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Abstract
We determine certain exceptional surgeries on a 3-paramfemily of hyper-
bolic 1-bridge genus one knots ((1, 1)-knots, in short). &mtipular, we show that
such knots admit two infinite series of lens space surgefies. work is related to
a nice paper of Teragaito [16], since we represent his tataitanifolds as 2-fold
coverings of the 3-sphere branched over well-specifiedslink

1. Introduction

A Dehn surgeryon a knotK in the oriented 3-spher&?® is a topological construc-
tion which yields a closed 3-manifold by removing an operutabneighborhood oK
in 8%, and glue a solid torus back. By gluing a solid torus back asais, the surgery
gives the 3-sphere again. Such a surgery is cditedal, and we will ignore it. A
classical theorem of Wallace and Lickorish states thatyeypair of closed orientable
3-manifolds are related by a finite sequence of Dehn sugeRer a hyperbolic knot
in the 3-sphere, at most finitely many Dehn surgeries yiela-imgperbolic 3-manifolds
by Thurston’s hyperbolic surgery theorem. Such surgeriessaid to beexceptional
and they have been studied extensively for many classes @k krin particular, an
exceptional surgery is calleroidal if the surgery manifold is toroidal, that is, it con-
tains an incompressible torus. An exceptional surgery leaseifert-fiberedif the
surgery manifold is a small Seifert-fibered space, thattifias base spacg?’ and at
most three singular fibers. One of the unsolved problems innBrirgery theory is to
determine which knots in the 3-sphere admit Dehn surgeiigldigg lens spaces. This
problem is completely solved for torus knots and satellitetk. Also, there are hyper-
bolic knots with lens space surgeries. Such examples wetefdiund by Fintushel and
Stern in [5]. They proved that 18- and 19-surgeries on th2, 8, 7)-pretzel knot give
the lens spacek (18, 5) andL (19, 8), respectively. It was conjectured by Gordon that
if a hyperbolic knot admits lens space surgery, then idasibly primitivein the sense
of Berge (unpublished manuscript). Here we recall this defm Let (Vi, V,) be a
genus two Heegaard splitting ¢ and K a simple loop onF = aV; = 8V,. ThenK
is called adoubly primitive knotif K represents a free generator bothmafV;) and
of m1(V,). In this paper we study a 3-parametric family of hyperbdlibridge genus
one knots ((1, 1)-knots, in short), which includes the2(3, 2nh — 1)-pretzel knots, a
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subclass of the Eudave-Mufioz knots [4], and certain knotsidered by Teragaito in
[16]. Then we determine certain exceptional surgeries on(tbpl)-knots, and show
that they admit two infinite series of lens space surgerieg algo obtain a presen-
tation of the fundamental group of the constructed surgeayifalds. Finally, we de-
scribe covering properties of the toroidal manifolds ai¢di by Dehn surgery on the
Teragaito knots [16].

2. The knots Kynn

A knot K in S% is said to be a (1, 1ot if S* is a union of two solid toriv; and
V, glued along their boundaries and Kf intersects each solid torug in a trivial arc
t, i =1,2. It is known that every (1,1)-knot is a tunnel number onetkand hence it
is a 2-generator knot. LeKmnp, m>1, h >0 andn > m+ 2, be the family of knots
in the oriented 3-spherg® depicted in Fig. 1 (they were first considered in [15]). To
make clear how strands run in the right-hand side in the figwee have also depicted
the knotKz, 47 in Fig. 2. If n =m+ 2, thenK, 1, is equivalent to the torus knot of
type (h+3)(n—1)—1,h+3). If m=1 andh = 0, thenKn,np is equivalent to the
(-2, 3, 7n — 1)-pretzel knot (in particular, the torus knot of type (5,f8) n = 3). If
m = 2 andn = 6, thenK, n 1, is the knotK,,, n = h+2, with three consecutive toroidal
Dehn surgeries, considered by Teragaito in [16]mif=1 andn = 4, thenKynp IS
equivalent to the Eudave-Mufioz knieth + 3, 1,1, 0). In particular, foh = 0, the knot
k(3, 1,1, 0) is the €2, 3, 7)-pretzel knot. It is known that Eudave-Mufioz knots sdm
non-integral toroidal surgeries (see [4]).

