A VARIATIONAL PROBLEM RELATED TO CONFORMAL MAPS

Nobumitsu NAKAUCHI

(Received June 12, 2009, revised March 8, 2010)

Abstract

In this paper we are concerned with a variational problem for a functional related to the conformality of maps between Riemannian manifolds. We give the first variation formula, the second variation formula, a kind of the monotonicity formula and a Bochner type formula. We also consider a variational problem of minimizing the functional in each 3-homotopy class of the Sobolev space.

1. Introduction

Let $(M, g),(N, h)$ be compact Riemannian manifolds without boundary. A smooth map f from M into N is called a conformal map if there exists a positive function φ on M such that $f^{*} h=\varphi g$, where $f^{*} h$ denotes the pullback of the metric h by f, i.e.,

$$
\left(f^{*} h\right)(X, Y)=h(d f(X), d f(Y)) .
$$

We consider a covariant symmetric tensor

$$
T_{f}:=f^{*} h-\frac{1}{m}\|d f\|^{2} g
$$

where m denotes the dimension of the manifold M, and $\|d f\|^{2}$ denotes the energy density in the harmonic map theory, i.e.,

$$
\|d f\|^{2}=\sum_{i} h\left(d f\left(e_{i}\right), d f\left(e_{i}\right)\right) .
$$

(e_{i} denotes a local orthonormal frame on M.) Then f is conformal at x if and only if $T_{f}=0$ at this point, unless $(d f)_{x}=0$. In this paper we are concerned with the functional

$$
\Phi(f)=\int_{M}\left\|T_{f}\right\|^{2} d v_{g}
$$

where $d v_{g}$ denotes the volume form of (M, g), and

$$
\left\|T_{f}\right\|^{2}=\sum_{i, j} T_{f}\left(e_{i}, e_{j}\right)^{2}
$$

The functional $\Phi(f)$ gives a quantity of the conformality of f. We give the first variation formula and the second variation formula for this functional. We also prove a kind of the monotonicity formula and a Bochner type formula. Furthermore we want to minimize the functional $\Phi(f)$ in each homotopy class of maps from M into N. Minimizers are expected to be closest to conformal maps, even if its homotopy class does not contain any conformal map. To this aim, we adopt the notion of 3-homotopy in the Sobolev spaces, which is given by White. We consider a variational problem of minimizing the functional $\Phi(f)$ in each 3-homotopy class of the Sobolev space.

2. The tensor T_{f} of the conformality and the functional $\Phi(f)$

Let $(M, g),(N, h)$ be compact Riemannian manifolds without boundary and let f be a smooth map from M into N. In this section we give a tensor T_{f} of the conformality for any smooth map f. We recall here the following two notions.

DEFINITION 1. (i) A smooth map f is weakly conformal if there exists a nonnegative function φ on M such that

$$
\begin{equation*}
f^{*} h=\varphi g \tag{1}
\end{equation*}
$$

where $f^{*} h$ denotes the pullback of the metric h by f, i.e.,

$$
\left(f^{*} h\right)(X, Y)=h(d f(X), d f(Y))
$$

(ii) A smooth map f is conformal if there exists a positive function φ on M satisfying (1).

The condition (1) is equivalent to

$$
\begin{equation*}
f^{*} h=\frac{1}{m}\|d f\|^{2} g, \tag{2}
\end{equation*}
$$

since taking the trace of the both sides of (1) (with respect to the metric g), we have $\|d f\|^{2}=m \varphi$, i.e., $\varphi=(1 / m)\|d f\|^{2}$. Then f is conformal if and only if it satisfies (2) with the assumption $\|d f\| \neq 0$. Note that f is weakly conformal if and only if for any point $x \in M, f$ is conformal at x or $d f_{x}=0$.

Taking the above situation into consideration, we utilize the covariant tensor

$$
T_{f} \stackrel{\text { def }}{=} f^{*} h-\frac{1}{m}\|d f\|^{2} g,
$$

i.e.,

$$
\begin{aligned}
T_{f}(X, Y) & \stackrel{\text { def }}{=}\left(f^{*} h\right)(X, Y)-\frac{1}{m}\|d f\|^{2} g(X, Y) \\
& =h(d f(X), d f(Y))-\frac{1}{m}\|d f\|^{2} g(X, Y)
\end{aligned}
$$

Remark 1. In the case of $m=2$, the tensor T_{f} is equal to the stress energy tensor

$$
S_{f}=f^{*} h-\frac{1}{2}\|d f\|^{2} g
$$

in the harmonic map theory. (See Eells and Lemaire [3], p. 392.)
Lemma 1. (a) T_{f} is symmetric, i.e., $T_{f}(X, Y)=T_{f}(Y, X)$.
(b) f is weakly conformal if and only if $T_{f}=0$.
(c) $\left\|T_{f}\right\|^{2}=\left\|f^{*} h\right\|^{2}-(1 / m)\|d f\|^{4}$.
(d) T_{f} is trace-free, i.e.,

$$
\operatorname{Trace}_{g} T_{f}=\sum_{i, j} g\left(e_{i}, e_{j}\right) T_{f}\left(e_{i}, e_{j}\right)=0,
$$

where e_{i} denotes a local orthonormal frame on M.
(e) The trace of T_{f} with respect to the pullback $f^{*} h$ is equal to the norm of T_{f}, i.e.,

$$
\operatorname{Trace}_{f^{*} h} T_{f}=\sum_{i, j}\left(f^{*} h\right)\left(e_{i}, e_{j}\right) T_{f}\left(e_{i}, e_{j}\right)=\left\|T_{f}\right\|^{2}
$$

Proof. (a) follows directly from the definition of T_{f}.
(b): The argument mentioned above implies that f is a weakly conformal map if and only if $f^{*} h=(1 / m)\|d f\|^{2} g$, which is equivalent to the condition $T_{f}=0$.
(c):

$$
\begin{aligned}
\left\|T_{f}\right\|^{2} & =\sum_{i, j} T_{f}\left(e_{i}, e_{j}\right)^{2} \\
& =\sum_{i, j}\left\{h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right)-\frac{1}{m}\|d f\|^{2} g\left(e_{i}, e_{j}\right)\right\}^{2}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{i, j} h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right)^{2} \\
& -\frac{2}{m}\|d f\|^{2} \sum_{i, j} h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right) g\left(e_{i}, e_{j}\right)+\frac{1}{m^{2}}\|d f\|^{4} \sum_{i, j} g\left(e_{i}, e_{j}\right)^{2} \\
= & \left\|f^{*} h\right\|^{2}-\frac{2}{m}\|d f\|^{4}+\frac{1}{m}\|d f\|^{4} \\
= & \left\|f^{*} h\right\|^{2}-\frac{1}{m}\|d f\|^{4} .
\end{aligned}
$$

(d):

$$
\begin{aligned}
\operatorname{Trace}_{g} T_{f} & =\sum_{i, j} g\left(e_{i}, e_{j}\right) T_{f}\left(e_{i}, e_{j}\right) \\
& =\sum_{i, j} g\left(e_{i}, e_{j}\right)\left\{h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right)-\frac{1}{m}\|d f\|^{2} g\left(e_{i}, e_{j}\right)\right\} \\
& =\sum_{i, j} g\left(e_{i}, e_{j}\right) h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right)-\frac{1}{m}\|d f\|^{2} \sum_{i, j} g\left(e_{i}, e_{j}\right)^{2} \\
& =\|d f\|^{2}-\|d f\|^{2} \\
& =0
\end{aligned}
$$

(e):

$$
\begin{aligned}
\operatorname{Trace}_{f^{*} h} T_{f} & =\sum_{i, j}\left(f^{*} h\right)\left(e_{i}, e_{j}\right) T_{f}\left(e_{i}, e_{j}\right) \\
& =\sum_{i, j} h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) \\
& =\sum_{i, j} h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right)\left\{h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right)-\frac{1}{m}\|d f\|^{2} g\left(e_{i}, e_{j}\right)\right\} \\
& =\sum_{i, j} h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right)^{2}-\frac{1}{m}\|d f\|^{2} \sum_{i, j} h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right) g\left(e_{i}, e_{j}\right) \\
& =\left\|f^{*} h\right\|^{2}-\frac{1}{m}\|d f\|^{4} \\
& =\left\|T_{f}\right\|^{2} \quad(\text { by }(\mathrm{c})) .
\end{aligned}
$$

Thus we obtain Lemma 1.
In this paper, we are concerned with the functional

$$
\Phi(f)=\int_{M}\left\|T_{f}\right\|^{2} d v_{g}
$$

This functional $\Phi(f)$ gives a quantity of the conformality of maps f. Note that if f is a conformal map, then $\Phi(f)$ vanishes.

3. First variation formula

In this section we give the first variation formula for the functional $\Phi(f)$. We define an " $f^{-1} T N$-valued" 1 -form σ_{f} on M by

$$
\begin{align*}
\sigma_{f}(X) & =\sum_{j} T_{f}\left(X, e_{j}\right) d f\left(e_{j}\right) \\
& =\sum_{j} h\left(d f(X), d f\left(e_{j}\right)\right) d f\left(e_{j}\right)-\frac{1}{n}\|d f\|^{2} d f(X) \tag{3}
\end{align*}
$$

for any vector field X on M, where e_{j} denotes a local orthonormal frame on M. The 1 -form σ_{f} plays an important role in our arguments.

