where T is a new variable. The ringS is, up to isomorphism, independent of the
choice of�. The original definition of Kustin and Miller [8] was using projective reso-
lutions, compare Subsection 2.3 below.

2.3. The Kustin–Miller complex construction. The following construction,
which is due to Kustin and Miller [8], will be important in Section 6, where we iden-
tify the minimal graded free resolution ofk[1(d, m)].

AssumeR is a polynomial ring over a field with the degrees of all variables posi-
tive, and I � J � R are two homogeneous ideals ofR such that both quotient rings
R=I and R=J are Gorenstein and dimR=J D dim R=I � 1. We definek1, k2 2 Z such
that!R=I D R=I (k1) and!R=J D R=J(k2), compare [1, Proposition 3.6.11], and assume
that k1 > k2. We fix a graded homomorphism� 2 HomR=I (J, R=I ) of degreek1 � k2

such that HomR=I (J, R=I ) is generated as anR=I -module by the subset{i ,�}, wherei
denotes the inclusion morphism, compare Subsection 2.2. Wedenote bySD R[T ]=Q
the Kustin–Miller unprojection ring of the pairJ � R=I defined by�, where T is a
new variable of degreek1� k2. We have thatQ D (I , T u� �(u) j u 2 J) and thatS is
a graded algebra.

We denote byg D dim R� dim R=J the codimension of the idealJ of R. Let

CJ W 0! RD Ag ! Ag�1 ! � � � ! A1 ! RD A0

and

CI W 0! RD Bg�1 ! � � � ! B1 ! RD B0
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be the minimal graded free resolutions ofR=J and R=I respectively asR-modules.
Due to the Gorensteiness ofR=J and R=I they are both self-dual. We denote by
ai W Ai ! Ai�1 and b j W B j ! B j�1 the differential maps. In the following, for an
R-module M we denoted byM 0 the R[T ]-module M 
R R[T ].

Kustin and Miller constructed in [8] a graded free resolutionCS of S as R[T ]-
module of the form

CSW 0! Fg ! Fg�1 ! � � � ! F1 ! F0 ! S! 0,

where, wheng � 3,

F0 D B0
0, F1 D B0

1 � A01(k2 � k1),

Fi D B0
i � A0i (k2 � k1)� B0

i�1(k2 � k1), for 2� i � g� 2,

Fg�1 D A0g�1(k2 � k1)� B0
g�2(k2 � k1), Fg D B0

g�1(k2 � k1),

cf. [8, p. 307, Equation (3)]. Wheng D 2 we have

F0 D B0
0, F1 D A01(k2 � k1), F2 D B0

1(k2 � k1).

We will now describe the differentials of the complexCS. We denote the rank
of the free R-module A1 by t1, since CJ is self-dual t1 is also the rank of the free
R-module Ag�1. We fix R-module basese1, : : : , et1 of A1 and Oe1, : : : , Oet1 of Ag�1.
We define, for 1� i � t1, ci , Oci 2 R by a1(ei ) D ci 1R and ag(1R) D Pt1

iD1 Oci Oei . By
Gorensteiness we have thatci , Oci 2 J for all 1 � i � t1. For 1� i � t1, let l i 2 R be
a lift in R of �(ci ) and let Ol i 2 R be a lift in R of �(Oci ). For an R-module A we set
A� D HomR(A, R). For an R-basis f1, : : : ft of A we denote byf �1 , : : : , f �t the basis
of A� dual to it.

Denote by Q�d
g�1W A�g�1 ! RD B�

g�1 the R-homomorphism withQ�d
g�1( Oe�i )D Ol i 1R for

1 � i � t1. Taking into account the self-duality ofCI , CJ , we have thatQ�d
g�1 extends

to a chain mapQ�d W C�
J ! C�

I . We denote byQ� W CI ! CJ the chain map dual toQ�d.
The map Q�0 W B0 D R! RD A0 is multiplication by an invertible element, sayw, of
R, cf. [9], and we set� D Q�=w.

We will now define a chain map� W CJ ! CI [�1]. We first define�1 W A1 !
R D B0 by �1(ei ) D �l i 1R. We obtain a chain map� W CJ ! CI [�1] by extending�1. Moreover,�g W Ag D R ! R D Bg�1 is multiplication by a nonzero constantu 2
R. By [8, p. 308] there exists a homotopy maph W CI ! CI with h0 W B0 ! B0 and
hg�1 W Bg�1 ! Bg�1 being the zero maps and

�i�i D hi�1bi C bi hi ,

for 1� i � g.
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Finally, following [8, p. 307], we have that the differential maps fi W Fi ! Fi�1 of
the complexCS are given in block format by the following formulas

f1 D �
b1 �1 C T a1

�
, f2 D

�
b2 �2 h1 C T I1
0 �a2 ��1

�
,

fi D
2
4 bi �i hi�1 C (�1)i T Ii�1

0 �ai ��i�1

0 0 bi�1

3
5 for 3� i � g� 2,

fg�1 D
2
4 �g�1 hg�2 C (�1)g�1T Ig�2�ag�1 ��g�2

0 bg�2

3
5,

fg D
� ��g�1 C (�1)gu�1T ag

bg�1

�
,

where I t denotes the identity rankBt � rankBt matrix.
The resolutionCS is, in general, not minimal [3, Example 5.2]. However, in the

cases of stacked and cyclic polytopes it is minimal, see [3] and Theorem 6.1. In the
following we will call CS the Kustin–Miller complex construction. We refer the reader
to Subsection 6.2 for explicit examples of this construction.