For everym such that 0< m < n—2, Ky np is a chiral strongly invertible hyper-
bolic (1, 1)-knot (see [15]). One can directly verify thesets for many values of the
parameters by using the computer program SnapPea [19].

By the Wirtinger algorithm applied to the planar projectionFig. 1, we get (see
also [15]):

Theorem 1. For every m> 1, h > 0 and n> m + 2, the knot group of K nn
has the2-generator presentation

7 (Kmn ) = 71(S*\ Kmap) 2 (a, b: a(@™26"2)" " @" 3" +2)" = 1),
where the pathm = ba is a meridian of the knot.
Let Emnn = E(Kmnn) be the exterior ofK,, in S, and choose a path
|* — a—(h+3)(b—(h+2)a—(h+2))”*m*2a—lb—l

as a longitudinal circle oAEn, . Of course, we haven, | *] = 1 by using the relation of
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Fig. 1. The knotKmnn, m>1, h>0,n>m+ 2.
the knot group. To find the null homologous longitdda E, nn, we form the expression
| ~1* +xm = a—(h+3)(b—(h+2)a—(h+2))n*mfza—lb—l(a—lb—l)*x
wherex € Z is not yet determined. Here the symbel means that two simple closed
curves (in the exterior oK nn) are homologically equivalent. We show that the con-
dition | ~ 0 yields
x = —[(h + 2)?n + (2h 4+ 5)m — h? — 3h — 3]

hence
[ ~ a—(h+3)(b—(h+Z)a—(h+2))n*m72(a—1b—l)é,
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Fig. 2. The knotK3 4 .
where& = (h + 2)?n+(2h+5)m—h?—3h—2. In fact, setting ~ 0 gives the equation

a-h—-4-Mh+2)n—m-2)+x)+b(-(h+2)n—m—-2)—1+x) =0.
The relation ofr (Kmnn), considered in its abelianizatidd;(Em nn), gives the equation
al+ th+2)n—m—1)+ (h+ 3)m) + b((h + 2)(h—m—1) + (h + 3)m) = 0.
Thus there exists an integere Z such that

{n(1+(h+2)(n—m—l)+(h+3)m)=x—h—4—(h+2)(n—m—2),
n(h+2)n—m=1)+(+3)m =—(h+2)n—m—2)+x—1

hencen = —h — 3, that is,x = —[(h 4+ 2)’n + (2h + 5)m — h? — 3h — 3].

To obtain the surgery manifol&y,nn(y), ¥ = p/d, y # oo, we choose a simple
closed curveg,(n) = mPI9, where M, 1) is the preferred frame, obtained aboye,
is the standard meridian of a solid torés = D? x S, and¢: 3V — dEmpnn is an
attaching homeomorphism. Recall that a group presentaiwaid to bebalancedif
it has the same number of generators and relations.

Then we have

Theorem 2. For every m> 1, h > 0 and n> m + 2, the fundamental group of
the surgery manifold Knn(v), ¥ = p/d, ¥y # oo, has a balanced presentation with
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generators a and band relations

a(ah+2bh+2)n—m—1(ah+3bh+3)m =1

and
(ba)P[a*(h+3)(bf(h+2)a—(h+2))n—m—Z(a—lb—l)E]q -1

where
£ =(h+2°n+ (2h+5m—h*—-3h—2.

To complete the section, we determine the genus of our knots.