Take any smooth deformation F of f, i.e., any smooth map

$$
F:(-\varepsilon, \varepsilon) \times M \rightarrow N \quad \text { s.t. } \quad F(0, x)=f(x) .
$$

Let $f_{t}(x)=F(t, x)$, and we often say a deformation $f_{t}(x)$ instead of a deformation $F(t, x)$. Let

$$
X=\left.d F\left(\frac{\partial}{\partial t}\right)\right|_{t=0}
$$

denote the variation vector fields of the deformation F. Then we have the following first variation formula.

Theorem 1 (first variation formula).

$$
\left.\frac{d \Phi\left(f_{t}\right)}{d t}\right|_{t=0}=-4 \int_{M} h\left(X, \operatorname{div}_{g} \sigma_{f}\right) d v_{g}
$$

where $d v_{g}$ denotes the volume form on M, and $\operatorname{div}_{g} \sigma_{f}$ denotes the divergence of σ_{f}, i.e., $\operatorname{div}_{g} \sigma_{f}=\sum_{i=1}^{m}\left(\nabla_{e_{i}} \sigma_{f}\right)\left(e_{i}\right)$.

We give here the notion of stationary maps for the functional $\Phi(f)$.
Definition 2. We call a smooth map f stationary (for the functional $\Phi(f)$) if the first variation of $\Phi(f)$ identically vanishes, i.e.,

$$
\left.\frac{d \Phi\left(f_{t}\right)}{d t}\right|_{t=0}=0
$$

for any smooth deformation f_{t} of f. By Theorem 1, a smooth map f is stationary for $\Phi(f)$ if and only if it satisfies the equation

$$
\begin{equation*}
\operatorname{div}_{g} \sigma_{f}=0 \tag{4}
\end{equation*}
$$

where σ_{f} is the covariant tensor defined by (3). It is the Euler-Lagrange equation for the functional $\Phi(f)$.

Proof of Theorem 1. We calculate $(\partial / \partial t)\left\|f_{t}^{*} h\right\|^{2}$ at any fixed point $x_{0} \in M$. The connection ∇ is trivially extended to a connection on $(-\varepsilon, \varepsilon) \times M$. We use the same notation ∇ for this connection. The frame e_{i} is also trivially extended to a frame on $(-\varepsilon, \varepsilon) \times$ (the domain of the frame), and we use the same notation e_{i}. By a normal coordinate at x_{0}, we can assume $\nabla_{e_{i}} e_{j}=0$ for any i, j at x_{0}. Since $(d F)_{(t, x)}\left(\left(e_{i}\right)_{(t, x)}\right)=$ $\left(d f_{t}\right)_{x}\left(\left(e_{i}\right)_{x}\right)$, we denote them by $d F\left(e_{i}\right)$ simply. Note that

$$
\begin{equation*}
\nabla_{\partial / \partial t}\left(d F\left(e_{i}\right)\right)=\left(\nabla_{\partial / \partial t} d F\right)\left(e_{i}\right)=\left(\nabla_{e_{i}} d F\right)\left(\frac{\partial}{\partial t}\right)=\nabla_{e_{i}}\left(d F\left(\frac{\partial}{\partial t}\right)\right) \tag{5}
\end{equation*}
$$

since $\left[\partial / \partial t, e_{i}\right]=0$. Then we have

$$
\begin{aligned}
\frac{\partial}{\partial t}\left\|T_{f_{t}}\right\|^{2} & =\frac{\partial}{\partial t} \sum_{i, j} T_{f_{t}}\left(e_{i}, e_{j}\right)^{2} \\
& =2 \sum_{i, j} \frac{\partial T_{f_{t}}\left(e_{i}, e_{j}\right)}{\partial t} T_{f_{t}}\left(e_{i}, e_{j}\right) \\
& =2 \sum_{i, j}\left\{\frac{\partial}{\partial t} h\left(d f_{t}\left(e_{i}\right), d f_{t}\left(e_{j}\right)\right)-\frac{1}{m} \frac{\partial\left\|d f_{t}\right\|^{2}}{\partial t} g\left(e_{i}, e_{j}\right)\right\} T_{f_{t}}\left(e_{i}, e_{j}\right) \\
& =2 \sum_{i, j}\left\{\frac{\partial}{\partial t} h\left(d f_{t}\left(e_{i}\right), d f_{t}\left(e_{j}\right)\right)\right\} T_{f_{t}}\left(e_{i}, e_{j}\right)-\frac{2}{n} \frac{\partial\left\|d f_{t}\right\|^{2}}{\partial t} \sum_{i, j} g\left(e_{i}, e_{j}\right) T_{f_{t}}\left(e_{i}, e_{j}\right) \\
& =2 \sum_{i, j}\left\{\frac{\partial}{\partial t} h\left(d f_{t}\left(e_{i}\right), d f_{t}\left(e_{j}\right)\right)\right\} T_{f_{t}}\left(e_{i}, e_{j}\right) \quad \text { (by Lemma } 1 \text { (d)) } \\
& =2 \sum_{i, j}\left\{\frac{\partial}{\partial t} h\left(d F\left(e_{i}\right), d F\left(e_{j}\right)\right)\right\} T_{f_{t}}\left(e_{i}, e_{j}\right) \\
& =4 \sum_{i, j} h\left(\nabla_{\partial / \partial t}\left(d F\left(e_{i}\right)\right), d F\left(e_{j}\right)\right) T_{f_{t}}\left(e_{i}, e_{j}\right) \quad \text { (by Lemma 1 (a)) } \\
& =4 \sum_{i, j} h\left(\nabla_{e_{i}}\left(d F\left(\frac{\partial}{\partial t}\right)\right), d f_{t}\left(e_{j}\right)\right) T_{f_{t}}\left(e_{i}, e_{j}\right) \quad \text { (by (5)) } \\
& =4 \sum_{i} h\left(\nabla_{e_{i}}\left(d F\left(\frac{\partial}{\partial t}\right)\right), \sum_{j} T_{f_{t}}\left(e_{i}, e_{j}\right) d f_{t}\left(e_{j}\right)\right) \\
& \left(\because h(A, B) T_{f_{t}}(C, D)=h\left(A, T_{f_{t}}(C, D) B\right)\right)
\end{aligned}
$$

$$
=4 \sum_{i} h\left(\nabla_{e_{i}}\left(d F\left(\frac{\partial}{\partial t}\right)\right), \sigma_{f_{t}}\left(e_{i}\right)\right)
$$

Thus we obtain

$$
\begin{equation*}
\frac{\partial}{\partial t}\left\|T_{f_{t}}\right\|^{2}=4 \sum_{i} h\left(\nabla_{e_{i}}\left(d F\left(\frac{\partial}{\partial t}\right)\right), \sigma_{f_{t}}\left(e_{i}\right)\right) \tag{6}
\end{equation*}
$$

Integrate the both sides of (6) on M, and then we have

$$
\begin{aligned}
\frac{d}{d t} \int_{M}\left\|T_{f_{t}}\right\|^{2} d v_{g} & =\int_{M} \frac{\partial}{\partial t}\left\|T_{f_{t}}\right\|^{2} d v_{g} \\
& =4 \int_{M} \sum_{i} h\left(\nabla_{e_{i}}\left(d F\left(\frac{\partial}{\partial t}\right)\right), \sigma_{f_{t}}\left(e_{i}\right)\right) d v_{g}
\end{aligned}
$$

Let $t=0$ and using integration by parts, we obtain the first variation formula.
Take a 1-parameter family $\varphi_{t}(-\varepsilon<t<\varepsilon)$ of diffeomorphisms on M. Let X be the smooth vector field on M corresponding to this 1-parameter family. We have the following first variation formula for $f_{t}=f \circ \varphi_{t}$.

Theorem 2 (first variation formula).

$$
\begin{equation*}
\left.\frac{d \Phi\left(f \circ \varphi_{t}\right)}{d t}\right|_{t=0}=-\int_{M}\left\{\left\|T_{f}\right\|^{2} \operatorname{div}_{g} X-4 \sum_{i=1}^{m} h\left(d f\left(\nabla_{e_{i}} X\right), \sigma_{f}\left(e_{i}\right)\right)\right\} d v_{g} \tag{7}
\end{equation*}
$$

where $\left\{e_{i}\right\}$ denotes a local orthonormal frame on M.
Proof. Theorem 2 follows from the general form of the first variation formula (Theorem 1). Take $\tilde{X}=d f(X)$ as a variation vector field X in Theorem 1 for $f_{t}=$ $f \circ \varphi_{t}$, and then we have

$$
\begin{equation*}
\nabla_{e_{i}} \tilde{X}=\left(\nabla_{e_{i}} d f\right)(X)+d f\left(\nabla_{e_{i}} X\right)=\left(\nabla_{X} d f\right)\left(e_{i}\right)+d f\left(\nabla_{e_{i}} X\right) . \tag{8}
\end{equation*}
$$