3. The main theorem for d even

We fix a fieldk, and assume thatd,m are integers withd even and 2� d <m�1.
(The casemD dC1 is discussed in Subsection 3.2.) We setaD (dC2)=2, and denote
by k[1(d, m)] the Stanley–Reisner ring of the simplicial complex1(d, m).

The following lemma is an almost immediate consequence of Theorem 2.1.

Lemma 3.1. We have

k[1(d, m)] � k[x1, : : : , xm]=(Ia,1,m�1, Ia,2,m).

Proof. Denote byA the set of minimal monomial generators of the ideal
(Ia,1,m�1, Ia,2,m). We first show that ifxV 2 A, then V is not a face of1(d, m). As-
sumexV is a monomial generator ofIa,1,m�1, the casexV is a monomial generator of
Ia,2,m follows by the same arguments. Since #V D a, we have that the number of odd
contiguous subsets ofV is at leasta � 1. Sincea � 1D d=2 > d=2� 1 D d � a, by
Theorem 2.1V is not a face of1(d, m).

Assume nowW � {1, : : : , m} is a subset with #W � d. We will show that if W
is not a face of1(d, m) then there exists a monomial generatorxV 2 A with V � W.
By Theorem 2.1 #W � a. We will argue by induction on the cardinality ofW.

Denote byp the number of the odd contiguous subsets ofW considered as a sub-
set of {1, : : : , m}, and, forw 2 W, by pw the number of the odd contiguous subsets
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of W n {w} also considered as a subset of{1, : : : , m}. By Theorem 2.1p > d � #W.
If #W D a, then p > d� #W implies thatW has at leastd� aC 1D a� 1D #W� 1
odd contiguous subsets, and we setV D W.

Assume for the rest of the proof that #W > a. By the inductive hypothesis it is
enough to show that there existsw 2 W such thatW n {w} is not a face of1(d, m).
Hence, by Theorem 2.1 it is enough to show that there existsw 2 W with pw > d �
#WC 1.

We call a nonemptyX � W a gc-subset if there existi � j with i � 1 � W,
j C 1 � W such thatX D {i , i C1, : : : , j }. It is obvious that a contiguous subset ofW
is a gc-subset, and that a gc-subset ofW is contiguous if and only if contains neither
1 nor m.

If W contains a gc-subset of even cardinality, say{i , i C1, : : : , j } we setw D m if
j Dm, while if j 6Dm we setw D i . In the first case, sincei D 1 contradicts #W � d,
we have thatpw D pC 1, so pw > d� #WC 1 follows. Similarly, for the second case
again pw D pC 1 and pw > d � #WC 1 follows.

Assume for the rest of proof that all gc-subsets ofW are of odd cardinality. First
assume thatW contains a gc-subset{i , i C1,: : : , j } of odd cardinality at least 3, and setw D i C 1. Since (i , j ) D (1,m) is impossible by #W � d, it is clear thatpw D pC 1,
so againpw > d � #WC 1.

So we can assume for the rest of the proof that all gc-subsets of W are of cardi-
nality 1. We either setw D m if m 2 W, or if m � W we setw to be the smallest
element ofW. If m 2 W and 12 W we have pw D p D #W � 2, and p > d � #W
implies 2 #W � 2> d, so sinced is even 2 #W > dC 3, hencepw > d � #W C 1. If
m 2 W and 1� W, we havepw D pD #W�1, and pw > d�#WC1 is equivalent to
2 #W > d C 2, which is true by the assumption #W > a D (d C 2)=2. If m � W and
1 2 W the argument is exactly symmetric to the casem 2 W and 1� W. If m � W
and 1� W, we have pw D p � 1 D #W � 1 and pw > d � #W C 1 is equivalent to
2 #W > dC 2, which is true by the assumption #W > a D (dC 2)=2. This finishes the
proof of Lemma 3.1.

We now further assume thatd is an even integer withd � 4, the cased D 2 is
discussed in Subsection 3.1. We setRD k[x1, : : : , xm,z], where we put degree 1 for all
variables. We consider the idealsI D (Ia,1,m�1, Ia,2,m) and J D (Ia�1,2,m�1, z Ia�2,3,m�2)
of R. (When we need to be more precise we will also use the notations Id,m for I and
Jd,m for J.) It is clear thatI � (Ia�1,2,m�1), henceI � J. Moreover, using Lemma 3.1,
R=I � k[1(d, m)][z] and R=J � k[1(d � 2, m� 1)][x1, xm]. Consequently, both rings
R=I and R=J are Gorenstein by [1, Corollary 5.6.5], and dimR=J D dim R=I � 1.

The proof of the following key lemma will be given in Subsection 3.3.

Lemma 3.2. There exists unique� 2 HomR=I (J, R=I ) such that�(v) D 0 for allv 2 Ia�1,2,m�1 and �(zw) D wx1xm for all w 2 Ia�2,3,m�2. Moreover, the R=I -module
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HomR=I (J, R=I ) is generated by the set{i , �}, where iW J ! R=I denotes the inclu-
sion homomorphism.

Taking into account Lemma 3.2, the Kustin–Miller unprojection ring S of the pair
J � R=I is equal to

SD (R=I )[T ]

(T u� �(u) j u 2 J)
.

