LEADING COEFFICIENTS OF ISOGENIES OF DEGREE p OVER \mathbb{Q}_p

MAYUMI KAWACHI

(Received November 26, 2008, revised March 1, 2010)

Abstract

Let E be an elliptic curve over \mathbb{Q}_p which has potentially supersingular good reduction. Let L/\mathbb{Q}_p be a totally ramified extension such that E has good reduction over L and \tilde{E} be the reduction of E mod π , where π is a prime element of the ring of integers \mathcal{O}_L of L. Let \hat{E} be the formal group over \mathcal{O}_L associated to E/\mathcal{O}_L . The multiplication by p map $[p]: \hat{E} \to \hat{E}$ is written by power series $[p](x) = px + c_2x^2 + \cdots + c_px^p + \cdots + c_{p^2}x^{p^2} + \cdots \in \mathcal{O}_L[[x]]$. By using the liftings over \mathcal{O}_L of the Dieudonné module of p-divisible group $\tilde{E}(p)$ over \mathbb{F}_p , we determine the values of $v_L(c_p)$.

1. Introduction

Let $p \geq 5$ be a prime number and E be an elliptic curve over the p-adic number field \mathbb{Q}_p . We assume $v_p(j) \geq 0$, where v_p is the normalized additive p-adic valuation and j is the j-invariant of E. Then E has potentially good reduction over \mathbb{Q}_p . Let E/\mathbb{Z}_p be the minimal Weierstrass equation for E over the p-adic integer ring \mathbb{Z}_p . Put $e=12/\gcd(v_p(\Delta),12)$, where Δ is the discriminant of E/\mathbb{Z}_p . Let π be an element of the algebraic closure \mathbb{Q}_p of \mathbb{Q}_p such that $\pi^e+p=0$. Then $L=\mathbb{Q}_p(\pi)$ is the unique totally ramified extension of degree e over \mathbb{Q}_p . Then E has good reduction over E. Let E/\mathcal{O}_L be the minimal Weierstrass equation for E over the ring of integers \mathcal{O}_L of E. Let E/\mathbb{Z}_p be the reduction of E/\mathcal{O}_L mod E. Let E be the formal group over E associated to E/\mathcal{O}_L [7, IV, §1]. The multiplication by E map E is written by a power series E is paper is to determine the valuation of a coefficient E of E/\mathbb{Z}_p , when E/\mathbb{F}_p is supersingular.

Theorem. Assume that j is integral and \tilde{E}/\mathbb{F}_p is supersingular. If $c_p = 0$ or $v_L(c_p) < e$, we have the followings.

- 1) For e = 1, $c_p = 0$.
- 2) For e = 2, $c_p = 0$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11G07; Secondary 14L05.

- 3) For e = 3, $c_p = 0$ if and only if j = 0. If $j \neq 0$, then $v_L(c_p) = 1$ or 2. More precisely, if $v_p(\Delta) = 4$ then $v_L(c_p) = 2$, and if $v_p(\Delta) = 8$ then $v_L(c_p) = 1$.
- 4) For e = 4, $c_p = 0$ if and only if j = 1728. If $j \neq 1728$, then $v_L(c_p) = 2$.
- 5) For e = 6, $c_p = 0$ if and only if j = 0. If $j \neq 0$, then $v_L(c_p) = 2$ or 4. More precisely, if $v_p(\Delta) = 2$ then $v_L(c_p) = 2$, and if $v_p(\Delta) = 10$ then $v_L(c_p) = 4$.

Under the condition of Theorem, it follows that $v_p(\Delta) = 4$ or 8 for e = 3 and that $v_p(\Delta) = 2$ or 10 for e = 6.

If we assume that there exists an elliptic curve E' over \mathbb{Q}_p and an isogeny $v: E \to E'$ of degree p over \mathbb{Q}_p , then $v_L(c_p) < e$ by Lemma 4.1.1. Moreover since E and E' are isogenous, E' has good reduction over E. Let \hat{E}' be a formal group over \mathcal{O}_L associated to E'/\mathcal{O}_L . Then we can construct an isogeny $\hat{v}_L: \hat{E} \to \hat{E}'$ of height 1 over \mathcal{O}_L . Let $\hat{v}_L(x) = a_1x + a_2x^2 + \cdots$. We are interested in the valuation of the leading coefficient a_1 . Put $t = v_L(a_1)$. By Lemma 4.1.1, $t = e - v_L(c_p)$ if e < p. So we can determine the value of t by Theorem.

In [6], we determine the image of a local Kummer map $\delta \colon E'(K)/\nu_K E(K) \to H^1(K, \ker \nu_K)$, where K is a finite extension of \mathbb{Q}_p and $\nu_K \colon E \to E'$ is a p-isogeny over K. The image $\operatorname{Im} \delta$ is the local image of the connecting homomorphism at a prime over p of the Selmer group of an isogeny of degree p over a number field. And the image is described using the filtration on the unit group of K and the valuation of the leading coefficient of the formal power series of ν_K . It is important to know the value of t in order to calculate the Selmer groups of isogenies of degree p over \mathbb{Q} .

Corollary. 1) For e = 1, E does not have isogenies of degree p over \mathbb{Q}_p .

- 2) For e = 2, E does not have isogenies of degree p over \mathbb{Q}_p .
- 3) For e=3, if j=0, then E does not have isogenies of degree p over \mathbb{Q}_p . If $j\neq 0$, then t=1 or 2. More precisely if $v_p(\Delta)=4$ then t=1, and if $v_p(\Delta)=8$ then t=2.
- 4) For e = 4, if j = 1728, then E does not have isogenies of degree p over \mathbb{Q}_p . If $j \neq 1728$, then t = 2.
- 5) For e=6, if j=0, then E does not have isogenies of degree p over \mathbb{Q}_p . If $j\neq 0$, then t=2 or 4. More precisely if $v_p(\Delta)=2$ then t=4, and if $v_p(\Delta)=10$ then t=2.

In order to prove Theorem, we must know the formal logarithm $\log_{\hat{E}}$ of \hat{E} , since $[p](x) = \log_{\hat{E}}^{-1} \circ p \circ \log_{\hat{E}}$. In §2, we obtained the power series expansion of $\log_{\hat{E}}$ in Proposition 2.2.1. If e = 1, $\log_{\hat{E}}$ is uniquely determined by the theory of Honda formal groups. When e > 1, we prove that $\log_{\hat{E}}$ corresponds to a generator of the lifting of the Deudonné module of the p-divisible group of \tilde{E} over \mathbb{F}_p and describe the power series of $\log_{\hat{E}}$ by using the parameter $\beta \in \mathcal{O}_L$ which appears in the lifting. In §3, we determine the value of $v_L(c_p)$ by using the proposition of Volkov [10] under the conditions that E is defined over \mathbb{Q}_p and \tilde{E} is supersingular. In §4, we consider isogenies

of degree p over \mathbb{Q}_p and prove Corollary. We give examples of elliptic curves whose values of t can be determined by Corollary.

2. Honda formal groups and Dieudonné modules

Let notations and assumptions be as in §1.

2.1. The case e = 1. For a commutative ring R, we write $R[[x]]_0 = \{f \in R[[x]] | f \equiv 0 \mod x\}$. Let Γ be a formal group over \mathbb{Z}_p and $\log_{\Gamma}(x) \in \mathbb{Q}_p[[x]]_0$ the formal logarithm of Γ/\mathbb{Z}_p [7, IV, §5]. It satisfies $\log_{\Gamma}(x) = x + \cdots$ and $\log_{\Gamma}(x) + \log_{\Gamma}(y) = \log_{\Gamma}(\Gamma(x, y))$. For $\sum a_i x^i \in \mathbb{Q}_p[[x]]$, define the Frobenius endomorphism φ by

(2.1)
$$\varphi\left(\sum a_i x^i\right) = \sum a_i x^{pi}.$$

Assume that $\log_{\Gamma}(x)$ is of type $T^2 + p$, that is $(\varphi^2 + p) \log_{\Gamma}(x) \equiv 0 \mod p \mathbb{Z}_p[[x]]_0$ [5, §2].

