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Abstract

The present article is the final part of a series on the claatifin of the totally
geodesic submanifolds of the irreducible Riemannian symmepaces of rank 2.
After this problem has been solved for the 2-Grassmanniamsyi papers [7] and
[8], and for the space SU(B3O(3) in Section 6 of [9], we now solve the classi-
fication for the remaining irreducible Riemannian symneespaces of rank 2 and
compact type: SU(GBp(3), SO(10)U(5), Es/(U(1) - Spin(10)), Ee/F4, G2/SO(4),
SU(3), Sp(2) ands,.

Similarly as for the spaces already investigated in theiezaplapers, it turns out
that for many of the spaces investigated here, the earlassification of the max-
imal totally geodesic submanifolds of Riemannian symmespaces by Chen and
Nagano ([5], 8§9) is incomplete. In particular, in the spae$2),G,/SO(4) andG,,
there exist maximal totally geodesic submanifolds, isoimdéb 2- or 3-dimensional
spheres, which have a “skew” position in the ambient spacthénsense that their
geodesic diameter is strictly larger than the geodesic elianof the ambient space.
They are all missing from [5].

1. Introduction

The classification of the totally geodesic submanifolds ienfannian symmetric
spaces is an interesting and significant problem of Rienaangeometry. Presently, |
solve this problem for the irreducible Riemannian symnoespaces of rank 2.

The totally geodesic submanifolds of the 2-Grassmann@p¢R"), G,(C") and
G2(H") have already been classified in my papers [7] and [8]; manethe totally geo-
desic submanifolds of SU(B3O(3) have been classified in Section 6 of my paper [9]. In
the present paper | complete the classification of the yotgbdesic submanifolds in the
irreducible Riemannian symmetric spaces of rank 2 (simplynected and of compact
type) by considering the remaining spaces of this kind; theythe spaces of type |

SO(10YU(5), Es/(U(L)-Spin(10)), SU(6)Sp(3), Es/F2 and G,/SO(4)
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as well as the spaces of Lie group type
SU(3), Sp(2) and Gy;

herein G,, F; and Eg denote the exceptional, simply connected, compact, real Li
groups.

It should be mentioned that already Chen and Nagano gave thbwtclaimed to
be a complete classification of the isometry types of maxitotdlly geodesic sub-
manifolds in all Riemannian symmetric spaces of rank 2 in §¢heir paper [5] based
on their M., M_)-method. However, as it will turn out in the present papégirt
classification is faulty also for several of the spaces urmisideration here. In par-
ticular, in the spaces Sp(2%3, and G,/SO(4), there exist maximal totally geodesic
submanifolds, isometric to spheres of dimension 2 or 3, lwthiave a “skew” position
in the ambient space in the sense that their geodesic diamettrictly larger than the
geodesic diameter of the ambient space; these subman#oddsnissing from Chen'’s
and Nagano’s classification. Also in the spaces SQU@®) and Eg/(U(1) - Spin(10)),
such “skew” totally geodesic submanifolds exist, althotigely are not maximal. More-
over several other details of Chen’s and Nagano’s clastiitaare incorrect. For a
detailed discussion with respect to the individual spad¢edied, see the following re-
marks of the present paper:

space [SO(10YU(5)| Ee/(U(1) - Spin(10)) SU(6)/Sp(3)| Es/F4|G2/SO(4)SU(3)|Sp(2) G2
Remark 3.11 3.6 45 4.3 55 4.7 | 3.9 |5.3

Even apart from these problems, Chen’s and Nagano’s igatitn is not satisfac-
tory, as they name only the isometry type of the totally gesadsubmanifolds, with-
out giving any description of their position in the ambieptese. (Such a description
can, for example, be constituted by giving explicit totafjgodesic, isometric embed-
dings for the various congruence classes of totally geodagbmanifolds, or at least
by describing the tangent spaces of the totally geodesimantfolds (i.e. the Lie triple
systems) as subspaces of the tangent space of the ambiemtesyenspace in an ex-
plicit way.)

The usual strategy for the classification of totally geodesibmanifolds in a
Riemannian symmetric spadd = G/K, which is used also here, is as follows. Let
g =t®m be the decomposition of the Lie algebra @f induced by the symmetric
structure of M. As it is well-known, the Lie triple systems/ in m (i.e. the linear
subspacesn’ C m which satisfy [/, m’], m] C m’) are in one-to-one correspond-
ence with the (connected, complete) totally geodesic suofolds M, of M run-
ning through the “origin point’py = eK € M, the correspondence being thislt,, is
characterized bypy € My and Ty, My = 7(m’), wherez: m — Ty, M is the canonical
isomorphism.
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Thus the task of classifying the totally geodesic subméaéf@f M splits into two
steps: (1) To classify the Lie triple systemsiin and (2) for each of the Lie triple
systemsm’ found in the first step, to construct a (connected, completa)ly geodesic
submanifoldM,,, of M so thatp, € M, and r*l(Tpo M) = m’ holds.

Herein, step (1) is the one which generally poses the momfisignt difficulties.
As an approach to accomplishing this step, we describe itidke2 for an arbitrary
Riemannian symmetric spadd of compact type relations between the roots and root
spaces oM and the roots resp. root spaces of its totally geodesic suifoids (regarded
as symmetric subspaces). These relations provide conslitidich are necessary for a
linear subspacey of m to be a Lie triple system. However, these conditions are not
generally sufficient, and therefore a specific investigatieeds to be made to see which
of the linear subspaces af satisfying the conditions are in fact Lie triple systemss th
investigation is the laborious part of the proof of the cification theorems.

It should be emphasized that to carry out this investigat@wra given Riemannian
symmetric spacé, it does not suffice to know the (restricted) root system Hwaitulti-
plicities) of that space, or equivalently, the action of fla@obi operator&(-, v)v on the
various root spaces. Rather, a full description of the dureatensor ofM is needed.
The well-known formulaR(u, v)w = —[[u, v], w] relating the curvature tensdr of M to
the Lie bracket of the Lie algebraof the transvection grou@® of M lets one calculate
R relatively easily ifM is a classical symmetric space (thgns a matrix Lie algebra,
with the Lie bracket being simply the commutator of matrjcémit not so easily ifv
is one of the exceptional symmetric spaces, because theexfhieit description of the
exceptional Lie algebrg as a matrix algebra is too unwieldy to be useful.

In its place, we use the description of the curvature tenageth on the root space
decomposition ofg which was described in [9], and which permits the reconsnc
of R using only the Satake diagram of the Riemannian symmetecesigl. To actually
carry out the computations involved in the application of tlesults from [9], we use
the example implementation of the algorithms faaple also presented in that paper;
this implementation is found oht t p: // sat ake. sour cef or ge. net. Whenever
in the present paper, a claim is made about the evaluatioheotie bracket of a Lie
algebra or the curvature tensor of a Riemannian symmetecesfor specific input vec-
tors, the result has been obtained in this welgple worksheets containing all the cal-
culations can also be found drtt p: // sat ake. sour cef or ge. net .

Certain of the spaces under investigation here are locadlynétric to totally geo-
desic submanifolds of others; more specifically, we have fthiewing inclusions of
totally geodesic submanifolds:

Sp(2YZ, c SO(10YU(5)  Eg/(U(L)- Spin(10)),
SU(3)c SUBYSp(3), (SU(B)SP(3)YZs C Eg/Fs, G/SO(4)C Go.

If M is a Riemannian symmetric space ald C M a totally geodesic submanifold,
then the totally geodesic submanifolds BF are exactly those totally geodesic sub-
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manifolds of M which are contained irM’. For this reason, we can obtain a classi-
fication of the totally geodesic submanifolds bF from a classification of the totally
geodesic submanifolds d¥l: We just need to determine which of the totally geodesic
submanifolds ofM are contained irM’. Thus we do not need to carry out the clas-
sification of totally geodesic submanifolds for each spaedeu investigation here in-
dividually by the approach described above. Rather it ®dfito do the classification
for the three spacegg/(U(1) - Spin(10)), E¢/F4 and G,, by virtue of the mentioned
inclusions we then also obtain classifications for the r@emgi Riemannian symmetric
spaces of rank 2.

The present paper is laid out as follows: Section 2 contagrseml facts on Lie
triple systems, in particular on the relationship betwdwegirt(restricted) roots resp. root
spaces, and the roots resp. root spaces of the ambient speatéon 3 is concerned pri-
marily with the investigation of the Riemannian symmetnmace Eg/(U(1) - Spin(10)):

In Subsection 3.1 we make general observations about theeggpof this space; using
these results we then classify the Lie triple systemsEgf(U(1) - Spin(10)) in Sub-
section 3.2, corresponding to step (1) of the classificatisrdescribed above. In Sub-
section 3.3 we describe totally geodesic embeddings fon eaogruence class of Lie
triple systems inEg/(U(1) - Spin(10)), thereby completing the classification of tgtall
geodesic submanifolds for that space. In Subsections 3435 we use the inclu-
sions of totally geodesic submanifolds Sp)G,(H*) resp. SO(1Q)U(5) C Eg/(U(1)-
Spin(10)) to derive the classification of totally geodegibraanifolds in Sp(2) resp. in
SO(10yU(5) from previous results.

Section 4 covers the investigation Bf/F4 and is structured similarly: After the in-
troduction of basic geometric facts on that space in Sulusedtl, we classify its Lie
triple systems in Subsection 4.2. As a consequence of tlssifitation it turns out that
in Eg/F4, all maximal totally geodesic submanifolds are reflectiféwus we can learn
the global isometry type of the corresponding totally getcesubmanifolds from the
classification of reflective submanifolds in symmetric by Leung, [13], as is de-
scribed in Subsection 4.3, and do not need to constructytajebdesic embeddings in
this case explicitly. In Subsections 4.4 resp. 4.5 we usénttiasion (SU(6)Sp(3))/Zs C
Ee/F4 resp. SU(3)C SU(6)/Sp(3) to derive the classification for the space SIHp)3)
resp. SU(3). The space SU[3O(3), whose totally geodesic submanifolds have already
been classified in Section 6 of [9], is contained in SU(3)refare its Lie triple systems
also occur in the present paper. Subsection 4.6 gives thgomethip between the types
of Lie triple systems of SU(3B0(3) as defined in Section 6 of [9] and types of Lie
triple systems defined here.

Section 5 then investigates the Lie gro@ seen as a Riemannian symmetric
space. In Subsection 5.1 we investigate the geometry ofsghase, then we proceed in
Subsection 5.2 to the classification of its Lie triple systemnd describe embeddings
for (most of) its totally geodesic submanifolds in Subsmttb.3. In Subsection 5.4
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we use the inclusiors,/SO(4) C G, to derive a classification of the totally geodesic
submanifolds ofG,/SO(4).