We extend the grading ofR to a grading ofS by putting the degree of the new variable
T equal to 1. By Lemma 3.2S is a gradedk-algebra. Our main result for the cased
even is the following theorem.

Theorem 3.3. The element z2 S is S-regular, and there is an isomorphism of
graded k-algebras

S=(z) � k[1(d, mC 1)].

Proof. Denote byQ � R[T ] the ideal

Q D (I , z)C (T u� �(u) j u 2 J) � R[T ].

By the definition ofS we haveS=(z) � R[T ]=Q. By the definition of� we haveQ D
(Ia,1,m, T Ia�1,2,m�1, z). Hence, Lemma 3.1 implies thatS=(z) � k[1(d, mC 1)]. As a
consequence, dimS=(z) D dim S� 1, and since by [10, Theorem 1.5]S is Gorenstein,
hence Cohen–Macaulay, we get thatz is S-regular.

EXAMPLE 3.4. Assumed D 4 andmD 6. We have

I D (x2x4x6, x1x3x5), J D (x2x4, x2x5, x3x5, zx3, zx4)

and

SD k[x1, : : : , x6, T, z]=(I , T x2x4, T x2x5, T x3x5, x3(zT� x1x6), x4(zT� x1x6)).

3.1. The cased D 2 and d C 1< m. Assumed D 2 anddC 1< m. It is clear
that 1(d, m) is just the (unique) triangulation of the 1-sphereS1 having m vertices.
Hence1(d, mC 1) is a stellar subdivision of1(d, m), and the results of [3] apply.

In more detail, setRD k[x1, : : : , xm, z], with the degree of all variables equal to 1.
Consider the idealsI D (I2,1,m�1, I2,2,m) and J D (I1,2,m�1, z) of R. (When we need to
be more precise we will also use the notationsI2,m for I and J2,m for J.) Clearly
k[1(d, m)][z] � R=I . Moreover, we have thatI � J, that J � R=I is a codimension
1 ideal of R=I with R=J Gorenstein, and that if we denote byS the Kustin–Miller
unprojection ring of the pairJ � R=I we haveS=(z) � k[1(d, mC 1)]. Moreover,
arguing as in the proof of Theorem 3.3 we get thatz is an S-regular element.
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3.2. The cased is even andm D d C1. Assumed � 2 is even andmD dC1.
We have that

k[1(d, m)] � k[x1, : : : , xm]

, 
dC1Y
iD1

xi

!

and

k[1(d, mC 1)] � k[x1, : : : , xmC1]

, 
d=2Y
iD0

x2iC1,
(d=2)C1Y

iD1

x2i

!
.

We setRD k[x1, : : : , xm, z], with the degree of all variables equal to 1. Consider

the idealsI D �QdC1
iD1 xi

�
and J D �Qd=2

iD1 x2i , z
Q(d=2)�1

iD1 x2iC1
�

of R. (When we need
to be more precise we will also use the notationsId,m for I and Jd,m for J.) We have
I � J, that J � R=I is a codimension 1 ideal ofR=I with R=J Gorenstein, and that
if we denote byS the Kustin–Miller unprojection ring of the pairJ � R=I we have
S=(z) � k[1(d, mC1)]. Moreover, arguing as in the proof of Theorem 3.3 we get that
z is an S-regular element.

3.3. Proof of Lemma 3.2. We start the proof of Lemma 3.2. Recall thatI D
(Ia,1,m�1, Ia,2,m) and J D (Ia�1,2,m�1, z Ia�2,3,m�2). Since J is a codimension 1 ideal of
R=I and R=I is Gorenstein, hence Cohen–Macaulay, there existsb 2 J which is R=I -
regular. WritebD b1C zb2, with b1 2 I e

a�1,2,m�1 and b2 2 I e
a�2,3,m�2, where I e� denotes

the ideal of R=I generated byI�. Consider the element

s0 D b2x1xm

b
2 K (R=I ),

where K (R=I ) denotes the total quotient ring ofR=I , that is the localization ofR=I
with respect to the multiplicatively closed subset of regular elements ofR=I , cf. [6,
p. 60]. We need the following lemma.

Lemma 3.5. (a) We have that x1xmvw D 0 (equality in R=I ) for all v 2 Ia�1,2,m�1

andw 2 Ia�2,3,m�2.
(b) We have s0zw D wx1xm (equality in K(R=I )) for all w 2 Ia�2,3,m�2.

Proof. Proof of (a). It is enough to show thatx1xmxV xW D 0 in k[1(d, m)],
wheneverxV is a generating monomial ofIa�1,2,m�1 and xW is a generating monomial
of Ia�2,3,m�2, with V � {2, : : : , m � 1} and W � {3, : : : , m � 2}. Consider the set
A D {1, m} [ V [ W. If 2 � V it is clear thatx1xV D 0 and, similarly, ifm� 1 � V
we havexmxV D 0.

