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Abstract
Let E be an elliptic curve ovelQ, which has potentially supersingular good
reduction. LetL/Q, be a totally ramified extension such th&t has good reduc-

tion over L and E be the reduction ofE mod =, where = is a prime element
of the ring of integers®, of L. Let E be the formal group ove®), associated
to E/OL. The multiplication by p map [p]: E — E is written by power series
[PI(X) = pX + CoX% + -+ + CpXP + - -+ + cpzxpz + --- € OL[[x]]. By using the

litings over O, of the Dieudonné module op-divisible group E(p) over Fp, we

determine the values afi (cp).

1. Introduction

Let p > 5 be a prime number anB be an elliptic curve over th@-adic humber
field Qp. We assumey(j) > 0, wherew,, is the normalized additivgp-adic valuation
and j is the j-invariant of E. Then E has potentially good reduction ovép,. Let
E/Z, be the minimal Weierstrass equation férover the p-adic integer ringz,. Put
e = 12/gcd@p(A), 12), whereA is the discriminant ofE/Z,. Let = be an element of
the algebraic closur®, of Q, such thatr®+ p = 0. ThenL = Qp(x) is the unique
totally ramified extension of degree over Q,. Then E has good reduction ovel.
Let E/O_ be the minimal Weierstrass equation frover the ring of integer®), of
L. Let E/Iﬁ‘p be the reduction oE/O, mod =. Let E be the formal group ove®,
associated t&e/O, [7, IV, 81]. The multiplication byp map [p]: E — E is written
by a power series](X) = pX + Cox? + -+ + CpXP + -+ + cexP’ + -+ € OL[[X]].
The purpose of this paper is to determine the valuation ofedfictent c, of xP, when
E/F, is supersingular.

Theorem. Assume that j is integral ancll?/]Fp is supersingular. If ¢ = 0 or
vL(Cp) < &, we have the followings.
1) Fore=1,¢,=0.
2) Fore=2,¢c,=0.
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3) Fore=3,c,=0ifand only if j=0. If j # 0, thenv.(cp) =1 or 2. More
precisely if v,(A) =4 thenv (cp) = 2, and if vy(A) = 8 then v (cp) = 1.

4) Fore=4,c,=0if and only if j=1728 If j # 1728,thenv_(cp) = 2.

5) Fore=6,c,=0if and only if j=0. If j # 0, thenv.(cp) = 2 or 4. More
precisely if v,(A) = 2 thenv (cp) = 2, and if vp(A) = 10 then v (cp) = 4.

Under the condition of Theorem, it follows tha,(A) = 4 or 8 fore = 3 and that
vp(A) =2 or 10 fore = 6.

If we assume that there exists an elliptic culizeover Q, and an isogeny: E —
E’ of degreep over Qp, thenv (cy) < e by Lemma 4.1.1. Moreover sincé and
E’ are isogenousE’ has good reduction over. Let E’ be a formal group ove®),
associated tcE’'/O,. Then we can construct an isogefy: E — E’ of height 1 over
OL. Let D (X) = a1x + a,x?> + ---. We are interested in the valuation of the leading
coefficienta;. Putt = v (a;). By Lemma 4.1.1f = e— v (cp) if e < p. So we can
determine the value dof by Theorem.

In [6], we determine the image of a local Kummer mépE'(K)/vk E(K) —
HY(K, kervk), whereK is a finite extension ofQ, and vk : E — E’ is a p-isogeny
over K. The image Ind is the local image of the connecting homomorphism at a prime
over p of the Selmer group of an isogeny of degrpeover a number field. And the
image is described using the filtration on the unit groupkotind the valuation of the
leading coefficient of the formal power seriesgf. It is important to know the value
of t in order to calculate the Selmer groups of isogenies of degrever Q.

Corollary. 1) For e= 1, E does not have isogenies of degree p oQgr

2) For e = 2, E does not have isogenies of degree p oRer

3) Fore=3,if j =0, then E does not have isogenies of degree p @pgpr If
j #0,then t=1 or 2. More precisely ifvp(A) = 4 then t=1, and if v,(A) =8
then t= 2.

4) For e=4,if | = 1728,then E does not have isogenies of degree p @gr
If j # 1728,then t= 2.

5) For e=6, if | = 0, then E does not have isogenies of degree p @gr If
j #0, then t= 2 or 4. More precisely ifvp,(A) = 2 then t= 4, and if vy(A) = 10
then t= 2.

In order to prove Theorem, we must know the formal logaritiog. | of E, since
[pI(x) = |Ogélop ologe. In 82, we obtained the power series expansion of: lag
Proposition 2.2.1. Ife = 1, loge is uniquely determined by the theory of Honda for-
mal groups. Where > 1, we prove that log corresponds to a generator of the lifting
of the Deudonné module of the-divisible group of E overF, and describe the power
series of log by using the parametef € O_ which appears in the lifting. In 83, we
determine the value of_(c,) by using the proposition of Volkov [10] under the con-
ditions thatE is defined ovelQ, and E is supersingular. In §4, we consider isogenies
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of degreep over Q, and prove Corollary. We give examples of elliptic curves séo
values oft can be determined by Corollary.

