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Abstract
For a finite groupG and its subgroupH which does not contain any nor-
mal subgroup ofG except the identity, criterions for the existence or noistexce
of Hurwitz families of special type of @, H)-coverings of the Riemann sphere
are given.

1. Introduction

Let G be a finite group andH its subgroup which does not contain any normal
subgroup ofG except the identity{1}. We call a finite coveringf: X — Y, a (G, H)-
coveringif, roughly speaking, its permutation monodromy repreggéon is equivalent
to the representation d& on the setG/H of left cosets (see 82 for a rigorous def-
inition). In particular, a G, {1})-covering is a Galois covering with its Galois group
isomorphic toG. We simply call it aG-covering

In this paper, we discuss non-degenerate families @&f H)-coverings of the
Riemann spheré! = P(C), for a fixed G, H). We call a non-degenerate family
of (G, H)-coverings ofP?, a Hurwitz family if
(i) itcontains all G, H)-coverings, up to isomorphisms, which are topologicatiyiea-
lent to a givenfy: Xo — P! and
(ii) any different members of it are not isomorphic.

Its parameter space is calledHurwitz parameter space

A Hurwitz parameter spachl for a given fo: Xo — P! always and uniquely exists.
(M is a connected complex manifold of dimensisnthe number of branch points of
fo, and is a finite unramified coverinl — P° — A, where A is the discriminant lo-
cus.) On the other hand, a Hurwitz family may not exist. FifigJdasked and discussed
the problem of existence of Hurwitz families, and gave aggtlons of his results to
arithmetic problems. The same problem was discussed araloged in Biggers—Fried
[2], Fried—-Volklein [8], Volklein [14], Débes—Douai [5], €bes—Douai—Emsalem [6],
Debes [4], Bailey—Fried [1] etc., with applications to hntetic problems.

In this paper, we discuss the same problem, using a littlieréifit principle, ex-
plained below, from Fried [7] or Biggers—Fried [2], and th&a define aHurwitz fam-
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ily of special type(see 85). We give a criterion for the existence of a Hurwitnifa
of special type. In particular, we prove

Theorem (cf., Theorem 5.6). Let Zg be the center of G and dNH) be the nor-
malizer of H in G. If Ns(H) = H - Zg and if the exact sequence— Zg — G —
Inn(G) — 1 does not splitthen there does not exist a Hurwitz family of special type
of (G, H)-coverings ofP?.

Our principle in this paper is as follows: We make use of thdo{Sacorrespond-
ence between subgroups of a fundamental group lamadched coverings, using the
extension theorem of Grauert—Remmert (see 82). We assumhéhih locus

@, ..., q°

of a given fy: Xo — P! does not contairmo, the point at infinity. The divisor

D% =(q)) +---+(ad)

on P! is then a point inCS = PS—H,,, wherePs is thes-dimensional complex project-
ive space andH,, is the hyperplane at infinity. The fundamental grotyfCs — A, Do)
is isomorphic to the Artin braid groufBs of s-strings and acts on the fundamental
group (Pt —{d?, ..., g%}, 00). Using this action, the Hurwitz parameter spade—
PS— A corresponds to a suitable subgrollpin 71(CS— A, Do), under the Galois cor-
respondence. Now the existence problem of the Hurwitz famiteduces to the prob-
lem of a kind of group extensions with respectito

Next, using the Galois correspondence, we see that thests exifamily

g: Y = P! x My,

which has a lift of theco-section and is ‘near’ from a Hurwitz family, whose paramete
spaceM; is a finite coveringr;: My — M of M (see §4).

Now a Hurwitz family of special type is a Hurwitz family whosmill-back over
the mapz, is isomorphic to the familyg.

In this paper, we discuss the problem only from the geometoint of view. If
our result is combined to those in Fried [7] or Biggers—Fij2f then arithmetic ap-
plications will be obtained.

The author would like to thank the referee for his/her maniualle comments.
Following his/her suggestions, many parts of the origirgkion of the paper are revised.

2. Preliminary remarks and notations

In this paper, we use the following notations:
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(i) For pathsa and g such that the end point af coincides with the initial point of
B, the composition of paths connectingand g is denoted byBa.

« B = fa

The universal covering spacﬁ of a connected spacX is given by the set of all
homotopy equivalence classes of paths with the end pifd reference point). The
fundamental groupri(X, 0) acts onX from the left as compositions of paths.

(i) The products of permutations are defined, e.g., asvalio

1 2 3\(1 2 3\ (1 2 3
2 3 1J)\2 1 3) \3 2 1)

(iii) Braids and their products are denoted and defined, agfollows:

g1 0102

In the following, we mainly follow terminologies in Namba L and Mizuta—
Namba [10].

A finite coveringof a connected complex manifoM is, by definition, a finite proper
holomorphic mapf: X — Y of an irreducible normal complex spacé onto Y. Fi-
nite coveringsf: X — Y and f’: X’ — Y of Y are said to basomorphi¢ denoted by
f ~ f’, if there is a biholomorphic mag : X — X’ such thatf’ -y = f. The set
Aut(f) of all automorphisms off forms a group under compositions, called tngo-
morphism groupof f. This is a finite subgroup of the automorphism group At(
of X. Eachy € Aut(f) acts on every fiber off. f is called aGalois coveringif
Aut(f) acts trasitively on every fiber of. In this case, Autf) is sometimes called
the Galois groupof f. Y is, in this case, canonically biholomorphic ¥/ Aut(f). A
Galois covering is called ayclic (resp.abelian) coveringif its Galois group is cyclic
(resp. abelian).