Hence for the rest of the proof we can assume that 22 V and m� 1 2 V . Denote
by A1 D {1, : : : , p} the initial segment ofA, and by A2 the final segment ofA. Since
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2, m � 1 � W, we necessarily have that all odd elements ofA1 n {1} are in W n V ,
and all even elements ofA1 are in V n W. If the largest elementp of A1 is not in
V , the monomial with support (V n A1) [ {1, 3, : : : , p} is in I , hencex1xV xW D 0.
By a similar argument, if the smallest element ofA2 is not in V we getxmxV xW D 0.
So we can assume that both the largest element ofA1 and the smallest element ofA2

are in V . By the above discussion, this implies that #(A1 \ V) D #(A1 \ W)C 1 and
#(A2\ V) D #(A2\W)C 1, hence #Wa D #Va C 1, where we setVa D V n (A1[ A2)
and Wa D W n (A1 [ A2). Hence there exists a contiguous subset ofVa [ Wa, say
A3 D {i , i C 1, : : : , j }, which starts with an element ofW n V then either stops or
continuous with an element ofV n W and finally finishes with an element ofW n V .
The monomial with support in (V nA3)[{i ,iC2,: : : , j } is in I , hence we getxV xW D 0
which finishes the proof of part (a) of Lemma 3.5.

We now prove part (b) of the lemma. It is enough to show that (b1Czb2)wx1xm D
zw(b2x1xm), for all w 2 W. For that it is enough to showx1xmb1w D 0, which follows
from part (a).

Using Lemma 3.5, multiplication bys0, which a priori is only anR=I -homomorphism
R=I ! K (R=I ), mapsJ insideR=I , so defines anR=I -homomorphism�W J ! R=I . By
the same Lemma 3.5, we have that�(v) D 0, for all v 2 Ia�1,2,m�1, and�(zw) D wx1xm,
for all w 2 Ia�2,3,m�2. Since anR=I -homomorphism is uniquely determined by its values
on a generating set, the uniqueness of� stated in Lemma 3.2 follows.

We will now prove the part of Lemma 3.2 stating that theR=I -module
HomR=I (J, R=I ) is generated by the set{i , �}. By the arguments contained in the
proof of [1, Theorem 5.6.2], we have isomorphisms

!k[1(d,m)] � k[1(d, m)](0), !k[1(d�2,m�1)] � k[1(d � 2, m� 1)](0),

of gradedk-algebras, where!R denotes the canonicalR-module. Consequently, since
R=I � k[1(d, m)][z], R=J � k[1(d � 2, m� 1)][x1, xm] we get

(3.1) !R=I � (R=I )(�1) and !R=J � (R=J)(�2).

Combining (3.1) with the short exact sequence ([10, p. 563])

0! !R=I ! HomR=I (J, !R=I ) ! !R=J ! 0,

we get the short exact sequence

0! R=I ! HomR=I (J, R=I ) ! (R=J)(�1)! 0.

As a consequence, HomR=I (J,R=I ) is generated as anR=I -module by the subset{i , },
whenever 2 HomR=I (J, R=I ) has homogeneous degree 1 and is not contained in
the R=I -submodule of HomR=I (J, R=I ) generated by the inclusion homomorphismi .
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Hence, to prove HomR=I (J, R=I ) D (i , �) is enough to show that there is noc 2 R=I
with � D ci . Assume suchc exists. Letw 2 Ia�2,3,m�2 be a fixed monomial gen-
erator. We then haveczw D �(zw) D wx1xm (equality in R=I ), and sinceR=I is
a polynomial ring with respect toz we getwx1xm D 0, which is impossible, since
I D (Ia,1,m�1, Ia,2,m). Hence HomR=I (J, R=I ) D (i , �), which finishes the proof of
Lemma 3.2.

4. The main theorem for d odd

Assumek is a fixed field, andd, m two integers withd odd and 5� d < m� 1,
the casesd D 3 andmD dC 1 are discussed in Subsections 4.1 and 4.2 respectively.
We seta D (dC 1)=2. Combining Proposition 3.1 with [1, Exercise 5.2.18] we get the
following proposition.

Proposition 4.1. We have

k[1(d, m)] � k[x1, : : : , xm]=(Ia,2,m�1, x1xm Ia�1,3,m�2).

REMARK 4.2. By Proposition 4.1 and [1, Exercise 5.2.18], ford � 5 odd the
ideal definingk[1(d, m)] is related to the ideal definingk[1(d � 1, m� 1)]. We will
use this in what follows to reduce questions ford odd to the easier cased even. A
similar remark also applies whend D 3.

We setRD k[x1, : : : , xm, z1, z2], where we put degree 1 for all variables. Consider
the ideals I D (Ia,2,m�1, x1xm Ia�1,3,m�2) and J D (Ia�1,2,m�2, z1z2Ia�2,3,m�3) of R. It
is clear thatI � (Ia�1,2,m�2), hence I � J. By Proposition 4.1 we have thatR=I �
k[1(d,m)][z1, z2] and R=J � k[1(d�2,m�1)][x1, xm�1, xm]. Consequently, both rings
R=I and R=J are Gorenstein by [1, Corollary 5.6.5], and dimR=J D dim R=I �1. The
following lemma is the analogue of Lemma 3.2 for the cased odd.

Lemma 4.3. There exists unique� 2 HomR=I (J, R=I ) such that�(v) D 0 for allv 2 Ia�1,2,m�2 and �(z1z2w) D x1xm�1xmw for all w 2 Ia�2,3,m�3. Moreover, the R=I -
moduleHomR=I (J, R=I ) is generated by the set{i , �}, where iW J ! R=I denotes the
inclusion homomorphism.

Proof. Taking into account Proposition 4.1 and Remark 4.2, Lemma 4.3 follows
by the same arguments as Lemma 3.2.