Finally, in Section 6 we give a table of the isometry types e thaximal totally
geodesic submanifolds of all irreducible Riemannian symnimepaces of rank 2 and
compact type, thereby summarizing the results of my papdrs[8], [9] (Section 6),
as well as of the present paper.

The results of the present paper were obtained by me whil&imgiat the Univer-
sity College Cork under the advisorship of Professor J. 8terh would like to thank
him for his dedicated support and guidance, as well as hierges hospitality.

I would also like to thank the referee of this paper for hisyveetailed report,
which helped me greatly to bring this paper into a more reledfdsm, and for calling
my attention to a flaw in the treatment of the Lie gro@®3 in the first version of
this paper.

2. General facts on Lie triple systems

In this section we suppose thit = G/K is any Riemannian symmetric space of
compact type. We consider the decompositjpa £ & m of the Lie algebrag of G in-
duced by the symmetric structure M. BecauseM is of compact type, the Killing
form s: g x g —> R, (X,Y) — tr(@ad(X) o ad(Y)) is negative definite, and therefore
(-, -):= —cC- s gives rise to a Riemannian metric dW for arbitraryc € R,. In
the sequel we suppose thist is equipped with such a Riemannian metric.

Let us fix notations concerning flat subspaces, roots andspetes ofM (for the
corresponding theory, see for example [14], Section V.2)linkar subspacea C m is
calledflat if [a, a] = {0} holds. The maximal flat subspacesafare all of the same
dimension, called theank of M (or m) and denoted by rii) or rk(m); they are called
the Cartan subalgebra®f m. If a Cartan subalgebra C m is fixed, we put for any
linear formx € a*

m;, = (X em|VZeca: ad@Z)’X = —A(Z)*X}
and consider theréstricted root system
A(m, a) := {1 € a*\ {0} | m; # {O}}

of m with respect toa. The elements ofA(m, a) are called (estricted roots of m with

respect toa, for A € A(m, a) the subspacen, is called theroot spacecorresponding
to A, andn, := dim(m,) is called themultiplicity of the rooti. If we fix a system
of positive rootsA, C A(m, a) (i.e. we haveA, U (=A,) = A(m, a)), we obtain the

1The dependence of the sectional curvatureMbfon the choice of the Riemannian metric is as
follows: If we multiply the Riemannian metric with some factc > 0, then this causes the sectional
curvature function to be multiplied with/t.
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(restricted root space decompositioof m:

&) m=ad @ m.

AEAL

The Weyl group Wm, a) is the transformation group om generated by the reflections
in the hyperplanes$v € a | A(v) = 0} (where runs throughA(m, a)); it can be shown
that the root systenA(m, a) is invariant under the action oN(m, a).

Let us now consider a Lie triple system C m, i.e.m’ is a linear subspace oft
so that [/, m'], m'] C m’ holds. In spite of the fact that the symmetric space corres-
ponding tom’ does not need to be of compact type (it can contain Euclidaators),
it is easily seen that the usual statements of the root speeyt for symmetric spaces
of compact type carry over ta', see [7].

More specifically, the maximal flat subspaces wf are all of the same dimen-
sion (again called theank of m’), and they are again called th@artan subalgebras
of m’. For any Cartan subalgebrd of m’, there exists a Cartan subalgelraof m
so thata’ = a N'm’ holds. With respect to any Cartan subalgebraf m’ we have a
root systemA(m/, a') (defined analogously as fai) and the corresponding root space
decomposition

2 m=d® @ m,

acA(m/,a")

(with a system of positive root&,(m’, @) C A(w/, «)); we also again calh), :=
dim(m),) the multiplicity of « € A(w/, ). A(w/, @) is again invariant under the ac-
tion of the corresponding Weyl groug/(m’, a’). It should be noted, however, that in
the case where a Euclidean factor is preseniinA(m’, a’) does not spana()*.

The following proposition describes the relation betweled toot space decompo-
sitions (2) ofm’ and (1) ofm. In particular, it shows the extent to which the position
of the individual root spacesy, of m’ is adapted to the root space decomposition (1)
of the ambient space. These relations will play a fundamental role in our clasaHi
tion of the Lie triple systems in the Riemannian symmetriacgs of rank 2.

Proposition 2.1. Let ' be a Cartan subalgebra of’, and leta be a Cartan
subalgebra ofm so thata’ = a N m’ holds.
(&) The roots resp. root spaces of and of m are related in the following way

3) A, ) Cc {Ald | L € A(m, a), Ald’ # O}.
4) Vo e A, d): m), = @ my | N
AEA(m,a)
AMa'=a

In particular, if 1 € A(m, a) satisfiesi|a’ = 0, thenm’ is orthogonal tom;.
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(b) We haverk(m’) = rk(m) if and only if @’ = a holds. If this is the casethen
we have

(5) A/, d) C A(m, a), Yo e Am, d) m,=m, Nm
Proof. See [7], the proof of Proposition 2.1. [

For the remainder of the section, we fix a Cartan subalgebm@ m’, and leta
be any Cartan subalgebra of so thata’ = a N m’ holds.

DEFINITION 2.2. Leta € A(w/, d') be given. Recall that by Proposition 2.1 (a)
there exists at least one robte A(m, a) with Aja’ = «. We call o
(a) elementary if there exists only one root € A(m, a) with Aja’ = «;
(b) composite if there exist at least two different roots u € A(m, a) with Ala’ =
a = pld.

Elementary roots play a special role:dfe A(m’, a’) is elementary, then the root
spacem,, is contained in the root space,, wherei € A(m, a) is the unique root with
Ala’ = . As we will see in Proposition 2.3 below, this property causestrictions for
the possible positions (in relation td) of A. The exploitation of these restrictions will
play an important role in the classification of the rank 1 Liplé systems in the rank
2 spaces under investigation.

It should also be mentioned that in the casenw'k(= rk(m) we haveda’ = a, and
therefore in that case evetye A(m/, o) is elementary (compare Proposition 2.1 (b)).

For any linear formx € a* we now denote by the Riesz vector corresponding
to 1, i.e. the vecto* € a characterized by -, A*) = A. Here (-, -) = —c- » is again
the inner product obtained from the Killing form of g.

Proposition 2.3. Leta € A(w/, a) be given.
(1) If o is elementary and. € A(m, a) is the unique root with\|a’ = «, then we have
Med.
(2) If a is composite and.,, 1 € A(m, a) are two different roots with.|o’ = « = u|d/,
then A* — 1 is orthogonal toa’.

Proof. For (a) see [7], the proof of Proposition 2.3 (a); $)obvious. []

Proposition 2.4. Suppose thair € A(m/, ¢') is a composite root such that there
exist precisely two roots, u € A(m, a) with A|la’ = @ = u|d’. Because ofx € (a')*,
we havea* € a’; we suppose that this element can be written as a linear caatibm
of = ar® + buf with non-zero ab e R.
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Then we have @ > 0, and there exists a linear subspaeg C m; and an iso-
metric linear map®: m) — m, so that

b
(6) m, = {X + \/;CD(X) X € mﬁ\}
holds. In particular we have /n< min{n,, n,}.
Proof. See [8], the proof of Proposition 2.4. ]

We mention one important principle for the construction @ triple systems with
only elementary roots.

DEFINITION 2.5. A subsetA’ C A(m, a) is called aclosed root subsysterof
A(m, a) if for every L € A’ we also have-i € A’, and if for everyi, u € A" with
A+ e A(m, a) we haver + u € A'.

Proposition 2.6. Let A’ be a closed root subsystem &fm, a), and letA’, be a
positive root system of’. Thenm' := spag{\* | A € A’} & ®)‘EA,+ m; is a Lie triple
system inm. m’ is called theLie triple system associated #'.

Proof. This follows immediately from the fact that for any © € A(m, a) U {0}
we have

[m)n mu] C E)w‘rﬂ @ E)wu and [E)u mu] C M4 7 my_u,

see [14], Proposition VI.1.4c, p. 60. Hete denotes the root space bfcorresponding
to A € A(m, a). O

The isotropy groupK of the symmetric spac® acts onm via the adjoint repre-
sentation, i.e. byK xm — m, (g, v) — Ad(g)v; this action is called thésotropy action
In the investigation of Riemannian symmetric spaces, tltoof this action play an
important role. In the case of spaces of rank 2, they form aréspeter family, which
can be parametrized in the following way (generalizing thpraach that was used for
the 2-Grassmannians in [7] and [8]):

We suppose thaM is of rank 2, and fix a Weyl chamberin a. We denote the
two rays ina delineating this Weyl chamber b, and Ry; in the case wheré\(m, a)
contains roots of different length (i.e. the root systerm, a) is of one of the types
B,, BC, or G,), we suppose thaR; points into the direction of one of the shorter
roots. Letymax be the angle betweeR; and Ry; ¢max €qualsne/3, /4, /4 or 7 /6,
according to whetheA(m, a) is of type Ay, By, BC, or G, respectively.
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Any given v € m \ {0} is congruent under the isotropy action to one and only
one vectoryg € ¢, and we denote the angle betweRp and vy by ¢(v). In this way
we obtain a continuous functiop: m \ {0} — [0, ¢may]. TWO vectorsvi, v, € m with
lvi]l = ||v2ll # O are congruent under the isotropy action if and only({f;) = ¢(v,)
holds. We call the value(v) the isotropy angleof a vectorv € m \ {0}.

Notice that if m’ is a Lie triple system ofm of rank 1, theng is constant on
m’\ {0}, and Proposition 2.3 shows that there are only finitely miaay0, max SO that
there exists a Lie triple system’ C m of rank 1 withg|(m’\ {0}) =t and dim{’) > 2.

We will call the valuet for such a Lie triple systenm’ the isotropy angleof m’. On
the other hand, ifw’ is of rank 2, then we have(m’ \ {0}) = [0, ¢maxl-

3. The symmetric spacess/(U(1) - Spin(10)), Sp(2) and SO(1QU(5)

3.1. The geometry ofEg/(U(1) - Spin(10)). In the present section we will study
the Hermitian symmetric space Eli= Eg/(U(1) - Spin(10)), which has the Satake
diagram

We consider the Lie algebra:= ¢g of the transvection groujks of Elll, and the
splitting g = ¢ & m induced by the symmetric structure of Elll. Hete= R & s0(10)
is the Lie algebra of the isotropy group of Elll, amd is isomorphic to the tangent
space of Elll in the origin. TheEg-invariant Riemannian metric on Elll induces an
Ad(U(1) - Spin(10))-invariant Riemannian metric am. As was explained in Section 2,
this metric is only unique up to a factor; we choose the fagtosuch a way that the
shortest restricted roots of Elll (see below) have length 1.