Finite coveringsf: X — Y and f: X’ — Y’ are said to béolomorphically equiva-
lent (resp.topologically equivalentresp.meromorphically equivaleptif there are bi-
holomorphic maps (resp. orientation preserving homeohisnps, resp. bimeromorphic
maps)y: X — X andg: Y — Y’ such thatf’-¢ = ¢ - f. We denote this relation by
f ~nol T/ (resp.f ~p T/, resp.f ~mer /).
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For a finite coveringf: X — Y, put

Rt = {p € X | f is not biholomorphic aroung},
Bi = f(Rr).

Then they are hypersurfaces &f and Y, respectively, because of the non-singularity
of Y. They are called theamification locusand thebranch locusof f, respectively.

If B is a hypersurface oY such thatB; C B, then f is said tobranch at most at B

In this case, the restriction

f" X' =f}Y-B)->Y—-B

is an unbranched (i.e., ordinary topological) covering. d&éne thedegreeof f, degf,
to be the mapping degree df. Note that the singular loci relate as follows (see, e.g.,
Namba [11]);

SingX c f(SingB),
SingR¢ = Sing f 7}(B;) ¢ f~1(SingB).

The following theorem is fundamental in our discussion.

Theorem 2.1 (Grauert—Remmert [9]). Let Y and B be a connected complex
manifold and its hypersurface. Then any finite unbrancheeegog f': X’ — Y — B
can be uniquely(up to isomorphismsextended to a finite covering: fX — Y which
branches at most at B.

This theorem implies in particular that there exists a anerie correspondence (Galois
correspondence) between isomorphism classes of finiteioggef: X — Y of Y which
branches at most &, and conjugacy classes of subgroug$ of finite index of the
fundamental groupri(Y — B, o), whereqp is a reference point. Th&alois closure
f: X > Y of f is the Galois covering off, which corresponds to the intersection
¢ of all subgroups which are conjugate # in 71(Y — B, o). If 2#’ is a sub-
group of r1(Y — B, qo) such thats# c 7', and if f’: X’ — Y is the finite covering
which corresponds to#”, then there exists a finite proper surjective holomorphip ma
h: X — X’ such thatf’-h = f. This follows from the following proposition.

Proposition 2.2. Let f: X — Y be a finite covering which branches at most at
a hypersurface B of Y and corresponds to a subgrodpof 71(Y — B, qo). Take a
point p in f~(qo). Let g Z — Y be a holomorphic map of an irreducible normal
complex space Z into Y such that'¢B) is a hypersurface of Z witingZ c g=*(B).
Suppose thatfor a point o€ g~(gg), the homomorphism.g 71(Z — g~%(B), 0) —
m1(Y — B, qo) induced by g satisfies,@r1(Z — g~*(B), 0)) C .2#. Then there exists a
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unique holomorphic map:hZ — X such that o) = pp and f-h =g. (h is called a
lift of g). Converselyif there is such a holomorphic map then g satisfies gm1(Z —
g'(B),0) C .

Proof. For a poiniz e Z—g~'(B), let y be a path inZ —g~*(B) with the initial
point o and the end poinz. We defineh(z) to be the end point of the liff in X —
f~1(B) of the pathg(y) with the initial point py. This is well defined. In fact, ify’
is another such path iZ — g~1(B), theng.(y'~ly) is in 2 by the assumption. This
implies thaty’17 is a loop inX — f 1(B), so the end point of’ is equal to the end
point of .

The maph: Z — g 1(B) — X — f 1(B), thus defined, satisfie§-h = g. The map
h is holomorphic, forf: X — f1(B) — Y — B is locally biholomorphic.

For a pointz e g~%(B), put f 1(g(2)) = {p1,..., P}, (k < degf). Let W be a con-
nected open neighborhood gfz) such thatf-%(W) = U‘j‘:l V; be the decomposition
into the connected components such that V; and f mapsV; onto W. LetU be a
connected open neighborhood ofn Z such thatg(U) ¢ W. ThenU N(Z—-g~%B)) =
U —g~}(B) is also connected. HendgU N (Z —g~1(B))) is contained inV; for some
j. We puth(z) = p; in this case. Thus is extended continuously tg='(B). The
map h: Z — X is holomorphic, forZ is normal. h satisfiesf - h = g. The maph is
uniquely determined, by the principle of analytic contitiol.

The converse is obvious. O

Now, as before, letf: X — Y be a finite covering which branches at most at a
hypersurfaceB of Y and corresponds to a subgrouff of 71(Y — B, qg). Put

f~%qo) = {P1,--., pa}, (d=degf).

The homotopy class of a loop in 71(Y — B, qo) defines a permutatiod®¢(y) on the
set{p1,..., pa}, where ®¢(y)(p;) is the end point of the lift ofy with the initial

point p;.
Q¢ mi(Y—B, o) > &

is @ homomorphism whose image is a transitive subgrouf;of® is called theper-
mutation monodromy representatiai f. The image®;(n1(Y — B, qo)) is called the
permutation monodromy groupf f. The image®(s7) of .7 is the isotropy sub-
group of @ (m (Y — B, qo)) for a point in{py, ..., pq}.