Taking into account Lemma 4.3, the Kustin–Miller unprojection ring S of the pair
J � R=I is equal to

SD (R=I )[T ]

(T u� �(u) j u 2 J)
.
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We extend the grading ofR to a grading ofS by putting the degree of the new variable
T equal to 1. Lemma 4.3 tells us thatS is a gradedk-algebra. Our main result for
the cased odd is the following theorem.

Theorem 4.4. The sequence z1, z2 2 S is S-regular, and there is an isomorphism
of graded k-algebras

S=(z1, z2) � k[1(d, mC 1)].

Proof. Denote byQ � R[T ] the ideal

Q D (I , z1, z2)C (T u� �(u) j u 2 J) � R[T ].

By the definition ofS we haveS=(z1, z2) � R[T ]=Q.
Denote bygW R[T ] ! R[xmC1] the k-algebra isomorphism which is uniquely spec-

ified by g(zi ) D zi for i D 1, 2, g(xi ) D xi for 1 � i � m � 1, g(xm) D xmC1 and
g(T) D xm. It is easy to see thatg(Q) D (Id,mC1, z1, z2). Sinceg is an isomorphism,
we have using Proposition 4.1 that

R[T ]=Q � R[xmC1]=(Id,mC1, z1, z2) � k[1(d, mC 1)],

henceS=(z1, z2) � k[1(d, mC 1)]. As a consequence, dimS=(z1, z2) D dim S� 2, and
since by [10, Theorem 1.5]S is Gorenstein, hence Cohen–Macaulay, we get thatz1, z2

is an S-regular sequence.

4.1. The cased D 3 and dC1< m. Assumed D 3 anddC1<m. Combining
[1, p. 229, Exercise 5.2.18] with the discussion of Subsection 3.1 we have the follow-
ing picture. SetR D k[x1, : : : , xm, z1, z2], where we put degree 1 for all variables.
Consider the idealsI D (I2,2,m�1, x1xm I1,3,m�2) and J D (I1,2,m�2, z1z2) of R. Then
k[1(d, m)][z1, z2] � R=I . Moreover, we haveI � J, that J � R=I is a codimension 1
ideal of R=I with R=J Gorenstein, and that if we denote byS the Kustin–Miller un-
projection ring of the pairJ � R=I thenz1,z2 is an S-regular sequence andS=(z1,z2)�
k[1(d, mC 1)].

4.2. The cased is odd and m D d C 1. Assumed � 3 is odd andmD dC 1.
We have

k[1(d, m)] � k[x1, : : : , xm]

, 
dC1Y
iD1

xi

!

and

k[1(d, mC 1)] � k[x1, : : : , xmC1]

, 
(dC1)=2Y

iD0

x2iC1,
(dC1)=2Y

iD1

x2i

!
.
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Set R D k[x1, : : : , xm, z1, z2], where we put degree 1 for all variables. Consider the

ideals I D �QdC1
iD1 xi

�
and J D �Q(dC1)=2

iD1 x2i , z1z2
Q(d�1)=2

iD1 x2iC1
�

of R. We haveI � J,
that J � R=I is a codimension 1 ideal ofR=I with R=J Gorenstein, and that if we
denote byS the Kustin–Miller unprojection ring of the pairJ � R=I then z1, z2 is an
S-regular sequence andS=(z1, z2) � k[1(d, mC 1)].

5. Combinatorial interpretation of our construction

We fix d � 2 even andm� dC 1, and we will give a combinatorial interpretation
of the constructions of Section 3. We introduce the notationR(m) D k[x1, : : : , xm, z].
Consider the idealsId,m and Jd,m of R(m) as defined in Section 3 ifd � 4 and m �
d C 2, as defined in Subsection 3.1 ifd D 2 and m � d C 2, and as defined in Sub-
section 3.2 ifd � 2 andmD dC 1.

Note thatId,m is the Stanley–Reisner ideal of1(d,m). We will inductively identify
Jd,m. We setPd,m D Id,m W (x1xm), then

Pd,m D Istar1(d,m)({1,m}) C (xi j i is not a vertex of star1(d,m)({1, m})).

It is clear that the idealPd,m of R(m) is monomial, and that no minimal monomial

generator of it involves the variablesx1, xm and z. We denote by OPd,m the ideal of
k[x2, : : : , xm�1, z] which has the same minimal monomial generating set.

If d D 2 we haveJd,m D (Pd,m, z). Assume nowd � 4. It is easy to see that

the ideal OPd,m is equal to the image of the idealId�2,m�2 of R(m�2) under thek-
algebra isomorphismR(m�2) ! k[x2, : : : xm�1, z] that sendsz to z and xi to xiC1 for

1 � i � m� 2, hence OPd,m is the Stanley–Reisner ideal of a simplicial complex iso-
morphic to1(d�2,m�2). The unprojection constructions described in Section 3 and
Subsections 3.1, 3.2 allow us to pass from the idealId�2,m�2 of R(m�2) to the ideal
Id�2,m�1 of R(m�1), which is the Stanley–Reisner ideal of1(d � 2, m � 1). Denote
by Qd,m � k[x2, : : : , xm, z] the image of the idealId�2,m�1 under thek-algebra iso-
morphism R(m�1) ! k[x2, : : : , xm, z] that sendsz to xm, xi to xiC1 for 1� i � m� 2,
and xm�1 to z. It is then easy to see thatJd,m is the ideal of R(m) generated by the
image of Qd,m under the inclusion ofk-algebrask[x2, : : : , xm, z] ! R(m). In particular,
R(m)=(Jd,m, x1, xm) � k[1(d � 2, m� 1)], as already observed above.