We calculate $\left.\sum_{i=1}^{m} h\left(\nabla_{X} d f\right)\left(e_{i}\right), \sigma_{f}\left(e_{i}\right)\right)$ at any fixed point $x_{0} \in M$. Using a normal coordinate at x_{0}, we have $\nabla_{e_{j}} e_{i}=0$ hence $\nabla_{X} e_{i}=0$ at x_{0}, and then we have $\left(\nabla_{X} d f\right)\left(e_{i}\right)=$ $\nabla_{X}\left(d f\left(e_{i}\right)\right)$. Then we get

$$
\begin{align*}
& 4 \sum_{i} h\left(\nabla_{e_{i}} \tilde{X}, \sigma_{f}\left(e_{i}\right)\right) \\
& =4 \sum_{i=1}^{m} h\left(\nabla_{X}\left(d f\left(e_{i}\right)\right), \sigma_{f}\left(e_{i}\right)\right)+4 \sum_{i=1}^{m} h\left(d f\left(\nabla_{e_{i}} X\right), \sigma_{f}\left(e_{i}\right)\right) . \tag{9}
\end{align*}
$$

We calculate $\sum_{i=1}^{m} h\left(\nabla_{X}\left(d f\left(e_{i}\right)\right), \sigma_{f}\left(e_{i}\right)\right)$. Let \mathcal{L}_{X} be the Lie derivative with respect to the vector field X. We have

$$
\begin{aligned}
4 & \sum_{i=1}^{m} h\left(\nabla_{X}\left(d f\left(e_{i}\right)\right), \sigma_{f}\left(e_{i}\right)\right) \\
= & 4 \sum_{i, j=1}^{m} h\left(\nabla_{X}\left(d f\left(e_{i}\right)\right), d f\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) \\
= & 2 \sum_{i, j=1}^{m} \mathcal{L}_{X}\left\{h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right)\right\} T_{f}\left(e_{i}, e_{j}\right) \\
= & 2 \sum_{i, j=1}^{m} \mathcal{L}_{X}\left\{h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right)\right\}\left\{h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right)-\frac{1}{m}\|d f\|^{2} g\left(e_{i}, e_{j}\right)\right\} \\
= & 2 \sum_{i, j=1}^{m} \mathcal{L}_{X}\left\{h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right)\right\} h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right) \\
& -\frac{2}{m}\|d f\|^{2} \sum_{i, j=1}^{m} \mathcal{L}_{X}\left\{h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right)\right\} g\left(e_{i}, e_{j}\right) \\
= & \sum_{i, j=1}^{m} \mathcal{L}_{X}\left\{h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right)^{2}\right\}-\frac{2}{m}\|d f\|^{2} \mathcal{L}_{X}\|d f\|^{2} \\
= & \mathcal{L}_{X}\left\{\sum_{i, j=1}^{m} h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right)^{2}\right\}-\frac{1}{m} \mathcal{L}_{X}\|d f\|^{4} \\
= & \mathcal{L}_{X}\left\|f^{*} h\right\|^{2}-\frac{1}{m} \mathcal{L}_{X}\|d f\|^{4} \\
= & \mathcal{L}_{X}\left\{\left\|f^{*} h\right\|^{2}-\frac{1}{m}\|d f\|^{4}\right\} \\
= & \mathcal{L}_{X}\left\|T_{f}\right\|^{2} .
\end{aligned}
$$

Then by (9) and (10), we have

$$
\begin{equation*}
4 \sum_{i} h\left(\nabla_{e_{i}} \tilde{X}, \sigma_{f}\left(e_{i}\right)\right)=\mathcal{L}_{X}\left\|T_{f}\right\|^{2}+4 \sum_{i=1}^{m} h\left(d f\left(\nabla_{e_{i}} X\right), \sigma_{f}\left(e_{i}\right)\right) \tag{11}
\end{equation*}
$$

Therefore we get

$$
\begin{aligned}
\left.\frac{d \Phi\left(f \circ \varphi_{t}\right)}{d t}\right|_{t=0} & =\left.\frac{d \Phi\left(f_{t}\right)}{d t}\right|_{t=0} \\
& =\int_{M} \mathcal{L}_{X}\left\|T_{f}\right\|^{2} d v_{g}+4 \int_{M} \sum_{i=1}^{m} h\left(d f\left(\nabla_{e_{i}} X\right), \sigma_{f}\left(e_{i}\right)\right) d v_{g} \\
& =-\int_{M}\left\|T_{f}\right\|^{2} \mathcal{L}_{X}\left(d v_{g}\right)+4 \int_{M} \sum_{i=1}^{m} h\left(d f\left(\nabla_{e_{i}} X\right), \sigma_{f}\left(e_{i}\right)\right) d v_{g}
\end{aligned}
$$

$$
=-\int_{M}\left\|T_{f}\right\|^{2} \operatorname{div}_{g} X d v_{g}+4 \int_{M} \sum_{i=1}^{m} h\left(d f\left(\nabla_{e_{i}} X\right), \sigma_{f}\left(e_{i}\right)\right) d v_{g}
$$

Thus we obtain the conclusion of Theorem 2.

4. Second variation formula

In this section we give the second variation formula for the functional $\Phi(f)$. Take any smooth deformation F of f with two parameters, i.e., any smooth map

$$
F:(-\varepsilon, \varepsilon) \times(-\delta, \delta) \times M \rightarrow N \quad \text { s.t. } \quad F(0,0, x)=f(x)
$$

Let $f_{s, t}(x)=F(s, t, x)$, and we often say a deformation $f_{s, t}(x)$ instead of a deformation $F(s, t, x)$. Let

$$
X=\left.d F\left(\frac{\partial}{\partial s}\right)\right|_{s, t=0}, \quad Y=\left.d F\left(\frac{\partial}{\partial t}\right)\right|_{s, t=0}
$$

denote the variation vector fields of the deformation F. Then we have the following second variation formula.

Theorem 3 (second variation formula).

$$
\begin{aligned}
\left.\frac{1}{4} \frac{\partial^{2} \Phi\left(f_{s, t}\right)}{\partial s \partial t}\right|_{s, t=0}= & -\int_{M} h\left(\operatorname{Hess}_{F}\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right), \operatorname{div}_{g} \sigma_{f}\right) d v_{g} \\
& +\int_{M} \sum_{i, j} h\left(\nabla_{e_{i}} X, \nabla_{e_{j}} Y\right) T_{f}\left(e_{i}, e_{j}\right) d v_{g} \\
& +\int_{M} \sum_{i, j} h\left(\nabla_{e_{i}} X, d f\left(e_{j}\right)\right) h\left(\nabla_{e_{i}} Y, d f\left(e_{j}\right)\right) d v_{g} \\
& +\int_{M} \sum_{i, j} h\left(\nabla_{e_{i}} X, d f\left(e_{j}\right)\right) h\left(d f\left(e_{i}\right), \nabla_{e_{j}} Y\right) d v_{g} \\
& -\frac{2}{m} \int_{M} \sum_{i} h\left(\nabla_{e_{i}} X, d f\left(e_{i}\right)\right) \sum_{j} h\left(\nabla_{e_{j}} Y, d f\left(e_{j}\right)\right) d v_{g} \\
& -\int_{M} \sum_{i, j} h\left({ }^{N} R\left(d f\left(e_{i}\right), X\right) Y, d f\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) d v_{g}
\end{aligned}
$$

where Hess_{f} denotes the Hessian of f, i.e., $\operatorname{Hess}_{f}(Z, W)=\left(\nabla_{Z} d f\right)(W)=\left(\nabla_{W} d f\right)(Z)$.
REMARK 2. Note that the first term in the right hand side vanishes if f is a stationary map for the functional $\Phi(f)$.

REmARK 3. The last term of the right hand side in Theorem 3 is equal to

$$
-\int_{M} \sum_{i} h\left({ }^{N} R\left(d f\left(e_{i}\right), X\right) Y, \sigma_{f}\left(e_{i}\right)\right) d v_{g}
$$

Proof of Theorem 3. The connection ∇ is trivially extended to a connection on $(-\varepsilon, \varepsilon) \times(-\delta, \delta) \times M$. We use the same notation ∇ for this connection. The frame e_{i} is also trivially extended to a frame on $(-\varepsilon, \varepsilon) \times(-\delta, \delta) \times($ the domain of the frame), and denoted by the same notation e_{i}. Take and fix any point $x_{0} \in M$, and we calculate $\left(\partial^{2} /(\partial s \partial t)\right)\left\|f_{s, t}^{*} h\right\|^{2}$ at x_{0} for $s=t=0$ (for simplicity, we abbreviate the notation " $s=$ $t=0$ "). Using a normal coordinate at x_{0}, we can assume $\nabla_{e_{i}} e_{j}=0$ for any i, j at x_{0}. Since

$$
\left[\frac{\partial}{\partial s}, e_{i}\right]=\left[\frac{\partial}{\partial t}, e_{i}\right]=0
$$

we see

$$
\begin{align*}
& \nabla_{\partial / \partial s}\left(d F\left(e_{i}\right)\right)=\nabla_{e_{i}}\left(d F\left(\frac{\partial}{\partial s}\right)\right)=\nabla_{e_{i}} X, \tag{12}\\
& \nabla_{\partial / \partial t}\left(d F\left(e_{i}\right)\right)=\nabla_{e_{i}}\left(d F\left(\frac{\partial}{\partial t}\right)\right)=\nabla_{e_{i}} Y . \tag{13}
\end{align*}
$$