The root space decomposition. Let t be a Cartan subalgebra gfwhich is max-
imally non-compact, i.et is chosen such that the flat subspace= tNm of m is of the
maximal dimension 2, and hence a Cartan subalgebra. 0fFhen we consider the root
systemA® C t* of g with respect tot, as well as the restricted root systemc a* of
the symmetric space Elll with respect do Elll has the restricted Dynkin diagram with
multiplicities ¢6 < @°!, in other words: its restricted root systemis of type BCy,
i.e. we haveA = {£A;, £Ap, £A3, £Aq, £211, 245}, Where {4, A3) is a system of
simple roots ofA, these two roots are at an angle of4¥r with A3 being the longer
of the two, and we havé, = A1 + A3, Ags = 241 + A3. Moreover, the restricted roots
have the following multiplicities:n,, = n,, = 8, n;, = n;, = 6 andny, = Ny, = 1.
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A has the following graphical representation:

To be able to apply the results from [9] and the correspondmgputer package
for the calculation of the curvature tensor of Elll, we needdescribe the relationship
between the restricted roots of the symmetric space Elll tard(non-restricted) roots
of the Lie algebraeg. For this purpose, we order the simple rootsegfas they are
numbered in the Satake diagram of Elll given above. Then wellthe 36 positive
., age In the order in which they are produced by Algorithm (R) in
Section 2 of [9] based on this ordering of the simple rootduibs out thatry, ...
have the following coordinates with respect to the simplets®f ¢ ordered as before:

roots ofeg by ay,..

L4 2)\.2

oy
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67}
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g
o7
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g
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oo Prooooo
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AN AN A A A A S A

PORPPPOORE
OCOoOrO00O0Ookr o

a19
@20
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22
23
24
azs
26
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30
31
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To find out which restricted root of Elll corresponds to eaobtrof g = ¢g, we
consider the involutive automorphism on g which describes the symmetric structure
of Elll; we tabulate the orbits of the action of on the root systerh\? and the re-

stricted root of Elll corresponding to each orbit (compaeztidn 4 of [9]):

orbit

o1, —a21)

{ae, —a18}

{7, —oi16}

{11, —a12}

{23, —a23}

corresp. restr. ro@)[t

Al

Al

Al

A1

2h1

orbit

[Hoa7, —ra1}

{a20, —30}

{a22, —a2g)

{24, —a27}

{36, —0r36)

corresp. restr. I’O(H'[

Ao

Ao

A2

A2

Y

orbit

[{or2, —azs)

{ag, —

19}

{13, —14}

{26, —r35)

{29, —r34}

{32, —33}

corresp. restr. rogt

A3 A3

A3

Ag

Ag

Ag

» 0036




TOTALLY GEODESIC SUBMANIFOLDS IN SYMMETRIC SPACES 1087

Moreover, we haver(ax) = ax for k € {3, 4, 5, 9, 10, 1k

In the sequel of this paper, we need a parametrization ofe$igicted root spaces of
Elll; in the calculations we will use this parametrizatiom pinpoint individual vectors
in the root spaces ofn. For this purpose we introduce the notations already used in
[9]. First, we note that there exists a Chevalley ba¥s){cr. for g€ with Chevalley
constants &, g)s,geas, i.€. for anye, g € A® we havec, g € R,

Ca’,gxa+5 |f C(+ﬂ€Ag,
[Xa, Xg] = 1 a* if «a+8=0,
0 otherwise,
andc_q,_g = —Cqo,p (See, for example, [10], §VI.1); it has been shown in Sec8oof
[9] that the Chevalley data can be chosen in such a wayXpat —X_, holds (where
X denotes the conjugation of € g€ with respect to the real forrg). Fora € A% and
ze C, we have
1 (zX, —ZX ) €
ﬁ o g!
and the root spacg, of the real Lie algebrg corresponding to the roat is given
by g, = {V«(2) | z<€ C} (see [9], Proposition 3.3 (d)).
Like in [9], Proposition 5.2 (a) we now descrilfg :=g, Nt andm, :=g, N m
for o € A?%. In the casex oo # +o, we put forze C

@) Va(2) :=

1
Ka(z) = E(Vot(z) + Sotvaocr(z))
and
1
Ma(z) = E(Va(z) - Savaoa (Z))!

hereins, € {+1} is characterized by the equatien(V,(2)) = s Vuer (2). In the case
aoo =a we notet, =g, = {Vu(2) | ze C} andm, = {0}. In the casex oo = —«
we put fort e R

C[Vulit) i s =1,
_{Va(t) if s =-1

and

2o Ve i s =1,
M“(t)_{va(it) if s =-1.

Then we havet, = {K,(t) |t € R} andm, = {M,(t) | t € R}.

==
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We now apply this general parametrization of restricted spaces to the symmet-
ric space Elll using the description of the restricted romtsl the orbits ot for Elll
given above. Fok,, ..., c; € C andt € R, and whereA denotes either of the letters
K and M, we put:

As(C1, C2, €3, Ca) 1= Aqy (C1) + Axe(C2) + Ay (C3) + Aqyy(Ca),
AZM(t) = Aotzs(t)1
A, (C1, C2, €3, Ca) i= Auyr(C1) + Auy(C2) + Agyy(Ca) + Au,u(Ca),
AZ)»z(t) = Aotse(t)1
Ay (€1, Co, C3) i= A, (C1) + Agg(C2) + Ays(Ca),
AM(Clv Ca, C3) = Aﬂze(cl) + Aazg(CZ) + Aasz(c3)-
Then we havem;, = M;,(C, C, C, C) andmy,, = My, (R) for k € {1, 2}, andm;, =
M, (C, C, C) for k € {3, 4}.

The action of the isotropy group. We next look at the isotropy action of ElIl.
Regarding it, we use the notations introduced at the end ofi®e2, in particular
we have the continuous functign: m \ {0} — [0, 7 /4] parametrizing the orbits of the
isotropy action. For the elements of the closidref the positive Weyl chambey :=

{vealr(v) >0,r3(v) >0}, we can explicitly describe the relation to their isotropy
angle: ¢}, %) is an orthonormal basis of so that with v := cosf)A; + sin(t)A}

we have
T
t 0,— 1], seR-gy,
E[ 4} © °}

and because the Weyl chamheis bordered by the two vectorg = /\3 with ¢(vo) =0
and vy 4 = (1/+/2); with ¢(v./2) = 7/4, we have

(8) = {S-vt

9) o(s-v) =t for all te[o,%},seﬂh.

The action of the subgroulo of K whose Lie algebra is the centralizéy :=
{Xet]|[X,a] =0} of ain ¢ leaves the restricted root spaaes invariant. The Dynkin
diagram of¢y is given by the black roots in the Satake diagram of Elll (sbeva),
therefore we havey = (t N £) & P K,, (C), where the sum runs over all those roots
a) of eg with o () = o, i.e.1 € {3, 4, 5, 9, 10, 15 Because of this and the fact that
dim(t N €) = 4 holds, it follows thatt, is isomorphic tou(4), and henceKg is locally
isomorphic to U(4).

By using theMaple implementation to look at the adjoint action &f on the root
spacesm;, we can describe the action &f, on the root spaces in more detail:
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Proposition 3.1. For k € {1, 2} the action of K on m,, is locally equivalent to
the vector representation &#(4), this means that if we denote kpythe linear isometry

(p: (C4 — m}\k! (Cla C21 C31 C4) = M)»k(clv CZ! C3! C4)1

there exists a local isomorphism of Lie grougs U(4) — Ky so that the following
diagram commutes

U(@) x ¢4 225 Ko x m;,

T

4
C —(p)m,\k,

where the left vertical arrow represents the canonical @attdf U(4) on C*.

Moreover if we fixv € m;, \ {0}, then the Lie subgroup U= {B € U(4) | B(p~1v) =
¢~tv} of U(4) is isomorphic toU(3), and hence the Lie subgroup K= {g € Ko |
Ad(g)v = v} of Kq is locally isomorphic toU(3). For | € {3, 4}, the action of K on
m,, is locally equivalent to the vector representationU(3), meaning that if we denote
by ¢ the linear isometry

w: (Cs — my, (CI! C21 C3) = MM (Cla C2! C3)1

there exists a local isomorphism of Lie grougs U(3) — K; so that the following
diagram commutes

U@) x C? el dN Kg x m;,

T

(C3 T)m)w,

where the left vertical arrow represents the canonical actof U(3) on C3.
In particular we see thalAd(Kp) acts “jointly transitively’ on the unit spheres in
m,, andmy, in the sense that for any given, v, € m,, and wy, wp € m;, with ||v1]| =
lv2]l and Jwy|| = ||wz| there exists g= Ko with Ad(g)vi = v, and Ad(g)wi = wo.
Finally, we note that the linear isometries

my, = my,, M;,(Ci, G, C3, C1) > M,,(Cz, C1, Ca, C3)
and
my, = my,,  M;,(C1, Co, C3) > My, (C1, C2, C3)

commute with the action okd(Kp) on the respective root spaces.
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The complex structure of Elll. Elll is a Hermitian symmetric space; the action
of its complex structurel on m is given by Jjm = ad(j)|m, where j is a element of
the center;(£) of £ so that (adf)|m)? = —id,, holds. Becausg(t) is one-dimensional,
this condition already determingsup to sign; we find via computations with tivaple
package for computation of the Lie bracketegfthat

.2 1
= 5l —ag) + 505 — o)) + Koy (1)~ Kz (1)

is one of the two possible choices; here we again denote fott* by o € t the dual
of o with respect to the Killing forme< of g, i.e. the vector so thak(a*, -) = « holds.

Using this presentation of and the formulaJv = ad(j)v for v € m, we can again
use theMaple package to calculate the action dfon m. In this way, we obtain for
C1,...,C0€C andt, s e R:

305+ 99 = S (M, (0 Mo, (),
J(M;, (c1, C, C3, Ca)) = M, (iCq, —iCy, iC3, —iCa),
J(My,(C1, C2, C3, C4)) = M, (icy, —iCy, iC3, —iCy),
J(M;,(c1, €2, €3)) = My, (icy, —icy, —iTa),
I(M;, (€1, €2, C3)) = M, (ica, —icy, iT),
I(Ma, (1) = —2tA],
J(M2,(S)) = 2515,
In particular we see thaiy,, andm,, are complex linear subspaces wf whereasa,

my, @ my,, m,, andm,, are totally real linear subspaces witl{a) = my, ® my,
and J(m,,) = m;,.

3.2. Lie triple systems inEg/(U(1)- Spin(10)). We are now ready to describe
the Lie triple systems in ElIl.

DEFINITION 3.2. LetV be a unitary space. We say that BRalinear subspace
UcVis
(a) of CP-type (C, dim¢(U)) if it is a complex subspace df,
(b) of CP-type R, dimg(U)) if it is a totally real subspace o¥.

