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Abstract
We extend the Genocchi polynomials and investigate theiriEpexpansions and
integral representations. We obtain their formulas atorati arguments in terms
of Hurwitz zeta function and show an explicit relationshipthvGaussian hyper-
geometric functions. Some known results for the classieid&chi polynomials are
also deduced.

1. Introduction

The Genocchi polynomial&,(x) are usually defined by means of the following
generating functions (see, for details, [4], [5], [12] aridt]):

2ze*
e+1

(1.1)

> G005 (12 <),
n=0 '

In particular,G,, := G,(0) for n > 0 are called Genocchi numbers, wiBp,; = 0 for
n> 1 and, for example,

Gop=0, G1=1, Gy=-1, Gs=1,
Geg=-3, Gg=17, Gyo=—-155 Gip»=2073.

Some interesting analogues of the classical Bernoulli anigrEpolynomials were in-
vestigated by Apostol ([2]), Luo and Srivastava ([9], [1(11] and [15]), and these
analogues are called the Apostol-Bernoulli and ApostoleiEpolynomials. We fur-
ther extend the Genocchi polynomials as follows:
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The Apostol-Genocchi polynomiafs,(x; 1) in x are defined by means of the gen-
erating functions:

277 o n
(12) =Y Gl M5 (12l < llog(-2).
n=0 ’

re2+1

We note that hereGn(x) = Gn(x;1). We setGn(A) := Gn(0; &), which we call the
Apostol-Genocchi numbers (in fact, it is a functionin

In [7], we gave the Fourier expansions and integral reptasiens for the classi-
cal Genocchi polynomials by using the Lipschitz summatiomrmiula. In the present
paper, we further investigate the Fourier expansions fer Alpostol-Genocchi poly-
nomials based on the same method and provide their integpat¢sentations by using
the Fourier expansions. We obtain a formula for the Aposk@rocchi polynomials
at rational arguments and give an explicit relationshipMeen the Apostol-Genocchi
polynomials and Gaussian hypergeometric functions. Theesponding formulas of
[7] are some special cases of the results of this paper.

The paper is organized as follows: In the second section wigedthe Fourier ex-
pansions for the Apostol-Genocchi polynomials. In thedttsection we show their
integral representations. In the fourth section we give ftivenula at rational argu-
ments in terms of the Hurwitz zeta function. In the fifth sective provide an explicit
relationship between the Apostol-Genocchi polynomiald &aussian hypergeometric
functions. In the sixth section we deduce the correspondésglts for the Genocchi
polynomials. Some remarks are given in the seventh sedciioparticular, we derive
the Euler formulaz (2n) = ((—1)""1(27)?"/(2(2n)!)) Bz, in a different way.

2. Fourier expansions for the Apostol-Genocchi polynomial

In this section, we investigate the Fourier expansions @ Apostol-Genocchi
polynomials by applying the Lipschitz summation formula.
First we recall the Lipschitz summation formula ([6]):

eZni(nJru)t F(O() efhriku

(2.1) 2 (N4t (=2ri)r & ( + K’

n+p>0

wherea € C, N(a) > 1if neZ andN(x) >0 if u e R\ Z, T € H, H denotes the
complex upper half pland; denotes the Gamma function.
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Theorem 2.1. Forn> 0, 0<x <1; » € C\ {0, -1}, we have

e(2k L)mix

(2:2) Gn(X: 2) = gzj [(2k — 1)l —log A]"
_2-nki" exp[(nr/2 — (2k 4+ 1) x)i]
. Y g [(2k + 1)7i + log A"

=\ exp[(=nm/2 + (2k + D)7 x)i]
t2 @kt i —Tog i }

Proof. By (1.2) and the generalized binomial theorem, weshav

(anf)k 1 2g2ritx
kz; Gex: 2) T et 41

(2.4) N
=2) (—1fake 0T (127it +log | < ).
k=0

Differentiating on the both sides of (2.4) with respect te ¥ariablet and iterating
n— 1 times, and noting tha@o(x; A) = Go(A) = O (see Section 5 below), we obtain