Theorem 3. The genus of the knot K, iS given by

oK) = (0-+ 2 T ),
Proof. Let us consider the planar picture of the kigtn in Fig. 1. Applying
Seifert’'s algorithm to it, we can calculate the numiseof crossings and the number
of Seifert circles in the sense of [12, Chapter 5]. We obtai (h + 1)(h + 2)n +
2(h + 2)m — h? ands = 3h + 3. Now recall that the constructed Seifert surf&has
genusg(S) = 1—(1+s—c)/2 andg(Kmn,n) is less than or equal 1g(S) (see [12, Exer-
cise 10, p. 121]). To prove the reverse inequality, we uséréeecalculus of Fox and com-
pute the degree of the Alexander polynomig , h(t) of Kmnn from the presentation of
7 (Kmnn) given in Theorem 1. Let?® = 73°(K, , 1) = Z denote the abelianized group
of 1 = 7(Kmnn) ande: Z[r] — Z[x®] = Z[t, t71] the abelianization map between
the group rings. Setting = (ab)~! andy = a (with inverse relatiorb = (xy)™1), 72 is
freely generated by asy = x%, wherea = (h + 2)(n—m—1)+ m(h + 3). Furthermore,
the relator ofr can be re-written aR = y(y"?(y 1x 1)h+2)n-m-1(yh+3(y-1x-1)h+3)m
Theng(x) = t, hencep(y) = t* andp(y~1x~1) = t=*~1. Recall that the free derivatives
of Fox satisfy the characteristic propertigé@iv)/dx = du/dx + udv/ax, du=t/ax =
—u~tu/dx anddu"/ax = ((u" — 1)/(u — 1))du/dx. Applying these to our case, we see
that the Alexander polynomiakn, n n(t) is given bye(dR/9x) and its degree is equal to
(h 4+ 2)((h + 1)(nh — 1) + 2m). Now recall that the degree of the Alexander polynomial
of a knotK in S® cannot exceedd®K) (see [12, Exercise 10, p.208]). This completes
the proof. []

3. Exceptional surgeries onKpynn

Theorem 4. For n=m+ 3, m> 1 and h> 0, we have the following results
i) Ifh=0andy =9m+ 8, then K,nn(y) is the Seifert-fibered space defined by
the invariants(O 00: 0(2, 1) (5, 2) tn + 2, —-1));
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i) If y =(h+3°m+2h2+9h+09, then K, nn(y) is the Seifert-fibered space defined
by the invariants(O0o0: 0(2,1) (h+3)m+1,h+3) (h+ 1, 1)). In particular, if h =0,
we get the lens space(@m + 9, 3m + 2);

i) If y = (h43°m + 2h? + 9h + 10, then K,nn(y) is the Seifert-fibered space
defined by the invariant6éO 00: O (h + 2, 1) (zh + 5, h 4+ 2) (m, 1)). In particular, if

m = 1, we get the lens space(&h? + 15h + 19, 3 + 8).

Proof. i) By Theorem 271 = m1(Kmnn(y)), ¥ = 9m + 8, has a balanced pres-
entation with generators andb, and relationsa(a?b?)?(a®b®)™ = 1 andbabab?a® = 1.
Using the second relation, we can express the first relaidadb—)™a tba b = 1.
Settingx = a~*b~! andy = a (with inverse relatiorb = x *y~*) yields a balanced presen-
tation for; with generatorsc andy and relationsk™2 = (xy)? and (y)2y3(xy)?y? =
From the first relation, we see thaf'*? commutes withxy, hence it commutes W|tly.
Thenmy = (x, y: xX™? = (xy)?, (xy)* = y°). Let now X be the Seifert-fibered manifold
defined by the invariantad 0o: 0 (2, 1) (5, 2) "+ 2, —1)), wherem > 1 (for m = 1 the
considered knot is the-@, 3, 7)-pretzel knot, and the result is known). Sin¢g2-+1/5+
1/(im+2)<1form=> 1, ¥ is a large Seifert manifold in the sense of [8, p. 92], henc® it
aspherical (for the classification of small Seifert mamolve refer to Section 5.4 of [8,
p. 99]). We recall by [8, p. 91] that1(X) = (qy, Gp, Gs, U: qZu=1,q5u? = 1,052 =
010203 = 1, [0;, u] =1, j =1, 2, 3. Eliminating the generators (= g m+2) and ql
(=g3'g;") we get the presentation (£) = (dp,0s: 95" > = (Gath)?, (Gs%)* = 0 °), hence
71(Z) = 11 (Kmnn(y)) = m1. In particular, the element™? (= q3m+2 = U) generates an
infinite cyclic group(x™+2), which is the nontrivial center of;. SUPPOSE&K m n h(y) is Not
prime. Since the knot has tunnel number one, the gent&efn(y) is less than or equal
to 2, and it can be decomposed in a connected Kumn(y) = M1#M, whereM,; is prime
fori =1, 2, andr; = m;(Mq) * 71(M3). But a free product of non-trivial groups admits
only a trivial center and here; has a non-trivial one (generated by= x™*2). This im-
plies thatri(M1) = 71 andr1(Mz) = 0. HenceMy is the 3-sphere. NoWKm nn(y) = M1
is prime, different fron8*x S? (becauser; # Z), then it is irreducible. By [2] the surgery
manifold is Seifert-fibered, and hence it is homeomorphi&tby [8, p. 134].