Theorem 3.3. The linear subspaces’ of m listed in the following are Lie triple
systemsand every Lie triple systerf0} # m’ € m is congruent under the isotropy
action to one of therf.

2Please read Remarks 3.5 and 3.6 below before you suspedhénatmight be Lie triple systems
missing from the list.
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e (Geo,p =t) with t € [0, /4]:

m’ = R(cost)2; + sin(t)A;) (compareEquation (8))
e (P,p=0,(C,D5)):

m = R)\.ﬁz @D m,, S my,.

o (P, ¢ =m/4, 1) with T € {S° S, 87, S8 OP?):

Put H:= 2} + 25 and H := My, (1) + My, (2).

For r = sk: w’ is a k-dimensional linear subspace BH @ m,, @ RH.

For t = OP% m’ = RH @& {M;, (C1, Cz, C3, C4) + My, (C2, €1, —C4, —C3) | €1, C2, C3,C4 €
C}® M,,(C,C,C) ®RH.

o (P xP! (K I), Ky) with | € {4, 5, Ky, K, € {R, C} and (Ky, K») # (R, R):

We havem’ = a®m) @ m,, & m, , wherem is a subspace of;, of CP-type
(K1, — 1), and where we put for k {1, 2} mj, :=my, if Kx =C, my = {0} if
Ky = R.

e (Q)

m' = a® M,;,(C, C, C) & M;,(C, C, C) & My, (R) & My, (R).

e (Q, 1) wheret is one of the types listed ifY], Theorem 4.1for m =8, i.e.7 is
one of(G1,k) with k <8, (G2,kq, ko) with k; +k, <8, (G3), (P1k) with k <8, (P2),
(A), (12, k) with k < 4, and (12, k) with k < 4:

m’ is contained in a Lie triple system’ of type(Q), corresponding to a complex
quadric @, and regarded as a Lie triple system &f, m’ is of typer according to
the classification in7], Theorem 4.1.

o (G,CO:
m' =a®M,,(C,C,0,0)® M,,(C,C,0,0)dM,,(0,0,C)®M,,(0,0,C)® My, (R) S

e (G,CS8 1), wherer is one of the following types listed if8], Theorem 7.1for
n=4: (P,¢p = arctan(¥2), (K, k)) with K € {R,C} and k< 2, (P, ¢ = 7 /4, (K, 2)) with
K € {R,C, H}, (G, (K, k)) with K € {R, C} and ke {3, 4}, and (P x P, (K, k), (K', k"))
with K, K’ € {R, C} and k+ k' < 4:

m’ is contained in a Lie triple system’ of type (G,C®), corresponding to a com-
plex Grassmannian &C®), and regarded as a Lie triple system @f, m’ is of typet
according to the classification if8], Theorem 7.1.

° (GzH4):

m' =a® M, (R, R, R, R)® M,(iR, iR, iR, iR) ® M;,(R, R, R) ® M,,(R, R, R).
e (G,H* 1), wheret is one of the following types listed ii8], Theorem 5.3for
n=2: (P,¢ =0, (K,2)withK e {R,C,H]}, (S,¢ = arctan(¥3), 3), ®,¢ = /4, (S%)),
(P,p = /4, (H, 1)), S° ¢ =nr/4), (G, (H,1)), S*xS>K) with 3<k <5, and (Sp,):

m’ is contained in a Lie triple system’ of type (G,H*), corresponding locally to
a quaternionic Grassmannian &%), and regarded as a Lie triple system of, m’
is of typet according to the classification if8], Theorem 5.3.

e (DIll):
m = ad I\/IM((C, O,C, O)@ M)\Z((C, O,C, O)@ MAS(O,C, C)@ MM(O,C, C)@ MZ)Ll(R)@
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We call the full namdGeo,¢p =t), (P, ¢ =0, (C, 5)) etc. given in the above table the
type of the Lie triple systems which are isotropy-congruenthe space given in that
entry. Then every Lie triple system wafis of exactly one type.
In the type names of Lie triple systems of rdnkhe value given in the formp =t
is the isotropy anglgsee the end ofSection 2)of the Lie triple systems of that type.
The Lie triple systemsi’ of the various types have the properties given in the
following table. The columfiisometry typé gives the isometry type of the totally geo-
desic submanifolds corresponding to the Lie triple systefrihie respective type in ab-
breviated form(without specification of the scaling factors of the Riemanninetric$,
for the details seeSection 3.3.

type ofm’ dim(m’) rk(m’) ?:Jt ;@rﬁgfé Ofl ' maximal isometry type
(Geo,p =1) 1 1 totally real no R or ST
(P, =0, (C,5)) 10 1 complex no CP°
(P, ¢ =n/4,S" I 1 totally real no s'
(P, ¢ = /4, OP?) 16 1 totally real yes OP?
PxPL, R,1,C)| 1+2 2 neither no RP x CP!
(PxPL(C,1),R)| 2+1 2 neither no CP x RP!
(P xPL(C,1),C)| 2+2 2 complex forl=5 | CP xCP!
(Q) 16 2 complex yes Q8
(Q, 1) see[7], Theorem 4.1 no
(G,C9) 16 | 2 | complex yes G,(CH)
(G2C8, 1) see[8], Theorem 7.1 no
(G,H*) 16 | 2 totally real yes G,(HY/Z,
(GoH?, 1) see[8], Theorem 5.3 totally real no
(DIN) 20 | 2 complex yes SO(10YU(5)

REMARK 3.4. The Lie triple systems of typeQ( r), (G»C®, ) and G,H?*, 1)
are contained in Lie triple systems of typ®)((corresponding to a complex quadric
Q?), (G,C®) (corresponding taG,(C®)) and G,H*) (corresponding ta5,(H*)/Z,), re-
spectively. To obtain explicit descriptions of these typase needs to apply the results
in [7] and [8] on the classification of Lie triple systems iresie spaces.

To be able to do so, it is important to know how the root systeimthe Lie triple
systems of type @), (G,C®) and G,H*) are embedded in the root system of Elll, and
also how the functiorp parametrizing the orbits of the isotropy action defined @V
and G,(K") in [7] resp. in [8] relates to the corresponding functiprdefined for Elll
in the present paper.

Because the Lie triple systems of typ®)( (G,C®) and G,H*) have maximal
rank in Elll, their respective root systemisq), A,cs) and A,u+ are simply sub-
sets of the root system of Elll (see Proposition 2.1 (b), and also see the proof of
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Theorem 3.3 below). In fact, from the definition of these type Theorem 3.3 it fol-
lows immediately that we have

AQ) = {£As, £hs, £241, £205},
A(GZCG) = Al
A(GZHA) = {£A1, Ao, £A3, £A4}.

For each of the types € {(Q), (G.C®), (G,H*)} we now letm; be a Lie triple
system of Elll of typez, and letg;: m; \ {0} — [0, /4] be the function parametrizing
the orbits of the isotropy action of the symmetric space esponding tom; (i.e. Q8,
G,(C®) or G,(H*)/Z,) as introduced in [7] at the beginning of Section 4.2 resg8in
Section 4. Note that in these cases, we always measured ghe¢dn) from the vector
corresponding to the shortest root presenQh resp.G,(C") for large n, even if this
root vanishes for certain small values f(as happens foG,(H?*). Keeping this in
mind, and considering the root systems as given above, we see that the functions
@; is related to the functiorp: m \ {0} — [0, = /4] parametrizing the isotropy orbits
of Elll by

P V) = % —¢(v) for vemg)\ {0}
PG,ce)(v) = @(v) for v e mg,es \ {0},
Pemn(v) = 7 — () for vemeum\ (0}

REMARK 3.5. We now introduce alternative definitions for some typésLie
triple systems, to make it more intuitive that indeed all garence classes of Lie triple
systems are covered in Theorem 3.3, and also to simplify dt&tions in what follows.

First, we consider the type&6C®, r) resp. G,H*, 7) also for those types listed
in [8], Theorem 7.1 fom = 4 resp. in [8], Theorem 5.3 fan = 2 which have not been
mentioned in Theorem 3.3. Then a Lie triple system of Elll astained in a Lie triple
system of type G.C®) resp. G,H?) if and only if it is of type G»C8, ) resp. of type
(G,H?, t) with somer.

Moreover, we define the type® (¢ =0, (K, 1)) for anyK € {R,C} andl <5: We
say that a linear subspace of is of that type if and only if it is isotropy-congruent
tom' = ng ®m;, ®my, , wherem) C m;, is a linear subspace @P-type K, | —1)
and we putm,, :=my, if K =C, m,, := {0} if K =R. Any such space is a Lie
triple system ofm, and the Lie triple systems of these types are exactly thdsehw
are contained in a Lie triple system of typB,(@ = 0, (C, 5)).

Likewise, we can define the typ@® (¢ = /4, r) also fort = S' with | <4 and
for - = KP? with K € {R, C, H} in the following way: We putH := A} + 5 and
H := My, (1) + M2,(1). Then a Lie triple system is of typeP(¢ = 7/4, ') if it
is isotropy-congruent to &dimensional linear subspace BH & m;, & RH. A Lie
triple system is of typeR, ¢ = n/4, KP?) if it is congruent to the Lie triple system
m’, where we have
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e for K=R: m'=RH & {M;,(t, 0,0, 0)+ M,,(0,t,0,0)| t € R},
e forK=C:m' =RH & {My(c, 0,0, 0)+ M,,(0,¢c,0,0)| ce C} & RH,
o for K=H: m" =RH & {M)Ll(C]_, cy, 0, 0) + M}LZ(CZ, ¢, 0, 0)| C,C e C} &
M,,(0, 0,C) & RH.
Then the Lie triple systems of Elll which are contained in & biiple system of type
(P, ¢ = /4, OP?) are exactly those which are of a type of the forl ¢ = /4, 7).
Finally, the type P x P%, (K1, 1), K») can be defined also fdr< 3, and also for
K, = K, = R by applying the same definition as in the Theorem. Then thetdije
systems of Elll which are contained i & P?, (C, 5),C) are exactly those which are
of the type P x P%, (Ky, 1), K») with someKq, K, € {R, C} and| < 5.
These “newly defined” types are identical, however, to typethe form @, t) or
(G»C8, 1) defined in Theorem 3.3. This is detailed in the followingléab

The type ... defined here

is identical to the type ... from
Theorem 3.3.