(27”)k 1_k—n

_ i\n— OO_ kqk n— i (K+x)T
=) = 2(27i)" Y (—1AK(k 4 x)"ter ko,

k=0

(2.5) ng( M)

On the other hand, letting =n (n=1,2,...), u+— X, t —~ 7 + (logA)/(27i) + 1/2
in (2.1), we find

N e (2k+1)mix
SIS [(2K + 27 + L)7i + log A"
keZ

(2.6) o

Z( 1)k)\k+><(k+x)n 1e27'r|(k+x)r

k=0
Combining (2.5) and (2.6), we get

> (27Ti)kfl.[kfn
X .
* kX_: 9D =1
(2.7 ="
(2k+1)mx

= (=1)"(n — 1) 2(2ri)™* Z [k + 2, + D)i + log A"

Letting r — 0 in (2.7), we obtain the assertion (2.2) of Theorem 2.1.
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Noting thati— = e™™'/2 and 1)" = €', and via simple calculation, we see
that the assertion (2.3) of Theorem 2.1 is a direct consemueh(2.2). This completes
our proof. ]

3. Integral representations for the Apostol-Genocchi polgomials

In this section, we give the integral representations ferApostol-Genocchi poly-
nomials. For convenience, we take= €¥'¢ (¢ € R, |&| < 1) in this section.

Theorem 3.1. Forn>0,0=<x =<1, || < 1/2, £ € R, we have
(3.1)
Gnl(x: ez”ié) _ o 2rixe /‘°° M(n; x, t) cosh(2r&t) +iN(n; x, t) s:mh(ngt)trFl o,
0 cosh 2rt — cos 2rx

where

M(n; x, t) = [e’” cos(nx - n%) —e ™ cos(nx + %T)}
N(n; x, t) = [e’” sin(nx - n%r) +e™ sin(nx + %T)]

Proof. Settingh = €7"'¢ and lettingk — —k in (2.2), we have

. 2-n! e—(2k+2§+1)rrix
3.2 X; €18 = —— :
3-2) Gn( ) (—mi)n g (2k + 2 + 1)
Applying the integral formula
o0 I
(3.3) /0 theat it = a':;l (n=0,1,...: %@a)>0)

in (3.2), we get

o0
Gn(x: ez’”é) _ 2n {Z e (2k+26+1)rix /oo Ll @k+25+1)t gt
0

(=7i)" k=0

S [}
+ (_1)n Z e(2k72§+l)mx / tnfle—(2k72$+1)t dt}
k=0 0

2n _ertyrix [ am@e+1tyn—1 - —2(Tix+t)k
= ——1¢€ e "y e dt
(=mi) 0 o

o0
+ (_1)ne—(2s—1)nix /Oo e(25—1)ttn—1 Z e2(nix—t)k dt
0

k=0
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2n 00 e—(2§+l)rrix
= (—ri)n { 2t _ g 2nix e dt
T 0 _
00 e(l—ZE)rriX

2t _ g2nix
ne-2rixé {/oo enni/Z(e—erix . e—2t)enix
0

+ (—1)" gl+20)tgn-1 dt}
0

e—(2§—1)ttn—1 dt

" cosh 2 — cos 2rx

00 A—Nmi/2 i —2t\q—7i

+/ @ nri/ (eZmX —@ )e ix e(2§+1)ttn—1 al
0 cosh 2 — cos 2rx

Here we use £1/i)" = €7/2 and 1)" = e ™. Making the transformatiort =

u, after the simplification, we obtain the desired (3.1) immatzly. This completes

the proof. []

Below we give another integral representations for the Agle§senocchi poly-
nomials.