2. Honda formal groups and Dieudonné modules

Let notations and assumptions be as in §1.
2.1. The casee=1. For a commutative rindR, we write R[[x]]o={f € R[[X]] |
f =0 modx}. Let " be a formal group oveZ, and log(x) € Q[[x]]o the formal

logarithm of I'/Z,, [7, IV, 85]. It satisfies log(x) =x + --- and log-(x) + logr(y) =
logr(T'(x, y)). For Y ax! € Qy[[x]], define the Frobenius endomorphismby

(2.1) w(Zaix‘) => ax".

Assume that log(x) is of type T? + p, that is (2 + p)logr(x) = 0 mod pZy[[X]]o
[5, 82].

Lemma 2.1.1 (cf. [3, 2.4, Lemma]). We have

logr(x) = ) Z{(—l)mp—lmbk +3 %q(k)}xkpm’
i=1

k=1,p2tk m=0

where b = 1, bx € Z, and § € Z,. Therefore letiogy(x) = X +box2 + - - - + bpxP +
..._|_bp2xp2+..., then

b €Z, for p?4i,
vp(bpm) = —m  for m=1,2,...,
vp(bypm) = —m  for m=1,2,... and P { k.

Especially we can choosg over Z, in the strong isomorphism class such that

1 1 1 o
logr(X) = X — —pxp2 + EXPA +- 4 (—1)"‘Fx”2 +--

Proof. Let log.(X) = X + bpX? + -+ - 4+ bpXP + - - - + byx® + ... Then

(#® + p) logr (x)
= X" 4+ b 4 bpxP o bpexP 4

+ pX+ pbpx® 4 - + pbpXP + -+ pbex® 4 - 4 pbpexP’ 4 -
=0 mod pZp[[X]]o.
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Let p? 4 k, then pb, = 0 mod pZ,,. Soby € Zp. Sinceby + phz = 0 mod pZ,
1 GG
bkpzz—l—abk+a , 8 € Zp.

Since bypm-y + pben = 0 mod pZ p,

1
Bipem = (— 1)m—bk + Z = -3 ) Whereai(k) €Zp form=2,3,....

We choose thd™ over Z, in the strong isomorphism class such that € p)logy(x) =
px. Then log(x) = x = (1/P)X" + (/PP + -+ (=1)"(1/p"xF" + . [

If e= 1, E has good reduction ove,. Assume that the reductiod/F, of E/Z,
is supersingular. LeE be the formal group oveZ, associated tE/Z, and log:(x)
be the formal logarithm oE/Z .

Proposition 2.1.1. For e=1,if cp, = 0 or vy(cp) < 1, then g = 0.

Proof. If e=1, log(x) is of type T2+ p ([4, Theorem 5], [5, Theorem 9]). So
let loge (X) = X 4 box? + -+ + bpxP 4 - -, thenby, ..., by € Z,. Hence log*(x) =
X+ X? + -+ + dpxP + .-+, whered,, ..., dp € Z, and

[pl(x) = log:" op o loge(x)
=pX+---+ pprP_|_...
+ da(pX + -+ + PhpxP + -+ +)2 4
+dp(PX + -+ + pbpXP 4 -+ )P 4 -
= pX+ -+ (pbp + p’sp 4 -+ + pPrsp_g + pPAp)XP + -+,

wheres,, . . ., Sp—1 € Zp. SO vp(Cp) = vp(p) = 1, we havec, = 0. 0

Let E(p) be the p-divisible group of E over F, [8, §2] and M = M(E(p)) =
Homy, (E(p),CWg,) the Dieudonné module d(p) overFy, [2, p. 126], whereDy, =
Zp[F, V]. For a commutative ringR, let A(R) = RI[[X]] and Ao(R) = R[[x]]o. By
Yoneda’s lemmaM = HomD]Fp(E(p), GVVFP) is a Dy,-submodule of(fVVFp(Ao(]Fp)),
where CW is the group of Witt covectors [2, p.74] arﬁ\TVFp(A) = CW(A) for a
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profinite Fp-ring A [2, p.90, p.93]. For.(..,an,...,a1,a)€ CT\TV]Fp(Ao(le)), let

F(...,an,...,a5,a)=(..,a,"...,a1" aP
and
V(..,an---, ai,a)=(..,an1 -, a o, ag).
By [2, Ill, Proposition 6.1] the functo™ induces an anti-equivalence between

the categories of-divisible groups oveiF, and freeZy-modules of finite rank. Let
¢: E(p) — E(p) be the p-th power Frobenius endomorphism, then= M(¢). If E
is supersingular, theM is a free Z,-module of rank 2 and= satisfiesF? + p = 0.
Let e be a generator of th&[F]-module M. Then €, &) is a Z,-base ofM and
e = Fe [10, p.86].