Lemma 2.1.1 (cf. [3, 2.4, Lemma]). We have

$$\log_{\Gamma}(x) = \sum_{k=1, p^2 \nmid k}^{\infty} \sum_{m=0}^{\infty} \left\{ (-1)^m \frac{1}{p^m} b_k + \sum_{i=1}^m \frac{1}{p^{m-i}} a_i^{(k)} \right\} x^{kp^{2m}},$$

where $b_1 = 1$, $b_k \in \mathbb{Z}_p$ and $a_i^{(k)} \in \mathbb{Z}_p$. Therefore let $\log_{\Gamma}(x) = x + b_2 x^2 + \dots + b_p x^p + \dots + b_{p^2} x^{p^2} + \dots$, then

$$\begin{cases} b_i \in \mathbb{Z}_p & \text{for} \quad p^2 \nmid i, \\ v_p(b_{p^{2m}}) = -m & \text{for} \quad m = 1, 2, \dots, \\ v_p(b_{kp^{2m}}) \ge -m & \text{for} \quad m = 1, 2, \dots \text{ and } p^2 \nmid k. \end{cases}$$

Especially we can choose Γ over \mathbb{Z}_p in the strong isomorphism class such that

$$\log_{\Gamma}(x) = x - \frac{1}{p}x^{p^2} + \frac{1}{p^2}x^{p^4} + \dots + (-1)^m \frac{1}{p^m}x^{p^{2m}} + \dots.$$

Proof. Let
$$\log_{\Gamma}(x) = x + b_2 x^2 + \dots + b_p x^p + \dots + b_{p^2} x^{p^2} + \dots$$
. Then
$$(\varphi^2 + p) \log_{\Gamma}(x)$$

$$= x^{p^2} + b_2 x^{2p^2} + \dots + b_p x^{p^2} + \dots + b_{p^2} x^{p^4} + \dots$$

$$+ px + pb_2 x^2 + \dots + pb_p x^p + \dots + pb_{p^2} x^{p^2} + \dots + pb_{p^4} x^{p^4} + \dots$$

$$\equiv 0 \mod p \mathbb{Z}_p[[x]]_0.$$

Let $p^2 \nmid k$, then $pb_k \equiv 0 \mod p\mathbb{Z}_p$. So $b_k \in \mathbb{Z}_p$. Since $b_k + pb_{kp^2} \equiv 0 \mod p\mathbb{Z}_p$,

$$b_{kp^2} = -\frac{1}{p}b_k + a_1^{(k)}, \quad a_1^{(k)} \in \mathbb{Z}_p.$$

Since $b_{kp^{2(m-1)}} + pb_{kp^{2m}} \equiv 0 \mod p\mathbb{Z}_p$,

$$b_{kp^{2m}} = (-1)^m \frac{1}{p^m} b_k + \sum_{i=1}^m \frac{1}{p^{m-i}} a_i^{(k)}, \text{ where } a_i^{(k)} \in \mathbb{Z}_p, \text{ for } m = 2, 3, \dots$$

We choose the Γ over \mathbb{Z}_p in the strong isomorphism class such that $(\varphi^2 + p)\log_{\Gamma}(x) = px$. Then $\log_{\Gamma}(x) = x - (1/p)x^{p^2} + (1/p^2)x^{p^4} + \cdots + (-1)^m(1/p^m)x^{p^{2m}} + \cdots$.

If e=1, E has good reduction over \mathbb{Q}_p . Assume that the reduction \tilde{E}/\mathbb{F}_p of E/\mathbb{Z}_p is supersingular. Let \hat{E} be the formal group over \mathbb{Z}_p associated to E/\mathbb{Z}_p and $\log_{\hat{E}}(x)$ be the formal logarithm of \hat{E}/\mathbb{Z}_p .

Proposition 2.1.1. For e = 1, if $c_p = 0$ or $v_p(c_p) < 1$, then $c_p = 0$.

Proof. If e=1, $\log_{\hat{E}}(x)$ is of type T^2+p ([4, Theorem 5], [5, Theorem 9]). So let $\log_{\hat{E}}(x)=x+b_2x^2+\cdots+b_px^p+\cdots$, then $b_2,\ldots,b_p\in\mathbb{Z}_p$. Hence $\log_{\hat{E}}^{-1}(x)=x+d_2x^2+\cdots+d_px^p+\cdots$, where $d_2,\ldots,d_p\in\mathbb{Z}_p$ and

$$[p](x) = \log_{\hat{E}}^{-1} \circ p \circ \log_{\hat{E}}(x)$$

$$= px + \dots + pb_{p}x^{p} + \dots + d_{2}(px + \dots + pb_{p}x^{p} + \dots)^{2} + \dots + d_{p}(px + \dots + pb_{p}x^{p} + \dots)^{p} + \dots + d_{p}(px + \dots + pb_{p}x^{p} + \dots)^{p} + \dots$$

$$= px + \dots + (pb_{p} + p^{2}s_{2} + \dots + p^{p-1}s_{p-1} + p^{p}d_{p})x^{p} + \dots,$$

where $s_2, \ldots, s_{p-1} \in \mathbb{Z}_p$. So $v_p(c_p) \ge v_p(p) = 1$, we have $c_p = 0$.

Let $\widetilde{E}(p)$ be the p-divisible group of \widetilde{E} over \mathbb{F}_p [8, §2] and $M = \mathbb{M}(\widetilde{E}(p)) = \operatorname{Hom}_{\mathbb{D}_{\mathbb{F}_p}}(\widetilde{E}(p),\widehat{CW}_{\mathbb{F}_p})$ the Dieudonné module of $\widetilde{E}(p)$ over \mathbb{F}_p [2, p. 126], where $\mathbb{D}_{\mathbb{F}_p} = \mathbb{Z}_p[F,V]$. For a commutative ring R, let $\Lambda(R) = R[[x]]$ and $\Lambda_0(R) = R[[x]]_0$. By Yoneda's lemma $M = \operatorname{Hom}_{\mathbb{D}_{\mathbb{F}_p}}(\widetilde{E}(p),\widehat{CW}_{\mathbb{F}_p})$ is a $\mathbb{D}_{\mathbb{F}_p}$ -submodule of $\widehat{CW}_{\mathbb{F}_p}(\Lambda_0(\mathbb{F}_p))$, where CW is the group of Witt covectors [2, p. 74] and $\widehat{CW}_{\mathbb{F}_p}(A) = CW(A)$ for a

profinite \mathbb{F}_p -ring A [2, p. 90, p. 93]. For $(\ldots, a_{-n}, \ldots, a_{-1}, a_0) \in \widehat{CW}_{\mathbb{F}_p}(\Lambda_0(\mathbb{F}_p))$, let

$$F(\ldots, a_{-n}, \ldots, a_{-1}, a_0) = (\ldots, a_{-n}^p, \ldots, a_{-1}^p, a_0^p)$$

and

$$V(\ldots, a_{-n}, \ldots, a_{-1}, a_0) = (\ldots, a_{-n-1}, \ldots, a_{-2}, a_{-1}).$$

By [2, III, Proposition 6.1] the functor \mathbb{M} induces an anti-equivalence between the categories of p-divisible groups over \mathbb{F}_p and free \mathbb{Z}_p -modules of finite rank. Let $\phi \colon \tilde{E}(p) \to \tilde{E}(p)$ be the p-th power Frobenius endomorphism, then $F = \mathbb{M}(\phi)$. If \tilde{E} is supersingular, then M is a free \mathbb{Z}_p -module of rank 2 and F satisfies $F^2 + p = 0$. Let e_1 be a generator of the $\mathbb{Z}_p[F]$ -module M. Then (e_1, e_2) is a \mathbb{Z}_p -base of M and $e_2 = Fe_1$ [10, p. 86].

Let $P(\Lambda_0(\mathbb{Z}_p)) = \{ f \in \mathbb{Q}_p[[x]] \mid df/dx \in \mathbb{Z}_p[[x]] \} \cap \mathbb{Q}_p[[x]]_0$. Define

$$w : \widehat{CW}_{\mathbb{F}_p}(\Lambda_0(\mathbb{F}_p)) \to P(\Lambda_0(\mathbb{Z}_p))/p\Lambda_0(\mathbb{Z}_p),$$

by

$$(\ldots, a_{-n}, \ldots, a_{-1}, a_0) \mapsto \sum p^{-n} \hat{a}_{-n}^{p^n}.$$

For $a = \sum b_i x^i \in \mathbb{F}_p[[x]]$, let $\hat{a} = \sum [b_i] x^i$, where $[]: \mathbb{F}_p \to \mathbb{Z}_p$ is the multiplicative system of representatives of $\mathbb{Z}_p = W(\mathbb{F}_p)$. Then $\varphi = w \circ F$. By abuse of language, we denote φ by F. So $P(\Lambda_0(\mathbb{Z}_p))$ is $\mathbb{Z}_p[[F]]$ -module and w is an isomorphism of $\mathbb{Z}_p[[F]]$ -modules [2, p.240]. Let

$$\mathcal{MH}_{\mathbb{Z}_p}(\Gamma) = \{ f \in P(\Lambda_0(\mathbb{Z}_p)) \mid f(x) + f(y) - f(\Gamma(x, y)) \in p\mathbb{Z}_p[[x, y]]_0 \}$$

and

$$MH_{\mathbb{Z}_p}(\Gamma) = \mathcal{MH}_{\mathbb{Z}_p}(\Gamma)/p\mathbb{Z}_p[[x]]_0.$$

By [2, III, Proposition 6.5], $w: M \simeq MH_{\mathbb{Z}_p}(\Gamma)$ is an isomorphism of $\mathbb{Z}_p[[F]]$ -modules. Let

$$\mathcal{LH}_{\mathbb{Z}_p}(\Gamma) = \{ f \in P(\Lambda_0(\mathbb{Z}_p)) \mid f(x) + f(y) - f(\Gamma(x, y)) = 0 \}$$

and

$$\rho \colon \mathcal{LH}_{\mathbb{Z}_p}(\Gamma) \xrightarrow{\text{inclusion}} \mathcal{MH}_{\mathbb{Z}_p}(\Gamma) \xrightarrow{\text{mod } p\mathbb{Z}_p[[x]]_0} MH_{\mathbb{Z}_p}(\Gamma) \simeq M.$$

Then $\mathcal{LH}_{\mathbb{Z}_p}(\Gamma)/p\mathcal{LH}_{\mathbb{Z}_p}(\Gamma) \simeq M/FM$ as \mathbb{F}_p -vector space by [2, IV, Proposition 1.1]. And $\mathcal{LH}_{\mathbb{Z}_p}(\Gamma)$ is a free \mathbb{Z}_p -module of rank 1 generated by $\log_{\Gamma}(x)$.