Now let (G, H) be a pair of a finite groufis and its subgrougH which contains
no normal subgroup o6 except the identity{1}. G acts effectively on the set of left
cosets{Ha} as follows:

(9, Ha) € G x G/H — Hag™ € G/H.
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This gives a permutation representation@®f

Ha
R'QEG'_’(Hagl)GSﬂ

(d =[G : H]). By the condition onH, the representatioiR is faithful, that is, the
homomorphismR is injective. Hence we may regaid as a transitive subgroup &
through R: G C &. In this identification,H is written as

H=GN&%,

where §;_1 is the isotropy subgroup d&; of the letter 1, say.
Now we call a finite coveringf : X — Y of Y which branches at most &, a
(G, H)-coveringif there is a surjective homomorphism

£:m(Y—-B, o) > G

such that
(i) R-¢ is equivalent to the monodromy representatibp and
(i) # = &1(H) corresponds tof .

A (G, {1})-covering is simply called &-covering This is a Galois covering with
the Galois group isomorphic tG.

A (G, H)-covering on the Riemann sphef¢ = P*(C) is given as follows: Con-
sider a presentation

(2.1) G=(gn-.-,0s |G-+ 0=2107"=1...,08=1%,...,%)

of G, whereey, ..., e are integers> 2 andx,..., x are other relations. Lely,...,Qs be
distinct points inP. We identify the sefq, ..., qs} with the divisorD = (qi) +---+
(gs), ((qj): the point divisor). Take a reference pouptin P*—D. Thenmy(P1-D,qo)
is presented as follows:

nl(lP’l—D,qo)=()/1,~-~,7/s|)/1"‘1/s=1>-

Here y; are (the homotopy classes of) the meridians aroginas in Fig. 1:
We define a surjective homomorphism

(2.2) £:mP'—D,q) — G

by s(vi)=9; (1 =1....,9).

The finite coveringf: X — P! which corresponds to the subgroug = £1(H)
of m(P*—D, qp) is a (G, H)-covering. Conversely, any& H)-covering of P* can be
obtained in this way. Thé&-covering f: X = P! which corresponds to?” = Ker(§)
is the Galois closure off .
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Fig. 1.

3. Non-degenerate family of G, H)-coverings

Let T be a connected complex manifold. #on-degenerate familpf (G, H)-
coverings ofP! with the parameter space Teans a finite covering : X — P x T
such that
(i) the branch locusB¢ is a non-singular hypersurface #' x T such that the re-
striction of the projectioriP! x T — T to each connected component Bf is a finite
unramified covering oflf and
(i) the restriction

ft:Xt: f_l(]P’lxt)—)]P’lxt (:]P’l)

of f is a (G, H)-covering such thaB; = B¢ N (P! x t), for eacht € T and
(iii) the numbers of branch points off; is constant fort € T.

In this case, X is a connected complex manifold amk is a non-singular hyper-
surface ofX.

Two finite coveringsfy: X; — P! and f,: X, — P! of P! are said to beleforma-
tion equivalentif there is a non-degenerate famify: X — P x T of (G, H)-coverings
of P! and pointst; andt, in T such thatf; (resp. f,) is isomorphic tof,, (resp. f,).

Theorem 3.1. Finite coverings f: X; — P! and %: X, — P! of P! are defor-
mation equivalent if and only if they are topologically egaiént.

The ‘only if’ part of the theorem can be proved in a similar waythe proof of The-
orem 4.1 in Mizuta—Namba [10] oG-coverings of PL. The ‘if’ part will be shown
later (see Remark 4.11).

This theorem clearly implies

Corollary 3.2. For a non-degenerate family:fX — P x T of (G, H)-coverings
of P1, the monodromy representatiods;, of f; and @y, of fy are equivalent for all
t,t'eT.
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Now, for a non-degenerate familj: X — P! x T of (G, H)-coverings ofP?!, take a
reference poinb € T. We assume that the branch locus

By, ={a7, ..., G}
of f, does not contain the poirfo at infinity:
(3.1) oo ¢ By,.

REMARK 3.3. If By, containsoo, then we take an automorphisgn(i.e., a coor-
dinate change) oP? such that the branch locus ef- f, does not contaimo. Then,
instead of f, we consider the non-degenerate family, id) - f: X — P x T (id =
the identity map onr), which is holomorphically equivalent td.

Consider the closed complex subspace
T ={teT|ooe By}
of T and its complement
(3.2) Tin =T — Teo,s
which is a Zariski open set of . The map
(3.3) p:t e Tin (00, 1) € (P! x Tsin) — By
is a holomorphic section of the projection
(P* x Tiin) — Bt = Tiin.
We call it the oco-section. Take a poinp,, € X;, such that
fo(Pos) = o0
Then the maps
fo: (Xo, Pe) = (B, 00),
1 (Xmny Po) = (P X Tiin, (00, 0))
(X, = 1P x Tsn)) give injective homomorphisms

(fO)*: nl(XO - fo_:L(DO)! poo) - 7-[1(]?1 - DO! OO),
fo: m(Xpm — F7H(B), Po) = m((P* x Tiin) — By, (00, 0)).
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By Lemma 4.2 of Mizuta—Namba [10], the projectioB!(x Ts,) — Bs — Tsin (resp. the
projection X, — f1(Bf) = (P! x Tsin) — Bt — Tin) is a topological fiber bundle
with the standard fibe®! — D, (Do = (Q9) + - -+ + (q2)), (resp. the standard fiber
Xo — f51(Do)). Hence, by Steenrod [12], there exists a commutativerdiagof long
exact sequences:

—> 7T2(Tfin1 0) —> 7Tl(xo - f()_:L(DO)v pOO) —_— nl(X‘Tfm - f_l(Bf)! poo) —

‘ l(fo)* lf*

‘T\ 72(Tfin, 0) ———> 7T1(P1 — Dy, 00) ——— 7'[1((]P’l X Ttin) — By, (00, 0)) —

—> T[l(Tfin! 0) —> ﬂO(XO - fo_l(DO)! pOO) e no(xlTﬁn - f_l(Bf)v poo)

| | l

?‘ 71(Tfin, 0) —— mo(P* — Dy, 00) — mo((P x Tin) — By, (o0, 0)).

Here p, is the homomorphism induced hyo-sectionp in (3.3). By the existence of
P+, we have the following commutative diagram of short exacjuseces:

1— m1(Xo — f5 (Do), Poo) — m1(Xjmy — F7H(B5), Psc) — 71(Tiin, 0) — 1

l(fO)* lf* ‘

1—— m (P! — Dy, 00) — m1((P* x Tfin) — By, (00, 0)) %\ 71(Ttin, 0) — 1.

(The surjectivity ofy (X7, — f 1(B¢), o) = 71(Tiin, 0) follows from the connected-
ness of Xy, — f~}(B¢) and P! — D).
We put

% = (fo)*(nl(xo - fo_l(DO)! pOO))r

3.4
( ) L = f*(nl(x\Tﬁn - fﬁl(Bf)’ pOO))

Then we have the following commutative diagram of short exa&gjuences:

1 A < 71(Tfin, 0) — 1

w ] T

1—> m (P — Do, 00) —> m1((P* x Tiin) — By, (00, 0)) = 71(Tfin, 0) — 1,

wherei and j are inclusion maps.
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REMARK 3.4. In the diagram (3.5), the upper exact sequence may bt Bp
Proposition 2.2, this splits and the diagram with the gplitiis still commutative if and
only if there is a lift

1 Tin = Xy — T74(Br)
of the oo-sectionp in (3.3) such thatp(0) = pso-

Next, for a non-degenerate familfz X — P1x T of (G, H)-coverings, we consider
a holomorphic map

O:teT > Dy =(q)) +---+(q) € P°— A,

where{d}, ..., qi} = By, P is regarded as the-th symmetric product o and A
is the discriminant locus. LeTy, be the Zariski open set of in (3.2). The homo-
morphism

(3.6) 0O, : m1(Thn, 0) > Bs = 7T1(CS — A, Do)

induced by® is called thebraid monodromy Here 71(CS — A, D) is identified with
the Artin braid groupBs of s-strings. Henceforth, we assume that

(3.7) s> 3.
The Artin braid groupBs acts onz1(P* — Do, co) as follows:
(3.8) 0i(vi+1) = ¥ {1%Vien,

ov)=v; (#i,i+1),

wherey; are the meridians in Fig. 1 withp = co. Note that the action is not effective.
The action of Bs/Z(Bs) is effective, whereZ(Bs) is the center ofBs, which is the
cyclic group of infinite order generated by;(- - - 05 1)° (see Birman [3]).

Lemma 3.5. For § € 71(Tsin, 0) and y € m1(P* — Do, 00),

0.(0)(¥) = p+(B)yr.(8) ™",

where the product of the right hand side is that{P* x Tin — B¢, (o0, 0)), in which
m1(P* — Do, o) is a normal subgroup.

Proof. The action ofBs on 71 (P! — Do, 00) is defined to be that of the mapping
classes of #%, D,). Hence there is a map of the cylindstx [0, 1] (S*: the unit circle)
into P! x Ty, — By whose image is as in Fig. 2. The image of the map in Fig. 2 shows
that ®,(8)(y) is homotopic top. (8)yp.(8)~2. O]
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0.(6)(7)
R —
ps(0)
(00,0) |oommmmm s
~ 5
Y
Fig. 2.
Let
3.9 £: m(P* =D, 00) > G

be the surjective homomorphism defined, as in 82, by
&Ei)=9 (=1...,9).

Put
(3.10) o = Ker(&o), #o = £ (H).
Then s is the subgroup which appeared in (3.4):

Ho = (fo)u(m1(Xo = f5 (Do), Pxc)).
Consider the subgroupy of Bs defined by
(3.11) o= {0 € Bs | 0(Ho) = o).
Then T, can be rewritten as follows:

I'o = {0 € Bs | there is an automorphism (o) € Aut(G)

(3.12)

such thatA(o)-& = & - o}.
The map
(3.13) A: o — Aut(G)

is @ homomorphism. We denote its image By

(3.14) To = A(FY).
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Note thatI' depends on the presentation (2.1)®f
Consider moreover the subgrolipof B defined by
(3.15)
[' = {0 € Bs | 0 maps.# to one of its conjugate subgroups #3(P* — Do, o0)}.