Let P(Ao(Zp)) = {f € Qpl[X]] | df/dx € Zp[[X]]} N Qp[[X]]o. Define

w: CWe, (Ao(Fp)) = P(Ao(Zp))/ PAo(Zp),

by

(---1ina---yilyaO)HZ p_né'E:'l'
Fora= ) bix' € Fy[[x]], let &= Y [b]x', where [ ] F, — Z, is the multiplicative
system of representatives @, = W(F,). Theng = w o F. By abuse of language,

we denotep by F. So P(Ao(Zp)) is Zp[[F]]-module andw is an isomorphism of
Zp[[F]]-modules [2, p.240]. Let

MHz, () = {f € P(Ao(Zp)) | £(x) + £(y)— F(I'(X, ¥)) € PZpl[X, Y]lo}

and
MHz,(I') = MHz,(T')/pZpl[X]]o.
By [2, Ill, Proposition 6.5],w: M >~ MHz (T') is an isomorphism o p[[ F]]-modules.
Let
LHz,(T) ={f € P(Ao(Zp)) | £(x) + f(y) - £(I'(x, y)) = 0}

and

inclusion mod pZp[[x]]o

p: LHz, () ——— MHz (') ———— MHz (I') ~ M.

Then LHz,(I')/pLHz,(I') =~ M/FM asFy-vector space by [2, IV, Proposition 1.1].
And LHz (T) is a freeZp-module of rank 1 generated by o).
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Lemma 2.1.2. For a generator ¢ of Z,[F]-module M there existslog.(x) of
type T2+ p such thatw(e;) = u’ logr(x), where U € Z.

Proof. LetM =Zye;+Zpe, = (e1,&) ande, = Fe,. ThenFe; = F?e = —pe;.
Since LHz,(I')/pLHz,(I') =~ M/EM,

(logr(x))/ p{logr(x)) > (€1, &)/(Fey, Fe&)
= (e, &)/(&, —per)
=~ (e1)/p(e).

Therefore there exidt; € Zg anda’ € Z, such that

w(er) = Uz logr(x) + pa logr(x)
= (u; + pa) logr(x).
Puttingu = u; + pa, thenw(ey) = u’logr(x), whereu’ € Zg. ]
2.2. The casee > 1. By [10, 4.1.3], ife < p—1, we consider liftings ove®_

of M, that is O_-submodulesC of rank 1 of M = O ®z, M + p7OL ®z, FM
such that

L/7L~M/p ' ®z, FM.
BecauseM = Zye; + Zpey, Fe, = & and Fe, = —pey, O -module M is written by
M=(loe,l0e P e re) = (106, p it ®e).
By [10, 4.2], liftings overO_ of M correspond bijectively to
LB)=(1®e+ppr®e)0, feOL.
Indeed, we define/: £L — M/pir ® FM by
e +Bpr@e—~1l®e+Ap'r®e mod pr®FM.
Then vy is surjective because

(IRe+ppr@e)+plr®FM
=(l@e +pp T ®e pPTR®E, T ®e)
=(l®e, p '7r®e)

= M.
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Leta € O such thate(l® e + Bp~ln ® &) € (p™i7r ® &, 7 ® €1), thena € 7O,
So L/nL ~ M/p~'7 ®z, FM.

For O and Dg,-module M, we defineMo, as in [2, p.190]. Forj € Z, M) is
a Dr,-submodule oft defined in [2, p. 188] ana: MW — MUY (resp. f: MWD —
om0y is defined byv(a) = Va (resp. f () = Fa). If f is injective fi: M ~ Fion.
If 1 <e=< p-1, Mp, is defined by the inductive limit of the following diagram,

70 @ M —> plrO, @ MWD

OL @ M—r— 01 ®@ mW
0

wherego(h ® a) =2 ®a, (A ®a)=1® f(a), pi(r®a) =1 ®a, vk ® a) =
p~ir ® v(a). ThenMp, is written by

OL @M p~lrOL @ MO /(Im @, Im o, Im @, Im vo),

where Imgg = 7O, @ M, Im fo = O, @ FOMY) = O, @ FM, Img, = O ® MY
and Imvy = p 7O, @ v(). If f is injective, f: Imgy = OL @ MY ~ O ® FM
and f: Imvg = p~7rOL @ v(M) ~ pI7OL QFVM = p~ 70 @ pt = 7O, @ M.
Therefore if f is injective,

Mo, ~OL M p 7O ® FM/(OL @ M, O ® FM).