Lemma 2.1.2. For a generator e_1 of $\mathbb{Z}_p[F]$ -module M, there exists $\log_{\Gamma}(x)$ of type $T^2 + p$ such that $w(e_1) = u' \log_{\Gamma}(x)$, where $u' \in \mathbb{Z}_p^{\times}$.

Proof. Let $M = \mathbb{Z}_p e_1 + \mathbb{Z}_p e_2 = \langle e_1, e_2 \rangle$ and $e_2 = Fe_1$. Then $Fe_2 = F^2 e_1 = -pe_1$. Since $\mathcal{LH}_{\mathbb{Z}_p}(\Gamma)/p\mathcal{LH}_{\mathbb{Z}_p}(\Gamma) \simeq M/FM$,

$$\langle \log_{\Gamma}(x) \rangle / p \langle \log_{\Gamma}(x) \rangle \simeq \langle e_1, e_2 \rangle / \langle Fe_1, Fe_2 \rangle$$

= $\langle e_1, e_2 \rangle / \langle e_2, -pe_1 \rangle$
 $\simeq \langle e_1 \rangle / p \langle e_1 \rangle$.

Therefore there exist $u_1 \in \mathbb{Z}_p^{\times}$ and $a' \in \mathbb{Z}_p$ such that

$$w(e_1) = u_1 \log_{\Gamma}(x) + pa' \log_{\Gamma}(x)$$
$$= (u_1 + pa') \log_{\Gamma}(x).$$

Putting $u = u_1 + pa'$, then $w(e_1) = u' \log_{\Gamma}(x)$, where $u' \in \mathbb{Z}_p^{\times}$.

2.2. The case e > 1. By [10, 4.1.3], if e < p-1, we consider liftings over \mathcal{O}_L of M, that is \mathcal{O}_L -submodules \mathcal{L} of rank 1 of $\mathcal{M} = \mathcal{O}_L \otimes_{\mathbb{Z}_p} M + p^{-1}\pi\mathcal{O}_L \otimes_{\mathbb{Z}_p} FM$ such that

$$\mathcal{L}/\pi\mathcal{L} \simeq \mathcal{M}/p^{-1}\pi \otimes_{\mathbb{Z}_n} FM.$$

Because $M = \mathbb{Z}_p e_1 + \mathbb{Z}_p e_2$, $Fe_1 = e_2$ and $Fe_2 = -pe_1$, \mathcal{O}_L -module \mathcal{M} is written by

$$\mathcal{M} = \langle 1 \otimes e_1, 1 \otimes e_2, p^{-1}\pi \otimes e_2, \pi \otimes e_1 \rangle = \langle 1 \otimes e_1, p^{-1}\pi \otimes e_2 \rangle.$$

By [10, 4.2], liftings over \mathcal{O}_L of M correspond bijectively to

$$\mathcal{L}(\beta) = (1 \otimes e_1 + \beta p^{-1} \pi \otimes e_2) \mathcal{O}_L, \quad \beta \in \mathcal{O}_L.$$

Indeed, we define $\psi: \mathcal{L} \to \mathcal{M}/p^{-1}\pi \otimes FM$ by

$$1 \otimes e_1 + \beta p^{-1}\pi \otimes e_2 \mapsto 1 \otimes e_1 + \beta p^{-1}\pi \otimes e_2 \mod p^{-1}\pi \otimes FM.$$

Then ψ is surjective because

$$\langle 1 \otimes e_1 + \beta p^{-1} \pi \otimes e_2 \rangle + p^{-1} \pi \otimes FM$$

$$= \langle 1 \otimes e_1 + \beta p^{-1} \pi \otimes e_2, p^{-1} \pi \otimes e_2, \pi \otimes e_1 \rangle$$

$$= \langle 1 \otimes e_1, p^{-1} \pi \otimes e_2 \rangle$$

$$= \mathcal{M}.$$

Let $\alpha \in \mathcal{O}_L$ such that $\alpha(1 \otimes e_1 + \beta p^{-1}\pi \otimes e_2) \in \langle p^{-1}\pi \otimes e_2, \pi \otimes e_1 \rangle$, then $\alpha \in \pi \mathcal{O}_L$. So $\mathcal{L}/\pi \mathcal{L} \simeq \mathcal{M}/p^{-1}\pi \otimes_{\mathbb{Z}_p} FM$.

For \mathcal{O}_L and $\mathbb{D}_{\mathbb{F}_p}$ -module \mathfrak{M} , we define $\mathfrak{M}_{\mathcal{O}_L}$ as in [2, p. 190]. For $j \in \mathbb{Z}$, $\mathfrak{M}^{(j)}$ is a $\mathbb{D}_{\mathbb{F}_p}$ -submodule of \mathfrak{M} defined in [2, p. 188] and $v \colon \mathfrak{M}^{(j)} \to \mathfrak{M}^{(j+1)}$ (resp. $f \colon \mathfrak{M}^{(j)} \to \mathfrak{M}^{(j-1)}$) is defined by v(a) = Va (resp. f(a) = Fa). If f is injective $f^j \colon \mathfrak{M}^{(j)} \simeq F^j \mathfrak{M}$. If $1 < e \le p-1$, $\mathfrak{M}_{\mathcal{O}_L}$ is defined by the inductive limit of the following diagram,

$$\pi \mathcal{O}_{L} \otimes \mathfrak{M} \xrightarrow{\nu_{0}} p^{-1} \pi \mathcal{O}_{L} \otimes \mathfrak{M}^{(1)}$$

$$\downarrow^{\varphi_{0}} \qquad \qquad \uparrow^{\varphi'_{0}}$$

$$\mathcal{O}_{L} \otimes \mathfrak{M} \xleftarrow{f_{0}} \mathcal{O}_{L} \otimes \mathfrak{M}^{(1)}$$

where $\varphi_0(\lambda \otimes a) = \lambda \otimes a$, $f_0(\lambda \otimes a) = \lambda \otimes f(a)$, $\varphi_0'(\lambda \otimes a) = \lambda \otimes a$, $v_0(\lambda \otimes a) = p^{-1}\lambda \otimes v(a)$. Then $\mathfrak{M}_{\mathcal{O}_t}$ is written by

$$\mathcal{O}_L \otimes \mathfrak{M} \oplus p^{-1}\pi \mathcal{O}_L \otimes \mathfrak{M}^{(1)}/\langle \operatorname{Im} \varphi_0, \operatorname{Im} f_0, \operatorname{Im} \varphi_0', \operatorname{Im} v_0 \rangle,$$

where $\operatorname{Im} \varphi_0 = \pi \mathcal{O}_L \otimes \mathfrak{M}$, $\operatorname{Im} f_0 = \mathcal{O}_L \otimes f(\mathfrak{M}^{(1)}) = \mathcal{O}_L \otimes F\mathfrak{M}$, $\operatorname{Im} \varphi_0' = \mathcal{O}_L \otimes \mathfrak{M}^{(1)}$ and $\operatorname{Im} v_0 = p^{-1}\pi \mathcal{O}_L \otimes v(\mathfrak{M})$. If f is injective, f: $\operatorname{Im} \varphi_0' = \mathcal{O}_L \otimes \mathfrak{M}^{(1)} \simeq \mathcal{O}_L \otimes F\mathfrak{M}$ and f: $\operatorname{Im} v_0 = p^{-1}\pi \mathcal{O}_L \otimes v(\mathfrak{M}) \simeq p^{-1}\pi \mathcal{O}_L \otimes FV\mathfrak{M} = p^{-1}\pi \mathcal{O}_L \otimes p\mathfrak{M} = \pi \mathcal{O}_L \otimes \mathfrak{M}$. Therefore if f is injective,

$$\mathfrak{M}_{\mathcal{O}_L} \simeq \mathcal{O}_L \otimes \mathfrak{M} \oplus p^{-1}\pi \mathcal{O}_L \otimes F\mathfrak{M}/\langle \pi \mathcal{O}_L \otimes \mathfrak{M}, \mathcal{O}_L \otimes F\mathfrak{M} \rangle.$$

Denote the above isomorphism by f'.