(G2C®, (P, =0, ®,K)))
(G2C8, (P, =0, (C,k)))
(GoC8, (S, ¢ = arctan(¥3), 2))
(GZCG’ (P’ p=m/4, (R, l)))
(G2C%, (P, 9 =7/4,(C, 1))
(G2C®, (P, ¢ =7/4, (S7)))
(G2C®, (P, ¢ = /4, (H, 1))
(G2C8, (G2, (R, 1))
(G2CS, (G, (C, 1))
(G2C®, (Gy, (R, 2)))
(G2C®, (Gy, (T, 2)))
(G2C8, (st x S5 k)
(G2C®, (Q3))

(Q. (12,k))
(Q. (11, k)
(Q. (A)
(Q.(P1,1))
(Q.(P1,2))
(Q.(P1,3))
(Q.(P1,4))
(Q.(12,2))
(Q.(11,2)
(Q.(P1,4))
(Q. (G1,4))
(Q, (P2, 1K)
(Q.(G2,3))

(G.H*, (P, ¢ =0,7')) with dim(r’) =1
(G,H*, (P, ¢ = arctan(¥3), 2))
(GoH*, (P, ¢ = /4, (K, 1))) with K € (R, C}
(G2H*, (G, (K, 1)) with K € {R, C}
(G.H*, (G, (R, 2)))

(GH, (G, (C, 2)))

(G,H?, (P x P, 7/, ")) with dim(z’) = dim(z") = 1

(GoH*, (S* x §°,1))
(GoH*, (S* x S°,2))
(G2H*, (Q3))

(Q, (PLw(r"))

(G2C8, (P, ¢ =arctan(¥2), R, 2)))
(G2C8, (P, ¢ =0, (K, 1)))
(GoC8, (P, ¢ =7/4, (K, 2)))
(GZC6v (IP X ]P, (R, l), (Rv 1)))
(G2C®, (G, (R, 4)))

(Q, (G2,w(r), w(z")))
(GoCP, (P x P, (R, 1), R, 1))
(G2C%, (P x P, (C, 1), R, 1))
(G2C%, (G, (R, 3)))

(P, =0, (R, 1))
(P,9=0,(R,2))
(P, =0, (R,3))
(P, =0, (R, 4))
(P,9=0,(R,5))
(P,¢=0,(C,I)) with | <4

(Geo,p =0)
(GoC®, (P, ¢ =0, (C, 1))
(G2C®, (P, =0, (%))
(G2C8, (P, =0, (H, 1)))
(G2H*, (S°, ¢ =7/4))
(Q,(11,1))
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. is identical to the type ... from
The type ... defined here Theorem 3.3 yp
(P,o=m/4,S") with | <4 (Q, (P1))
(P, ¢ = /4, KP?) with K € (R, C, H} (G2CS8, (P, =7/4, (K, 2)))
(P x P, (Ky,1),Ky) with | <3 (G2C8, (P x P, (Ky,1), (Ky, 1)))
(P x P, (R,1),R) with | <5 (GoH4, (St x S%,1))

As an example for proving these identities, we consider yipe (P, ¢ = 0, (C, 4)). To
prove that this type is identical to the typ®,(11, 4)), it suffices to show that the space

m' = R, @ M,,(C, C, C, 0)® My, (R)

of type P, ¢ = 0, (C, 4)) is isotropy-congruent to a space A’ contained in the
Lie triple system

R 1= a® M,,(C, C, C) ® M,,(C, C, C) ® My, (R) ® My, (R)

of type (Q). Because Adf)m’ has the isotropy angle 0 with respect to Elll, it has the
isotropy angler/4 with respect taQ® (see Remark 3.4); because it is also a complex sub-
space, it then must be of typ®( (11, 4)) by the classification of Lie triple systems of the
complex quadric given in [7], Theorem 4.1. —To show that sachsotropy-congruence
indeed holds, notice that witd := K,,(+/8) € ¢ we have adZ))é = ad@Z)My,(t) =

0 and

ad(Z)M,,(c1, €2, €3, 0) = My, (C2, €1, —C3) + My, (—C1, —C2, C3)
for anyt € R, ¢y, Cp, c3 € C. This shows that withy := expr/2Z) € K we have

Ad(g)m'’
= RA5 @ {My,(Ca, C1, —T3) + My, (—C1, —C2, C3) | €1, €2, C3 € C} & M, (R)

C .

REMARK 3.6. For the space Elll, Table VIII of [5] correctly lists thecal isom-
etry types of themaximal totally geodesic submanifolds. However, the totally geo-
desic submanifolds corresponding to the typ€sH*) and Q) are of isometry type
Go(H*)/Z, resp.GJ (R ~ Q® (see Section 3.3), and not of isometry tye(H*)
resp.G,(R'9) (as [5] claims).

It should be noted that Elll contains spaces of rank 1 aslyoggodesic sub-
manifolds in a “skew” position in the sense that their geadldgmeter is strictly larger
than the geodesic diameter of the ambient space Elll. Howeeome of them is max-
imal in Elll. The “skew” totally geodesic submanifolds whi@re maximal among the
totally geodesic submanifolds of Elll of rank 1 are those hué types G,H*, (P, ¢ =
arctan(¥3), 3)) (isometric to arRP? of sectional curvature /5), (Q, (A)) (isometric to
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a 2-sphere of radius (2)+/10) and G,C¢, (P, ¢ = arctan(¥2), (C, 2)) (isometric to
a CP? of holomorphic sectional curvature/8). The existence of these “skew” totally
geodesic submanifolds cannot be inferred from Table VII[53f For explicit construc-
tions of these “skew” totally geodesic submanifoldsGa(H*), Q3 resp.G,(C?), see
[8], Sections 6 and 7.

The remainder of the present section is concerned with thefmf Theorem 3.3.

We first mention that it is easily checked using tkaple implementation of the
algorithms for the computation of the curvature tensor tihat spaces defined in the
theorem, and therefore also the linear subspages m which are congruent to one
of them, are Lie triple systems. It is also easily seen thatitiiormation in the table
concerning the dimension, the rank, and the question’ ils complex or totally real is
correct (for the latter, use the description of the complkexcsure of Elll given in Sec-
tion 3.1). The information on the isometry type of the copasding totally geodesic
submanifolds will be proved in Section 3.3.

Note that the information on the individual types of Lie teipsystems given in the
table in the Theorem is invariant under congruence transition, as is, in the case of
Lie triple systems of rank 1, the isotropy angle of the Liplaisystem (which is given
in the formg = --- in the names of the types of rank 1 Lie triple systems). Carsid
ing the information given in the table, and in the correspogdables in the classifica-
tion theorems cited from [7] and [8] for the type®,(r), (G.C®, t) and G,H?, 7) (in
view of the isotropy angle, take Remark 3.4 into account),sse that no two of the
types of Lie triple systems given in the Theorem coincide lirttee mentioned charac-
teristics. Therefore no Lie triple system is of more than type.

We next show that the information on the maximality of the tiple systems
given in the table is correct. For this purpose, we presura¢ ttie list of Lie triple
systems given in the theorem is in fact complete; this willppeved in the remainder
of the present section.

That the Lie triple systems which are claimed to be maximathi table indeed
are: This is clear for the type (DIll), because it has the mmatidimension among all
the Lie triple systems of Elll. The Lie triple systems of thypés P, ¢ = 7/4, OP?),
(Q), (G,C® and G,H?*) all are of dimension 16, therefore if they were not maximal,
they could only be contained in a Lie triple system of typel(DIlbecause these are
the only ones of greater dimension. The spaces of the tyPeg & 7/4, OP?) and
(G,H*) are real forms of Elll, and therefore cannot be containe ifcomplex) Lie

3The most general of these constructions in [8] is the coostm of a “skew” HP? (of type
(P, ¢ = arctan(¥2), (H, 2))) in G,(H’) described in Section 6 of [8]. It is based on the funda-
mental 14-dimensional representation with quaterniotriecture of Sp(3), which is realized as a sub-
representation of the representation of Sp(3)/Q?1C6, see also [4], p. 269ff. | would like to remark
that this representation is not equivalent to the reprasient of Sp(3) or{j(3, H)® involved in Cartan’s
construction of isoparametric hypersurfaces in the sphEhnés is easily seen, because the latter repre-
sentation, although it is also 14-dimensional and irrelleciadmits a real structure, and thus cannot
admit a quaternionic structure, see [4], Proposition 5l.¢. 98.
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triple systems of type (DIIl). The restricted Dynkin diagra with multiplicities of the
Lie triple systems of type@) and (DIIl) aree! = ¢° and ¢* = @*, respectively.
Thus the short roots in a Lie triple system of typ®)(have greater multiplicity than
all the roots in a Lie triple system of type (DIIl), and henced.ia triple system of
type (Q) cannot be contained in any Lie triple system of type (Dllither. Assume
that the Lie triple systenm’ := a @ M,,(C, C, 0, 0)® M,,(C, C, 0, 0)& M,,(0, 0,C) &
M;,(0, 0,C) & My, (R) & My, (R) of type (GoC®) were contained in a Lie triple sys-
tem of type (DIIl) i.e. in a space isotropy-congruent#6 := a & M,,(C, 0,C, 0) ®
M;,(C,0,C, 0)® M,;,(0,C, C)d M,,(0,C, C) & My, (R) ® My, (R). Then there would
exist g € K so that Ad¢) mapsM;, (C, C, 0, 0) ontoM;,(C, 0,C, 0) for k € {1, 2.
But this is a contradiction to the fact that the action of gJd¢ommutes with the map
M;, (€1, C2, C3, Ca) > M;,(Cy, C1, Ca, C3) (Proposition 3.1), so also the Lie triple systems
of type (G2C®) cannot be contained in a Lie triple system of type (DIll)nd&lly, we
note that the Lie triple systems of typ® ( P!, (C, 5),C) are of rank 2 and have
the Dynkin diagram@®! e!. They have a restricted root of multiplicity 8, which is
greater than the multiplicity of any root in any other Liepta system of Elll of rank 2.
Therefore also this type is maximal.

That no Lie triple systems are maximal besides those mesdian the theorem
follows from the following table:

Every Lie triple system of type... |is contained in a Lie triple system of type.|..
(Geo,p =t) (P x P, (R, 1),R)
(P, p =m/4,S%) (P, p =7/4, OP?)
(P x P, (K, 1), R) (P x P, (K, 1), C)
(P x P, (K, 1), C) with (K, |) # (C, 5) (P x P, (C, 5),C)
(Q. 1) Q)
(G2C®, 1) (GoC®)
(G.H", 1) (G.H*)

We now turn to the proof that the list of Lie triple systems dfl Eiven in The-
orem 3.3 is indeed complete. For this purpose, we let anrarpitie triple systemm’
of m, {0} # m’ £ m, be given. In the sequel, we will also use the additional rame
for types of Lie triple systems introduced in Remark 3.5;astbeen shown there that
these types are equivalent to other types defined in Theor8m 3

Because the symmetric space Elll is of rank 2, the ranknbfis either 1 or 2.
We will handle these two cases separately in the sequel.