Denote the above isomorphism Hy.
Let N = CW(Fp[[x]]). When9t = N, f is injective andv is surjective [2, p. 199,
p.202].

Lemma 2.2.1. f': No, ~OL ® N+ p~t7O_ ® FN.

Proof. We must show0, @ NN p 7O ® FN = (7O ® N, OL ® FN). Since
VN =N, pfanL QFN=7n0_ ® p’lFN =70, @V IN=70_,®N. SoO, ®
NNp 7O, @ FN =70, @ N C (zO_. ® N, O_. ® FN). SinceF is injective,
OL®FNCO.®N. So(rOL ®N,OL®FN)CO.,®NNp 7O @ FN. [

Let P(Ao(OL)) = {f e L[[x]] | df/dx € OL[[x]]} N L[[x]]lo.- SinceVN = N,
w”: No, = P(Ao(OL))/7OL[[X]]o is defined and ai®, -isomorphism by [2, IV, Prop-
osition 3.2]. Definegy: p7OL ® N - O ® N by p'A ® a — A ® ¢, where
c € N mod kerV such thatv(c) = a. So¢: p™*70. ® FN — O_ ® N is defined
by p~A ® f(a) = A ®c, wherepc= f ov(c) = f(a). Let w’ = w” o (f’)™%. Then
w:OL N+ ptrOL ® FN — P(Ao(OL))/mOL[[X]]o is written by w’ = 1® w +
(1®w)ogp [2, p.199].
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Lemma 2.2.2. For1@e  +pr®ecOL® N+ ptrO. ® FN,
wlee +Ap lr®e) =10 wE)+ pr @ p Fule).

Proof. Fore; € N, there existsc € N mod kerV such thatv(c) = e, so pc =
f(e1). Sincew is an isomorphism ofZy[F, V]-modules, pw(c) = f o v o w(c) =
f ow(ey). Sow(c) = p~1f o w(e;). Hence

w(l®e + ppir @ Fey)

=(1ew)(lee)+(Ll®w)op(p 'z & Fe)
=(1lew)(lee)+ (l®w)(pr ®c)

=1® w(er) + B ® w(c)

=1®w(e) + A7 ® p~ Fw(ey). O

When 9t = M, f is injective. We putMg = OL ® M, My =70, ® M, M{ =
OL ® FM and My = p~ 17 OL ® FM. Then f': Mo, =~ Mo & M1/(M{, M]).

Lemma 2.2.3. Mp, >~ M.

Proof. SinceMy & M1/Mg N M; = Mg + M; = M, we must showMy N M1 =
(M¢, M{). Because

MoNMi =0, MNplzO. ® FM
=(1®e,1Re)N(p T e, Qe

=(n®e,1l®e)
and
(Mg, M]) = (7O, @ M, O ® FM)
=(r®e, TR, 1R, pRe)
=(r®e,1lQe),
Mo N My = (M{, Mf). O

For the formal groupE over @, we define
MHo (E) = {f € P(Ag(OL)) | F(x)+ F(y) = F(E(X, ¥)) € TOL[[X, Y]lo}

and
MHo, (E) = MHo, (E)/mOL[[X]]o.
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By [2, IV, Proposition 4.1], theO -isomorphismw”: No, — P(Ao(OL)/mOL[[X]]o
induces theO| -isomorphismw”: Mp, =~ MH@L(E). We define

LHo (E) = (f € P(Ao(OL) | f() + f(y)— F(E(X, y)) =0}

and

inclusion

~ A dr O
P LHo (E) M0 A3 (B) DOm0l

MHo, (E) ~ Mp, ~ M.
Then LMo, (E)/7LHo (E) ~ Mo, /p t7r ® FM asF,-vector space by [2, IV, Prop-
osition 4.2].

Lemma 2.2.4. Let £ = p'(LHo, (E)) and | = 1®e;+Sp L7 ®e; be a generator
of £ = L(B), thenlogg(x) = uw'(l), where ue Of.

Proof. L‘,”H@L(E)/nEHOL(é) ~ M/p~'n ® FM =~ L/xL as Fp-vector space.
So log:(x) = uw'(l) + wa"w'(l), whereu, € O anda’ € O_. Putu = u, + wa”,
loge (x) = uw'(l). O

Lemma 2.2.5. If v (cp) < & then the value ofv (cp) does not depend on the
choice of a minimal model F), .