Let $N = CW(\mathbb{F}_p[[x]])$. When $\mathfrak{M} = N$, f is injective and v is surjective [2, p. 199, p. 202].

Lemma 2.2.1.
$$f': N_{\mathcal{O}_L} \simeq \mathcal{O}_L \otimes N + p^{-1}\pi \mathcal{O}_L \otimes FN$$
.

Proof. We must show $\mathcal{O}_L \otimes N \cap p^{-1}\pi\mathcal{O}_L \otimes FN = \langle \pi\mathcal{O}_L \otimes N, \mathcal{O}_L \otimes FN \rangle$. Since VN = N, $p^{-1}\pi\mathcal{O}_L \otimes FN = \pi\mathcal{O}_L \otimes p^{-1}FN = \pi\mathcal{O}_L \otimes V^{-1}N = \pi\mathcal{O}_L \otimes N$. So $\mathcal{O}_L \otimes N \cap p^{-1}\pi\mathcal{O}_L \otimes FN = \pi\mathcal{O}_L \otimes N \subset \langle \pi\mathcal{O}_L \otimes N, \mathcal{O}_L \otimes FN \rangle$. Since F is injective, $\mathcal{O}_L \otimes FN \subset \mathcal{O}_L \otimes N$. So $\langle \pi\mathcal{O}_L \otimes N, \mathcal{O}_L \otimes FN \rangle \subset \mathcal{O}_L \otimes N \cap p^{-1}\pi\mathcal{O}_L \otimes FN$. \square

Let $P(\Lambda_0(\mathcal{O}_L)) = \{ f \in L[[x]] \mid df/dx \in \mathcal{O}_L[[x]] \} \cap L[[x]]_0$. Since VN = N, $w'' \colon N_{\mathcal{O}_L} \to P(\Lambda_0(\mathcal{O}_L))/\pi\mathcal{O}_L[[x]]_0$ is defined and an \mathcal{O}_L -isomorphism by [2, IV, Proposition 3.2]. Define $\varphi_1 \colon p^{-1}\pi\mathcal{O}_L \otimes N \to \mathcal{O}_L \otimes N$ by $p^{-1}\lambda \otimes a \mapsto \lambda \otimes c$, where $c \in N$ mod ker V such that v(c) = a. So $\varphi \colon p^{-1}\pi\mathcal{O}_L \otimes FN \to \mathcal{O}_L \otimes N$ is defined by $p^{-1}\lambda \otimes f(a) \mapsto \lambda \otimes c$, where $pc = f \circ v(c) = f(a)$. Let $w' = w'' \circ (f')^{-1}$. Then $w' \colon \mathcal{O}_L \otimes N + p^{-1}\pi\mathcal{O}_L \otimes FN \to P(\Lambda_0(\mathcal{O}_L))/\pi\mathcal{O}_L[[x]]_0$ is written by $w' = 1 \otimes w + (1 \otimes w) \circ \varphi$ [2, p. 199].

Lemma 2.2.2. For $1 \otimes e_1 + \beta p^{-1}\pi \otimes e_2 \in \mathcal{O}_L \otimes N + p^{-1}\pi \mathcal{O}_L \otimes FN$,

$$w'(1 \otimes e_1 + \beta p^{-1}\pi \otimes e_2) = 1 \otimes w(e_1) + \beta \pi \otimes p^{-1}Fw(e_1).$$

Proof. For $e_1 \in N$, there exists $c \in N$ mod ker V such that $v(c) = e_1$, so $pc = f(e_1)$. Since w is an isomorphism of $\mathbb{Z}_p[F, V]$ -modules, $pw(c) = f \circ v \circ w(c) = f \circ w(e_1)$. So $w(c) = p^{-1} f \circ w(e_1)$. Hence

$$w'(1 \otimes e_1 + \beta p^{-1}\pi \otimes Fe_1)$$

$$= (1 \otimes w)(1 \otimes e_1) + (1 \otimes w) \circ \varphi(p^{-1}\beta\pi \otimes Fe_1)$$

$$= (1 \otimes w)(1 \otimes e_1) + (1 \otimes w)(\beta\pi \otimes c)$$

$$= 1 \otimes w(e_1) + \beta\pi \otimes w(c)$$

$$= 1 \otimes w(e_1) + \beta\pi \otimes p^{-1}Fw(e_1).$$

When $\mathfrak{M}=M$, f is injective. We put $M_0=\mathcal{O}_L\otimes M$, $M_0'=\pi\mathcal{O}_L\otimes M$, $M_1''=\mathcal{O}_L\otimes FM$ and $M_1=p^{-1}\pi\mathcal{O}_L\otimes FM$. Then $f':M_{\mathcal{O}_L}\simeq M_0\oplus M_1/\langle M_0',M_1''\rangle$.

Lemma 2.2.3. $M_{\mathcal{O}_I} \simeq \mathcal{M}$.

Proof. Since $M_0 \oplus M_1/M_0 \cap M_1 = M_0 + M_1 = \mathcal{M}$, we must show $M_0 \cap M_1 = \langle M_0', M_1'' \rangle$. Because

$$M_0 \cap M_1 = \mathcal{O}_L \otimes M \cap p^{-1} \pi \mathcal{O}_L \otimes FM$$
$$= \langle 1 \otimes e_1, 1 \otimes e_2 \rangle \cap \langle p^{-1} \pi \otimes e_2, \pi \otimes e_1 \rangle$$
$$= \langle \pi \otimes e_1, 1 \otimes e_2 \rangle$$

and

$$\langle M_0', M_1'' \rangle = \langle \pi \mathcal{O}_L \otimes M, \mathcal{O}_L \otimes FM \rangle$$

$$= \langle \pi \otimes e_1, \pi \otimes e_2, 1 \otimes e_2, p \otimes e_1 \rangle$$

$$= \langle \pi \otimes e_1, 1 \otimes e_2 \rangle,$$

$$M_0 \cap M_1 = \langle M_0', M_1'' \rangle.$$

For the formal group \hat{E} over \mathcal{O}_L , we define

$$\mathcal{MH}_{\mathcal{O}_L}(\hat{E}) = \{ f \in P(\Lambda_0(\mathcal{O}_L)) \mid f(x) + f(y) - f(\hat{E}(x, y)) \in \pi \mathcal{O}_L[[x, y]]_0 \}$$

and

$$MH_{\mathcal{O}_L}(\hat{E}) = \mathcal{MH}_{\mathcal{O}_L}(\hat{E})/\pi\mathcal{O}_L[[x]]_0.$$

By [2, IV, Proposition 4.1], the \mathcal{O}_L -isomorphism $w'': N_{\mathcal{O}_L} \to P(\Lambda_0(\mathcal{O}_L)/\pi\mathcal{O}_L[[x]]_0$ induces the \mathcal{O}_L -isomorphism $w'': M_{\mathcal{O}_L} \simeq MH_{\mathcal{O}_L}(\hat{E})$. We define

$$\mathcal{LH}_{\mathcal{O}_L}(\hat{E}) = \{ f \in P(\Lambda_0(\mathcal{O}_L)) \mid f(x) + f(y) - f(\hat{E}(x, y)) = 0 \}$$

and

$$\rho' \colon \mathcal{LH}_{\mathcal{O}_{I}}(\hat{E}) \xrightarrow{\text{inclusion}} \mathcal{MH}_{\mathcal{O}_{I}}(\hat{E}) \xrightarrow{\text{mod } \pi \mathcal{O}_{L}[[x]]_{0}} MH_{\mathcal{O}_{I}}(\hat{E}) \simeq M_{\mathcal{O}_{L}} \simeq \mathcal{M}.$$

Then $\mathcal{LH}_{\mathcal{O}_L}(\hat{E})/\pi\mathcal{LH}_{\mathcal{O}_L}(\hat{E}) \simeq M_{\mathcal{O}_L}/p^{-1}\pi \otimes FM$ as \mathbb{F}_p -vector space by [2, IV, Proposition 4.2].

Lemma 2.2.4. Let $\mathcal{L} = \rho'(\mathcal{LH}_{\mathcal{O}_L}(\hat{E}))$ and $l = 1 \otimes e_1 + \beta p^{-1}\pi \otimes e_2$ be a generator of $\mathcal{L} = \mathcal{L}(\beta)$, then $\log_{\hat{E}}(x) = uw'(l)$, where $u \in \mathcal{O}_L^{\times}$.