Assume nowd � 3 is odd andm � d C 1. Consider the idealJ as defined in
Section 4. Using Remark 4.2, a similar combinatorial interpretation exists forJ in
terms of the1(d � 2, m� 2) related to the star of the face{1, m} of 1(d, m) when
d � 5, and an analogous statement whend D 3. We leave the precise formulations to
the reader.
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6. The minimal resolution of cyclic polytopes

Combining the results of Sections 3 and 4, we have that ford � 4 anddC1< m,
the Stanley–Reisner ringk[1(d, mC 1)] can be constructed from the Stanley–Reisner
rings k[1(d, m)] and k[1(d � 2, m� 1)] using Kustin–Miller unprojection. Moreover,
we showed that a similar statement is true also for the casesd D 2, 3 andmD dC 1.
Using the Kustin–Miller complex construction discussed in Subsection 2.3, we can in-
ductively build a graded free resolution ofS, hence using Proposition 6.3 below of
k[1(d, mC 1)], starting from the minimal graded free resolutions ofk[1(d, m)] and
k[1(d � 2, m� 1)]. The following theorem, which will be proven in Subsection 6.1,
tells us that in this way we get a minimal resolution. Subsection 6.2 contains examples
demonstrating the theorem and a link to related computer algebra code.

Theorem 6.1. For d � 4 and dC 1 < m, the graded free resolution of k[1(d,
mC1)] obtained from the minimal graded free resolutions of k[1(d,m)] and k[1(d�2,
m� 1)] using the Kustin–Miller complex construction is minimal. For d D 2 or 3 and
d C 1 < m, the graded free resolution of k[1(d, mC 1)] obtained from the minimal
graded free resolution of k[1(d, m)] and the appropriate Koszul complex(see Sub-
sections 3.1and 4.1) using the Kustin–Miller complex construction is also minimal.

We remark that in the proof of Theorem 6.1 we do not use the calculation of the
graded Betti numbers ofk[1(d,m)] obtained by Schenzel [12] for evend, and by Terai
and Hibi [13] for oddd. Not only that, but in Proposition 6.6 we recover their results,
without using Hochster’s formula or Alexander duality.

6.1. Proof of Theorem 6.1. For the proof of Theorem 6.1 we will need the
following combinatorial discussion.

Assumed � 3 is odd,dC 1< m and 1� i � m� d � 1. We set

�(d, m, i ) D �
m� [d=2] � 2

[d=2]C i

��
[d=2]C i � 1

[d=2]

�
,

compare [13, p. 291]. We also set�(d, m, 0)D �(d, m, m� d) D 0.

Proposition 6.2. We have, for 1� i � m� d,

(6.1) �(d, mC 1, i ) D �(d, m, i )C �(d, m, i � 1)C �(d � 2, m� 1, i ).

(By our conventions, for i D 1 the equality becomes�(d,mC1,1)D �(d,m,1)C�(d�2,
m�1, 1), while for i D m�d it becomes�(d, mC1,m�d) D �(d�2,m�1,m�d)C�(d, m, m� d � 1).)
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Proof. Assume first 2� i � m � d � 1. We will use twice the Pascal triangle
identity

�k
d

� D �k�1
d

�C �k�1
d�1

�
. We have

�(d, mC 1, i )

D �
mC 1� [d=2] � 2

[d=2]C i

��
[d=2]C i � 1

[d=2]

�

D ��
m� [d=2] � 2

[d=2]C i

�C �
m� [d=2] � 2

[d=2]C i � 1

���
[d=2]C i � 1

[d=2]

�

D �
m� [d=2] � 2

[d=2]C i

��
[d=2]C i � 1

[d=2]

�C �
m� [d=2] � 2

[d=2]C i � 1

��
[d=2]C i � 1

[d=2]

�

D �(d, m, i )C �
m� [d=2] � 2

[d=2]C i � 1

���
[d=2]C i � 2

[d=2]

�C �
[d=2]C i � 2

[d=2] � 1

��
D �(d, m, i )C �(d, m, i � 1)C �(d � 2, m� 1, i ).

The special casesi D 1 and i D m� d are proven by the same argument.

For the proof of Theorem 6.1 we will also need the following general propositions,
the first of which is well-known.

Proposition 6.3 ([1, Proposition 1.1.5]). Assume RD k[x1,:::,xn] is a polynomial
ring over a field k with the degrees of all variables positive, and I � R a homogeneous
ideal. Moreover, assume that xn is R=I -regular. Denote by cF the minimal graded
free resolution of R=I as R-module. We then have that cF
R R=(xn) is the minimal
graded free resolution of R=(I ,xn) as k[x1, : : : ,xn�1]-module, where we used the natural
isomorphisms R
R R=(xn) � R=(xn) � k[x1, : : : , xn�1].

The following proposition is an immediate consequence of Equation (2.1).