Proof. PutR = O_/(7®). Then we have an isogerfy](x) = [p](x) mod (r®) =
px+---+CpxP +--- over R. SinceR is a ring of characteristi, there exists an
integerh such tha p](x) is a power series o&?" [6, Lemma 2.1.1, Lemma 2.1.2]. If
v (Cp) < €, thenh must be 1. Sdp](x) = CpxP +---. Hence we have (cj) > vL(Cp)
for j =2,...,p—1. Let E;/O_ be the other minimal model ot over O, and él
be a formal group ove), associated tdE;/O,. Then there exists an isomorphism
¥ : E — E; written by y/(x) = x(bg + bix 4 --+), whereby € OF andby, by, ... €
Op. Putx’ = ¥(x) theny 1 is written by v ~1(x’) = x(by + b}x' + - --), whereb] €
OF andby, b, ... € OL. Hence the coefficient ok’® of [p](X') = ¥([pl(v (X)) is
cpb,Pbo + higher valuation terms. So its valuation is equalvtqcy). O

Proposition 2.2.1. We have
2 -1 pr
logge(X) = X + box® 4 -+ - + by axP" 4+ bp+F xP 4.

and
[pI(X) = px+ -+ (Bxr + pa)xP +---, aecO.

Therefore the value (cp) does not depend on the choice of a generatoo®Z ,[F]-
module M andv (cp) = v (B).
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Proof. By Lemma 2.2.4, logx) = uw'(1® € + Bp~ir ® &). Let log-(x) =
X+ Y72, bix. Then by Lemma 2.2.2 and Lemma 2.1.2,
loge(x) = uw'(1® e + Bpin ® &)
= u{1® w(e) + pr ® p~ Fu(er)}
= u{1® U log-(x) + Bz ® p *Fu’ logp(x)}
- uu/{1® <x + Zbix‘) + B ® p1<xp + Zbixp‘)}.
i—2 i—2

By the definition of log(x), uu' = 1. So
1 pr
logg(X) = X + - -+ + bp_axP™ + bp+? XP -

Let Iogél(x) =X+ X2+ +dp1XP 1+ dpxP +---. Thenx = IogE1 ologg(x) =
X+ (b + d)x2 + -+« + (bp + B/p + -+ + dp)XP + - --. Sinceby € Z,, for p? } k,
d, ..., dp1 € Z, andd, = —pBm/p +dy’, whered,’ € Z,. Hence
[pI(x) = log:" op o loge(x)
= pX+ -+ + pbp_1xP + (pbp + Br)XP + -
+ do{ pX + -+ - + pbp1XPt 4 (pbp + BT)XP 4 }2 4
+dp{px++ pbp_lxp_l+(pbp+ﬂ7T)Xp+"‘}p+"‘

= pPX+---
2 p—1 p ﬁﬂ / p
+1(pbp + Br) + p°s+ -+ PP TS + P —F+olp xP 4o
wheres,, ..., Sp_1 € Zy. Socp = B + pa, wherea € O,. Sincev (cp) < e, we have
vL(Cp) = vL(Br). 0

3. Proof of Theorem

Let notations and assumptions be as in 81 and §2.

Let K. be the Galois closure of in Q. Since the order ofZ/ez)* is 1 or 2,
p=1modeor p=-1 mode. Let ¢, be a primitivee-th root of 1. So the cases of
Ke are as follows. Ife=1, K1 = Q. If e=2, K; = Qp(r) and GalK2/Q,) = ()
(tm =—m). If e=3,4,6 ande | p— 1, Ke = Qp(7) and GalKe/Qp) = () (t7 =
lemr). If e=3,4,6 ande| p+1, Ke = Qp2(7) = Qp(,e) and GalKe/Qp) = (7) x{w)
(170 = (e, Tle = le, 0T =7, wie = e ) [10, p. 74].

Letee {3,4,6 ande| p+ 1. For [tg] € Auts ,(E), put& = My, ([¢](p)). Then
we can take the basi®y( ) of M ®z, Z,» such thaté.e; = {se; and &.e; = ¢S 7€y,
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(e € {£1}) [10, p.87]. Moreover using the conditioB is defined oveiQp, T acts on
M ®z, Z e rising from (z) — Autsz(E) and the action is preserved di{B) ® o, Ok..
Thente, =61 = {ge and &, = &€ = {7, (¢ € {£1}) [10, p. 94].

Proposition 3.1.1 ([10, Proof of Proposition 4.8]). Let 8 be as inLemma 2.2.4
and ec {3, 4, 8 such that § p+ 1 and e< p— 1. Assume thaE is supersingular.
Let j-invariant of E be 0 (for e = 3, 6) and 1728 (for e = 4). We choose a generator
e, of Zp[F]-module M and g= F(e1) such thatée.e; = ¢se1 and &ee, = ¢;°€, Where
e € {£1}. Then
1) The j-invariant of E isO if and only if 8 =0 for e = 3, 6. The j-invariant of E
is 1728if and only if 8 = 0 for e = 4.

2) E is defined over, if and only if {ﬁ €nzy  fore=1,
P Ben®3zZ, fore=-1.

By the Tate algorithm [9], ife = 3 or 6 thenj(E) = 0 and if e = 4 then
j(E) = 1728.