Proof. $\mathcal{LH}_{\mathcal{O}_L}(\hat{E})/\pi\mathcal{LH}_{\mathcal{O}_L}(\hat{E}) \simeq \mathcal{M}/p^{-1}\pi \otimes FM \simeq \mathcal{L}/\pi\mathcal{L}$ as \mathbb{F}_p -vector space. So $\log_{\hat{E}}(x) = u_2w'(l) + \pi a''w'(l)$, where $u_2 \in \mathcal{O}_L^{\times}$ and $a'' \in \mathcal{O}_L$. Put $u = u_2 + \pi a''$, $\log_{\hat{F}}(x) = uw'(l)$.

Lemma 2.2.5. If $v_L(c_p) < e$, then the value of $v_L(c_p)$ does not depend on the choice of a minimal model E/\mathcal{O}_L .

Proof. Put $R = \mathcal{O}_L/(\pi^e)$. Then we have an isogeny $[\overline{p}](x) = [p](x) \mod (\pi^e) = \overline{p}x + \cdots + \overline{c}_p x^p + \cdots$ over R. Since R is a ring of characteristic p, there exists an integer h such that $[\overline{p}](x)$ is a power series of x^{p^h} [6, Lemma 2.1.1, Lemma 2.1.2]. If $v_L(c_p) < e$, then h must be 1. So $[\overline{p}](x) = \overline{c}_p x^p + \cdots$. Hence we have $v_L(c_j) > v_L(c_p)$ for $j = 2, \ldots, p-1$. Let E_1/\mathcal{O}_L be the other minimal model of E over \mathcal{O}_L and \hat{E}_1 be a formal group over \mathcal{O}_L associated to E_1/\mathcal{O}_L . Then there exists an isomorphism $\psi: \hat{E} \to \hat{E}_1$ written by $\psi(x) = x(b_0 + b_1 x + \cdots)$, where $b_0 \in \mathcal{O}_L^{\times}$ and $b_1, b_2, \ldots \in \mathcal{O}_L$. Put $x' = \psi(x)$ then ψ^{-1} is written by $\psi^{-1}(x') = x'(b_0' + b_1'x' + \cdots)$, where $b_0' \in \mathcal{O}_L^{\times}$ and $b_1', b_2', \ldots \in \mathcal{O}_L$. Hence the coefficient of x'^p of $[p](x') = \psi([p](\psi^{-1}(x')))$ is $c_p b_0'^p b_0$ + higher valuation terms. So its valuation is equal to $v_L(c_p)$.

Proposition 2.2.1. We have

$$\log_{\hat{E}}(x) = x + b_2 x^2 + \dots + b_{p-1} x^{p-1} + \left(b_p + \frac{\beta \pi}{p}\right) x^p + \dots$$

and

$$[p](x) = px + \cdots + (\beta \pi + pa)x^p + \cdots, \quad a \in \mathcal{O}_L.$$

Therefore the value $v_L(c_p)$ does not depend on the choice of a generator e_1 of $\mathbb{Z}_p[F]$ module M and $v_L(c_p) = v_L(\beta \pi)$.

Proof. By Lemma 2.2.4, $\log_{\hat{E}}(x) = uw'(1 \otimes e_1 + \beta p^{-1}\pi \otimes e_2)$. Let $\log_{\Gamma}(x) = x + \sum_{i=2}^{\infty} b_i x^i$. Then by Lemma 2.2.2 and Lemma 2.1.2,

$$\begin{split} \log_{\hat{E}}(x) &= uw'(1 \otimes e_1 + \beta p^{-1}\pi \otimes e_2) \\ &= u\{1 \otimes w(e_1) + \beta \pi \otimes p^{-1}Fw(e_1)\} \\ &= u\{1 \otimes u' \log_{\Gamma}(x) + \beta \pi \otimes p^{-1}Fu' \log_{\Gamma}(x)\} \\ &= uu' \left\{1 \otimes \left(x + \sum_{i=2}^{\infty} b_i x^i\right) + \beta \pi \otimes p^{-1}\left(x^p + \sum_{i=2}^{\infty} b_i x^{pi}\right)\right\}. \end{split}$$

By the definition of $\log_{\hat{F}}(x)$, uu' = 1. So

$$\log_{\hat{E}}(x) = x + \dots + b_{p-1}x^{p-1} + \left(b_p + \frac{\beta\pi}{p}\right)x^p + \dots$$

Let $\log_{\hat{E}}^{-1}(x) = x + d_2 x^2 + \dots + d_{p-1} x^{p-1} + d_p x^p + \dots$. Then $x = \log_{\hat{E}}^{-1} \circ \log_{\hat{E}}(x) = x + (b_2 + d_2) x^2 + \dots + (b_p + \beta \pi/p + \dots + d_p) x^p + \dots$. Since $b_k \in \mathbb{Z}_p$ for $p^2 \nmid k$, $d_2, \dots, d_{p-1} \in \mathbb{Z}_p$ and $d_p = -\beta \pi/p + d_p'$, where $d_p' \in \mathbb{Z}_p$. Hence

$$[p](x) = \log_{\hat{E}}^{-1} \circ p \circ \log_{\hat{E}}(x)$$

$$= px + \dots + pb_{p-1}x^{p-1} + (pb_p + \beta\pi)x^p + \dots$$

$$+ d_2\{px + \dots + pb_{p-1}x^{p-1} + (pb_p + \beta\pi)x^p + \dots\}^2 + \dots$$

$$+ d_p\{px + \dots + pb_{p-1}x^{p-1} + (pb_p + \beta\pi)x^p + \dots\}^p + \dots$$

$$= px + \dots$$

$$+ \left\{ (pb_p + \beta\pi) + p^2s_2 + \dots + p^{p-1}s_{p-1} + p^p\left(-\frac{\beta\pi}{p} + d_p'\right) \right\}x^p + \dots,$$

where $s_2, \ldots, s_{p-1} \in \mathbb{Z}_p$. So $c_p = \beta \pi + pa$, where $a \in \mathcal{O}_L$. Since $v_L(c_p) < e$, we have $v_L(c_p) = v_L(\beta \pi)$.

3. Proof of Theorem

Let notations and assumptions be as in §1 and §2.

Let K_e be the Galois closure of L in \mathbb{Q}_p . Since the order of $(\mathbb{Z}/e\mathbb{Z})^{\times}$ is 1 or 2, $p \equiv 1 \mod e$ or $p \equiv -1 \mod e$. Let ζ_e be a primitive e-th root of 1. So the cases of K_e are as follows. If e = 1, $K_1 = \mathbb{Q}_p$. If e = 2, $K_2 = \mathbb{Q}_p(\pi)$ and $\operatorname{Gal}(K_2/\mathbb{Q}_p) = \langle \tau \rangle$ ($\tau \pi = -\pi$). If e = 3, 4, 6 and $e \mid p - 1$, $K_e = \mathbb{Q}_p(\pi)$ and $\operatorname{Gal}(K_e/\mathbb{Q}_p) = \langle \tau \rangle$ ($\tau \pi = \zeta_e \pi$). If e = 3, 4, 6 and $e \mid p + 1$, $K_e = \mathbb{Q}_{p^2}(\pi) = \mathbb{Q}_p(\pi, \zeta_e)$ and $\operatorname{Gal}(K_e/\mathbb{Q}_p) = \langle \tau \rangle \rtimes \langle \omega \rangle$ ($\tau \pi = \zeta_e \pi$, $\tau \zeta_e = \zeta_e$, $\omega \pi = \pi$, $\omega \zeta_e = \zeta_e^{-1}$) [10, p. 74].

Let $e \in \{3, 4, 6\}$ and $e \mid p+1$. For $[\zeta_e] \in \operatorname{Aut}_{\mathbb{F}_{p^2}}(\tilde{E})$, put $\xi_e = \mathbb{M}_{\mathbb{F}_{p^2}}([\zeta_e](p))$. Then we can take the basis (e_1, e_2) of $M \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^2}$ such that $\xi_e e_1 = \zeta_e^{\varepsilon} e_1$ and $\xi_e e_2 = \zeta_e^{-\varepsilon} e_2$,

 $(\varepsilon \in \{\pm 1\})$ [10, p. 87]. Moreover using the condition E is defined over \mathbb{Q}_p , τ acts on $M \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^2}$ rising from $\langle \tau \rangle \hookrightarrow \operatorname{Aut}_{\mathbb{F}_{p^2}}(\tilde{E})$ and the action is preserved on $\mathcal{L}(\beta) \otimes_{\mathcal{O}_L} \mathcal{O}_{K_e}$. Then $\tau e_1 = \xi_e e_1 = \zeta_e^{\varepsilon} e_1$ and $\tau e_2 = \xi_e e_1 = \zeta_e^{-\varepsilon} e_2$, $(\varepsilon \in \{\pm 1\})$ [10, p. 94].