i) By Theorem 2,1 = m1(Kmnn(¥)), ¥ = (h+3)’m+2h?+9h+9, is presented by
(a, b: a(@+2pM+2)%(@"+3ph+3)™ = 1, hh+2a"+3pah+3 = 1). Settingx = a"+3b andy =a
(with inverse relatiorb = y~"-3x), the second relation becomgd(y"-3x)"*! = 1. So
y~"=3x commutes withx?, hencey"*3 commutes withx?. Using this fact, we see that
the first relation ofry becomesy(y"+2(y="=3x)"*+2)2(y"+3(y="=3x)"*+3)M = 1, or, equiva-
lently, x2ym(+3+1 = 1. Then we haver; = (x, y: ymh+3+1 = (y=h- 3x)h“_ 2) By
[13, Theorems 2.1 and 3.1], our surgery manifold is the fithdedrahedron manifold
defined by the Seifert invariant®©(0o: —1 (m(h + 3)+ 1, —h —3) (2,-1) (h + 1, h)).
But such a manifold is homeomorphic to that specified in (y)using standard modi-
fications of the Seifert invariants (see [7, Chapter 4, p]14¥ h = 0, then the surgery
manifold is the Seifert-fibered spac® Qo: 0(2, 1) (3n+ 1, 3) (1, 1)), which is homeo-
morphic to the Seifert manifoldd 0o: 1 (2, 1) (3n+ 1, 3)). Recall now that a fibered



EXCEPTIONAL SURGERIES ONKNOTS 833

space defined by the invariant® Qo: b (a1, B1) (2, B2)) is the lens spack (&, ), where
&= |b0[1052 + a182 +Olz,31|, n =ray+ SPo, andrO(]_—S(bO{j_ +ﬂ1) = 1. In our case, we
have @1, f1) = (2, 1), @2, B2) =(Bm+1,3),b=1,r =s=-1, hence =9m+9 and
n =-3m—4. Since £3m—4)(3m+2)=1 mod (9In + 9), the surgery manifold is the
lens spacd-(§, n) = L(9m+ 9, 3m+ 2).

i) By Theorem 2,71 = m1(Kmnn(¥)), ¥ = (h + 3)’m + 2h? + 9h + 10, is pre-
sented by(a, b: a(@"+2b"*+2)2(@"+3p"+3M = 1, a?"*+5p"+2 = 1). Sinceb"*? is central
in 71, the first relation becomesa("+2p)™1a-(+2ph+3 = 1. Then we haver; =~
(a, b: @?5p"+2 = 1, (@ (+2Ap)m-1a-(+2ph+3 = 1), This presentation is geometric
since it arises from a genus 2 Heegaard diagram of the mdnifddbw we can apply
Theorem 2.2 of [3] to conclude that our surgery manifold is Beifert-fibered space
defined by the invariantsq(Oo: —1 (h + 2, h + 3) (2h + 5, h 4+ 2) (m, 1)). But such
a manifold is homeomorphic to that specified in (iii) by usisigndard modifications
of the Seifert invariants (see [7, Chapter 4, p.147])mit= 1, then the surgery mani-
fold is the Seifert-fibered spaced(0o: 0 (h + 2, 1) (h + 5, h + 2) (1, 1)), which is
homeomorphic to @ 0o: 1 (h + 2, 1) (h + 5, h + 2)). As above, the surgery mani-
fold is the lens spacé (&, ), whereé = |bajan + @182 + @2p1], n = ra + sp2, and
rag — s(bay + 1) = 1, with (@1, p1) = (h + 2, 1), @2, f2) = (2h + 5,h + 2) and
b= 1. Then we haveg = 3h? 4+ 15h + 19,r = s = —1, andn = —3h — 7. Since
(=3h —=7)(3h + 8) = 1 mod (3? + 15h + 19), the surgery manifold is the lens space
L(, n) = L(3h? + 15h + 19, &h + 8). O