Lemma 3.1.1. If E is supersingulare | p + 1.

Proof. By [7, Ill, Theorem 10.1], ie=3, 6 (respe=4), AutE =~ u¢ (resp. AutE ~
1a). SO AUtE 3 Ze. In order to provee| p + 1, we must show that AU is not defined
overFy but overF ;. if E is supersingular.

We write E by the equationy? = x3 + Ax+ B, A, B € F, and the automorphism
by the form &', y') = (u?x’, uy’) = (x, y), whereu € Fy,.
1) The casej =0
In this case,E: y? = x>+ B andu® e F. By [7, V, Example 4.4],
E, is supersingular
< the coefficient ofxP* in (x° + B)P1/2is 0
< p=2mod 3.
If p=2mod3, thenk;)*=Fj;. Sou® e F;. Henceu € F.. Since 6t p—1, u'is
not contained inFp,.
2) The casej = 1728
In this caseE: y? = x>+ Ax andu* € F,. By [7, V, Example 4.5],
E is supersingular
<= the coefficient ofxP* in (x3 + Ax)PD/2is 0

<= p=3mod 4.



702 M. KAWACHI

Since #F ) = p*~1= (p—1)(p+1), u* = cP**, wherec € Frz. Sou = cPH/4 e Fpp.
Since 44 p—1, u is not contained irfF,,. ]

Lemma 3.1.2. If e =3 and vp(A) = 4, thent(e) = e
If e = 3 and vp(A) = 8, then t(ey) = ¢ tey.

If e =4 and vp(A) = 3, then t(ey) = €1

If e = 4 and vp(A) = 9, then t(er) = £ tey.

If e =6 and vy(A) = 2, thent(ey) = Zee1.

If e = 6 and vp(A) = 10, thenz(ey) = ¢ tey.

Proof. For a generatag of Z,[F]-module M, pute, = F(e;). Then there exists
logr(x) of type T2 + p such thatw(e;) = u’ logp(x), whereu’ € Zj by Lemma 2.1.2.
By Lemma 2.1.1, we can choogé such that

1 2 l 4
— x_ P P
logr(x) = x px + p2x + e

We regard ¢, &;) as the basis oM ® Z = My ,(E(p)) = Homp, _(E(p), CWs,),
P
whereDg , = Z[F, V]. And as in §2, let

w: CWi, (Ao(Fr2) > P(Ao(Z2))/ PAo(Z 7).

Thenw is Z [F]-isomorphism. Moreover we regag] as the element of(8) ® Ok,
For the parametex, let (w o &)(x) = ¢&X, (¢ € {£1}). Then

w(elen) = o (xS @07 + (e - )
= u’(;gx — E;gxpz + %CesXpA +- )
p p
which by ¢£)"* = ¢z, sincezd™ =1
= g€l
Since F(x) = xP,
w(e(e2)) = w(&e(F(en)))
= (0P - S@0” + e )
= u’(ge—*"xp - %ggsxp3 + ége‘fxps +- )
which by ¢£)P = ¢,¢, sincezd ™t =1

=l &



LEADING COEFFICIENTS OFISOGENIES 703

Hencee, satisfies the condition of Proposition 3.1.1.
Let Ié/Zp be a formal group oveZ, associated tE/Z,. Let z be a parameter

of E/Zp such thatx = uz, whereu € O,. If e=3 andvp(A) = 4, then we can take
u=um. So

wle) = (72 - 22" + 2+ ).
p p
Then
/ 1 o1 .
c(uw(e)) = (1D~ o@D + (@) + - )
= U’(f TZ— 1(4“ 72" + i(; 2)" +- )
e p e p2 e
= U’(f nz— Ef (r2)* + i; (x2)* +- )
e p e p2 e
= Cew(ey).
If e=3 anduvp(A) =8, then we can take = 72, So t(w(ey)) = &5 w(e).
If e=4 andvy(A) = 3, then we can take = 7. So t(w(ey)) = Cew(er).
If e=4 andvp(A) =9, then we can take = 73, So t(w(ey)) = ¢5 w(e).

If e=6 andvy(A) = 2, then we can take = 7. So t(w(ey)) = few(er).
If e=6 andvy(A) = 10, then we can take = 7°. Sot(w(e)) = ¢stw(e). O