Theorem 3.2. Forn=1,2,...; 0<x <1; |§] < 1/2, £ € R, we have
(3.4)

. —2TiXE
Gn(X; eané) = (_1)n714ner[n

, /1 M’(n; x, t) cosh(Z logt) —iN’(n; X, t) sinh(Z logt)
0

logt)"! dt,
t4—2t2cos2rx + 1 (logt)

where

M'(n; x, t) = [cos(nx — n%) —t? cos(nx + n?n)}
N'(n: x, t) = [sin(nx - n?n) +12 sin(nx + %)]

Proof. Substituting coshizz = (€' + e 2)/2 into (3.1), we obtain
(3.5)
Gn(x: €271€) = dne 21ixE /"" M(n; x, t) cosh(2r&t) + iN(n; X, t) sinh(2r&t)

t"L dt.
0 et 4 e=2tt _ 2 cos 2rx

Making the transformatioru = e~ in (3.5), we obtain formula (3.4) directly. This
proof is complete. []

REMARK 1. For any integer$, we see easily thaf,(x; e"'(+9)) = G, (x; e?"i¢).
Therefore, the Apostol-Genocchi polynomias(x; €¥*'¢) are periodic functions ir§
with period 2r. In view of this reason, we say that the varial§lanay take any real
numbers in Theorem 3.1 and Theorem 3.2.



296 Q.-M. Luo

REMARK 2. We may also prove Theorem 2.1 by Theorem 3.1 in an inverseeps.

4. Explicit formulas for the Apostol-Genocchi polynomials at rational
arguments

In this section, we obtain the explicit formulas for the AmmdsGenocchi poly-
nomials at rational arguments by applying the Fourier egjmam Here letZ; = {0,-1,
—2,...} denote the set of nonpositive integers.

The Hurwitz—Lerch zeta functiof(z, s, a) defined by (cf., e.g., [16, p. 121, et seq.])

00 N
d(z, 5, a) = —
; (n+a)

(aeC\Zy; seC whenlzl <1; %(s) > 1 when|z| = 1)

(4.1)

contains, as itspecialcases, not only the Riemann and Hurwitz zeta functions:

1 1 =1
(42) C(S) = @(l, S, 1) = {(S, 1) = > _ 1{(3, é) = nXZ; E
and
00 1 -
(4.3) (s, a):= d(1,s,a) = n; nrar (R(s) > 1; a ¢ Zg)

and Lerch zeta function (or periodic zeta function):

(4.4) (&) := i e e EPp(e?E s, 1) (E €R; R(s) > 1),

ns

n=1
but also such other functions as the polylogarithmic fuorcti

X _n

. z
(4.5) Lis(2) := ngl == z®d(z, s, 1)

(s € C when|z| < 1; R(s) > 1 when|z| = 1)
and Lipschitz—Lerch zeta function (cf. [16, p.122, Equat®h5 (11)]):

nmi&

@6 P, a, s) = ; i ®(e*™¢,s,a) =: L(§, s, a)

(aeC\ Zy; R(s) > 0 when& e R\ Z; %i(s) > 1 when¢ e Z),
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which was first studied by Rudolf Lipschitz (1832—-1903) andyda Lerch (1860-1922)
in connection with Dirichlet’s famous theorem on primes fithemetic progressions.
Recently, Srivastava made use of the Apostol’'s formula [2,6g]

4.7) $E a 1—n) = O, 1—n, a) = —B”(a;TeM) (n € N),

and Lerch’s functional equation [2, p.161, (1.4)]

0.8, 1-9 = 5 o (55— 2ak )i o, .9

(4.8) + exp[(—%s—k 2a(1—$))ni:|¢(a, 1-¢, s)}
(seC;0<& <),
to yield the following formula of Apostol-Bernoulli polymaials at rational argu-

ments [15]:
(4.9)

O
e 2]

j=

(neN\{1l};geN; peZ; £ eR).

Below we obtain a similar formula for the Apostol-Genocchlymomials by using the
Fourier expansions.