If m= 1 andh = 0 (hencen = 4) in Theorem 4, thety, n , iS the 2, 3, 7)-pretzel
knot. So from (ii) and (iii) above we re-obtain the wellknowesults that 18-surgery and
19-surgery on it give the lens spadef 8, 5) andL (19, 8), respectively (see [5]). th=1
andn = 4, the knotKy o is the Eudave-Mufioz kndt(h + 3, 1, 1, 0) (in particular, the
(=2, 3, 7)-pretzel knot foh = 0), and its exceptional surgeries are known in the liteeatur
For h = 0, there are exactly six nontrivial exceptional surgerié¢sciv correspond to the
slopes 16, 17, 18, 19, 20, and/27 The slopes 16, 20 and &7 give toroidal manifolds;
the slope 17 gives the Seifert-fibered spa@e0(: 0 (2, 1) (5, 2) (3,—1)); the slopes 18
and 19 give the lens spack¢18, 5) andL (19, 8), respectively. Fdn > 0, there are four
nontrivial exceptional surgeries which correspond to tlopes 312 + 15h + 18, h? +
15h + 19, 3? + 15h + 20, and B2 + 15 + 18+ (1/2). The slope B? + 15h + 18 gives
the Seifert-fibered spac®(@o: 0(2, 1) 0+ 4,h+ 3) (h + 1, 1)) (see (ii) in Theorem 4).
The slope 82 + 15h + 19 gives the lens spadg(3h? + 15h + 19, 3h + 8) (see (iii) in
Theorem 4). The slopeh3 + 15h + 20 gives a toroidal manifold as shown in Theorem
5 below. Finally, %2 + 15h + 18 + (1/2) is the non-integral toroidal slope for the knot
k(h 4+ 3, 1, 1, 0) which was determined in [4] (see also [17, Sectiom. 3]).

Theorem 5. Forn=m+ 3, m> 1 and h> 0, the surgery manifold Knn(y)
is toroidal if y = (h + 3)’m + 2h? 4+ 9h + 11 If further h = 0, then Ky nn(y) is also
toroidal wheny = 9m+ 7.
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Fig. 3. An RR-system inducing the presentationm@{M), where
M = Kmnn(y), ¥ = (h + 3°m+ 2h? +9h 4 11 andn = m+ 3.

Proof. The proofs are similar in both cases, so we shalltithtis that of the first
statement. By Theorem 2; = 71(M), whereM = K nn(y) andy = (h 4+ 3°m +
2h? + 9h + 11, has a balanced presentation with generatomnd b and relations
a(a"2bh+2)%(a"+3ph+3)™ = 1 andb = a"+2b"+2a"+2, From the second relatido*3 =
@"+2p"+2)? it follows that b3 commutes witha"*+2b"*+2, henceb™3 commutes with
a2, Thus G = (a"*2, b"*3) is a finitely generated abelian subgroupmaf By The-
orem 9.13 of [6],G is isomorphic to one oZ, Z,, Z®Z, or ZHZ,, wherep > 0. By
Theorem 9.12 of [6], iIfG =~ Z & Z,, thenM would be non-orientable, which is not the
case. IfG = Z or Zp, then there existg € Z (resp.£ € Z) such thatb"*+3 = a7("+2)
(resp.ah*t2 = b*"+3). In these cases, the order of the abelianized groffhis dif-
ferent to the integral surgery slope = (h + 3)’m + 2h? 4+ 9h + 11, giving a con-
tradiction. ThusG = (a"*?, b"*3) =~ Z @ Z. Furthermore,z; can be presented by
(a, b: ab"3@"+3ph+3)™ = 1, pa "+ (+2a-(+2) = 1), This presentation is geo-
metric since it arises from a genus 2 Heegaard diagram of taeifold. To see this
it suffices to draw an RR-systema{l road syster which induces the above presenta-
tion. See Fig. 3 (for the theory of RR-systems we refer to [80] and [11]). The first
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(resp. second) relation arises from the simple closed cuivese orientation is given
by one (resp. two) arrow(s), starting from the marked pomtFig. 3. The relation
[a"+2,b"+3] = 1 arises from the dotted curve on the Heegaard surface of the splitting
(see Fig. 3), hence it is bicollared . Then we have a mag: B2 — M such that
for some neighborhood\ of 9B? in B2, the restricted magja: A— M is an embed-
ding, f (f(A)) = A and f(3B?) = «. Then f;;g2: B> — M, representing, extends
to an embeddingy: B> — M by Dehn’s lemma (see [6, Lemma 4.1]). $b contains
an incompressible non-separating torus sincelefines the relationaf'*2, b"+%] = 1
andG = (a"*?, b3 =~z 9 Z. O