We see

$$
\begin{aligned}
\frac{\partial^{2}}{\partial s \partial t}\left\|T_{f_{s, t}}\right\|^{2} & =\frac{\partial^{2}}{\partial s \partial t} \sum_{i, j} T_{f_{s, t}}\left(e_{i}, e_{j}\right)^{2} \\
& =2 \sum_{i, j}\left\{\frac{\partial^{2} T_{f_{s, t}}\left(e_{i}, e_{j}\right)}{\partial s \partial t} T_{f}\left(e_{i}, e_{j}\right)\right\}+2 \sum_{i, j} \frac{\partial T_{f_{s, t}}\left(e_{i}, e_{j}\right)}{\partial s} \frac{\partial T_{f_{s, t}}\left(e_{i}, e_{j}\right)}{\partial t} \\
& \stackrel{\text { def }}{=} \mathrm{I}_{1}+\mathrm{I}_{2} .
\end{aligned}
$$

We have

$$
\begin{align*}
\mathrm{I}_{1}= & 2 \sum_{i, j} \frac{\partial^{2}}{\partial s \partial t}\left\{h\left(d f_{s, t}\left(e_{i}\right), d f_{s, t}\left(e_{j}\right)\right)-\frac{1}{m}\left\|d f_{s, t}\right\|^{2} g\left(e_{i}, e_{j}\right)\right\} T_{f}\left(e_{i}, e_{j}\right) \tag{15}\\
= & 2 \sum_{i, j}\left\{\frac{\partial^{2}}{\partial s \partial t} h\left(d f_{s, t}\left(e_{i}\right), d f_{s, t}\left(e_{j}\right)\right)\right\} T_{f}\left(e_{i}, e_{j}\right)-\frac{2}{m} \frac{\partial^{2}\left\|d f_{s, t}\right\|^{2}}{\partial s \partial t} \sum_{i, j} g\left(e_{i}, e_{j}\right) T_{f}\left(e_{i}, e_{j}\right) \\
= & 2 \sum_{i, j}\left\{\frac{\partial^{2}}{\partial s \partial t} h\left(d f_{s, t}\left(e_{i}\right), d f_{s, t}\left(e_{j}\right)\right)\right\} T_{f}\left(e_{i}, e_{j}\right) \quad \text { (by Lemma 1 (d)) } \\
= & 2 \sum_{i, j}\left\{\frac{\partial^{2}}{\partial s \partial t} h\left(d F\left(e_{i}\right), d F\left(e_{j}\right)\right)\right\} T_{f}\left(e_{i}, e_{j}\right) \\
= & 4 \sum_{i, j}\left\{h\left(\nabla_{\partial / \partial s} \nabla_{\partial / \partial t}\left(d F\left(e_{i}\right)\right), d F\left(e_{j}\right)\right)\right\} T_{f}\left(e_{i}, e_{j}\right) \\
& +4 \sum_{i, j}\left\{h\left(\nabla_{\partial / \partial s}\left(d F\left(e_{i}\right)\right), \nabla_{\partial / \partial t}\left(d F\left(e_{j}\right)\right)\right)\right\} T_{f}\left(e_{i}, e_{j}\right) \quad \text { (by Lemma 1 (a)). }
\end{align*}
$$

We get

$$
\begin{align*}
\nabla_{\partial / \partial s} \nabla_{\partial / \partial t}\left(d F\left(e_{i}\right)\right) & =\left(\nabla_{\partial / \partial s} \nabla_{\partial / \partial t} d F\right)\left(e_{i}\right)=\left(\nabla_{\partial / \partial s} \nabla_{e_{i}} d F\right)\left(\frac{\partial}{\partial t}\right) \\
& =\left(\nabla_{e_{i}} \nabla_{\partial / \partial s} d F\right)\left(\frac{\partial}{\partial t}\right)-{ }^{N} R\left(d F\left(e_{i}\right), d F\left(\frac{\partial}{\partial s}\right)\right) d F\left(\frac{\partial}{\partial t}\right) \tag{16}\\
& =\nabla_{e_{i}} \operatorname{Hess}_{F}\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right)-{ }^{N} R\left(d f\left(e_{i}\right), X\right) Y
\end{align*}
$$

Then by (12), (13), (15) and (16), we have

$$
\begin{aligned}
& \mathrm{I}_{1}=4 \sum_{i, j} h\left(\nabla_{e_{i}} \operatorname{Hess}_{F}\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right), d f\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) \\
& -4 \sum_{i, j} h\left({ }^{N} R\left(d f\left(e_{i}\right), X\right) Y, d f\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) \\
& +4 \sum_{i, j} h\left(\nabla_{e_{i}}\left(d F\left(\frac{\partial}{\partial s}\right)\right), \nabla_{e_{j}}\left(d F\left(\frac{\partial}{\partial t}\right)\right)\right) T_{f}\left(e_{i}, e_{j}\right) \\
& =4 \sum_{i} h\left(\nabla_{e_{i}} \operatorname{Hess}_{F}\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right), \sum_{j} T_{f}\left(e_{i}, e_{j}\right) d f\left(e_{j}\right)\right) \\
& -4 \sum_{i, j} h\left({ }^{N} R\left(d f\left(e_{i}\right), X\right) Y, d f\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) \\
& +4 \sum_{i, j} h\left(\nabla_{e_{i}} X, \nabla_{e_{j}} Y\right) T_{f}\left(e_{i}, e_{j}\right) \\
& =4 \sum_{i} h\left(\nabla_{e_{i}} \operatorname{Hess}_{F}\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right), \sigma_{f}\left(e_{i}\right)\right) \\
& -4 \sum_{i, j} h\left({ }^{N} R\left(d f\left(e_{i}\right), X\right) Y, d f\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) \\
& +4 \sum_{i, j} h\left(\nabla_{e_{i}} X, \nabla_{e_{j}} Y\right) T_{f}\left(e_{i}, e_{j}\right) \\
& =4 \operatorname{div}_{g} \beta_{F}-4 h\left(\operatorname{Hess}_{F}\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right), \operatorname{div}_{g} \sigma_{f}\right) \\
& -4 \sum_{i, j} h\left({ }^{N} R\left(d f\left(e_{i}\right), X\right) Y, d f\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) \\
& +4 \sum_{i, j} h\left(\nabla_{e_{i}} X, \nabla_{e_{j}} Y\right) T_{f}\left(e_{i}, e_{j}\right),
\end{aligned}
$$

where

$$
\beta_{F}(X)=h\left(\operatorname{Hess}_{F}\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right), \sigma_{f}(X)\right)
$$

On the other hand we have

$$
\begin{align*}
\mathrm{I}_{2} & =2 \sum_{i, j} \frac{\partial}{\partial s}\left\{h\left(d f_{s, t}\left(e_{i}\right), d f_{s, t}\left(e_{j}\right)\right)-\frac{1}{m}\left\|d f_{s, t}\right\|^{2} g\left(e_{i}, e_{j}\right)\right\} \frac{\partial T_{f_{s, t}}\left(e_{i}, e_{j}\right)}{\partial t} \tag{18}\\
= & 2 \sum_{i, j}\left\{\frac{\partial}{\partial s} h\left(d F\left(e_{i}\right), d F\left(e_{j}\right)\right)\right\} \frac{\partial T_{f_{s, t}}\left(e_{i}, e_{j}\right)}{\partial t} \\
& -\frac{2}{m} \frac{\partial\left\|d f_{s, t}\right\|^{2}}{\partial s} \sum_{i, j} g\left(e_{i}, e_{j}\right) \frac{\partial T_{f_{s, t}}\left(e_{i}, e_{j}\right)}{\partial t} \\
= & 2 \sum_{i, j}\left\{\frac{\partial}{\partial s} h\left(d F\left(e_{i}\right), d F\left(e_{j}\right)\right)\right\} \frac{\partial T_{f_{s, t}}\left(e_{i}, e_{j}\right)}{\partial t}
\end{align*}
$$

$$
\left(\because \sum_{i, j} g\left(e_{i}, e_{j}\right) \partial T_{f_{s, t}}\left(e_{i}, e_{j}\right) / \partial t=(\partial / \partial t)\left(\sum_{i, j} g\left(e_{i}, e_{j}\right) T_{f_{s, t}}\left(e_{i}, e_{j}\right)\right)=0 \text { by Lemma } 1\right. \text { (d)) }
$$

$$
=2 \sum_{i, j}\left\{\frac{\partial}{\partial s} h\left(d F\left(e_{i}\right), d F\left(e_{j}\right)\right)\right\} \frac{\partial}{\partial t}\left\{h\left(d f_{s, t}\left(e_{i}\right), d f_{s, t}\left(e_{j}\right)\right)-\frac{1}{m}\left\|d f_{s, t}\right\|^{2} g\left(e_{i}, e_{j}\right)\right\}
$$

$$
=2 \sum_{i, j}\left\{\frac{\partial}{\partial s} h\left(d F\left(e_{i}\right), d F\left(e_{j}\right)\right)\right\}\left\{\frac{\partial}{\partial t} h\left(d F\left(e_{i}\right), d F\left(e_{j}\right)\right)-\frac{1}{m} \frac{\partial\left\|d f_{s, t}\right\|^{2}}{\partial t} g\left(e_{i}, e_{j}\right)\right\}
$$