Each element € I' maps.#, to its conjugate. Hence maps its conjugate to another
conjugate. Hence maps their intersection?; to itself. Thus we have

(3.16) Ker(\) c ' c T,
Let ' be the image of" by A:
(3.17) I = A(D).
Then we have easily
I'={y €Ty | ¥ mapsH to one of its conjugate subgroups @.

Note that eachy € T' induces a permutation on the set of all subgroup<sinvhich
are conjugate tdH.

Lemma 3.6. (i) [ contains the inner automorphism grotmn(z, (P — Do, 00))
of m1(P! — Do, o).
(i) T contains the inner automorphism grouipn(G) of G.

Proof. (i) Put
T =01""+0s5-10s-1"""01,

N =01":"0s-1.
Then we have

) =vitvin (i=1...,9),

77kr77_k(yj) = ykj_llyj wer (0=1,...,s5k=1,...,s-1).
Hencet and nzn~¥ generate the inner automorphism groupmafP! — D, o0). By
the definition of[",  and n*zn ¥ are contained if". Hence Innfy(P*— Do, o)) C I
(i) follows from (i). ]

Let

(3.18) M — M — Mg— P°— A
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be the extensions (by Theorem 2.1) of the unbranched c@gedhC®— A correspond-
ing to the subgroups

(3.19) Ker(A\) C I' c Ty C Bs = 71(CS — A, Do)

with respect to the Galois correspondence.
They are connected complex manifolds, because the hyperpla, at infinity is
non-singular.

Lemma 3.7. (i) The coverings M— PS— A and My — PS— A in (3.18) are
unramified coverings.
(i) M; — P%— A is unbranched at K — A if and only if G is abelian and H= {1}.

Proof. (i) A meridian ofH.,— A is written aso o %, wherer =074+« :0s_10s_1- - *01
in the proof of Lemma 3.6 and € Bs. Then

oto™Hy) = oy oM () = o (v) "y o (n),

for any y in m (P! — Do, o0). Henceoto~! belongs tol’. Hence the extensions
M — PS5 — A and My — P° — A are still unbranched aH,, — A (see Lemma 3.2
of Namba [11]).

(i) Using the notations in the proof of (ixro* belongs to Kerd) if and only if

§0(n) E(E( () = §(),

for any y in 71 (P! — Do, 00). This holds if and only ifé (o (y1)) belongs to the center
of G. Note thato can be taken any element & ando(y;) is a conjugate of some
yj in (P! — Dy, 00). This proves (ii). O

Proposition 3.8. (i) ©,(71(Tin, 0)) C I
(i) Thereis a lift®: T — M of O.

Proof. (i) From the diagram (3.5), for arye m1(Tsin, 0), there isy € my (P —
Do, 00) such thaty - p.(8) € Z. Since % is normal in.Z, we have

(v - (O oy - p<(B) " = Ho.
Hence
P+ (8)Hop.(8) ™ = y " Aoy .
Hence, by Lemma 3.5,

O.0)(H) = y LAy .
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This shows tha®,(8) € I'.
(i) follows from (i) and Proposition 2.2. O

For the later use, we mention two more lemmas. Consider tperbyrface
(3.20) B={(p,meP'xM|peD=n(m)
of P! x M, where
7:M—=>P—A
is the projection in (3.18). PuMy = 7 (Hs). Then
(3.21) p:mMeM =My = (00, m) € P x (M —My)—B
is a holomorphic section of the projection
P'xM-B— M,
which we call theco-sectionagain. This projection is a topological fiber bundle with
the standard fibeP*— D, (see Lemma 4.2 of Mizuta—Namba[10]). Hence, as in (3.5),
we get the following lemma:

Lemma 3.9. There is the following splitting exact sequence

1— 7 (P — Dy, 00) > .¥ =1 — 1,
s

where.? = 71(P* x (M — M) — B, (00, 0)).

The following lemma can be proved in a similar way to that ofmrea 3.5, so we
omit its proof.

Lemma 3.10. For ¢ € " and y € m1(P! — Do, ), the following equality holds
o(y) = pu(0)ypslo)
where p is the co-section in(3.21) and the product of the right hand side is that in
& =m(P*x (M~ Mx) = B, (00, 0)) = m(B* ~ Do, 00) - pu(I),

in which (P! — Do, 00) is a normal subgroup.
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4. Hurwitz families

A non-degenerate familyf : X — P! x T of (G, H)-coverings ofP? is called a
Hurwitz family if
(i) for any (G, H)-coveringg;: X; — P! of P! which is topologically equivalent to
a member of the family, there is a poihke T such thatg; is isomorphic tof; and
(i) for any distinct pointst andt’ in T, f; and f; are not isomorphic.

Lemma 4.1. The parameter space T of a Hurwitz family is biholomorphido
in (3.17) through a lift ® of ® in Proposition 3.8

Proof. A path inPS — A with the initial point D, and the terminal poinD; de-
fines an isotopy of§%, {s points of P'}), which give an orientation preserving homeo-
morphisme: (P, Do) — (P!, D1). We introduce another complex structuXg on Xg
so that f; = ¢- f, is holomorphic. Then the identity map: X, — X; andg: P! — P!
give a topological equivalence df, to f;.

Conversely, anyg;: X1 — P! which is topologically equivalent td,, can be ob-
tained in this way up to isomorphisms.

Hence, by the definition oM — P*—A in (3.18), M can be regarded as the set of
all isomorphism classes of3 H)-coverings which are topologically equivalent fg.