Theorem 4.1. For n,q e N; pe€ Z; § € R, || < 1, the following formula of

Apostol-Genocchi polynomials at rational arguments
(4.10)

P oome) _ 20 [ ( 2j+2§—1) [(Q_(zj+2g_1)p) }
Qn(q,e )—(zqn)n{;c Ny )l )

q . .
(2232 ))
j=1

holds true in terms of the Hurwitz zeta function.
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Proof. Replacingk by k —1 in (2.3), we find

2.0 | <X explnr/2 — (2k — 1) x)i]
Gl 4) = —5 LZ_; [(2k — L)zi + log A"
(4.11) -

>\ exp[(=nm/2 + (2k — 1)wx)i]
T2 T (k= el —Tog " }

We employ the elementary series identity:
00 [

(4.12) Dtk =>_> f(k+j) (eN)
k=1 j=1 k=0

and the definition (4.1) to the formula (4.11), we obtain tb#ofving formula:
(4.13)

n . i _ .
gn(xzk)_Zn i I)\,)n [ZCD( —27TI|X '%)exp[(ng_(ZJ_l)nx)[l
+Zd>(e2””x,n,W)exp{(&j—lhx—%)iﬂ.
=1

If setting A = exp(2ri&), x = p/q, | =q in (4.13), we then obtain the desired formula
(4.10). This proof is complete. O

Taking &€ = 0 in (4.10), we get the following corollary.

Corollary 4.1 ([7, Theorem 13]). For n,q € N; p € Z. The following formula
for the Genocchi polynomials at rational arguments

(4.14) Gn(ap) = % ]Xq:;(n, 21'2; 1) Cos((Zi —ql)pzr B n7n)

=1
holds true.

REMARK 3. The same reason as Remark 1, we say here that the vagidhle
any real numbers in Theorem 4.1.

5. An explicit relationship between the Apostol-Genocchi plynomials and
Gaussian hypergeometric function

Below we begin by stating and by proving the main result o$ théction.
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Theorem 5.1. For n € Ny and 2 € C \ {—1}, the following explicit series repre-
sentation holds true

n-1 _1 K Kk K .
o) =3 (") g 2wy () e i
j=0

(5.1) k=0
xZFl(k—n+1,k;k+1;—J )
X+ ]

where,Fi(a, b; c; z) denotes the Gaussian hypergeometric function define@tfyye.g,
[1, p.556, et seq])

— (@)n(b)n 2"
(5.2) ,Fi(a, b; c;2) = oF4i(b, a; ¢ 2) :=n§ O

(C¢Zy; 1zl <1, z=1landR(c—a—Db)>0; z= -1 andR(c—a—Db) > —1),

where

C(v +n)
re) ’

Proof. Making use of Taylor's expansion and Leibniz’s rulenfr (1.2), we have

2z
gn(x§ )») = DQ (—}Lez T l)
z=0

_ 2 50k ket A B -
_A—i-lk:l(k)kx D; {(1+A+1(eZ 1))

By settinge =1 andw = (A/(A + 1))(€* — 1) in the binomial expansion:

Wh=v(v+1)---(v+n-1)=

Zg :=1{0,-1,-2,...}.

(D, = d/d2)

(5.3)

z=0

(5.4) W)=Y (“ e 1)(—w)r (! < 1),

r
r=0

and noting that (see [16, p.58, Equation 1.5 (15)])

(5.5) €—1<=k! Z S(n, k)
et
we obtain
(56) Golx: 1) = 2; () k% (;'+( sk
(5.7) _2y (E)k X" kz (;'Jf Sr)LlS(k 1,1).
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Interchanging the order of summation in (5.7), we have

n

(5.8) Galx: x)—zz(r - Z(E)kxn‘ks(k—l,r)

A+1)r+l
n-1 r'( )L), n -~
(5.9) 22 (x+1)r+1 Z ( )kx kKS(k—1,r)
(5.10) —znzf ) nil( : )(k+r+1)x”‘k‘r‘1S(k+r r)
' (A+1)f+1 = \k+r+1 Y

Here we use the property @&(n, k): whenn <k, S(n, k) = 0 in (5.7) and (5.9).
Applying
k