Theorem 6. For m=1, n> 4 and h> 0, we have the following results
) If y =(+2°n—h?—h+2 then Kynn(y) is the Seifert-fibered space defined
by the invariants(O 0o0: —1(2,1) +4,h+3)((h+2)n—-3h—7,h + 2)).
i) If y =(+2°n—-h?—h+3, then Kynn(y) is the Seifert-fibered space defined
by the invariants(O 0o: —1(h+3,1)(h+5,h+2) (n -3, -1)).
iy If y =(h+2)?n—h?—h+ 4, then Knnn(y) is toroidal.

Proof. i) By Theorem 27, = m1(Kmnn(¥)), ¥ = (h+2)’n—h?—-h+2, has a
balanced presentation with generatarandb and relationsa(a™t2b"+2)"-2g"+3ph+3 —
1 anda "+3)(h~(1+2)g-(+2n-35-1h-1 — 1. Using the first relation, the second one be-
comes a = b"2a"*3p"*2.  Then the first relation is equivalent to the relation

z;\h*"'(b*l)(thz)"_sh_7 = 1 by using standard Tietze transformations. So we have

(h-+2)n—3h—7 (h+2)n-2h-5

m = (a, b: @™ (bt =1,ab "Iab?) 1).

This presentation is geometric since it arises from a genbe@yaard diagram of the
manifold. Now we can apply Theorem 2.2 of [3] to conclude that surgery manifold
is the fibered space defined by the Seifert invariants in (i).

i) By Theorem 2, the group; = 71(Kmnn(¥)), ¥ = (h + 2’n—h?—h+3, has a
balanced presentation with generata@ndb, and relationg(at2b"+2)"-2g"+3p+3 — 1
and @"t2p"t2)—3gh+3 — 1. Soa*3 is central inz;. By using Tietze’s transformations
we getry 2 (a, b: a™3p?t5 = 1, (@ab"*3)2"ab~"-2 = 1). This presentation is geomet-
ric since it arises from a genus 2 Heegaard diagram of thefoldniNow we can apply
Theorem 2.2 of [3] to obtain the result.

i) By Theorem 2, m; = m(M), where M = Knnn(y), ¥ = (h+2)°n —
h? — h + 4, has a balanced presentation with generatorand b and relations
a(ah+2ph+2)n-2gh+3ph+3 — 1 and @"+2b"+2)"-2 = p"+3, Using the second relation, the
first relation becomesab™3aM+3p"+3 = 1, or, equivalentlya"™2 = (a"*+3p"+3)%. This
implies thata"*? commutes witha"+3p"+3, hencea"? commutes withb"*+3. Reason-
ing as in Theorem 5, it follows tha¥l contains an incompressible non-separating torus
whose fundamental group is given lig"+2, b"*3) ~ 7 @ Z. O
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If m=2 andn =6, thenK, is the Teragaito knoK,, with n = h+ 2, having
three consecutive toroidal slopeb?5+ 25h + 31, 5h? + 25h + 32 and 52 + 25h + 33.
For the remaining cases, we obtain the following result.