$$
=2 \sum_{i, j}\left\{\frac{\partial}{\partial s} h\left(d F\left(e_{i}\right), d F\left(e_{j}\right)\right)\right\}\left\{\frac{\partial}{\partial t} h\left(d F\left(e_{i}\right), d F\left(e_{j}\right)\right)\right\}
$$

$$
-\frac{2}{m} \sum_{i, j}\left\{\frac{\partial}{\partial s} h\left(d F\left(e_{i}\right), d F\left(e_{j}\right)\right)\right\} g\left(e_{i}, e_{j}\right) \frac{\partial\left\|d f_{s, t}\right\|^{2}}{\partial t}
$$

$$
=2 \sum_{i, j}\left\{\frac{\partial}{\partial s} h\left(d F\left(e_{i}\right), d F\left(e_{j}\right)\right)\right\}\left\{\frac{\partial}{\partial t} h\left(d F\left(e_{i}\right), d F\left(e_{j}\right)\right)\right\}
$$

$$
-\frac{2}{m} \sum_{i}\left\{\frac{\partial}{\partial s} h\left(d F\left(e_{i}\right), d F\left(e_{i}\right)\right)\right\} \sum_{j}\left\{\frac{\partial}{\partial t} h\left(d F\left(e_{j}\right), d F\left(e_{j}\right)\right)\right\}
$$

$$
\left(\because \partial\left\|d f_{s, t}\right\|^{2} / \partial t=(\partial / \partial t) \sum_{j} h\left(d f_{s, t}\left(e_{j}\right), d f_{s, t}\left(e_{j}\right)\right)=\sum_{j}(\partial / \partial t) h\left(d F\left(e_{j}\right), d F\left(e_{j}\right)\right)\right)
$$

$$
=: \mathrm{I}_{3}+\mathrm{I}_{4} .
$$

We have

$$
\begin{aligned}
& \mathrm{I}_{3}=2 \sum_{i, j}\left\{h\left(\nabla_{\partial / \partial s}\left(d F\left(e_{i}\right)\right), d F\left(e_{j}\right)\right)+h\left(d F\left(e_{i}\right), \nabla_{\partial / \partial s}\left(d F\left(e_{j}\right)\right)\right)\right\} \\
& \times\left\{h\left(\nabla_{\partial / \partial t}\left(d F\left(e_{i}\right)\right), d F\left(e_{j}\right)\right)+h\left(d F\left(e_{i}\right), \nabla_{\partial / \partial t}\left(d F\left(e_{j}\right)\right)\right)\right\} \\
&= 2 \sum_{i, j} h\left(\nabla_{\partial / \partial s}\left(d F\left(e_{i}\right)\right), d F\left(e_{j}\right)\right) h\left(\nabla_{\partial / \partial t}\left(d F\left(e_{i}\right)\right), d F\left(e_{j}\right)\right) \\
&+2 \sum_{i, j} h\left(\nabla_{\partial / \partial s}\left(d F\left(e_{i}\right)\right), d F\left(e_{j}\right)\right) h\left(d F\left(e_{i}\right), \nabla_{\partial / \partial t}\left(d F\left(e_{j}\right)\right)\right) \\
&+2 \sum_{i, j} h\left(d F\left(e_{i}\right), \nabla_{\partial / \partial s}\left(d F\left(e_{j}\right)\right)\right) h\left(\nabla_{\partial / \partial t}\left(d F\left(e_{i}\right)\right), d F\left(e_{j}\right)\right) \\
&+2 \sum_{i, j} h\left(d F\left(e_{i}\right), \nabla_{\partial / \partial s}\left(d F\left(e_{j}\right)\right)\right) h\left(d F\left(e_{i}\right), \nabla_{\partial / \partial t}\left(d F\left(e_{j}\right)\right)\right) \\
&= 4 \sum_{i, j} h\left(\nabla_{\partial / \partial s}\left(d F\left(e_{i}\right)\right), d F\left(e_{j}\right)\right) h\left(\nabla_{\partial / \partial t}\left(d F\left(e_{i}\right)\right), d F\left(e_{j}\right)\right) \\
&+4 \sum_{i, j} h\left(\nabla_{\partial / \partial s}\left(d F\left(e_{i}\right)\right), d F\left(e_{j}\right)\right) h\left(d F\left(e_{i}\right), \nabla_{\partial / \partial t}\left(d F\left(e_{j}\right)\right)\right)
\end{aligned}
$$

(19)
(by exchanging the indices i and j)

$$
\begin{aligned}
= & 4 \sum_{i, j} h\left(\nabla_{e_{i}}\left(d F\left(\frac{\partial}{\partial s}\right)\right), d F\left(e_{j}\right)\right) h\left(\nabla_{e_{i}}\left(d F\left(\frac{\partial}{\partial t}\right)\right), d F\left(e_{j}\right)\right) \\
& +4 \sum_{i, j} h\left(\nabla_{e_{i}}\left(d F\left(\frac{\partial}{\partial s}\right)\right), d F\left(e_{j}\right)\right) h\left(d F\left(e_{i}\right), \nabla_{e_{j}}\left(d F\left(\frac{\partial}{\partial t}\right)\right)\right) \\
= & 4 \sum_{i, j} h\left(\nabla_{e_{i}} X, d f\left(e_{j}\right)\right) h\left(\nabla_{e_{i}} Y, d f\left(e_{j}\right)\right) \\
& +4 \sum_{i, j} h\left(\nabla_{e_{i}} X, d f\left(e_{j}\right)\right) h\left(d f\left(e_{i}\right), \nabla_{e_{j}} Y\right)
\end{aligned}
$$

On the other hand by (12) and (13), we get
(20)

$$
\begin{aligned}
\mathrm{I}_{4} & =-\frac{8}{m} \sum_{i} h\left(\nabla_{\partial / \partial s}\left(d F\left(e_{i}\right)\right), d F\left(e_{i}\right)\right) \sum_{j} h\left(\nabla_{\partial / \partial t}\left(d F\left(e_{j}\right)\right), d F\left(e_{j}\right)\right) \\
& =-\frac{8}{m} \sum_{i} h\left(\nabla_{e_{i}}\left(d F\left(\frac{\partial}{\partial s}\right)\right), d F\left(e_{i}\right)\right) \sum_{j} h\left(\nabla_{e_{j}}\left(d F\left(\frac{\partial}{\partial t}\right)\right), d F\left(e_{j}\right)\right) \\
& =-\frac{8}{m} \sum_{i} h\left(\nabla_{e_{i}} X, d f\left(e_{i}\right)\right) \sum_{j} h\left(\nabla_{e_{j}} Y, d f\left(e_{j}\right)\right) .
\end{aligned}
$$

Note $\left.\left(\partial^{2} /(\partial s \partial t)\right) \Phi\left(f_{s, t}\right)\right|_{s, t=0}=\left.\int_{M}\left(\partial^{2} /(\partial s \partial t)\right)\left\|T_{f_{s, t}}\right\|^{2}\right|_{s, t=0} d v_{g}$. Integrate (14) over M and use (17), (18), (19) and (20), and then we obtain the second variation formula.

5. Quasi-monotonicity formula

In this section we prove a kind of the monotonicity formula for stationary maps. We assume the following weak notion of stationary maps.

Definition 3. Let f be a smooth map from M into N. We call it is stationary for $\Phi(f)$ with respect to diffeomorphisms on M if

$$
\left.\frac{d}{d t} \Phi\left(f \circ \varphi_{t}\right)\right|_{t=0}=0
$$

for any 1-parameter family φ_{t} of diffeomorphisms on M.
Note that the notion of stationary maps in Definition 3 is weaker than that of stationary ones in Definition 2, since $f_{t}(x)=f \circ \varphi_{t}(x)$ is a deformation in Theorem 1. Under the above weaker condition, we give the following formula.

Theorem 4 (quasi-monotonicity formula). Let f be stationary for $\Phi(f)$ with respect to diffeomorphisms on M. Let m be the dimension of M. Then it satisfies

$$
\frac{d}{d \rho}\left\{e^{C_{2} \rho} \rho^{4-m} \int_{B_{\rho}\left(x_{0}\right)}\left\|T_{f}\right\|^{2} d v_{g}\right\} \geq 4 e^{C_{2} \rho} \rho^{4-m}\left(\varphi^{\prime}(\rho)+C_{1} \varphi(\rho)\right)
$$

where $B_{\rho}\left(x_{0}\right)$ denotes the open ball of a radius ρ with a center $x_{0} \in M$, and C_{1}, C_{2} are constants. Here

$$
\varphi(\rho)=\int_{B_{\rho}\left(x_{0}\right)} h\left(d f\left(\frac{\partial}{\partial r}\right), \sigma_{f}\left(\frac{\partial}{\partial r}\right)\right) d v_{g}
$$

and σ_{f} is defined by (3).
REMARK 4. If $\varphi(\rho)$ satisfies the condition $\varphi^{\prime}(\rho)+C_{1} \varphi(\rho) \geq 0$, then

$$
e^{C_{2} \rho} \rho^{4-m} \int_{B_{\rho}\left(x_{0}\right)}\left\|T_{f}\right\|^{2} d v_{g}
$$

is monotone non-decreasing.
Proof of Theorem 4. We use the argument by Price [4]. (See also Xin [9], p. 43.) Let X be a smooth vector field on M, which is supported compactly in $B_{r}\left(x_{0}\right)$. Take
a 1-parameter family $\varphi_{t}(-\varepsilon<t<\varepsilon)$ of diffeomorphisms on M corresponding to this vector field. By Theorem 2, we have

$$
\begin{equation*}
0=\left.\frac{d \Phi\left(f \circ \varphi_{t}\right)}{d t}\right|_{t=0}=-\int_{M}\left\{\left\|T_{f}\right\|^{2} \operatorname{div}_{g} X-4 \sum_{i=1}^{m} h\left(d f\left(\nabla_{e_{i}} X\right), \sigma_{f}\left(e_{i}\right)\right)\right\} d v_{g} \tag{21}
\end{equation*}
$$