9 = ¢ 60 () i

j=0
Replacingn andk by k +r andr respectively, we get

nlr'( )L)rnrl

n neker—1 1
Gn(X; x)—zz oDy Z (k+r+1)(k+r+l)x k= 1”
XZ( 1)r j( ) k+r
ATX r I’n—r—l J k
(5.12) Z(A Ty Z( )J( ) > (k+r+1)(k+r+l)(;) .

k=0

(5.11)

Noting that (in view of(;) = 0 whenk > n)

k=0

n—r-1

and combining the definition of the Gaussian hypergeométriction

a)n(b)n 2"

©n n’

(5.13) oFi(a, b;c; 2) = Z(

after via some transmogrification and simplification, weegikie evaluation of the third
sum of (5.12) below.

(5.14)

n—r-1 -\ k .
n j _ (n-1 _ ] )
> (k+r+1)(k+r+1)(;) _n( . )gFl(r n+1,Lr+1; X).

k=0
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Substituting (5.14) into (5.12), and then letting— k, we obtain

n—1 —k—
)\kxn k-1

n—1
gn(X:)»)=2n§( K )m

k .
XZ( 1)1()J 2F1( —n+1,];k+1:—%).

Finally, by applying the known Pfaff-Kummer hypergeonmetransformation [1, p. 559,
Equation (15.3.4)]:

(5.15)

oFi(a, b;cz)=(1-27? zFl(a, c—b;c; %1)

(C¢Zy; larg(l—2)| <m—e (0 <& <))

(5.16)

to the equation (5.15), we arrive at the desired (5.1). Thimmletes our proof. [

Settingr = 1 in (5.1), we get the following corollary.

Corollary 5.1. The following series representation for the Genocchi pofgials
holds true

" n-1\1
Gn(X) =n ( )—
2 )z

k .
(kY . .

X E (_1)](j)lk(x+l)nk12F1(k—n+1,k;k+12 XJTJ)
i=o

(5.17)

On the other hand, by using (1.2) in conjunction with the defin (1.1), it is
easy to observe that

o0 n
S Ga( )% = e xo0r2ZHI00N) 2 eriogn
n! eztlogh 41 7 + log A

— —xlogAZG ( )(Z+|Og)\,)k lZ

— g Xlogh Z Gr(X) Z (k i) Zn(IO%)»)k n
— gxlogx Z_ = (n+k—1\/n+k G (Iogx)k
ng n go ( )( k ) n+k( )

which yields the following lemma:
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Lemma 5.1. For n € Ny and A € C, the Apostol-Genocchi polynomials is repre-
sented by

= — k
(5.18) Gnl(x; 2) = €X199* 37 (n +'I: 1) (n : k) Gl )(Iog 2
k=0

in terms of the Genocchi polynomials.

Theorem 5.2. For n € Ny and A € C, the following explicit series representation
(5.19)

k N+k—-1 .
Gn(X: A)—ne—X'ogf\Z ('0 ) = (”ﬂ‘ 1)

r=0

XZ(—]_)j G)jr(x—l_ j)n+kr12|:l(r —n—k+1,r;r+1 XJTJ)
=0

holds true in terms of the Gaussian hypergeometric function
Proof. By (5.17) and (5.18), we then obtain the assertioh9)5immediately. []

REMARK 4. The proof of Theorem 5.1 can be applieditatis mutandisn order
to obtain an explicit formula for the Apostol-Genocchi padynials G,(x; 1) involving
the Stirling numbers of the second kind as follows:

n
) n HEAL -\ un—k :
(5.20) Gn(x: 1) = 2§ ( ) Z ()\ + 1)J+1 Sk—1, j)x" (ne Np; A € C\ {-1}).
Further, settingh = 1 in (5.20), we deduce the following formula for the Genocchi

polynomials:
n k—

(5.21) Gn(x) = Z( ) Z J

k=0 j=0

S(k 1, )x"* (n € No).