Proposition 6.4. Assume k is a field and R1 D k[x1, : : : , xn], R2 D k[y1, : : : , yn]
are two polynomial rings with the degrees of all variables positive. Assume I1 � R1

is a monomial ideal, and denote by I2 the ideal of R2 generated by the image of I1

under the k-algebra homomorphism R1 ! R2, xi 7! yi , for 1� i � n. Obviously I2 is
a homogeneous ideal of R2. We claim that for all i� 0 we have bi (R2=I2)D bi (R1=I1)
(of course the graded Betti numbers bi j of R2=I2 and R1=I1 may differ).

Proposition 6.5. Assume k is a field, R1 D k[x1, : : : , xn,T ] and R2 D k[y1, : : : , yn,
T1, T2] are two polynomial rings with the degrees of all variables positive, degxi D
degyi , for 1 � i � n, and degT D degT1 C degT2. Assume I1 � R1 is a homo-
geneous ideal, and denote by I2 � R2 the ideal generated by the image of I1 under the
graded k-algebra homomorphism� W R1 ! R2 specified by�(xi ) D yi , for 1 � i � t ,
and �(T) D T1T2. Denote by cF1 the minimal graded free resolution of R1=I1 as
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R1-module. Then I2 is a homogeneous ideal R2, and the complex cF1 
R1 R2 is a
minimal graded free resolution of R2=I2 as R2-module. In particular, the correspond-
ing graded Betti numbers bi j of R1=I1 and R2=I2 are equal.

Proof. It is clear thatI2 is a homogeneous ideal ofR2. By [6, Theorem 18.16]�
is flat. As a consequence, [6, Proposition 6.1] implies that the natural mapI1
R1 R2 !
I2 is an isomorphism of gradedR2-modules. By flatness, tensoring the minimal graded
free resolution ofI1 as R1-module with R2 we get the minimal graded free resolution
of I2 as R2-module, and Proposition 6.5 follows.

Theorem 6.1 will follow from the following more precise statement. Notice that, as
we already mentioned before, the statements about the graded Betti numbers have been
proven before by different arguments in [12, 13], but we do not need to use their results.

Proposition 6.6. Assume d� 2 and dC 1< m. Set bi j D bi j (k[1(d, m)]). Then
the statement ofTheorem 6.1is true for (d, m). Moreover, we have that if d is even
then bi j D 1 for (i , j ) 2 {(0, 0), (m� d, m)},

bi ,d=2Ci D �(dC 1, mC 1, i )C �(dC 1, mC 1, m� d � i ),

for 1 � i � m� d � 1, and bi j D 0 otherwise. If d is odd, then bi j D 1 for (i , j ) 2
{(0, 0), (m� d, m)},

bi ,[d=2]Ci D �(d, m, i ), bi ,[d=2]CiC1 D �(d, m, m� d � i ),

for 1� i � m� d � 1, and bi j D 0 otherwise.

Proof. We use induction ond and m. If d � 2 andmD d C 2 thenk[1(d, m)]
is a codimension 2 complete intersection and everything is clear.

The next step, is to notice that, ford D 2 andm� 3, Proposition 6.6 follows from
[3, Proposition 5.7], since1(2, m) is equal to1P2(m) defined in [3, Section 5].

Now assume thatd is even with d � 4 and d C 3 � m, and, by the inductive
hypothesis, Proposition 6.6 holds for the values (d � 2, m � 1) and (d, m). An easy
computation, taking into account Proposition 6.2, shows that the Kustin–Miller com-
plex construction resolvingk[1(d, mC 1)] has the conjectured graded Betti numbers.
Since no degree 0 morphisms appear it is necessarily minimal. This finishes the proof
for d even.

Assume nowd � 3 is odd. Combining [1, Exercise 5.2.18] with Propositions 6.4
and 6.5 we get that, for 0� i � m� d,

(6.2) bi (k[1(d, m)]) D bi (k[1(d � 1, m� 1)]).
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(Of course the graded Betti numbersbi j can, and in fact are, different fork[1(d, m)]
and k[1(d� 1,m� 1)].) So we can reduce the cased odd to the cased� 1, by doing
an almost identical induction on (d, m) as in the case (d � 1, m � 1), noticing that
the Kustin–Miller complex construction fork[1(d, mC 1)] has to be minimal, since
we proved that the one fork[1(d � 1, m)] is minimal and the corresponding numbers
bi DP

j bi j are equal by Equation (6.2). This finishes the proof of Proposition 6.6.

6.2. Examples and implementation. In this subsection we demonstrate the con-
struction of the cyclic polytope resolution with a sequenceof two examples. First we
carry out the Kustin–Miller complex construction describedin Subsection 2.3 for the
step passing from the codimension 4 complete intersectionJ2,5 and the PfaffianI2,5 to
the codimension 4 idealI2,6. In the second step we pass fromJ4,7 and the PfaffianI4,7

to I4,8, using thatJ4,7 is equal toI2,6 after a change of variables. At the end of the sub-
section we give a link to computer algebra code where we implement our constructions.

Using the notation of Subsection 2.3, we will explicitly compute for each step the
auxiliary data�i , �i , hi , u and hence the differentialsfi from the input dataai and
bi . The idealsI2,5 and I4,7 are Gorenstein codimension 3, hence Pfaffian, and we will
fix below a certain resolution for each of them. In addition, we will also fix below a
certain Koszul complex resolvingJ2,5 D (z, x2, : : : , x4).

Assumeq � 3 is an odd integer andM is a skew-symmetricq � q matrix with
entries in a commutative ring. For 1� i � q, we denote by pfi M the Pfaffian ([1,
Section 3.4]) of the submatrix ofM obtained by deleting thei -th row and column of
M. The main property of pfi M is that its square is the determinant of the correspond-
ing submatrix.