Let $r=r(x)$ denote the distance function between x_{0} and x, and let $\partial / \partial r$ be the gradient vector field of the distance function r. We can take an local orthonormal frame e_{i} such that $e_{m}=\partial / \partial r$. We adopt here a smooth vector field

$$
X(x)=\xi(r) r \frac{\partial}{\partial r}=\xi(r(x)) r(x) \frac{\partial}{\partial r}
$$

in a coordinate neighborhood U of x_{0}, which vanishes outside U. The function $\xi(r)$ is defined later. We see, for $1 \leq i \leq m-1$,

$$
\nabla_{e_{i}} \frac{\partial}{\partial r}=\sum_{j=1}^{m-1} \operatorname{Hess}(r)\left(e_{i}, e_{j}\right) e_{j}
$$

where $\operatorname{Hess}(r)(X, Y)=(\nabla d r)(X, Y)=\nabla_{X}(d r(Y))-d r\left(\nabla_{X} Y\right)$ denotes the Hessian of the function r. Indeed, note $d r\left(e_{j}\right)=g\left(\partial / \partial r, e_{j}\right)=0(j=1, \ldots, m-1)$ and $g(\partial / \partial r, \partial / \partial r)=1$, and then we have

$$
\begin{aligned}
\nabla_{e_{i}} \frac{\partial}{\partial r} & =\sum_{j=1}^{m} g\left(\nabla_{e_{i}} \frac{\partial}{\partial r}, e_{j}\right) e_{j}=\sum_{j=1}^{m-1} g\left(\nabla_{e_{i}} \frac{\partial}{\partial r}, e_{j}\right) e_{j}+g\left(\nabla_{e_{i}} \frac{\partial}{\partial r}, \frac{\partial}{\partial r}\right) \frac{\partial}{\partial r} \\
& =-\sum_{j=1}^{m-1} g\left(\frac{\partial}{\partial r}, \nabla_{e_{i}} e_{j}\right) e_{j}=-\sum_{j=1}^{m-1} d r\left(\nabla_{e_{i}} e_{j}\right) e_{j}=\sum_{j=1}^{m-1}(\nabla d r)\left(e_{i}, e_{j}\right) e_{j}
\end{aligned}
$$

since

$$
\begin{aligned}
& 0=\nabla_{e_{i}}\left\{g\left(\frac{\partial}{\partial r}, e_{j}\right)\right\}=g\left(\nabla_{e_{i}} \frac{\partial}{\partial r}, e_{j}\right)+g\left(\frac{\partial}{\partial r}, \nabla_{e_{i}} e_{j}\right) \\
& 0=\nabla_{e_{i}}\left\{g\left(\frac{\partial}{\partial r}, \frac{\partial}{\partial r}\right)\right\}=2 g\left(\nabla_{e_{i}} \frac{\partial}{\partial r}, \frac{\partial}{\partial r}\right)
\end{aligned}
$$

We have

$$
\begin{align*}
& \nabla_{\partial / \partial r} X=\nabla_{\partial / \partial r}\left(\xi(r) r \frac{\partial}{\partial r}\right)=(\xi(r) r)^{\prime} \frac{\partial}{\partial r} \tag{22}\\
& \nabla_{e_{i}} X=\xi(r) r \nabla_{e_{i}} \frac{\partial}{\partial r}=\xi(r) r \sum_{j=1}^{m-1} \operatorname{Hess}(r)\left(e_{i}, e_{j}\right) e_{j} \quad(1 \leq i \leq m-1) \tag{23}
\end{align*}
$$

By the comparison theorem of Hessian, we know

$$
\begin{equation*}
\frac{1}{r} g\left(e_{i}, e_{j}\right)\left(1-C_{1} r\right) \leq \operatorname{Hess}(r)\left(e_{i}, e_{j}\right) \leq \frac{1}{r} g\left(e_{i}, e_{j}\right)\left(1+C_{1} r\right) \tag{24}
\end{equation*}
$$

where c is a constant which depends on the upper and lower bound of the sectional curvature of M. We calculate $\operatorname{div}_{g} X$ and $\sum_{i=1}^{m} h\left(d f\left(\nabla_{e_{i}} X\right), \sigma_{f}\left(e_{i}\right)\right)$ in the first variation formula (21). By (22), (23) and (24), we have

$$
\begin{align*}
\operatorname{div}_{g} X & =\sum_{i=1}^{m-1} g\left(\nabla_{e_{i}} X, e_{i}\right)+g\left(\nabla_{\partial / \partial r} X, \frac{\partial}{\partial r}\right) \\
& =\xi(r) r \sum_{i, j=1}^{m-1} \operatorname{Hess}(r)\left(e_{i}, e_{j}\right) g\left(e_{j}, e_{i}\right)+(\xi(r) r)^{\prime} \tag{25}\\
& \geq(m-1) \xi(r)\left(1-C_{1} r\right)+(\xi(r) r)^{\prime} \\
& =\xi^{\prime}(r) r+m \xi(r)-(m-1) c \xi(r) r
\end{align*}
$$

We also get by (22), (23) and (24),

$$
\begin{gathered}
\sum_{i=1}^{m} h\left(d f\left(\nabla_{e_{i}} X\right), \sigma_{f}\left(e_{i}\right)\right) \\
= \\
=\sum_{i=1}^{m-1} h\left(d f\left(\nabla_{e_{i}} X\right), \sigma_{f}\left(e_{i}\right)\right)+h\left(d f\left(\nabla_{\partial / \partial r} X\right), \sigma_{f}\left(\frac{\partial}{\partial r}\right)\right) \\
= \\
\begin{aligned}
\leq & \xi(r) r \sum_{i, j=1}^{m-1} \operatorname{Hess}(r)\left(e_{i}, e_{j}\right) h\left(d f\left(e_{j}\right), \sigma_{f}\left(e_{i}\right)\right)+(\xi(r) r)^{\prime} h\left(d f\left(\frac{\partial}{\partial r}\right), \sigma_{f}\left(\frac{\partial}{\partial r}\right)\right) \\
= & \xi^{\prime}(r) r h\left(d f\left(\frac{\partial}{\partial r}\right), \sigma_{f} r\right) \sum_{i=1}^{m-1} h\left(d f\left(e_{i}\right), \sigma_{f}\left(e_{i}\right)\right)+\left(\xi^{\prime}(r) r+\xi(r)\right) h\left(d f\left(\frac{\partial}{\partial r}\right), \sigma_{f}\left(\frac{\partial}{\partial r}\right)\right) \\
& +\xi(r)\left\{\sum_{i=1}^{m-1} h\left(d f\left(e_{i}\right), \sigma_{f}\left(e_{i}\right)\right)+h\left(d f\left(\frac{\partial}{\partial r}\right), \sigma_{f}\left(\frac{\partial}{\partial r}\right)\right)\right\} \\
& +C_{1} \xi(r) r \sum_{i=1}^{m-1} h\left(d f\left(e_{i}\right), \sigma_{f}\left(e_{i}\right)\right) \\
= & \xi^{\prime}(r) r h\left(d f\left(\frac{\partial}{\partial r}\right), \sigma_{f}\left(\frac{\partial}{\partial r}\right)\right)+\xi(r) \sum_{i=1}^{m} h\left(d f\left(e_{i}\right), \sigma_{f}\left(e_{i}\right)\right) \\
& +C_{1} \xi(r) r\left\{\sum_{i=1}^{m} h\left(d f\left(e_{i}\right), \sigma_{f}\left(e_{i}\right)\right)-h\left(d f\left(\frac{\partial}{\partial r}\right), \sigma_{f}\left(\frac{\partial}{\partial r}\right)\right)\right\} .
\end{aligned}
\end{gathered}
$$

We have by Lemma 1 (e)

$$
\begin{align*}
\sum_{i=1}^{m} h\left(d f\left(e_{i}\right), \sigma_{f}\left(e_{i}\right)\right) & =\sum_{i=1}^{m} h\left(d f\left(e_{i}\right), \sum_{j=1}^{m} T_{f}\left(e_{i}, e_{j}\right) d f\left(e_{j}\right)\right) \tag{27}\\
& =\sum_{i=1}^{m} \sum_{j=1}^{m} h\left(d f\left(e_{i}\right), d f\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right)=\left\|T_{f}\right\|^{2}
\end{align*}
$$

For simplicity we set

$$
A\left(d f, \frac{\partial}{\partial r}\right):=h\left(d f\left(\frac{\partial}{\partial r}\right), \sigma_{f}\left(\frac{\partial}{\partial r}\right)\right)
$$