Proof of Theorem. The case € {3, 4, §. Except for the case = 6, p = 5,
the conditione < p— 1 is hold. Assumevp(j) = 0 and E is supersingular. The as-
sumptions aboufj-invariant are hold an@&| p+ 1 is hold by Lemma 3.1.1. By Proof
of Proposition 2.2.1¢c, = pbp + B + p?s + --- + pPlsp1 + pP(—Br/p + dp),
where by, s, ..., Sp_1,dy’ € Zp. If B =0, thency, € pZ,. Sincev (cp) < €, it
must bec, = 0. Conversely ifc, = 0, then (1- pP 1)Br € pZ,. So Br/p € Zp.
Then log:(x) € Qp[[Xx]] by Proof of Proposition 2.2.1. Since is supersingularE is
strongly isomorphic tol". Thereforeg = 0. Hence fore = 3, 6, c, = 0 if and only
if j =0 and fore=4, c, =0 if and only if j = 1728 by Proposition 3.1.1, 1).
Since E is defind overQ,, by Proposition 3.1.1, 2)y, (8) = 1 mode for ¢ = 1 and
v (B) = e—3mode for e = —1. Fore= 3, if j # 0 andvp(A) = 4, thene =1
by Lemma 3.1.2 sa (cp) = v () = 2 sincev (Cp) < €. Fore =3, if vp(A) =8,
vL(Cp) =3-3+1=1. Fore=4, if vp(A) =3, v (Cp) =1+1=2 and ifv (A) =9,
vL(Cp) =4—3+1=2. Fore=6, if vp(A) =2, v (Cp) = 1+1=2 and ifv (A) = 10,

v (Cp) =6-3+1=4.

If e=6 and p = 5, there exists a quadratic twislp which is isomorphic toE
over the quadratic extensioRs(+/D), that is E 3 (x1, y1) — (X1, vDy1) € Ep. Let
Tm € Qp such thatr,™ + p = 0, then+/D = mpu, whereu is a unit of the ring of
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integers of Qs(v/D). Let Ap be the discriminant ofEp. Then vs(Ap) = vs(A) +
6 =4 or 8 mod 12 fore = 6. Henceep = 12/gcd(s(Ap), 12) = 3. So Ep has
good reduction ovell.” = Q(w3) which is a totally ramified extension of degree 3
over Q. Let Ep/OL be the formal group ove®,  associated tEp/O, and letx’
be a parameter oEp/O.. Let [p](X) = pX + ---+ ¢p/x'P 4 ---. So if vs(Ap) =
4, v (cy’) = 2 and if vs(Ap) = 8, vu(cy’) = 1. For the parameter = —xy/y; of
E/Z,, we take the parameter = —x;/(m2y1) of Ep/Z,. We choose the minimal
model Ep /O, such thatx’ = (73?/m,)z = mez, SO X = 1z = X'. Hence we can take
Cp’ = Cp. Therefore ifvs(A) = 2, v (Cp) = 2 and if vs(Ap) = 10, v (cp) = 4.

The casee=2. Fort e Gal(Ke/Q)p), T€1=—€1, t6& =—6€ andtw =—x [10, p. 78].
By the similar argument of the proof of [10, Proposition 4.8]acts toL(B). So

()= (- e + r(ﬂ)%(—l) ® .

Since L(B) is O_-module of rank 1,
T
() = (—1)(1 ® e+ ﬂB ® ez).

Hencet(B8) = —B. Sot(Bn) = Bn, that isr € Z,. If B # 0, v.(cp) = 0 by Prop-
osition 2.2.1. SinceE is supersingular, htff]) = 2. This is a contradiction. Hence
B = 0. Thereforec, = 0 sincev,(cp) < 2. ]

4. The isogenies of degre@ over Q

Let notations and assumptions be as in previous sections.

4.1. Leading coefficients of isogenies of degrge Assume that there exist an
elliptic curve E” over Q, and an isogeny: E — E’ of degreep over Qp. Since E
and E’ are isogenousk’ has good reduction over. Let E’ be a formal group over

O, associated tE'/O,. Then we can construct an isogefy: E — E’ of height 1
over O,. Let i (2) = ayz + @z + --- and putt = v (ay).

Lemma 4.1.1. If there exists an isogenif : E — E’ of height1 over O, and if
e< p, thenv (cp) =e—t <e.

Proof. Letd,: E/(DL — E’/OL be an isogeny of height 1 ove?, . Then there
exists EL: é’/(’)L — E/OL such thahX)L oD =[p]. Let D (X) = arX + apx® + -+ +
apxP+--- andlx;L(x) = aX+apX>+- - +a xP+---. Thenv (&) >0fori =1,..,p—
1, v (ap) =0anda |a; for j =2,..., p—1 [6, Lemma 2.1.2]. Similarly (&) > 0
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fori=1,...,p—1v.(a;) =0anda [a] for j =2,..., p—1[6, Lemma 2.1.2].