Hence, by the properties (i) and (i) of a Hurwitz famil§ is a bijective holo-
morphic map ofT to M. Since a bijective holomorphic map between connected com-
plex manifolds is a biholomorphic mag) is a biholomorphic map. O

Henceforth we identifyT of a Hurwitz family f: X — P! x T with M in (3.18)
through®. We call M the Hurwitz parameter space

REMARK 4.2. The connected complex manifoM is nothing but the connected
component of thegbsolutg Hurwitz space containing the isomorphism class of a given
fo: Xo — P1, of the Nielsen classvhose representative is given byin (2.2) (Biggers—
Fried [2], p. 88). A Hurwitz family is aotal representing familyith M as its parame-
ter space.

The Hurwitz parameter spadé always exists, while a Hurwitz family may not
exist as Fried [7] pointed out. The existence problem of Hiuzrvfamilies is known
to be a delicate problem. Some of the known results which asy ¢ state on the
existence problem of Hurwitz families are as follows:

Theorem 4.3 (Fried [7]). If Ng(H) = H, then there exists a universal Hurwitz
family f: X — P! x M of (G, H)-coverings ofP!, having a given §: Xq — P! as
a member.
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Here Ng(H) is the normalizer ofH in G. Also, a Hurwitz family f: X — P x M is
said to beuniversalif, for any non-degenerate familg: Y — P x T with a pointtg
such thatg;, is isomorphic tofy, there is a unique holomorphic map: T — M with
d(tg) = 0, such that the familyg is isomorphic to the family induced by over .

Theorem 4.4 (Volklein [14]). For any G-covering §: Xo — P!, there exists a
Hurwitz family of P! having § as a member.

This theorem is a by-product of his main arithmetic theorenVolklein [14].

In the next section, we discuss the problem of existence afwitu families of
special type For the rest of this section, we discuss, from our point @&wisome
properties of (general) Hurwitz families, which are eswiyt contained in Fried [7]
and Biggers—Fried [2], for the preparation of the next secti

If there exists a Hurwitz family

f:X—>PxM

the argument in 83 shows thdt is the extension by Theorem 2.1 of an unramified
covering

f: X' = Plx(M—My)—B,
where B is a non-singular hypersurface Bf x M defined by
B={(p,meP!xM|peD=mn(m)

(r: M — PS— A is the projection) andM,, = 7 %(Hy.), (see (3.18) and (3.20)).

Recall that there is the splitting exact sequence in Lemmda Blow, a similar
argument to that in 83 shows that, under the Galois correspure, f corresponds to
a subgroup.? of 71 (P! x (M — My) — B, (00, 0)) such that there is the following
commutative diagram of exact sequences:

1 A, & r 1

]

1—— 11 (P! — Do, m)—>y—T»f_>1.

(p is the co-section in (3.20),7 = m (P! x (M — My) — B, (00, 0)) andi and j are
the inclusion maps.)

REMARK 4.5. Note thatf is still unramified onP*x M — B, because an element
in the inverse image of = o01---0s_10s_1- - -01 in the proof of Lemma 3.7 by the sur-
jective homomorphism# — I" can be regarded as a meridian®¥fx M., in P1x M.
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Conversely, if there is such a subgrou of 71(P! x (M — My) — B, (oo, 0)),
then the family f: X — P! x M corresponding taZ is a Hurwitz family. In fact,
the composition

X' = P'x(M—My)—B—> M- M,

(X’ is the unramified covering corresponding 6) is a topological fiber bundle with
the standard fibeX, = f (P! — D,) x 0). Hence fy: Xm — P! x m is topologically
equivalent tof,: X, — P! x o for everym e M, so is a G, H)-covering with B;_ =
BN (P!xm). Hencef: X — P x M is a non-degenerate family oG( H)-coverings
of PL. By the definition of f, the lift ® with ©(0) = o of the braid monodromy® of
the family is the identity mapd: M — M. The argument in the proof of Lemma 4.1

implies that the familyf: X — P! x M is a Hurwitz family.
Thus we have proved the following proposition:

Proposition 4.6. A Hurwitz family exists if and only if there is a subgroi) of
S = m(* % (M~ Mx) = B, (00, 0)) = my(P* ~ Do, 00) - pu([),
such that the commutative diagram of exact sequencg4.1) exists.
Lemma 4.7. There is the following exact sequence
1= Ney@r 0y,00)(H6) = Ny () = T — 1,

where N, p1_p, ) () (resp. N»(75)) is the normalizer of’z; in m1(P — Do, o0)
(resp. in.Y).