We first suppose thain’ is a Lie triple system of rank 2. Let us fix a Cartan
subalgebran of m’; because of rk{’) = rk(m), a is then also a Cartan subalgebra of
m. In relation to this situation, we use the notations intr@ehl in Sections 2 and 3.1.
In particular, we consider the positive root systeém := {A1, A2, A3, A4, 2A1, 242} Of
the root systemA := A(m, a) of m, and also the root systemy’ := A(w/, a) of m’.
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By Proposition 2.1 (b),A’ is a root subsystem oA\, and thereforeA!, := A’ N A
is a positive system of roots fon’. Moreover, in the root space decompositions of
m andmw’

(10) mzaea@m,\ and m/=a@®m/x

AEA rEA,

the root spacenm; of m’ with respect tor € A’_ is related to the corresponding root
spacem, of m by m; =m;, Nm'.

As was noted in Section 3.1y;, is a complex subspace ai for k € {1, 2}. The
following proposition describes how the positionf, in m,, with respect to the com-
plex structure is controlled by the presence of the rogt id A’.

Proposition 3.7. For k € {1,2}, m} s either a complex or a totally real subspace
of m;,; it is a complex subspace if and only2ky € A" holds.

Proof. First supposei2 € A’. Because ohy, = 1 we then haven’2Ak =my, =
Mz, (R). For any givenv € m; we havé R(Aﬁ, v)My;, (1) = —(1/8)Jv, and this vector
is @ member ofn’ by the fact thatn’ is a Lie triple system. Thudv € m;, Nm’ =m;
holds, and hencey), is a complex subspace af;, .

Now suppose Z ¢ A'. For any givenv, w € mj}, we havem’ > R(AL, v)w =

(1/8){v, w)A‘i + (1/8)(v, Jw)My;, (1); because of & ¢ A’ it follows that (v, Jw) =0
holds. Hencem; is a totally real subspace of;,. ]

We now distinguish three cases depending on the structu’,ofvhich we will
treat separately in the sequel:
(a) Az, Mg € A,
(b) either, but not both, ok and 14, are members of\’,
(©) Az, Aa ¢ A

CAsE (a). Because ohg € A/, there existsv € m)_ with [v|| = 1. By Propos-
ition 3.1, there existg € Ko C K so that Ad¢) mapsv into M,,(0, 0, 1), and therefore
m’ into another Lie triple system” := Ad(g)m’, so that we haveM;,(0, 0, 1)€ m} ..
This argument shows that we may suppose without loss of ghtyethat M, (0, 0, 1)e
m;  holds.

We have for anyv = M;,(C1, Cy, C3, Ca):

V2 o
R(Ai, v)M;,(0, 0, 1)= 1—6MA2(C1|, Col, —Csl, —Cy4i),

4The evaluation ofR is done here, as in all the following situations, using taple package
described in [9], as explained in the Introduction.
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and for anyv = M;,(cy, Cp, C3, Ca):

2 . . .
R(S, v)M,,(0, 0, 1)= —*1/—6; M, (Cii, Cai , —Cail, —Cai).
Because of the fact that' is a Lie triple system, it follows that we have for any
Ci,...,C4eC

(11) M)Ll(C]_, Co, C3, C4) € m’h <~ sz(Cli, Coi, —Cal, —C4i) [S m&z.

This equivalence in particular impliegy(€ A" < 1 € A’) andn;, =n]_.

BecauseA’ is invariant under the Weyl transformation given by the e in
(L)1 (noters € A'), we also have (B, € A’ & 24, € A).

Let us first supposei2, 2k, € A'. Thenm] is a complex subspace of;,, for
k € {1,2} by Proposition 3.7. Hence:=n; =nj_ is an even number, and we consider
the possible values 0, 2, 4, 6, 8 farindividually in the sequel.

If n=0 holds, we have\’ = {3, A4, £211, £2),}; this is a closed root sub-
system of A. Therefore the maximal linear subspadé:= a & @, m; of m cor-
responding toA’ is a Lie triple system (see Proposition 2.6); its correspogndynkin
diagram with multiplicities ise* = 5. Therefore the totally geodesic submanifold cor-
responding tof’ is locally isometric to the complex quadriQ®. m’ is also regarded
as a subspace af’ a Lie triple system; thereforev’ is of one of the types described
in the classification of the Lie triple systems @™ in [7]. It follows that if m’ = &/’
holds, thenm’ is of type @Q); otherwise it is of type Q, ), wheret is one of the
types of Lie triple systems of’ as described in [7], Theorem 4.1 fan = 8.

Forn # 0, an argument based on Proposition 3.1 similar to the pusvime shows
that we may suppose without loss of generality besides thiereeonditionM;, (0, 0, 1)e
m;_alsoM;,(1, 0,0, 0)e m) . Becausen; isacomplex subspace of;,, we then in fact
haveM;,(C, 0, 0, 0)C m; . This fact induces further relations between the root spate
m’ besides (11), which we now explore.

For anyv := M;,(di, dz, d3) we have

N

u:= R(S, )M, (1, 0, 0, 0)= —g M2(ids, 0, idy, —idy)

and

1 1 .
R(u, M,,(1, 0, 0, O)}; = e’ T E3MM(—dl, dy, ds).

An analogous calculation applies starting with= M, ,(d1, dz, d3), and in this way we
see via the fact that' is a Lie triple system:

12) M,.o(ch, Op, ds) € m,, =—> M;,(ids, 0,id;, —idy) € m),
(13) M,y (dh, O, ds) € m)_ <= M;,(=di, dp, d) € m},.
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Moreover for anyv := M,,(C1, Cp, C3, C4) We have

V2

R(M)Ll(l, O, O, O),U))\.é = ?M)\S(—Cﬂ, —C_3|, Cli)

and therefore, again by the fact that is a Lie triple system
(14) M)LZ(C]_, Cp, C3, C4) € mi\z — M)L3(—C4i, —C_3i, Cli) € m;3.

We can use these relations to draw the following conseqseffreen the fact
M;,(C, 0,0, 0)C m;_: First, from (11) we obtairM,,(C, 0, 0, 0)C m;,. By (14) there-
from M;,(0,0,C) C m;, follows, and therefrom we finally obtain by (13M,,(0,0,C) C
m; . Remember for the sequel also that we hauyg = My, (R) for k € {1, 2.

If n= 2 holds, then we in fact have; = M,,(C,0,0,0) andwn;, = M;,(C,0,0,0);
because of (12) we then hawg, = M;,(0, 0,C), and thereforen;, = M,,(0, 0,C) by
(13). Thus we see by the root space decomposition (10) that

m’ =aéh M,\l((C, 0, 0, O)@ MAZ((C, 0, 0, 0)@ M)\3(0, O,C) (o) MM(O, O,(C)
©® MZ)L].(R) 2] MZXz(R)

holds, and thusn’ is of type (GCS®, (G,, (C, 3))).

If n =4 holds, then the Dynkin diagram with multiplicities compesding tom’
is o = @Y with some 1< | < 6; from the classification of irreducible Riemann-
ian symmetric spaces (see, for example, [14], p. 119, 146)see thatl = 2 and
| = 4 are the only possibilities. If = 2 holds, we havem;, = M,,(0, 0,C) and
m;, = M,,(0, 0,C). Because o = 4 we see from (14) that;, = M,;,(C, C, 0, 0)
and therefore by (11) alsm; = M,,(C, C, 0, 0) has to hold. Thus we see that

m’ =aéh M,\I(C, (C, O, O)@ MAZ((C, (C, O, O)@ MA3(0, O,(C) b I\/IM(O, O,C)
©® M2A1(R) > Mz)\z(R)
holds, and hencen’ is of type (GC®). On the other hand, if = 4 holds, we let

v €m) be a unit vector which is orthogonal td;,(C, 0, 0, 0)C m] ; we havev =
M;, (0, ¢z, c3, Ca) wWith somec,, ¢z, ¢4 € C, and

(15) w,, = M,,(C, 0,0, 0@ Rv®RIv

holds. Because ob € m; , we haveM;,,(0, Czi, —Csi, —C4i) € m), by (11), therefore
M;,(=Cs, T3, 0) € m}, by (14), thusM;,(0, O, —ics, —ics) € m;, by (12), and hence
finally M;,(0, 0,cs, cs) € mj by (11). From (15) and the explicit description dfin
Section 3.1 we see that

(0, 0, cs, C4) [S ]R(O, Cy, Cg, C4) &5 R(O, —iCy, iC3, —iC4)
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holds; this implies that we have eithes = 0 orcg =c¢; = 0. In fact,cg =c¢c; =0
is impossible, because then we would havg = M;,(C, C, 0, 0), therefore by (11)
alsom;, = M;,(C, C, 0, 0), and therefore by (12yp;, C M;,(0, 0,C), in contradic-
tion to | = 4. Therefore we have, = 0 and thusv = M, (0, O,c3, c4). We have
ad(K,,(2))M,, (0, 0,cs, €1) = My, (0, 0, —C4, Tg), therefore by the application of a ro-
tation Ad(exp@H)) with suitable H € ]Rozf1 @ Ky, (C) = su(2) to m’/, we can arrange
¢4 = 0, and thusw) = M;,(C, 0,C, 0). Then we haven), = M;,(C, 0,C, 0) by (11),
m;. = M;;(0, C, C) by (14) and the fact thdt= 4, andm], = M,,(0, C, C) by (13).
Therefore

m/ =aé M,\l((C, O,(C, O)@ M)LZ(C, O,C, 0)@ M)G(O, (C, (C) D MM(O, (C, (C)
® M2, (R) & Mz, (R)

is of type (DIII).

The casen = 6 cannot occur, because the Dynkin diagram with multipésitcor-
responding tom’ would then bee' < @°M with some 1< 1| < 6; (14) showsl > 4.
But the classification of irreducible Riemannian symmesjaces (see [14], p. 119,
146) shows that no symmetric space with such a diagram exists

Finally, if n = 8 holds, we haven), = m,, for k € {1, 2}, from (14) we obtain
mﬁ\3 = m,,, from (13) we then obtainnﬁ\4 =m,,, and we also havm’mk = my, for
k € {1, 2}. Thus we havan’ = m.

Let us now consider the case where; 22, ¢ A’. Then mj\l and mgz are totally
real subspaces afy,, resp.m;, by Proposition 3.7. We either have, 1, € A’ or
A1, A2 ¢ A’ because of the invariance @’ under the Weyl transformation induced by
Az € AL If A, Ao & A/, e A = {£A3, 214} holds, thenm’ is again contained in
a Lie triple systemi’ of type (Q), and therefore, by the classification of Lie triple
systems inm’ given in [7], m’ is of type @, t), wheret is one of the types listed in
Theorem 4.1 of [7] form = 8.