Theorem 7. For either m=2 and n>7 or m > 3 and n— m > 4, the surgery
manifold Ky nn(y) is toroidal if the slopes are eithep; = (h + 2)°n + (2h 4 5)m —
h2—3h—2or y,=(h+2°n+(2h+5m—-h?-3h—1.

Proof. If m=2 andn > 7, then the surgery manifoll n(y1) has a fundamen-
tal group presented by

7= (a b: a(ah+2bh+2)n—3(ah+3bh+3)2 =1 ah—t—3(ah—t-2bh+2)n—4 — 1)
By using the second relation, the first relation becomas 3b"+3a"+3 = 1, hence
b—l — ah+3bh+2bah+3
which is equivalent tob~! = ah+3ph+2a-(+3p-(1+3) je  [@"*3b"*2] = 1. Reason-
ing as in Theorem 5, we see that the surgery manifold contamsncompressible
non-separating torus whose fundamental grougals™3, b"+2) ~ 7 @ Z. Under the

same conditions above, the surgery maniflgl , h(32) has a fundamental group pre-
sented by

T (a b: a(ah+2bh+2)n—3(ah+3bh+3)2 =1 bh+3 — (ah+2bh+2)n—3)
~ (a b: abh+3(ah+3bh+3)2 =1 bh+3 — (ah+2bh+2)n73>.
It follows that b"*3 commutes witha"*2p"+2, hencebht3 commutes witha"*2. So

the result is proved by considering the subgrdapt?, b"*3) ~ Z @ Z. If m > 3 and
n—m > 4, then the surgery manifoll, ,h(y1) has a fundamental group presented by

T = (a’ b: a(ah+2bh+2)nfmfl(ah+3bh+3)m =1, ah+3 — (bf(h+2)a*(h+2))n7m—2>.

Then a3 commutes witha"+2b"*2, hencea” 3 commutes withb"*2. We have again
a subgroup(a™*?, b"+2) ~ Z @ Z. Under the same conditions above, the fundamental
group of Kmnn(y2) is presented by

(a7 b: a(ah+2bh+2)n—m—1(ah+3bh+3)m =1, (b—(h+2)a—(h+2))n—m—lbh+3 — l)

It follows that b™+3 commutes witha"*2, and so there exists a subgro(p+3,a"+2) ~
Z®Z. ]

By using SnapPea program [19] and taking in mind the knowtricéiens on the
exceptional slopes, we have verified that there are no ottoatijvial) exceptional surg-
eries onKy, i, for many fixed values of the parameters (besides those eotaihove).
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4. Representing the Teragaito manifolds as branched covergs

Let My(h), My(h), and M3(h) denote the closed toroidal 3-manifolds obtained by
Dehn surgeries 0Ky np, M= 2 andn = 6, with slopes 6%+ 25n+31, 5h?+25n+32,
and %12 + 25h + 33, respectively. Such manifolds were first considered byagato
in [16]. Here we represent them by simple Heegaard diagraimgeous two. As a
consequence, we prove that these manifolds are 2-foldccgolierings of the 3-sphere
branched over well-specified links. From Theorem 2 (usingable Tietze transform-
ations), we get

Theorem 8. For every non negative integer, ithe fundamental groups ;G
1(M; (h)) of the toroidal manifolds Mh), for i = 1,2, 3,admit the following2-generator
presentations

Gl — (a, b:a= bh+2ah+3bh+3ah+3bh+2, b—l — ah+3bh+2ah+2bh+2ah+3),

G2 — (a’ b: b2h+5ah+3bh+3ah+3 =1, a2h+5bh+2ah+2bh+2 — 1)

and

G3 = (a b: abh+3(ah+3bh+3)2 =1 bflah+2(bh+2ah+2)2 _ 1)

In particular, these presentations are geometribat is they correspond to spines of
the associated manifolds. In other wordke presentation Gis induced by a genug
Heegaard diagram representing ), for i = 1, 2, 3 geeFigs. 4, 5and 6).