Then by (26), (27), we have

$$
\begin{align*}
& \sum_{i=1}^{m} h\left(d f\left(\nabla_{e_{i}} X\right), \sigma_{f}\left(e_{i}\right)\right) \tag{28}\\
& \leq \xi^{\prime}(r) r A\left(d f, \frac{\partial}{\partial r}\right)+\xi(r)\left\|T_{f}\right\|^{2}+C_{1} \xi(r) r\left(\left\|T_{f}\right\|^{2}-A\left(d f, \frac{\partial}{\partial r}\right)\right)
\end{align*}
$$

Therefore by (21), (25), (28), we get

$$
\begin{aligned}
0= & \int_{M}\left\{\left\|T_{f}\right\|^{2} \operatorname{div}_{g} X-4 \sum_{i=1}^{m} h\left(d f\left(\nabla_{e_{i}} X\right), \sigma_{f}\left(e_{i}\right)\right)\right\} d v_{g} \\
\geq & \int_{M} \xi^{\prime}(r) r\left\|T_{f}\right\|^{2} d v_{g}+m \int_{M} \xi(r)\left\|T_{f}\right\|^{2} d v_{g} \\
& -(m-1) C_{1} \int_{M} \xi(r) r\left\|T_{f}\right\|^{2} d v_{g} \\
& -4 \int_{M} \xi^{\prime}(r) r A\left(d f, \frac{\partial}{\partial r}\right) d v_{g}-4 \int_{M} \xi(r)\left\|T_{f}\right\|^{2} d v_{g} \\
& -4 C_{1} \int_{M} \xi(r) r\left\|T_{f}\right\|^{2} d v_{g}+4 C_{1} \int_{M} \xi(r) r A\left(d f, \frac{\partial}{\partial r}\right) d v_{g},
\end{aligned}
$$

i.e.,
(29)

$$
\begin{aligned}
& -\int_{M} \xi^{\prime}(r) r\left\|T_{f}\right\|^{2} d v_{g}+(4-m) \int_{M} \xi(r)\left\|T_{f}\right\|^{2} d v_{g}+C_{2} \int_{M} \xi(r) r\left\|T_{f}\right\|^{2} d v_{g} \\
& \geq-4 \int_{M} \xi^{\prime}(r) r A\left(d f, \frac{\partial}{\partial r}\right) d v_{g}+4 C_{1} \int_{M} \xi(r) r A\left(d f, \frac{\partial}{\partial r}\right) d v_{g},
\end{aligned}
$$

where $C_{2}=(m+3) C_{1}$. Take and fix a positive number ε, and let φ be a smooth function on $[0, \infty)$ such that

$$
\varphi(r)=\varphi_{\varepsilon}(r)=\left\{\begin{array}{lll}
1 & \text { if } & 0 \leq r \leq 1 \\
0 & \text { if } & 1+\varepsilon \leq r
\end{array}\right.
$$

and

$$
\varphi^{\prime}(r) \leq 0 .
$$

We define

$$
\xi(r)=\xi_{\rho}(r) \stackrel{\text { def }}{=} \varphi\left(\frac{r}{\rho}\right) .
$$

We can verify

$$
\begin{equation*}
\xi^{\prime}(r) r=-\rho \frac{d}{d \rho} \xi(r) . \tag{30}
\end{equation*}
$$

Since $\left\|T_{f}\right\|^{2}$ is independent of ρ, the above facts (29) and (30) imply

$$
\begin{aligned}
& \rho \frac{d}{d \rho} \int_{M} \xi(r)\left\|T_{f}\right\|^{2} d v_{g}+(4-m) \int_{M} \xi(r)\left\|T_{f}\right\|^{2} d v_{g}+C_{2} \int_{M} \xi(r) r\left\|T_{f}\right\|^{2} d v_{g} \\
& \geq 4 \rho \frac{d}{d \rho} \int_{M} A\left(d f, \frac{\partial}{\partial r}\right) \xi(r) d v_{g}+4 C_{1} \rho \int_{M} A\left(d f, \frac{\partial}{\partial r}\right) \xi(r) d v_{g} .
\end{aligned}
$$

Let ε tend to zero, and then, since $\xi(r)$ converges to the characteristic function for the ball $B_{\rho}\left(x_{0}\right)$, we have

$$
\begin{aligned}
& \rho \frac{d}{d \rho} \int_{B_{\rho}\left(x_{0}\right)}\left\|T_{f}\right\|^{2} d v_{g}+(4-m) \int_{B_{\rho}\left(x_{0}\right)}\left\|T_{f}\right\|^{2} d v_{g}+C_{2} \rho \int_{B_{\rho}\left(x_{0}\right)}\left\|T_{f}\right\|^{2} d v_{g} \\
& \geq 4 \rho \frac{d}{d \rho} \int_{B_{\rho}\left(x_{0}\right)} A\left(d f, \frac{\partial}{\partial r}\right) d v_{g}+4 C_{1} \rho \int_{B_{\rho}\left(x_{0}\right)} A\left(d f, \frac{\partial}{\partial r}\right) d v_{g} .
\end{aligned}
$$

Multiply $e^{C_{2} \rho} \rho^{3-m}$ to the both sides of this inequality, and we have

$$
\begin{aligned}
& \frac{d}{d \rho}\left\{e^{C_{2} \rho} \rho^{4-m} \int_{B_{\rho}\left(x_{0}\right)}\left\|T_{f}\right\|^{2} d v_{g}\right\} \\
& \geq 4 e^{C_{2 \rho} \rho} \rho^{4-m}\left\{\frac{d}{d \rho} \int_{M} A\left(d f, \frac{\partial}{\partial r}\right) d v_{g}+C_{1} \int_{M} A\left(d f, \frac{\partial}{\partial r}\right) d v_{g}\right\}
\end{aligned}
$$

Thus we obtain the formula.

6. Bochner type formula

In this section we prove the following formula.

Theorem 5 (Bochner type formula). For any smooth map f from M into N, the following equality holds:

$$
\begin{align*}
\frac{1}{4} \Delta\left\|T_{f}\right\|^{2}= & \operatorname{div} \alpha_{f}-h\left(\tau_{f}, \operatorname{div} \sigma_{f}\right)+\frac{1}{2}\left\|\nabla T_{f}\right\|^{2} \\
& +\sum_{i, j, k} h\left(\left(\nabla_{e_{k}} d f\right)\left(e_{i}\right),\left(\nabla_{e_{k}} d f\right)\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) \\
& +\sum_{i, j} h\left(d f\left(\sum_{k}{ }^{M} R\left(e_{i}, e_{k}\right) e_{k}\right), d f\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) \tag{31}\\
& -\sum_{i, j, k} h\left({ }^{N} R\left(d f\left(e_{i}\right), d f\left(e_{k}\right)\right) d f\left(e_{k}\right), d f\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right)
\end{align*}
$$

where

$$
\alpha_{f}(X)=h\left(\sigma_{f}(X), \tau_{f}\right)
$$

Here σ_{f} is defined by (3), and $\tau_{f}=\operatorname{tr}(\nabla d f)=\sum_{j}\left(\nabla_{e_{j}} d f\right)\left(e_{j}\right)$ is the tension field of f in the harmonic map theory. (See Eells and Lemaire [2], p. 9.)

Remark 5. Note that the first term in the right hand side is of divergence form, and hence the integral of it over M vanishes.

REmARK 6. Note that the second term in the right hand side vanishes if f is a stationary map for the functional $\Phi(f)$.

REmARK 7. The last two terms of the right hand side in Theorem 5 are equal to

$$
\begin{aligned}
& +\sum_{i} h\left(d f\left(\sum_{k}{ }^{M} R\left(e_{i}, e_{k}\right) e_{k}\right), \sigma_{f}\left(e_{i}\right)\right) \\
& -\sum_{i, k} h\left({ }^{N} R\left(d f\left(e_{i}\right), d f\left(e_{k}\right)\right) d f\left(e_{k}\right), \sigma_{f}\left(e_{i}\right)\right)
\end{aligned}
$$

respectively.
Proof of Theorem 5. We have

$$
\begin{align*}
\Delta\left\|T_{f}\right\|^{2} & =\Delta \sum_{i, j} T_{f}\left(e_{i}, e_{j}\right)^{2} \\
& =2 \sum_{i, j}\left(\Delta T_{f}\right)\left(e_{i}, e_{j}\right) T_{f}\left(e_{i}, e_{j}\right)+2 \sum_{i, j} \sum_{k}\left(\nabla_{e_{k}} T_{f}\right)\left(e_{i}, e_{j}\right)^{2} \tag{32}\\
& \stackrel{\text { def }}{=} \mathrm{I}_{1}+\mathrm{I}_{2} .
\end{align*}
$$