So we now supposk, 1, € A’. Once again using Proposition 3.1, we may suppose
without loss of generality that,  C M;,(R, R, R, R) holds because;_ is totally real,
and also thaM;, (1, 0, 0, 0)e m} holds. The proof of Equations (12)—(14) was based
only on the fact thai,, (1, 0,0, 0)e m; holds, and therefore these equations will again
be valid in the present situation. Therefore we have C M;, (iR, iR, iR,iR) by (11),
thenm)  C M;,(R, R, R) by (14), and themm}, C M,,(R, R, R) by (13).

Thereforem’ is contained in the Lie triple system

' :=a® M, (R, R, R, R) & M,(iR, iR, iR, iR) ® M;,(R, R, R) & M,,(R, R, R),

of type (GH?). ' has the Dynkin diagram® = %, and therefore the corresponding
totally geodesic submanifold is locally isometric @®,(H%). w’ is also a Lie triple
system ofiv’, therefore we have eithen’ = m’, or m’ is of one of the types described
in the classification of Lie triple systems @,(H"*?) given in Theorem 5.3 of [8]
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for n = 2. It follows thatm’ is either of type G,H?) (if m’ = @’ holds), or of type
(G,H*, 1), wheret is one of the types of Lie triple systems éf as described in
Theorem 5.3 of [8] fom = 2.

Caske (b). Here we suppose that either, but not both,rgfand 14 are in A’.
Without loss of generality we may supposg e A’, A4 ¢ A’. BecauseA’ is invariant
under its Weyl transformation group, we then ha¥é = {+i3} and thereforem’ =
a®m is of type Q, (G2,1, 1)) withl:=1+n; ,2=<I1=7.

CASE (c). So now we have.s, 14 ¢ A'. Let us first consider the case where at
least one of the root&; and i, is not in A’. Without loss of generality we suppose
A2 ¢ A/, so that we have\’ C {£Xq, £2X1, £2X,}). Fork € {1, 2 we putKy := C
if 2x € A, K¢ := R if 20 ¢ A’. Proposition 3.7 then shows thatj\1 is a linear
subspace ofn;, of type (K1, dimg,(m] )). It follows thatm’ is of type =P, (K, 1+
dimg, (m; ), K2).

Now consider the casgi, A, € A’. As before, we may use Proposition 3.1 to
suppose without loss of generality thit;, (1, 0, 0, 0)€ m;  holds. Letv € m; be
given, sayv = M,,(cy, Cp, C3, C4) With C1, ..., Cs € C, then we have

2 L .
m’' 3 R(M,,(1, 0, 0, 0),v)A5 = —%_ M;,(icq, iT3, —iCy).

Because ofiz ¢ A’ it follows that we havec; = ¢3 = ¢4 = 0 and thus we have1j\2 -
M;,(0,C, 0, 0). Without loss of generality we may suppdég, (0, 1, 0, 0)e m;_. Now
letv e m’Al be given, sayw = M, (C1, Cy, C3, C4) With €4, ..., C4 € C, then we have

2 L
m’ 3 R(M,,(0, 1, 0, 0),0)A5 = %_st(mg, iCy, iCy).

Because oh3 ¢ A’ we obtainc, = ¢c3 = ¢4 =0, and thu3n/Al C My, (C, 0,0, 0). Because
m,, is either complex or totally real according as whethir B or is not a member od’
by Proposition 3.7, we see that is of the type (GC®, (P x P, (K3, 2), (K2, 2))), where
fork e {1, 2 we putKy := C if 24k € A", K := R if 24 ¢ A'.

This completes the classification of the Lie triple systerh&€ldl of rank 2.

We now turn our attention to the case wheuéis a Lie triple system of rank 1.
Via the application of the isotropy action of Elll, we may poge without loss of gen-
erality thatm’ contains a unit vectoH from the closure of the positive Weyl chamber
¢ of m (with respect toa and our choice of positive roots). By Equations (8) and (9)
we then have withpy := ¢(H) € [0, /4]

(16) H = coso)r} + sin(wo)A;.

Because of rk@’) = 1, ' := RH is a Cartan subalgebra af', and we haver’ =
anm’. It follows from Proposition 2.1 (a) that the root systetsand A of m’ resp.m
with respect toa’ resp. toa are related by

a7) AN C{MH)ag | » € A, A(H) # 0}
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with the linear formag: ¢ — R, tH — t; moreover form’ we have the root space
decomposition

18) m=deo @ m,

/
aeAl,

where for any rootx € A’, the corresponding root spae€, is given by

(19) m, = @ m; | Nm'.

LEA
M(H)=a(H)

If A’ = @ holds, then we havey’ = RH, and thereforen’ is then of type (Geay =
¢o). Otherwise by the same consideration as in my classificatidhe Lie triple systems
in G,(H") ([8], the beginning of Section 5.2), we see that

€0 arctar(l arcta 1y =
Po = 3) 2)' 4

holds; moreover in the cases = arctan(¥3) and ¢, = arctan(¥2), A’ cannot have
elementary roots in the sense of Definition 2.2.

In the sequel we consider the four possible valuesgpindividually.

The casegy = 0. In this case we havél = Aﬁz by Equation (16) and therefore

r(H) =2x0(H) =0, 2A2(H) =2A3(H) = 2a(H) =1, 2(H) = 2.

Thus we haveA’ C {t+o, +2a} with o := A|d’ = Aszla’ = A4ld’ by Equation (17),
m =RH & m, @ m,, by Equation (18), andn, C m;, ® m;;, & m;, andm,, C my,
by Equation (19).

We first note that if in factw, C m,, holds, then by the same argument as in the
proof of Proposition 3.7m/, is either a complex or a totally real linear subspace of
m;,, depending on whethera2is or is not a member ofA’. Thereforem’ then is of
type @, ¢ =0, K, I)) with K € {R, C} and| := dimg(m/,) + 1.

Also, if m/, C m;, @& m;, holds, thenm’ is contained in a Lie triple systeni’
of type (Q), and thereforan’ is of type @, ), wheret is a type given in [7], The-
orem 4.1 form = 4.

Thus we now supposey, ¢ m,, andm,, ¢ m,, & m,,, in particular we havex €
A’. We will show that in this situationm’ is conjugate under the isotropy action to
another Lie triple system whose corresponding root spacerdgosition satisfiesy, C
m;_orm, Cm;_ @ m; . It then follows by the above discussion that is of one of
the types of the theorem.
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It follows from our hypotheses, ¢ m;, andm/, ¢ m,, @ m,, that there exists a
unit vectorvg € m’, say

Vo = M)\.g(cla C2! C31 C4) + M)u3(dlv d2! d3) + M)\4(elv ezv e3)1

with (cq, €2, €3, C4) # (0,0, 0,0) anddy, dz, d3, €1, €, €3) # (0,..., 0). By virtue of Prop-
osition 3.1 we may suppose without loss of generality tloatd;, c3, ¢;) = (t, 0, 0, 0)
holds with somet € R \ {0}, and furthermore thatd{, d,, d3) = (s, 0, 0) holds with
s € R. Then we have

(20) vo = M,,(t, 0, 0, 0)+ M, (s, 0, 0)+ M;,(e1, &, €3).

BecauseR(H, vg)vp is @ member ofiv’, the m,;,-component of this vector, which
equals

‘. %mh(ieg, 0,—ig, i(e1—9)),

must vanish (because @f(H) = 0), and therefore we have, = s, & = e3 = 0, and
therefore

vo = My,(t, 0, 0, 0)+ M,,(s, 0, 0)+ M,,(s, 0, 0).
We have
ad(K,,,(v8)M,,(1, 0, 0, 0)= M,,(1, 0, 0)+ M;,(1, 0, 0),
and
ad(K,, (v8))(My,(1, 0, 0)+ M,,(1, 0, 0))= —M,,(1, 0, 0, 0),

therefore the 1-parameter subgroigxp(Ke.,,(t))}ier Of the isotropy group acts as a
rotation group on the planRM,,(1, 0, 0, 0 R(M,,(1, 0, 0)+ M;,(1, O, 0)); it follows
that a suitable member of this 1-parameter group maps (eiastitropy actionyg onto
M;,(1, 0, 0, 0). By replacingn’ with its image under the action of that element, we
may therefore suppose thi#t; (1, 0, 0, 0)e m’ holds.

If this replacement causes eithef, C m,, or m/, C m;, @ m;, to hold, then we
are done. Otherwise, there exists another vectos m/,, say

V1 = M)\.Z(Cl’ C21 C31 C4) + M)»g(dlv d21 d3) + MA4(el! e21 eg)!

with (cy, Cp, C3, C4) # (0, 0, 0, 0) and dy, dy, d3, €1, &, €3) # (0,..., 0), and which is
orthogonal toM,,(1, 0, 0, 0)e m,, whence we have Ref) = 0. By Proposition 3.1 we
may suppose without loss of generalityy (d;, d3) = (1, 0, 0) (whilst maintaining the
condition My, (1, 0, 0, 0)e m)). Then we have

R(H, M;,(1, 0,0, 0)py = 1£62Mxl(ies, 0,—igg, i(e—1))— %szzﬂm(cl))-
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Because this vector is a memberof, its m, ,-component must vanish. Thus we have
et =1 ande, = e3 = 0. Moreover: If 2« ¢ A’, also themy,,-component vanishes,
and thus we have Im{) = 0, hencec; = 0. On the other hand, if®2e A’, we also
have K2,(1), vo] = —(1/2)M,,(i, 0, 0, 0)€ w’, and therefore we can replacg by

v1 — Im(c1)M,, (i, 0, 0, 0). Hence we can supposg= 0 in any case. Thus; is of
the form

V] = M)\Z(O, Cp, Cg, C4) -+ ng(lr 0, 0)+ MM(l, 0, 0)

We now calculateR(H, vy)v; € m’:

c? 1 2
R(H, vi)v1 = (% + E) “H - %Mh(ic—m 0,icy, 0).

The m;,-component of this vector again vanishes, and thus we olmais ¢, = O.
Thus we have

v1 = My, (0, 0,¢s, 0) + M;, (1, 0, 0)+ M, (1, 0, 0).