Proof. By the definition of", for any element € I', there isy € 71 (P! — Dy, 00)
such that

o(H) =y Aoy,
Hence, by Lemma 3.10,
(v - pu(@))Ho(y - 0:(0)) 7 = y0u(0) Hopu(0) ty T = yo (Ho)y T = Ho.
This shows that - p.(c) € N (7%4). Hence the homomorphism
Ny (o) = L, y-puo) > o

is surjective. The kernel of the homomorphism is cleady,p:_p, «)(#5). []
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Lemma 4.8. There exists a commutative diagram of exact sequencéd.l if
and only if there exists the following commutative diagram

1 A < f 1

(4.2) li lj

1—— Nyt p, 00)(H5) —> Ny () —— T —— 1

(@i, j: the inclusion maps

Proof. In the diagram in (4.1)74, is a normal subgroup of. Hence.Z C
N (7%), so the diagram in (4.2) is obtained. The converse is olsviou ]

Lemma 4.9.
p«(Ker A) C Ny (o).
Proof. Take any € Ker A. Then
5o(0(y)) = &o(y) forall y € mi(P* — Do, 00).
Hence, by Lemma 3.10,
p(0)ypos(0)ty e Ay forall y e my(P— Do, 50).
Since %, C 7%, we have
P (0)Hopu(0) ™t = Ho. 0

Lemma 4.10. (i) 2% - p«(Ker A) is a subgroup of N (77).
(i) There is the following exact sequences

(4.3) 1— 5 — 75 p(Ker A) — Ker A — 1.
Proof. (i) follows from Lemma 4.9. (ii) is obvious. O
From this lemma, there exists a non-degenerate family

(4.4) g:Y > Plx M

of (G, H)-coverings of P! with the parameter spachkl; in (3.17), corresponding to
76 - px(Ker A) in (4.3). We will make use of this family in the sequel.
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REMARK 4.11. This family has the following properties:
(i) By Proposition 2.2, this family has a lif6 of the co-section

p: My € My — My > (00, mp) € P x (M — Myo) — By,

whereB; = {(p,m) € Px M| peD =n-m(m)}, 71: M1 > M, 7: M - PS— A
are coverings in (3.18) ani,, = (7 - 1) " (Hoo)-

(i) For any (G, H)-coveringhg: Zog — P! of P! which is topologically equivalent to
the given fo, there is a pointm; € My such thathg is isomorphic togm,,. Hence the
existence of this family implies the ‘if’ part of Theorem 3.1

(iii) For any two pointsm; and m; in My, gm, and gm, are isomorphic if and only if
m; and m; are in a same fiber of the covering: M; — M in (3.18).

5. Hurwitz families of special type

Now we consider the following condition o’ in (4.2):
(5.1) Condition p.(Ker A) C %,
where p is the co-section in (3.21).

We say that a Hurwitz familyf : X — P x M is of special typdf the group.Z
corresponding tof : X — P! x M satisfies the condition 5.1.

REMARK 5.1. If the condition 5.1 is satisfied, then we have
(5.2) Ho- px(Kera) Cc &

(see Lemma 4.10). Hence, by Proposition 2.2, a Hurwitz farfil X — P x M is of
special type if and only if the family induced bf over the coveringr;: M; — M in
(3.18) is isomorphic to the familg: Y — P! x M in (4.4).

Suppose that the grouf’ in (4.1) or (4.2) satisfies the condition (5.1). Then we
have the following commutative diagrams of exact sequeridinibe groups:

1 H L

r
@1y [T

]1—G—>S—=T ——1,

1

1 H L r 1

]

11— NG(H) Ns(H) r 1.
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(i, j: the inclusion maps.) Herg = A(I"), L = (&, A)(%) and
S=GxT
as a set, whose group structure is defined by

(91, ¥1)(92, ¥2) = (G1¥1(92), Y12).

(' C Tp C Aut(G). See (3.14) and (3.17).) We identifg,(1) € S with g € G and
(1, ¥) € Swith v € I'. Then

9.v)=9-v,
V@ =v-g-y
HenceS is the semi-direct product
S=G-T
of G andI" such that the surjective homomorphisgn— T splits:
(5.3) 1-G—>S=TI->1

In fact, (4.1) (resp. (4.2) is obtained from (4.1) (resp. (4.2)) by operating on (4.1)
(resp. (4.2)) the surjective homomorphism

(o, A): v - pu(0) € S > E(Y)A(0) € S
(y € m(P! = Do, ), o € ['), whose kernel is
Ker(o, A) = Ho - p«(Ker A)

and is contained inZ.

Conversely, by taking the inverse image hy,(A) of the commutative diagram
of exact sequences in (4.1yesp. (4.2), we obtain the commutative diagram of exact
sequences (4.1) (resp. (4.2)) in which = (&, A)"}(L) satisfies the condition (5.1).

Thus the problem of the existence of Hurwitz families of saetype can be re-
duced to the existence df in (4.1) or (4.2).

Furthermore, we can easily show that there exists a comiveitdiagram of exact
sequences in (4.2)f and only if the surjective homomorphism

Ns(H)/H — T
of the exact sequence:
1— Ng(H)/H - Ng(H)/H - T — 1

splits. Thus
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Theorem 5.2. There exists a Hurwitz family of special type if and only & gur-
jective homomorphism §{H)/H — I' in the exact sequence

(5.4) 1— Ng(H)/H - Ng(H)/H - T =1
splits.

In particular, if Ng(H) = H, then the exact sequence (5.4) clearly splits. Hence a
Hurwitz family of special type exists by Theorem 5.2. Thiowsh the existence part
of Theorem 4.3.

As for G-coverings fo: Xo — P!, we haveH = {1} andT" =Ty in (3.14). In this
case,I'c(H)/H = G and Ns(H)/H = S. Hence the exact sequence (5.4) is reduced to
the exact sequence (5.3) (with= I'g), which splits. Thus a Hurwitz family of special
type exists by Theorem 5.2. This shows Theorem 4.4.

REMARK 5.3. Note that the exact sequence (5.4) and the split condippeared
in Fried [7], (4.12) and Proposition 5.