We will use the notationR(m) D k[x1, : : : , xm, z] introduced in Section 5. Ford � 2
even, we denote byMd the (d C 3)� (d C 3) skew-symmetric matrix with entries in
R(dC3) whose (i , j ) entry for i � j is zero except that for 1� i � d C 2 we have
(Md)i ,iC1 D xi and that (Md)1,dC3 D �xdC3. It is an easy calculation that

Id,dC3 D (pfi (Md) j 1� i � dC 3).

In addition, according to the Buchsbaum–Eisenbud theorem [2], the minimal graded
free resolution ofR(dC3)=Id,dC3 is given by

(6.3) 0! R(dC3)
vt

d�! RdC3
(dC3)

Md��! RdC3
(dC3)

vd�! R(dC3)

wherevd denote the 1� (dC 3) matrix with (1,i ) entry equal to (�1)i pfi (Md) and vt
d

denotes the transpose ofvd.
We set RD R(5) and fix the following Koszul complex resolution ofR=J2,5

(6.4) 0! R
a4�! R4 a3�! R6 a2�! R4 a1�! R
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where

a1 D �
z x3 x4 x2

�
, a2 D

0
BB�

x3 x4 x2 0 0 0�z 0 0 0 x2 �x4

0 �z 0 �x2 0 x3

0 0 �z x4 �x3 0

1
CCA,

a3 D
0
BB�

0 �x2 x4 z 0 0
x2 0 �x3 0 z 0�x4 x3 0 0 0 z
0 0 0 x3 x4 x2

1
CCA

t

, a4 D
0
BB�

x3

x4

x2�z

1
CCA.

We now discuss the Kustin–Miller complex construction for the step passing from
(I2,5, J2,5) to I2,6, which corresponds to the unprojection ofJ2,5� R=I2,5. We will use
as input for the Kustin–Miller complex construction the resolution (6.4) of R=J2,5 and
the cased D 2 of (6.3), which is a resolution ofR=I2,5. Performing the computations
we obtain, in the notation of Subsection 2.3, the complexCS specified byh1 D h2 D 0,
u D �1 and the maps

�1 W R5 ! R4,
5X

iD1

ci ei 7! x1(c5e2 C c3e3)C x4c1e4 C x5(c2e2 C c4e4),

�2 W R5 ! R6,
5X

iD1

ci ei 7! x1(c2e4 C c4e6)C x5c3e5,

�3 W R! R4, e1 7! x1x5e4

and

�1 W R4 ! R,
4X

iD1

ci ei 7! �x1x5c1e1,

�2 W R6 ! R5,
6X

iD1

ci ei 7! �x1(c1e2 C c3e4) � x5c2e3,

�3 W R4 ! R5,
4X

iD1

ci ei 7! �x1(c2e3 C c1e5) � x4c3e1 � x5(c1e2 C c3e4),

where (ei )1�i�q denotes the canonical basis ofRq as R-module. Substitutingx6 for T
and 0 for z in the differential maps ofCS we get the minimal graded free resolution
of R(6)=I2,6. Moreover, substitutingz for x1 in the differential maps of the resolution
of R(6)=I2,6 just constructed we get the minimal graded free resolution of R(7)=J4,7.

We now setRD R(7) and discuss the Kustin–Miller complex construction for the
step passing from (I4,7, J4,7) to I4,8, which corresponds to the unprojection ofJ4,7 �
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R=I4,7. We will use as input for the Kustin–Miller complex construction the resolution
of R=J4,7 constructed above and the cased D 4 of (6.3), which is a resolution of
R=I4,7. Performing the computations we obtain, in the notation of Subsection 2.3, the
complexCS specified byh1 D h2 D 0, u D �1 and the maps

�1 W R7 ! R9,
7X

iD1

ci ei 7! x1(c7e2Cc5e7Cc3e8)Cx6c1e1Cx7(c6e1Cc2e2Cc4e4),

�2 W R7 ! R16,
7X

iD1

ci ei 7! x7(c3e3Cc5e5)�x1(c2e9Cc4e11�c2e12Cc6e13),

�3 W R! R9, e1 7! x1x7(x5e4�x4e7�x3e9)

and

�1 W R9 ! R,
9X

iD1

ci ei 7! x1x7(�c3x4�c5x3Cc6x5),

�2 W R16 ! R7,
16X

iD1

ci ei 7! �x1(c1e2Cc6e2Cc8e4�c2e6)�x7(c14e3Cc16e5),

�3 W R9 ! R7,
9X

iD1

ci ei 7! �x6c5e1�x7(c6e2Cc8e4Cc5e6)Cx1(c2e3Cc1e5�c6e7).

Substitutingx8 for T and 0 for z in the differential maps ofCS we get the minimal
graded free resolution ofR(8)=I4,8.

Under the link [4], a related package for the computer algebra system Macaulay2
[5] is available. Applying the ideas of the present paper, itconstructs the resolution
of the ideal Id,m for d even andm � d C 1 starting from Koszul complexes and the
skew-symmetric Buchsbaum–Eisenbud resolution (6.3) ofId,dC3. The functions in the
package provide the user with the option to output all the intermediate dataai , bi , �i ,�i , hi , u, fi in addition to the final resolution.
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