Theorem 9. For every non negative integer, ithe toroidal manifolds N(h),
M,(h), and Mg(h) are the 2-fold cyclic coverings of the-sphere branched over the
hyperbolic 3-bridge links L, Ly, and Lg depicted inFigs. 7, 8 and 9respectively. In
particular, L; and Lz are knots while Lk is a 2-component link.

Proof of Theorem 9. The Heegaard diagrams in Figs. 4, 5 andn@tado dif-
ferent symmetries of order two: one of them interchangescitobesa and —b and the
other one is an orientation-preserving involutienwhich fixes two symmetry axes on
the circlesa and —b and one axis on the circle obtained by the horizontal lines
finity. Let us consider the planar graph in Fig. 4. The circémnated bya and its dual
—a have exactly B + 15 vertices, while the circleb and —b have % + 12 vertices.
If the parameterh is even, sayh = 2n, then the fixed axis of connects the vertex
2h 47 and the middle point betweert2n andh+5+n, the fixed axis of~b connects
the points labelled by-1 and—(2 + n), while the axis on the horizontal line joins the
middle point between b+ 4 and % + 5 with the vertex 16 + 13. If h=2n+ 1
for a suitablen, then the involutionr fixes the axis ofa with endpoints & + 7 and
h + 5+ n, the axis of—b connecting—1 and the middle point betweena(h + 5 + n)
and —(3+ n) and the horizontal axis which joins the verter % 7 with the middle
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Fig. 4. A genus 2 Heegaard diagram Mdf (h).

point between 15+ 20 and 15+ 21. The graph in Fig. 5 hash5+ 13 (resp. 5+ 12)
vertices on the circla and —a (resp.b and —b). If h = 2n, then the fixed axis o&
connectsh + 3 and the middle point between+2n andh +5+-n, the fixed axis of—b
has endpoints-(2h + 6) and—(2 + n), while the fixed axis of the horizontal line plus
infinity joins the middle point betweenn5t+4 and % + 5 with the vertex 16+ 13. If

h = 2n+ 1, then the fixed axis of has endpoints oh + 3 and2h + 7 + n, the fixed
axis of —b connects—(2h + 6) with the middle point betweer(h 4+ 4+ n) and2 +n
and the fixed axis of the horizontal line plus infinity joine 7 with the middle point
between the vertices h5-20 and 15 + 21. Finally, let us focus on the Heegaard dia-
gram in Fig. 6, having exactlytb+ 13 (resp. B + 14) vertices on the circlea and
—a (resp.b and —b). If h = 2n, then the fixed axes of the diagram conn&cand the
middle point betweer8 + n and h + 6 + n on the circlea, the points—(2h + 5) and
—(h + 5+ n) on the circle—b and the middle point betweem5+ 5 and % + 6 with
the vertex 18 + 14 on the horizontal line plus infinity. Ih = 2n + 1, then the fixed
axis of a under the involutionr has endpointd andh + n + 4, the fixed axis of—b
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f+G+U)-
Qia

10h+17
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1]
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>

Fig. 5. A genus 2 Heegaard diagram M (h).

joins the vertex—(2h + 5) with the middle point betweer(h + n + 4) and—(n + 2)
and finally, the fixed axis of the horizontal line plus infinitpnnects the middle point
between B + 5 and % + 6 with the point 15 + 14. As described in [1], [14] and
[18], the fixed axes of each Heegaard diagram under the acfidime involutiont be-
come the bridges of a well-specified 3-bridge link or knot.isTis the branch set of
the related manifold represented as double branched ogverfi S3. By a sequence

of Reidemeister moves, we can reduce the obtained branshirsehe simple forms
O]

shown in Figs. 7, 8 and 9.



840 A. CaviccHioLl AND A.l. TELLONI

)
«2h+7)
-1

-(h+3)
2

=
Sl LA
93 . Iy
s E ég
= =
1 10h+17

._
T
o
=
—
Il
A O
=

Fig. 6. A genus 2 Heegaard diagram M (h).
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Fig. 7. The 3-bridge hyperbolic kndt;.
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Fig. 8. The 3-bridge hyperbolic link..
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Fig. 9. The 3-bridge hyperbolic kndts.
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