REMARK 5. Applying the Gaussian summation theorem [1, p.556, Equa-
tion (15.1.20)]:

rc)r(c—a—>b)

2Fi(a, byc;1) = T(c—ar(c—b)

(c¢Zy;, R(c—a—h)>0)
for
a=k—n+1, b=k, and c=k+1,

so that

_1\!
(5.22) 2F1(k—n+1,k;k+l;1)=(nk) (k=0,...,n—1;ne No).
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Therefore, by settinggk = 0 in (5.1), we obtain the following explicit representatifor
the Apostol-Genocchi numbers involving the Stirling numnsbef the second kind:

n-1

(5.23) Gn(A) = ZnZ Kt (=)

G 11t S(n—1,K) (neNg A eC\{-1)}).

Takingr = 1 in (5.23), then we deduce the following formula for the Gaaio numbers:

(1)"'

S(n—1,k) (n € Np).

-1
k=0
If n =0, then the sum is considered to be null.

REMARK 6. Using the formula (5.23), we may calculate the first valoéshe
Apostol-Genocchi numbers:

4
Go(A) =0, Gi(d) = PT Go(2) = TGP

_6r(—1) 8 —-4r+1)
Gs(A) = G Ga(A) = BT

_10M(3 - 102 + 11— 1) 120 — 2603 + 6612 — 261 + 1)
Gs(2) = G 1p , Ge(r) = — G 1P :

REMARK 7. The elementary properties of the Apostol-Genocchi pmtyials can
be readily derived from (1.2).

AGa(X + 1 2) + Ga(x: 2) = 206 (n = 1), %Qn(x; 2) = NGa1(x: 2,

b . . n
) _ Gnra(b; 1) — Gnya(a; A) Y n . n—k
/a Gn(x; 1) dx = nt1 v On(X+yid) = kE:O (k) Gr(x: M)y,

(_ )n+1

Gn(l—x:2) = Gn(X; A7H).

6. Fourier expansions and integral representations for theGenocchi poly-
nomials

In this section, we deduce the Fourier expansions and mteégpresentations for
the Genocchi polynomials.

Putting A = 1 in Theorem 2.1, we then deduce the Fourier expansions for th
Genocchi polynomials as follows:
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Theorem 6.1 ([7, Theorem 1]). For n> 0, 0<x <1, we have

2.n! e(2k71):rrix

(6.1) GaX) = i kXZj T
(6.2) _ 47;?! i cos[(X + 1)rx — nx/2]

rar 2k + 1y

From Theorem 6.1, we have

Corollary 6.1 ([7, Corollary 2]). For n> 0, 0<x <1, we have

3 A4 (2n)! K cos[(XK + 1) x]
(6.3) G2n(X) = (_1) 720 g (2k + 1)2n !

4.(2n—1)! i sin[(2k + 1)rx] _

(6.4) Gonoa(X) = (1"t z2n—1 (2k + 1)2n-1

By settingé = 0 in (3.1) and (3.4), we have the following integral repr¢agans
for the Genocchi polynomials.

Theorem 6.2 ([7, Theorem 4 and Corollary 9)).For n=1,2,...; 0 <x <1,
we have
* g™t cosrx — N /2) — e "t cosfrXx + ni/2)
cosh Zrt — cos 2rx
L cos@rx — nm/2) — t? cos@rx + N /2)
t4—2t2coszrx + 1

t"1 dt,

(6.5) Gh(x)= Zn/
0

(6.6) Gn(x) = (—1)“*1% / (log t)"* dt.
0

Obviously, Theorem 6.2 implies the following corollary.