[PI(x)
= IX)L (¢} ﬁL

=a’l(a1x+---+apxp+---)+a/2(a1x+---)2+---+a’p(a1x+---)p+---

=a’1a1x+(a/la2+a§af)x2+---+( Sooa Y aila,-z---aik)prr---.
k

=1.,p  irtetik=p

Putv (a1) = t. Sincev (aja) = viL(p) = €, vi(a;)) = e—t. Sincea | a] for
j =2,...,p—1, vL(cy) = minfuL(@5ap), v (@yal)) if vi(agap) # vi(@yaf). If e< p,
v (aap) = v (@) <e< p = pu () = vL(a’paf). Hencev (cp) =e—t <e []

Proof of Corollary. By Lemma 4.1.1, i€, =0, E does not have an isogeny of
degreep over O and if cp, # O, v (Cp) < e Therefore we can substitute the value of
vL(Cp) in Theorem fort = e— v (cp). []

4.2. Examples. We consider an elliptic curv& defined overQ satisfying the
following conditions:

(i) There exist an elliptic curvee’ and an isogeny: E — E’ of degreep defined
over Q.
(i) The curveskE and E’ have potentially supersingular reduction @t

We can find the following examples of such elliptic curves lwe ttable of [1].
We regardv as an isogeny ove®, by the inclusionQ to Q,. By Corollary, we can
determine the value df for eachv and the dual isogeny of v.

We use the next notation in examples. Ltbe the conductor ofg, then E’
has the same conductor [7, VII, 7.2]. The notation ‘CM’ implithat E has complex
multiplication and ‘non-CM’ implies thaE does not have complex multiplication. For
E’, denote the discriminant by»" and € = 12/gcd@p(A’), 12). We definet’ for v by
the same method dsfor v.

EXAMPLE 4.2.1. Forp=5andN =50= 2.5
E:y?+xy+y=x>—x-2
satisfies the conditions (i), (i) and we havg(A) = 4, e = 3 and non-CM. Then
E':y?+xy+y=x3—76x+298
and we havevp(4’) = 8, € = 3 and non-CM. There exists 5-isogeny E — E’ over

Q. By Corollary, we havet = 1. The dual isogeny: E' — E is 5-isogeny overQ.
By Corollary, we have’ = 2.
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EXAMPLE 4.2.2. Forp=7 andN =49 = 72,
E:y?+xy=x—x2—-2x-1
satisfies the conditions (i), (ii) and we havg(A) = 3, e=4 and CM. Then
E': y? +xy=x3—x?— 107 + 552
and we havevp(A’) =9, € =4 and CM. There exists 7-isogeny. E — E’ over Q.
By Corollary, we havet = 2. The dual isogeny: E' — E is 7-isogeny oveQ. By
Corollary, we havet’ = 2.
EXAMPLE 4.2.3. Forp =11 andN = 121 = 11,
E:y?+xy=x3+x>-2x-7
satisfies the conditions (i), (ii) and we havg(A) = 4, e = 3 and non-CM. Then
E": y? + xy = x3 4+ x? — 363X + 82757
and we havey,(A’) = 8, € = 3 and non-CM. There exists 11-isogenyE — E’ over
Q. By Corollary, we hava = 1. The dual isogeny: E' — E is 11-isogeny oveR.
By Corollary, we havet’ = 2.
EXAMPLE 4.2.4. Forp =11 andN = 121 = 11,
E:y?+y=x3—x2—7x-10
satisfies the conditions (i), (ii) and we havg(A) = 3, e=4 and CM. Then
E':y?+y=x3—x?—7x—-10143
and we havevp(A’) =9, € =4 and non-CM. There exists 11-isogenyE — E’ over
Q. By Corollary, we havet = 2. The dual isogeny: E’ — E is 11-isogeny oveR.
By Corollary, we havet’ = 2.
EXAMPLE 4.2.5. Forp =17 andN = 14450=2.5%.17?,
E: y? 4+ xy+y = x3— 3041 + 64278

satisfies the conditions (i), (ii) and we havg(A) = 4, e = 3 and non-CM. Then

E': y? + xy+y = x3— 19089k — 36002922
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and we havev,(A’) = 8, € = 3 and non-CM. There exists 17-isogenyE — E’ over
Q. By Corollary, we have = 1. The dual isogeny: E' — E is 17-isogeny oveq.
By Corollary, we have’ = 2.

EXAMPLE 4.2.6. Forp =19 andN = 361= 1%,

E:y?+y=x3-38+90

satisfies the conditions (i), (i) and we havg(A) = 3, e =4 and CM. Then

E':y? +y=x%—1371& — 619025

and we havevp(A’) =9, € =4 and CM. There exists 19-isogemy E — E’ over Q.
By Corollary, we hava = 2. The dual isogeny: E’ — E is 19-isogeny oveQ. By
Corollary, we have’ = 2.

Remark that Example 4.2.1 has been already known in [6, Ekaf@.1] by cal-

culating the generator of ker And if E has complex multiplicationt = e/2. So
Example 4.2.2, 4.2.4, 4.2.6 have already known. We can rdeterthe value oft in
Example 4.2.3 and 4.2.5 for the first time by using our Corglla

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]

[0

(10]
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