We get

$$
\begin{aligned}
\mathrm{I}_{1}= & 2 \sum_{i, j}\left(\Delta T_{f}\right)\left(e_{i}, e_{j}\right) T_{f}\left(e_{i}, e_{j}\right) \\
= & 2 \sum_{i, j}\left\{h\left((\Delta d f)\left(e_{i}\right), d f\left(e_{j}\right)\right)+2 \sum_{k} h\left(\left(\nabla_{e_{k}} d f\right)\left(e_{i}\right),\left(\nabla_{e_{k}} d f\right)\left(e_{j}\right)\right)\right. \\
& \left.\quad+h\left(d f\left(e_{i}\right),(\Delta d f)\left(e_{j}\right)\right)-\frac{1}{m} \Delta\|d f\|^{2} g\left(e_{i}, e_{j}\right)\right\} T_{f}\left(e_{i}, e_{j}\right) \\
= & 4 \sum_{i, j} h\left((\Delta d f)\left(e_{i}\right), d f\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) \\
& +4 \sum_{i, j, k} h\left(\left(\nabla_{e_{k}} d f\right)\left(e_{i}\right),\left(\nabla_{e_{k}} d f\right)\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) \quad \text { (by Lemma } 1 \text { (a) and (d)). }
\end{aligned}
$$

Since by Ricci formula,

$$
\begin{aligned}
(\Delta d f)\left(e_{i}\right)= & \sum_{k}\left(\nabla_{e_{k}} \nabla_{e_{k}} d f\right)\left(e_{i}\right)=\sum_{k}\left(\nabla_{e_{k}} \nabla_{e_{i}} d f\right)\left(e_{k}\right) \\
= & \sum_{k}\left(\nabla_{e_{i}} \nabla_{e_{k}} d f\right)\left(e_{k}\right)+d f\left(\sum_{k}{ }^{M} R\left(e_{i}, e_{k}\right) e_{k}\right) \\
& -\sum_{k}{ }^{N} R\left(d f\left(e_{i}\right), d f\left(e_{k}\right)\right) d f\left(e_{k}\right) \\
= & \nabla_{e_{i}} \tau_{f}+d f\left(\sum_{k}{ }^{M} R\left(e_{i}, e_{k}\right) e_{k}\right)-\sum_{k}{ }^{N} R\left(d f\left(e_{i}\right), d f\left(e_{k}\right)\right) d f\left(e_{k}\right),
\end{aligned}
$$

we have

$$
\begin{align*}
\mathrm{I}_{1}= & 4 \sum_{i, j} h\left(\nabla_{e_{i}} \tau_{f}, d f\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) \\
& +4 \sum_{i, j} h\left(d f\left(\sum_{k}{ }^{M} R\left(e_{i}, e_{k}\right) e_{k}\right), d f\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) \tag{33}\\
& -4 \sum_{i, j, k} h\left({ }^{N} R\left(d f\left(e_{i}\right), d f\left(e_{k}\right)\right) d f\left(e_{k}\right), d f\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) \\
& +4 \sum_{i, j, k} h\left(\left(\nabla_{e_{k}} d f\right)\left(e_{i}\right),\left(\nabla_{e_{k}} d f\right)\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) .
\end{align*}
$$

Furthermore we get

$$
\begin{align*}
\sum_{i, j} h\left(\nabla_{e_{i}} \tau_{f}, d f\left(e_{j}\right)\right) T_{f}\left(e_{i}, e_{j}\right) & =\sum_{i} h\left(\nabla_{e_{i}} \tau_{f}, \sum_{j} T_{f}\left(e_{i}, e_{j}\right) d f\left(e_{j}\right)\right) \\
& =\sum_{i} h\left(\nabla_{e_{i}} \tau_{f}, \sigma_{f}\left(e_{i}\right)\right) \tag{34}\\
& =\sum_{i} \operatorname{div}_{g} \alpha_{f}-\sum_{i} h\left(\tau_{f}, \operatorname{div}_{g} \sigma_{f}\right) .
\end{align*}
$$

By (32), (33) and (34), we obtain Theorem 5, since $\mathrm{I}_{2}=2\left\|\nabla T_{f}\right\|^{2}$.

7. Minimizers in homotopy classes of the Sobolev space

In this section we utilize the notion of 3-homotopy in the Sobolev spaces, which is given by White, and consider a variational problem of minimizing the functional $\Phi(f)$ in each 3-homotopy class. For any two maps f and g from M into N, these maps are k-homotopic $(k \in \mathbb{N})$ if they are homotopic to each other on k-dimensional skeletons of a triangulation on M. By Nash's isometric embedding, we may assume that N is a submanifold of a Euclidean space \mathbb{R}^{q}. Let

$$
\mathrm{L}^{1, p}(M, N)=\left\{f \in \mathrm{~L}^{1, p}\left(M, \mathbb{R}^{q}\right) \mid f(x) \in N \text { a.e. }\right\}
$$

where $\mathrm{L}^{1, p}\left(M, \mathbb{R}^{q}\right)$ denotes the Sobolev space of \mathbb{R}^{q}-valued L^{p}-functions on M such that their derivatives are in L^{p}. Then White proved that the notion of the $[p-1]$ homotopy is compatible with the Sobolev space $\mathrm{L}^{1, p}(M, N)$, where [] denotes the Gauss symbol, i.e., $[r]$ is the maximum integer less than or equal to r.

Theorem S (Theorem 3.4 in White [8]. See also White [7], Schoen and Uhlenbeck [5] and Bethuel [1]).
(1) The $[p-1]$-homotopy is well-defined for any map $f \in \mathrm{~L}^{1, p}(M, N)$.
(2) If f_{j} converges weakly to f_{∞} in $\mathrm{L}^{1, p}(M, N)$, then f_{j} and f_{∞} are $[p-1]$-homotopic for sufficient large j.

The functional $\Phi(f)$ is defined on $\mathrm{L}^{1,4}(M, N)$, in which the 3-homotopy is welldefined. Then for any given continuous map f_{0} from M into N, we want to minimize the functional $\Phi(f)$ in the following class:

$$
\mathcal{F}=\left\{f \in \mathrm{~L}^{1,4}(M, N) \mid f \text { is 3-homotopic to } f_{0} \text { and }\|f\|_{\mathrm{L}^{1,4}(M, N)} \leq C_{0}\right\},
$$

where C_{0} is a given positive constant. We may assume that the space \mathcal{F} is not empty for sufficiently large C_{0}.

Theorem 6. There exists a minimizer of the functional $\Phi(f)$ in \mathcal{F}.

If a 3-homotopy class contains a conformal map, then the conformal map is a minimizer. Minimizers are expected to be closest to conformal maps, even if its 3-homotopy class does not contain any conformal map.

Remark 8. When M is 4 -dimensional and $\pi_{4}(N)=0$, any continuous minimizer is (freely) homotopic to f_{0} in the ordinary sense.

Proof of Theorem 6. Take any minimizing sequence f_{j} for the functional $\Phi(f)$ in the space \mathcal{F}, i.e., $\Phi\left(f_{j}\right)$ converges to the infimum in \mathcal{F}. We may assume that f_{j} converges weakly to a map f_{∞} in $\mathrm{L}^{1,4}(M, N)$, since $\|f\|_{\mathrm{L}^{1,4}(M, N)} \leq C_{0}$. Since the weak convergence in $\mathrm{L}^{1,4}(M, N)$ preserves the 3 -homotopy by Theorem $\mathrm{S}(2), f_{\infty}$ is 3-homotopic to f_{j} for sufficiently large j, hence to f_{0}. Furthermore $T_{f_{j}}$ converges weakly to $T_{f_{\infty}}$ in L^{2}, since for any covariant 2-tensor S,

$$
\begin{aligned}
\int_{M}\left\langle T_{f_{j}}, S\right\rangle d v_{g} & =\int_{M}\left\langle f_{j}^{*} h-\frac{1}{m}\left\|d f_{j}\right\|^{2} g, S\right\rangle d v_{g} \\
& =\int_{M}\left\langle f_{j}^{*} h, S-\frac{1}{m}\langle g, S\rangle g\right\rangle d v_{g},
\end{aligned}
$$

where \langle,$\rangle is the pointwise pairing for covariant 2-tensors. Therefore we have$

$$
\Phi\left(f_{\infty}\right)=\left\|T_{f_{\infty}}\right\|_{\mathrm{L}^{2}} \leq \liminf _{j \rightarrow \infty}\left\|T_{f_{j}}\right\|_{\mathrm{L}^{2}}=\liminf _{j \rightarrow \infty} \Phi\left(f_{j}\right)
$$

Then f_{∞} is a minimizer in \mathcal{F}.
Acknowledgement. The author would like to thank Professor Takakuwa and the referee for valuable comments.

References

[1] F. Bethuel: The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (1991), 153-206.
[2] J. Eells and L. Lemaire: A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68.
[3] J. Eells and L. Lemaire: Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524.
[4] P. Price: A monotonicity formula for Yang-Mills fields, Manuscripta Math. 43 (1983), 131-166.
[5] R. Schoen and K. Uhlenbeck: Approximation theorems for Sobolev mappings, unpublished.
[6] H. Urakawa: Calculus of Variations and Harmonic Maps, Translations of Mathematical Monographs 132, Amer. Math. Soc., Providence, RI, 1993.
[7] B. White: Infima of energy functionals in homotopy classes of mappings, J. Differential Geom. 23 (1986), 127-142.
[8] B. White: Homotopy classes in Sobolev spaces and the existence of energy minimizing maps, Acta Math. 160 (1988), 1-17.
[9] Y. Xin: Geometry of Harmonic Maps, Birkhäuser, Boston, MA, 1996.

Graduate School of Science and Engineering Yamaguchi University
Yamaguchi 753-8512
Japan