Corollary 6.2 ([7, Corollary 5 and 10]). Forn=1,2,...; 0<x <1, we have

®  sinmx coshrt
6.7 Gon 1(X) = 4(2n — 1)(-1 “—1/ e,
(6.7) an-1(X) = 4( )(-1) , cosh 2rt — cos Zrx

®  cosmxsinhrmt
6.8 G = 8n(-1)" 21 dt,
(6.8) 2n(X) (=1) /0 cosh 2rt — cos 2rx
LA4@n-1) 1 (1+t?)sinmx -

6.9 Gan_1(X) = (—1)"? / logt)*"~2 dt,
(6.9) an-1(X) = (-1) 721 Jo t4—2t2cos rx + 1( gt)

8n

1
(6.10) Gan(x) = (1) = / (1—t?) cosmx
T Jo

t4 —2t2cos2rx + 1

(logt)®1dt.

Below we derive other integral representations for the Gehiopolynomials. We
first need the following lemma.
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Lemma 6.1 (see [13]).

2t(1 — t?) cosx 2t sinx
6.11 dx = arctal C,
6.11) /t4—2t2c032<+1 r(1—t2)Jr

4t(1+ t?) sinx t2 — 2t cosx + 1
6.12 dx =log| V——— C,
(6.12) /t4—2t20052<+1 g(t2+2tcosx+1)jL

(6.13) /01 log(1 + t:(log t)n-1

Ylog(1—t)(logt)™?
[

dt = (—1)"(n — 1)l¢(n + 1)(2" — 1),

(6.14) dt = (—1)"(n — 1)!¢(n + 1).

It follows that we give the following theorem.

Theorem 6.3 ([7, Corollary 11]). Forn=1,2,...; 0<x <1, we have

(6.15)  Gonp(x) = (12221 / r(Zt S'”nx) (ot 4

2n+l _ t2 t

_.2n(2n—1) — 2t cosmx + 1Y (logt)>"—2
A = ()= = I .
(6.16)  Gan(X) = (1) 2 /0 Og(t2 + 2t cosmx + 1) t dt

Proof. Recalling the basic property of the Genocchi polyiadsn

(6.17)

/X Gn(u) du = Gn+1(x) — Gn11(a)
A - n+1 '

From (6.17), we have
X
(6.18) Gon(X) = Zn/ Gon_1(u) du + Gop.
0

Letting X — u in (6.9), and then substituting this into (6.18), we obtain

(6.19)
x L 4@n—=1) 1 (1+td)sinzu
Gou(X)=2n | (—1)"?
2n(X) /0( ) a2n-1 Jo t4—2t2cosru+ 1

2n(2n —1) /1 (logt)>—2 dt /X 4t(1+t?) sinu
a1 o t*—2t2cosZzru+1

(logt)® 2 dt du + Ga,

— (_1)”71 dU + G2n

Making the transformatiox = zu in (6.12), we have
(6.20)

X 4t(1+t?)sinzu t? — 2t cosx + 1 t?2—2t+1
b du = log —log| 5————
o t4—2t2cosru+1 t2+ 2t cosmx + 1 t2+2t+1

o t2— 2t costx + 1 210 1—t
=199 t2 4+ 2t costx + 1 9 1+t)
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Substituting (6.20) into (6.19), we get

2n(2n—1) [ t? — 2t cosx + 1) (logt)?"—2
— _1 n 1— / I
Gan(x) = (-1) 2N 0 Og(t2 + 2tcosmx + 1 t dt

4n(2n-1) [t 1—t) (logt)>—2
f— n—
+(-1) —on /o Iog(1+ t) " dt + Gon.

(6.21)

Subtracting (6.13) from (6.14), we have

1 _ n-1
(6.22) /o |og(i—+tt) % dt = (=1)°(n— 1) ¢(n + 12— 2.

From (6.22), it is easy to show that

(629 /01 ool 7¢) VT o = —an - e -2

On the other hand, we recall the well-known formula (see [R5p (21)]):

(=1 (o)

¢(2n) = 2(2n)!

2n-

Using the known relation
Gh =2(1-2"B,,

we have

(-1 2% - 22 (2n)!
(6.24) Gon = 2y

¢(2n).