Proposition 3.1.1 ([10, Proof of Proposition 4.8]). Let β be as in Lemma 2.2.4 and $e \in \{3, 4, 6\}$ such that $e \mid p+1$ and e < p-1. Assume that \tilde{E} is supersingular. Let j-invariant of \tilde{E} be 0 (for e=3,6) and 1728 (for e=4). We choose a generator e_1 of $\mathbb{Z}_p[F]$ -module M and $e_2=F(e_1)$ such that $\xi_e e_1=\xi_e^\varepsilon e_1$ and $\xi_e e_2=\xi_e^{-\varepsilon} e_2$, where $\varepsilon \in \{\pm 1\}$. Then

- 1) The j-invariant of E is 0 if and only if $\beta = 0$ for e = 3, 6. The j-invariant of E is 1728 if and only if $\beta = 0$ for e = 4.
- 2) E is defined over \mathbb{Q}_p if and only if $\begin{cases} \beta \in \pi \mathbb{Z}_p & \text{for } \varepsilon = 1, \\ \beta \in \pi^{e-3} \mathbb{Z}_p & \text{for } \varepsilon = -1. \end{cases}$

By the Tate algorithm [9], if e = 3 or 6 then $j(\tilde{E}) = 0$ and if e = 4 then $j(\tilde{E}) = 1728$.

Lemma 3.1.1. If \tilde{E} is supersingular, $e \mid p + 1$.

Proof. By [7, III, Theorem 10.1], if e = 3, 6 (resp. e = 4), Aut $\tilde{E} \simeq \mu_6$ (resp. Aut $\tilde{E} \simeq \mu_4$). So Aut $\tilde{E} \ni \zeta_e$. In order to prove $e \mid p+1$, we must show that Aut \tilde{E} is not defined over \mathbb{F}_p but over \mathbb{F}_{p^2} if \tilde{E} is supersingular.

We write \tilde{E} by the equation $y^2 = x^3 + Ax + B$, $A, B \in \mathbb{F}_p$ and the automorphism by the form $(x', y') \mapsto (u^2x', u^3y') = (x, y)$, where $u \in \overline{\mathbb{F}}_p$.

1) The case j = 0

In this case, \tilde{E} : $y^2 = x^3 + B$ and $u^6 \in \mathbb{F}_p^{\times}$. By [7, V, Example 4.4],

 E_1 is supersingular

$$\iff$$
 the coefficient of x^{p-1} in $(x^3 + B)^{(p-1)/2}$ is $0 \iff p \equiv 2 \mod 3$.

If $p \equiv 2 \mod 3$, then $(\mathbb{F}_p^{\times})^3 = \mathbb{F}_p^{\times}$. So $u^2 \in \mathbb{F}_p^{\times}$. Hence $u \in \mathbb{F}_{p^2}$. Since $6 \nmid p-1$, u is not contained in \mathbb{F}_p .

2) The case j = 1728

In this case, \tilde{E} : $y^2 = x^3 + Ax$ and $u^4 \in \mathbb{F}_p$. By [7, V, Example 4.5],

 \tilde{E} is supersingular

$$\iff$$
 the coefficient of x^{p-1} in $(x^3 + Ax)^{(p-1)/2}$ is 0

$$\iff p \equiv 3 \mod 4.$$

Since $\#(\mathbb{F}_{p^2}^{\times}) = p^2 - 1 = (p-1)(p+1)$, $u^4 = c^{p+1}$, where $c \in \mathbb{F}_{p^2}$. So $u = c^{(p+1)/4} \in \mathbb{F}_{p^2}$. Since $4 \nmid p-1$, u is not contained in \mathbb{F}_p .

Lemma 3.1.2. If e = 3 and $v_p(\Delta) = 4$, then $\tau(e_1) = \zeta_e e_1$. If e = 3 and $v_p(\Delta) = 8$, then $\tau(e_1) = \zeta_e^{-1} e_1$. If e = 4 and $v_p(\Delta) = 3$, then $\tau(e_1) = \zeta_e e_1$. If e = 4 and $v_p(\Delta) = 9$, then $\tau(e_1) = \zeta_e^{-1} e_1$. If e = 6 and $v_p(\Delta) = 2$, then $\tau(e_1) = \zeta_e e_1$. If e = 6 and $v_p(\Delta) = 10$, then $\tau(e_1) = \zeta_e^{-1} e_1$.

Proof. For a generator e_1 of $\mathbb{Z}_p[F]$ -module M, put $e_2 = F(e_1)$. Then there exists $\log_{\Gamma}(x)$ of type $T^2 + p$ such that $w(e_1) = u' \log_{\Gamma}(x)$, where $u' \in \mathbb{Z}_p^{\times}$ by Lemma 2.1.2. By Lemma 2.1.1, we can choose Γ such that

$$\log_{\Gamma}(x) = x - \frac{1}{p}x^{p^2} + \frac{1}{p^2}x^{p^4} + \cdots$$

We regard (e_1, e_2) as the basis of $M \otimes \mathbb{Z}_{p^2} = \mathbb{M}_{\mathbb{F}_{p^2}}(\tilde{E}(p)) = \operatorname{Hom}_{\mathbb{D}_{\mathbb{F}_{p^2}}}(\tilde{E}(p), \widehat{CW}_{\mathbb{F}_{p^2}})$, where $\mathbb{D}_{\mathbb{F}_{p^2}} = \mathbb{Z}_{p^2}[F, V]$. And as in §2, let

$$w\colon \widehat{CW}_{\mathbb{F}_{p^2}}(\Lambda_0(\mathbb{F}_{p^2}))\to P(\Lambda_0(\mathbb{Z}_{p^2}))/p\Lambda_0(\mathbb{Z}_{p^2}).$$

Then w is $\mathbb{Z}_{p^2}[F]$ -isomorphism. Moreover we regard e_1 as the element of $\mathcal{L}(\beta) \otimes \mathcal{O}_{K_{\varepsilon}}$. For the parameter x, let $(w \circ \xi_{\varepsilon})(x) = \xi_{\varepsilon}^{\varepsilon} x$, $(\varepsilon \in \{\pm 1\})$. Then

$$w(\xi_e(e_1)) = u' \left(\zeta_e^{\varepsilon} x - \frac{1}{p} (\zeta_e^{\varepsilon} x)^{p^2} + \frac{1}{p^2} (\zeta_e^{\varepsilon} x)^{p^4} + \cdots \right)$$
$$= u' \left(\zeta_e^{\varepsilon} x - \frac{1}{p} \zeta_e^{\varepsilon} x^{p^2} + \frac{1}{p^2} \zeta_e^{\varepsilon} x^{p^4} + \cdots \right)$$

which by $(\zeta_e^{\varepsilon})^{p^2} = \zeta_e^{\varepsilon}$, since $\zeta_e^{p+1} = 1$

$$=\zeta_e^{\varepsilon}e_1.$$

Since $F(x) = x^p$,

$$w(\xi_{e}(e_{2})) = w(\xi_{e}(F(e_{1})))$$

$$= u' \left((\zeta_{e}^{\varepsilon} x)^{p} - \frac{1}{p} (\zeta_{e}^{\varepsilon} x)^{p^{3}} + \frac{1}{p^{2}} (\zeta_{e}^{\varepsilon} x)^{p^{5}} + \cdots \right)$$

$$= u' \left(\zeta_{e}^{-\varepsilon} x^{p} - \frac{1}{p} \zeta_{e}^{-\varepsilon} x^{p^{3}} + \frac{1}{p^{2}} \zeta_{e}^{-\varepsilon} x^{p^{5}} + \cdots \right)$$

which by $(\zeta_e^{\varepsilon})^p = \zeta_e^{-\varepsilon}$, since $\zeta_e^{p+1} = 1$

$$=\zeta_e^{-\varepsilon}e_2.$$

Hence e_1 satisfies the condition of Proposition 3.1.1.