Now, we further discuss the exact sequence (5.4). G¢gH be the set of left
cosets. Put

J={(Hb, ¥) € (G/H)x T | ¥(H) = b-*Hb}.
We introduce a group structure ih by
(Hby, Y1)(Hbg, ¥2) = (Howra(02), ¥1v2).
This is well defined by the definition of. Moreover, the map
by € Ng(H) — (Hb, ¥) € J
is a surjective homomorphism, whose kernelHs Hence
Ns(H)/H =~ J.

Under this isomorphism, the surjective homomorphisig(H)/H — ' corresponds to
the surjective homomorphism

(Hb,¥)e J— ¢y €T,
whose kernel is

{(Hb, 1) | b € Ng(H)} ~ Ng(H)/H.
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Hence we have the exact sequence
(5.5) 1- Ng(H)/H—->J—>T—->1

which corresponds to the exact sequence (5.4) under theoipbiem Ng(H)/H ~ J.
Thus the problem of the existence of Hurwitz families of saktype is reduced to
the problem of existence of splittings of the surjective loomorphismJ — I' in (5.5).

Proposition 5.4. There is a one-to-one correspondence between splittingls-of
' and maps

A= G/H

with the following3 properties

(i) ¥(H)=xr()*HA(Y) for all ¥ €T,

(i) 2(1)=H,

(i) A(Y1v2) = A(Y1)¥1(A(¥2)) for all ¥y, Yo € T

Proof. A splittingi: ' — J of J — T is given by
Ay el (Hb y) e J.
We define a map
AT — G/H

by A(¥) = Hb. Then, since\ is an injective homomorphisni, must satisfy the above
properties (i), (i) and (iii).
Conversely, if a map.: I' — G/H satisfies the properties (i), (i) and (iii), then

iy (W), ¥)
is an injective homomorphism df into J and gives a splitting ofl — TI. O

Let A: T — G/H be a map which satisfies the properties (i), (ii), and (iii)Prop-
osition 5.4.
By Lemma 3.6, the inner automorphism group @h(f G is contained inl". Let

l:ge G~ v¥9elInn(G)
be the surjective homomorphism with the kernel
Ker(l) = Zg (the center ofG),
where

vI(x) =gxg! for xeG.
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We define a map
uw:G— G/H
by
w@) = (-1)9)-g=Ar(y%g for geG
Lemma 5.5. (i) u(G) C Ng(H)/H.
(i) u: G — Ng(H)/H is a homomorphism.
(i) u(z2) = Hz for ze Zg.
Proof. (i) Puti(y%) = Hb. Then
gHg ' = y9(H) = b *Hb.
Hence
(bg)H(bg) * = H
Hence
n(g) = Hbg € Ng(H)/H.
(i) Put A(y%) = Hb; and A(y¥%) = Hby,. Then

1(9192) = AV 4 Y *)ai0,

A YA (Y )19z

= Hbygihog; - 0102

= Hb1g1b2g, = (Hb191)(HDb202)
= u(91)1(92).

(i) For ze Zg, 1(2) = ¥* = 1. Henceu(z) = A(1)z= Hz ]

Note that the subgroupl - Zg of G is contained inNg(H). SinceH contains no
normal subgroup ofs except{1}, we have

HNZg = {1).
Hence
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Hence we may regardg as a subgroup oNg(H)/H:
Zs C Ng(H)/H.
Now, consider the following condition o3, H):
(5.6) Condition Ng(H) = H - Zg.
Under the condition in (5.6)Ng(H)/H can be identified withZg:
Ng(H)/H = Zg.

Hence the homomorphism in Lemma 5.5 can be regarded as a homomorphism

n: G — Zg
such thatu|Zg = id (the identity map). We then define a map

V:G—>G
by

v(g) = u(@)'g for geG.

We can easily check that is a homomorphism with the kernel

Ker(v) = Zg.
Moreover, we can easily check that
(i) v(G) =~ Inn(G),
(i) Ze Nv(G) = {1},
(i) G = Zg-v(G) =v(G)- Zg.
HenceG is the direct product oZs and v(G). Hencev(G) gives the splitting of the

exact sequence & Zg — G — Inn(G) — 1.
Thus we get the following theorem:

Theorem 5.6. Assume that
(i) Ng(H)=H-Zs and
(i) the exact sequenck— Zg — G — Inn(G) — 1 does not split.
Then there does not exist a Hurwitz family of special typ€¢GfH)-covering of P*.

We give one of the simplest examples @,(H) with the conditions (i) and (ii)
in Theorem 5.6.
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ExamMPLE 5.7. Let A4 be the alternating group of 4 letters aid its isotropy

subgroup of the letter 1. The Schur multipli®t(A4) is isomorphic tozZ/2Z (see, e.g.,
83.2 of Suzuki [13]). Hence there is a central extension

1-7Z—->GC->"As—1

with Z ~ Z /27, which does not split. In this cas&, is the center ofG. From the
exact sequence, we have the following exact sequence:

1->Z—>a(A)—> As—1,
which clearly splits. Hence there is a subgrodpof G such that
ZNH={1}, al(A)=Z-H and «: H ~ As.
Then we have easily
Ng(H)=Z-H.

Hence G, H) satisfies the conditions (i) and (ii) in Theorem 5.6.
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