Substituting (6.23) and (6.24) into (6.21), after a simpdifion, we obtain the formula
(6.16) immediately.
Similarly, the formula (6.15) can also be proved. This pr@tomplete. ]

By (6.8), (6.10) and (6.16), we have the integral represimms for the Genocchi
numbers.

Corollary 6.3 ([7, Corollary 12]). For n=0, 1,..., we have

[ee] t2ﬂ—1
.2 = 4n(=1)" I
(6.25) Gaon = 4n(-1) /O S &
_8n(=1)" [* (logt)>?
(6.26) - /o o

_ iAn@n—-1) ! 1—tY (logt)>—2
(6.27) = (-1) 17/0 Iog(1+t) n dt.
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REMARK 8. The integral representations for Genocchi polynomiald aumbers
do not appear in the classical literatures, for example [A],and [12]. Hence, the
formulas of this section are presumably new.

7. Further observations and consequences

We define zeta functions as follow§ € R)
= 1 26 +1
A‘ y = = 27n 1 1
(n:§) g(2k+2§+1)“ {(” 2 )

- 1 - 1

Settingx = €% in (2.3) of Theorem 2.1, then we have

(7.1)

Comiey _2:01 [N expl(/2 — (2k + 1)rx)i]
Gnlx; €)= 2 e [g @K+ 26 + 1)
(7.2) =
=\ exp[(=nm/2 + (2k + 1) x)i]
+g @k 2t 1+ 1p }

Taking x = 0 in (7.2) and, noting thag,(1) = Gn(0; ) and the definition (7.1), we
obtain the relationship between the Apostol-Genocchi rarsg,(€?"'¢) and the zeta
function A(n; &):

IR ) R O ]|

Replacingn by 2n in (7.3), we have
; 2-(2n)!
(7.4) Gon(@) = (-1 2201y o ) + (2 —6))

If putting &€ =0 in (7.4), we arrive directly at the following formula:

(7.5) A(2n) =

- 1
kgo (k+120  4(2n)!

and noting that the formula(n) = (1—2"")¢(n) and G, = 2(1—-2"B, (see [1, p. 807,
23.2.20]), we derive the Euler formula:
(- L)

¢(2n) = T2y Ban.
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REMARK 9. We can also obtain the formulas (7.5) by (4.10).

REMARK 10. By takingx = 0 in Theorem 3.1 and Theorem 3.2 respectively,
we deduce the integral representations for the ApostoleGadmn polynomials numbers
as follows:

(7.6) Gn(€#™€) = 2n /Ooo cosfir/2) COSh(Zz‘rsStii];(:T;in(nn/Z) sinh(zrrst)tIH "
4n /l cosfir/2) cosh(2 logt) + i sin(nzr/2) sinh(Z logt)
0

_ (-1~
(7.7) =D 1-t2

x (logt)" 2 dt.

Further settings = 0 in (7.6) and (7.7) respectively, we deduce the integratesgn-
tations for the Genocchi numbers in Corollary 6.3 once again

REMARK 11. By (1.2) and the binomial theorem, yields that

(7.8) i Gn(a: A)Z_n — 276 _ 2 i(—)\)ke(k“”‘)z
. — n t nl )\’ez + 1 —
o0 [o.¢] B Zn oo o0 (_}\‘)k Zn
3 By e D
n—o[ k=0 nt & = (k+a)t |l

Therefore, we show an interesting relationship betweenApestol-Genocchi poly-
nomials and Hurwitz—Lerch zeta function:

(7.9) Gr(@r) =2nd(—r,1—n,a) (neN; LeC; [A|=1;aeC\Zp).

Therefore, we can also prove Theorem 2.1 by applying thdisakhip (7.9) in con-
junction with Lerch’s functional equation (4.8). Theoreni £an also be proved with
Lerch’s functional equation (4.8), elementary seriesZ%4and (7.9).

REMARK 12. Our methods in the present paper can be used to investigat
corresponding Apostol-Bernoulli and Apostol-Euler palgmals together with their
classical cases, which have appeared in [8].
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