Let \hat{E}/\mathbb{Z}_p be a formal group over \mathbb{Z}_p associated to E/\mathbb{Z}_p . Let z be a parameter of \hat{E}/\mathbb{Z}_p such that x=uz, where $u\in\mathcal{O}_L$. If e=3 and $v_p(\Delta)=4$, then we can take $u=\pi$. So

$$w(e_1) = u' \left(\pi z - \frac{1}{p} (\pi z)^{p^2} + \frac{1}{p^2} (\pi z)^{p^4} + \cdots \right).$$

Then

$$\tau(w(e_1)) = u' \left(\tau(\pi z) - \frac{1}{p} \tau((\pi z)^{p^2}) + \frac{1}{p^2} \tau((\pi z)^{p^4}) + \cdots \right)$$

$$= u' \left(\zeta_e \pi z - \frac{1}{p} (\zeta_e \pi z)^{p^2} + \frac{1}{p^2} (\zeta_e \pi z)^{p^4} + \cdots \right)$$

$$= u' \left(\zeta_e \pi z - \frac{1}{p} \zeta_e (\pi z)^{p^2} + \frac{1}{p^2} \zeta_e (\pi z)^{p^4} + \cdots \right)$$

$$= \zeta_e w(e_1).$$

If e=3 and $v_p(\Delta)=8$, then we can take $u=\pi^2$. So $\tau(w(e_1))=\zeta_e^{-1}w(e_1)$. If e=4 and $v_p(\Delta)=3$, then we can take $u=\pi$. So $\tau(w(e_1))=\zeta_e w(e_1)$. If e=4 and $v_p(\Delta)=9$, then we can take $u=\pi^3$. So $\tau(w(e_1))=\zeta_e^{-1}w(e_1)$. If e=6 and $v_p(\Delta)=2$, then we can take $u=\pi$. So $\tau(w(e_1))=\zeta_e w(e_1)$. If e=6 and $v_p(\Delta)=10$, then we can take $u=\pi^5$. So $\tau(w(e_1))=\zeta_e^{-1}w(e_1)$. \square

Proof of Theorem. The case $e \in \{3, 4, 6\}$. Except for the case e = 6, p = 5, the condition $e is hold. Assume <math>v_p(j) \ge 0$ and \tilde{E} is supersingular. The assumptions about j-invariant are hold and $e \mid p+1$ is hold by Lemma 3.1.1. By Proof of Proposition 2.2.1, $c_p = pb_p + \beta\pi + p^2s_2 + \cdots + p^{p-1}s_{p-1} + p^p(-\beta\pi/p + d_p')$, where $b_p, s_2, \ldots, s_{p-1}, d_p' \in \mathbb{Z}_p$. If $\beta = 0$, then $c_p \in p\mathbb{Z}_p$. Since $v_L(c_p) < e$, it must be $c_p = 0$. Conversely if $c_p = 0$, then $(1 - p^{p-1})\beta\pi \in p\mathbb{Z}_p$. So $\beta\pi/p \in \mathbb{Z}_p$. Then $\log_{\hat{E}}(x) \in \mathbb{Q}_p[[x]]$ by Proof of Proposition 2.2.1. Since \tilde{E} is supersingular, \hat{E} is strongly isomorphic to Γ . Therefore $\beta = 0$. Hence for e = 3, 6, $c_p = 0$ if and only if j = 0 and for e = 4, $c_p = 0$ if and only if j = 1728 by Proposition 3.1.1, 1). Since E is defind over \mathbb{Q}_p , by Proposition 3.1.1, 2), $v_L(\beta) \equiv 1 \mod e$ for $\varepsilon = 1$ and $v_L(\beta) \equiv e - 3 \mod e$ for $\varepsilon = -1$. For e = 3, if $j \neq 0$ and $v_p(\Delta) = 4$, then $\varepsilon = 1$ by Lemma 3.1.2 so $v_L(c_p) = v_L(\beta\pi) = 2$ since $v_L(c_p) < e$. For e = 3, if $v_p(\Delta) = 8$, $v_L(c_p) = 3 - 3 + 1 = 1$. For e = 4, if $v_p(\Delta) = 3$, $v_L(c_p) = 1 + 1 = 2$ and if $v_L(\Delta) = 9$, $v_L(c_p) = 4 - 3 + 1 = 2$. For e = 6, if $v_p(\Delta) = 2$, $v_L(c_p) = 1 + 1 = 2$ and if $v_L(\Delta) = 10$, $v_L(c_p) = 6 - 3 + 1 = 4$.

If e=6 and p=5, there exists a quadratic twist E_D which is isomorphic to E over the quadratic extension $\mathbb{Q}_5(\sqrt{D})$, that is $E\ni (x_1,\,y_1)\to (x_1,\,\sqrt{D}y_1)\in E_D$. Let $\pi_m\in\bar{\mathbb{Q}}_p$ such that $\pi_m{}^m+p=0$, then $\sqrt{D}=\pi_2 u$, where u is a unit of the ring of

integers of $\mathbb{Q}_5(\sqrt{D})$. Let Δ_D be the discriminant of E_D . Then $v_5(\Delta_D) = v_5(\Delta) + 6 \equiv 4$ or 8 mod 12 for e = 6. Hence $e_D = 12/\gcd(v_5(\Delta_D), 12) = 3$. So E_D has good reduction over $L' = \mathbb{Q}_p(\pi_3)$ which is a totally ramified extension of degree 3 over \mathbb{Q}_p . Let $\hat{E}_D/\mathcal{O}_{L'}$ be the formal group over $\mathcal{O}_{L'}$ associated to $E_D/\mathcal{O}_{L'}$ and let x' be a parameter of $\hat{E}_D/\mathcal{O}_{L'}$. Let $[p](x') = px' + \cdots + c_p'x'^p + \cdots$. So if $v_5(\Delta_D) = 4$, $v_{L'}(c_p') = 2$ and if $v_5(\Delta_D) = 8$, $v_{L'}(c_p') = 1$. For the parameter $z = -x_1/y_1$ of \hat{E}/\mathbb{Z}_p , we take the parameter $z' = -x_1/(\pi_2 y_1)$ of \hat{E}_D/\mathbb{Z}_p . We choose the minimal model E_D/\mathcal{O}_L such that $x' = (\pi_3^2/\pi_2)z = \pi_6 z$, so $x = \pi_6 z = x'$. Hence we can take $c_p' = c_p$. Therefore if $v_5(\Delta) = 2$, $v_L(c_p) = 2$ and if $v_5(\Delta_D) = 10$, $v_L(c_p) = 4$.

The case e = 2. For $\tau \in \text{Gal}(K_e/\mathbb{Q}_p)$, $\tau e_1 = -e_1$, $\tau e_2 = -e_2$ and $\tau \pi = -\pi$ [10, p. 78]. By the similar argument of the proof of [10, Proposition 4.8], τ acts to $\mathcal{L}(\beta)$. So

$$\tau(l) = (-1) \otimes e_1 + \tau(\beta) \frac{-\pi}{p} (-1) \otimes e_2.$$

Since $\mathcal{L}(\beta)$ is \mathcal{O}_L -module of rank 1,

$$\tau(l) = (-1)\bigg(1 \otimes e_1 + \beta \frac{\pi}{p} \otimes e_2\bigg).$$

Hence $\tau(\beta) = -\beta$. So $\tau(\beta\pi) = \beta\pi$, that is $\beta\pi \in \mathbb{Z}_p$. If $\beta \neq 0$, $v_L(c_p) = 0$ by Proposition 2.2.1. Since \tilde{E} is supersingular, $\operatorname{ht}([p]) = 2$. This is a contradiction. Hence $\beta = 0$. Therefore $c_p = 0$ since $v_L(c_p) < 2$.

4. The isogenies of degree p over \mathbb{Q}_p

Let notations and assumptions be as in previous sections.

4.1. Leading coefficients of isogenies of degree p. Assume that there exist an elliptic curve E' over \mathbb{Q}_p and an isogeny $v: E \to E'$ of degree p over \mathbb{Q}_p . Since E and E' are isogenous, E' has good reduction over E. Let \hat{E}' be a formal group over \mathcal{O}_L associated to E'/\mathcal{O}_L . Then we can construct an isogeny $\hat{v}_L: \hat{E} \to \hat{E}'$ of height 1 over \mathcal{O}_L . Let $\hat{v}_L(z) = a_1z + a_2z^2 + \cdots$ and put $t = v_L(a_1)$.

Lemma 4.1.1. If there exists an isogeny $\hat{v}_L : \hat{E} \to \hat{E}'$ of height 1 over \mathcal{O}_L and if e < p, then $v_L(c_p) = e - t < e$.

Proof. Let $\hat{v}_L: \hat{E}/\mathcal{O}_L \to \hat{E}'/\mathcal{O}_L$ be an isogeny of height 1 over \mathcal{O}_L . Then there exists $\check{v}_L: \hat{E}'/\mathcal{O}_L \to \hat{E}/\mathcal{O}_L$ such that $\check{v}_L \circ \hat{v}_L = [p]$. Let $\hat{v}_L(x) = a_1x + a_2x^2 + \cdots + a_px^p + \cdots$ and $\check{v}_L(x) = a'_1x + a'_2x^2 + \cdots + a'_px^p + \cdots$. Then $v_L(a_i) > 0$ for $i = 1, \ldots, p - 1$, $v_L(a_p) = 0$ and $a_1 \mid a_j$ for $j = 2, \ldots, p - 1$ [6, Lemma 2.1.2]. Similarly $v_L(a'_i) > 0$

for i = 1, ..., p - 1, $v_L(a'_p) = 0$ and $a'_1 \mid a'_j$ for j = 2, ..., p - 1 [6, Lemma 2.1.2].

$$[p](x)$$

$$= \check{v}_{L} \circ \hat{v}_{L}$$

$$= a'_{1}(a_{1}x + \dots + a_{p}x^{p} + \dots) + a'_{2}(a_{1}x + \dots)^{2} + \dots + a'_{p}(a_{1}x + \dots)^{p} + \dots$$

$$= a'_{1}a_{1}x + (a'_{1}a_{2} + a'_{2}a_{1}^{2})x^{2} + \dots + \left(\sum_{k=1,\dots,p} a'_{k} \sum_{i_{1}+\dots+i_{k}=p} a_{i_{1}}a_{i_{2}} \dots a_{i_{k}}\right)x^{p} + \dots$$

Put $v_L(a_1) = t$. Since $v_L(a_1'a_1) = v_L(p) = e$, $v_L(a_1') = e - t$. Since $a_1' \mid a_j'$ for $j = 2, \ldots, p - 1$, $v_L(c_p) = \min\{v_L(a_1'a_p), v_L(a_p'a_1^p)\}$ if $v_L(a_1'a_p) \neq v_L(a_p'a_1^p)$. If e < p, $v_L(a_1'a_p) = v_L(a_1') < e < p \le pv_L(a_1) = v_L(a_p'a_1^p)$. Hence $v_L(c_p) = e - t < e$.

Proof of Corollary. By Lemma 4.1.1, if $c_p = 0$, \hat{E} does not have an isogeny of degree p over \mathcal{O}_L and if $c_p \neq 0$, $v_L(c_p) < e$. Therefore we can substitute the value of $v_L(c_p)$ in Theorem for $t = e - v_L(c_p)$.

- **4.2. Examples.** We consider an elliptic curve E defined over \mathbb{Q} satisfying the following conditions:
- (i) There exist an elliptic curve E' and an isogeny $\nu \colon E \to E'$ of degree p defined over \mathbb{Q} .
- (ii) The curves E and E' have potentially supersingular reduction at p.

We can find the following examples of such elliptic curves in the table of [1]. We regard ν as an isogeny over \mathbb{Q}_p by the inclusion \mathbb{Q} to \mathbb{Q}_p . By Corollary, we can determine the value of t for each ν and the dual isogeny $\check{\nu}$ of ν .

We use the next notation in examples. Let N be the conductor of E, then E' has the same conductor [7, VII, 7.2]. The notation 'CM' implies that E has complex multiplication and 'non-CM' implies that E does not have complex multiplication. For E', denote the discriminant by Δ' and $e' = 12/\gcd(v_p(\Delta'), 12)$. We define t' for \check{v} by the same method as t for v.

EXAMPLE 4.2.1. For p = 5 and $N = 50 = 2 \cdot 5^2$,

$$E: y^2 + xy + y = x^3 - x - 2$$

satisfies the conditions (i), (ii) and we have $v_p(\Delta) = 4$, e = 3 and non-CM. Then

$$E'$$
: $y^2 + xy + y = x^3 - 76x + 298$

and we have $v_p(\Delta')=8$, e'=3 and non-CM. There exists 5-isogeny $v\colon E\to E'$ over \mathbb{Q} . By Corollary, we have t=1. The dual isogeny $\check{v}\colon E'\to E$ is 5-isogeny over \mathbb{Q} . By Corollary, we have t'=2.

EXAMPLE 4.2.2. For p = 7 and $N = 49 = 7^2$,

$$E: y^2 + xy = x^3 - x^2 - 2x - 1$$

satisfies the conditions (i), (ii) and we have $v_p(\Delta) = 3$, e = 4 and CM. Then

$$E'$$
: $y^2 + xy = x^3 - x^2 - 107x + 552$

and we have $v_p(\Delta') = 9$, e' = 4 and CM. There exists 7-isogeny $v: E \to E'$ over \mathbb{Q} . By Corollary, we have t = 2. The dual isogeny $\check{v}: E' \to E$ is 7-isogeny over \mathbb{Q} . By Corollary, we have t' = 2.

EXAMPLE 4.2.3. For p = 11 and $N = 121 = 11^2$,

$$E: y^2 + xy = x^3 + x^2 - 2x - 7$$

satisfies the conditions (i), (ii) and we have $v_p(\Delta) = 4$, e = 3 and non-CM. Then

$$E'$$
: $y^2 + xy = x^3 + x^2 - 3632x + 82757$

and we have $v_p(\Delta')=8$, e'=3 and non-CM. There exists 11-isogeny $\nu\colon E\to E'$ over $\mathbb Q$. By Corollary, we have t=1. The dual isogeny $\check{\nu}\colon E'\to E$ is 11-isogeny over $\mathbb Q$. By Corollary, we have t'=2.

EXAMPLE 4.2.4. For p = 11 and $N = 121 = 11^2$,

$$E: v^2 + v = x^3 - x^2 - 7x - 10$$

satisfies the conditions (i), (ii) and we have $v_p(\Delta) = 3$, e = 4 and CM. Then

$$E'$$
: $y^2 + y = x^3 - x^2 - 7x - 10143$

and we have $v_p(\Delta') = 9$, e' = 4 and non-CM. There exists 11-isogeny $v: E \to E'$ over \mathbb{Q} . By Corollary, we have t = 2. The dual isogeny $\check{v}: E' \to E$ is 11-isogeny over \mathbb{Q} . By Corollary, we have t' = 2.

EXAMPLE 4.2.5. For p = 17 and $N = 14450 = 2 \cdot 5^2 \cdot 17^2$,

$$E: v^2 + xv + v = x^3 - 3041x + 64278$$

satisfies the conditions (i), (ii) and we have $v_p(\Delta) = 4$, e = 3 and non-CM. Then

$$E'$$
: $v^2 + xv + v = x^3 - 190891x - 36002922$

and we have $v_p(\Delta') = 8$, e' = 3 and non-CM. There exists 17-isogeny $v: E \to E'$ over \mathbb{Q} . By Corollary, we have t = 1. The dual isogeny $\check{v}: E' \to E$ is 17-isogeny over \mathbb{Q} . By Corollary, we have t' = 2.

EXAMPLE 4.2.6. For p = 19 and $N = 361 = 19^2$,

$$E: y^2 + y = x^3 - 38x + 90$$

satisfies the conditions (i), (ii) and we have $v_p(\Delta) = 3$, e = 4 and CM. Then

$$E'$$
: $y^2 + y = x^3 - 13718x - 619025$

and we have $v_p(\Delta') = 9$, e' = 4 and CM. There exists 19-isogeny $v: E \to E'$ over \mathbb{Q} . By Corollary, we have t = 2. The dual isogeny $\check{v}: E' \to E$ is 19-isogeny over \mathbb{Q} . By Corollary, we have t' = 2.

Remark that Example 4.2.1 has been already known in [6, Example 5.2.1] by calculating the generator of ker ν . And if E has complex multiplication, t = e/2. So Example 4.2.2, 4.2.4, 4.2.6 have already known. We can determine the value of t in Example 4.2.3 and 4.2.5 for the first time by using our Corollary.

References

- J.E. Cremona: Algorithms for Modular Elliptic Curves, second edition, Cambridge Univ. Press, Cambridge, 1997.
- [2] J.-M. Fontaine: Groupes p-Divisibles sur les Corps Locaux, Astérisque 47–48, Soc. Math. France, Paris, 1977.
- [3] M. Hazewinkel: On norm maps for one dimensional formal groups, III, Duke Math. J. 44 (1977), 305-314.
- [4] T. Honda: Formal groups and zeta-functions, Osaka J. Math. 5 (1968), 199-213.
- [5] T. Honda: On the theory of commutative formal groups, J. Math. Soc. Japan 22 (1970), 213–246.
- [6] M. Kawachi: Isogenies of degree p of elliptic curves over local fields and Kummer theory, Tokyo J. Math. 25 (2002), 247–259.
- [7] J.H. Silverman: The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 106, Springer, New York, 1985.
- [8] J. Tate: p-divisible groups; in Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 158–183.
- [9] J. Tate: Algorithm for determining the type of a singular fiber in an elliptic pencil; in Modular Functions of One Variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math. **476**, Springer, Berlin, 33–52, 1975.
- [10] M. Volkov: Les représentations l-adiques associées aux courbes elliptiques sur Q_p, J. Reine Angew. Math. 535 (2001), 65−101.

Department of Mathematics and Information Sciences Tokyo Metropolitan University Mimami-Ohsawa, Hachioji-shi Tokyo, 192-0397 Japan

e-mail: kawachi@tmu.ac.jp