We now consider the Lie subalgebba= Raé @ K (C) of £, which is isomorphic to
su(2). Forc e C we have

ad(K ()M, (0, 0,c, 0) = %Z(Mm(c, 0, 0)+ M,.(c, 0, 0)).
and
ad(K%(Z))%(MAS(C, 0, 0)+ M;,(c, 0, 0))= —M,, (0, O, c, 0),

therefore the connected Lie subgroBpof K with Lie algebrab acts on the complex
2-plane M, (0, 0,C, 0)&® {M,,(c, 0, 0)+ M;,(c, 0, 0)| c € C} as SU(2), and further

adK(2)M;,(1, 0, 0, 0)= 0,

therefore the action oB leavesM,,(1, O, 0, 0) invariant. Hence, by replacimg with
Ad(g)m’ for an appropriatgy € B, we can transformy; into M,,(0, 0, 1, 0), while leav-
ing M,,(1,0, 0, 0) invariant. By replacing’ with Ad(g)m’, we can thus ensure besides
M;,(1, 0, 0, O)e m/, also M,,(0, 0, 1, O)e m,.

If this replacement causes, C m;, or m,, C m;, ®m,, to hold, then we are done.
Otherwise, there exists yet another vectgre w/,, say

V2 = M)\,Z(Cll 021 C3! C4) + Mks(dl! d21 d3) + M)»4(e11 621 e3)1

with (dy, dp, ds, €1, &, €3) #(0,..., 0), which is orthogonal td/;,(1, 0, 0,0) M,,(0,0, 1, 0
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m,,, whence we have Ref) = Re(s) = 0. By an analogous argument as previously, we
in fact obtainc; = c3 = 0. Then we calculate

R(H, v2)M;,(1, 0, O, 0)

NG

= T2, (e~ B, 0, (@ + ), (6 — ) + £ Mo, (m(ce)

and

R(H, v2)M;,(0, 0, 1, 0)

= 1/—_62 Mxl((ez —db)i, (&1 — dp)i, (d3 + )i, 0) + %M%z(lm(cs))-

Because these vectors are elementsftheir m;,-components vanish. From this fact,
we derive the equations, = d; andd, = d3 = e, = e3 = 0. Using the fact that these
equations hold, we now calculate
cl? |dyf? 2 .
R(H, vp)up = (12 19T */——Mh(mjdl, 0,150y, 0).
4 2 4
Also this vector is an element af, and thus itsm,;,-component once again van-
ishes, whence it follows (becausk # 0) that we havec, = ¢, = 0, hencev, =
M;,(d1, 0, 0)+ M;,(ds, O, 0).
Now let Z := K,,(2). Then we have ad()v, = 0,

1
NG
ad@)vy = —M,,(1, 0, 0, 0),

adZ)M,,(1, 0, 0, 0)= (M;,(0, 0, 1)+ M,,(0, 0, 1))=: vy,

and

1
V2
ad@)v; = —M;,(0, 0, 1, 0).

ad@)M;,(0, 0, 1, 0)= —(M,,(0, 1, 0)+ M;,,(0, 1, 0))=: v},

These equations show that the adjoint action of the oneapetex subgrouB of K
tangential toZ leaves the element, of m’ invariant, whereas it acts as a rotation
on the 2-planes spanned hy;,,(1, 0, 0, 0) andM,,(0, O, 1)+ M,,(0, O, 1), resp. by
M;,(0, 0, 1, 0) andM,,(0, 1, 0)+ M,,(0, 1, 0). It follows that there existg € B so
that we have Adf)M,,(1, 0, 0, 0)= v}, Ad(Q)M,,(0, 0, 1, 0)= v; and Ad@)vz = v»
holds. We replacen’ by the Lie triple system Adf)m’. Then we havey, v}, v> € m;,.
For v € m,, we can evaluateR(H, v)v,, R(H, v)v; and R(H, v)v,; by the applica-
tion of arguments analogous to those used above it turnshatitany suchv which
is orthogonal to theC-span ofvy, v}, v2 is necessarily zero. Therefore we now have
m, Cm;, Gmy,.

This completes the treatment of the cage= 0.
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The casegg = arctan(1/3). We have by Equation (16):
3 1
H=——2)+ —=2]
V10?2 V10!

and therefore

J(H) = % Ja(H) = \% Ja(H) = \% ra(H) = %}
2,(H) = %1—0 22(H) = %

Because there are no elementary roots (Definition 2.2) inptlesent case, it follows
by Equation (17) that we havA’ C {+a} with « := A3la’ = (2A1)|d’, and by Equa-
tions (18), (19) we haven’ = RH @ m/, with m/, C m;, & my;,.

It follows thatm’ is contained in the Lie triple systef’ := adm,, dm,, Bmy,, B
my, of type (Q). M’ corresponds to a complex quadric of complex dimension 8, and
therefore the Lie triple systems containediin have been classified in [7jn’ is a Lie
triple system of rank 1, and its isotropy angle arctaBjlcorresponds to the isotropy
angle /4 — arctan(¥3) = arctan(}2) in @, as has been explained in Remark 3.4. It
therefore follows from the classification in [7], Theoreml 4hat m’ is, as Lie triple
system ofi, of type (A). Thusw’ is as Lie triple system ofn of type (Q, (A)).

The casegy = arctan(1/2). In this case we have by Equation (16):

_ 2,1
H = NG 5+ \/EM
and therefore
r(H) = e Xo(H) = W A3(H) = N ra(H) = W
2 4
2)1(H) = 7 20o(H) = 7

Because there are no elementary roots (Definition 2.2) inptiesent case, it follows
by Equation (17) that we havA’ C {+o, 20} with o := A1]a’ = Azld’, 20 = Apld’ =
(2r)|a’, and by Equations (18), (19) we have

(21) m' = RH & m), & m),

with m;, C m;, @ m;, andmj, C m;,  my,.

We havea! = (3/5)r + (2/5)45 and (2)* = (1/5)(2h1)" + (4/5)A5. By Prop-
osition 2.4 it follows that there exist linear subspacre;s3 C my,, m’a1 C my,, and
isometric linear mapsb, : m; — m;,, ®z4: m’2A1 — m;, So that

(22) w, = {x + @@a(x)

X € m/xs} and my, = {X + 2d2(X) | X € my, }
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holds; in particular we have for the multiplicities of theots of m: n, < 6 and
n,, < 1. We now consider the cases 2 A’ and 2x ¢ A’ separately.

First suppose & € A’. Then we haven,, = 1 and m,, = my, = My, (R).
Dy, (M2, (1)) is a unit vector inm;,, and via Proposition 3.1, we may suppose with-
out loss of generality tha®,,(My;, (1)) = M,,(1, 0,0, 0) holds. By Equation (2235,
is then spanned by the vector

(23) UZD[ = MZ)L;L(]‘) + 2M)\2(1! 01 O, O)

We now letv € m/, be given, sayw = M,, (a1, a2, as, as) + M, (b1, b2, b3) with a, by € C.
Becausen’ is a Lie triple system, we haver := R(H, vz,)v € m’. The root space de-
composition (21) together with Equations (22) shows thatefore them,,-component
of vg, which is equal to

V5

o Mali (b1 + V2ay), i(bs + V233), i (b3 + +/2a4))

must vanish, and thus we have
(24) by =v2ay, b,=-v2a, by=-v2a.

By Equation (22) we hav@,(M;, (b1, by, b3)) = /2/3M;, (a1, &y, ag, as); becaused,
is isometric, it follows that

2 24
3 Z|ak|2 = Z|bk|2 (=)2(|a4|2 + |agl® + |aul?)
K K

and hence
lao]? = 2(ja|? + Jagl* + |as|?)
holds. It follows that the projection map

m, —> C, v=M,,(a, a, as, a) + My, (b1, by, bg) > &

is injective, and hence we havg, < 2. We now givevg = R(H, vy, )v explicitly for
the situation wherev satisfies Equations (24):

J5

vr = o (M, (iay, 2y, as, —iau) + V2M,,(—iay, i7g, ia)).

Becausevg € m/, is therefore orthogonal to, we see that), € {0, 2} holds. Ifn/, =0,
then we havem’ = RH & Ru,,, and thus we see thai’ is of type G.C8, (P, ¢ =
arctan(¥2), (C, 1))). If n, = 2 then by Proposition 3.1 we may suppose without loss
of generality thatv = M,,(1, v/2, 0, 0)+ M,,(0, 0, —+/2) holds; then we haven’ =
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RH @ Rv @ Rug ® Ruy, With 4vg = M, (i,i+/2, 0, 0)+ M,,(0, 0,+/2i). Thereforem’
is then of type G,C8, (P, ¢ = arctan(¥2), (C, 2))).

Let us now consider the casexZ A’, so thatm’ = RH @ m/, holds. If o ¢ A/,
thenm’ = RH is of type (Geoy = arctan(X2)), otherwise because of Proposition 3.1,
we may suppose without loss of generality that

Vy = M)\l(l! \/éy 01 0)+ M)\B(O’ 0’_\/5) € m‘;'

If n, =1 holds, then we haven’ = RH & Rv,, and thereforem’ is then of type
(GoH4, (S, ¢ = arctan(¥3), 2)) (note that the isotropy angle= arctan(}¥2) of m’ cor-
responds to the isotropy angte/4 — arctan(}2) = arctan(¥3) within the type G,H*)
by Remark 3.4). Otherwise, we let another vectoe m/, which is orthogonal tov,
be given, say

vV = M)nl(a-la a-2! a3! a4) + M)»g(blv b21 b3)

with a, b € C, and consideng := R(H, v,)v € m’. Both the m,,-component and
the my,,-component must vanish (because of 2 A’). The m;,-component ofvg is
proportional to

M., (i (v/2bs + 2ay), i (2bs + 2a0), i (v/2 b, — 283 — 2by), i (—2b; — 224 — +/2by))
and so we have

bs = —\/Ea]_, bs = —ay, —2b, + \/Eb_z = 2a3

and
—/2by — 2b, = 2ay,
hence
2 2 2 2
(25) b= —3% - \/?_34, b, = %__3— éa, b;=-a& and a = +2a.

Moreover themy,,-component ofug is proportional toMy;, (Im(a; — ﬂaz)) and so we
have Imé, — v/2a,) = 0, hence Imdy) = v/2 Im(az) & —2 Im(ay), and thus

(26) Im(@,) = Im(ap) = 0.
Further, the condition that is orthogonal tov, gives

0= (v, v,) = Re@) + V2 Refy) — v/2 Reps) & Re, — v/2a,)
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and therefore Ref) = v2 Re@,) &) 2 Refy), hence

(27) Regy) = Ref) = 0.

From Equations (26) and (27) we obtaia = a, = 0. By the remaining equations
from (25) we now see that
2 N2 V2 2
V= M,\I(O, 0,c, d) + ng (—éc— ?d, ?C— éd, 0)

holds with some constants d € C.

We now consider the Lie subalgebsa= ]Raﬁ@ Kq,(C) of &, which is isomorphic
to su(2). Forz e C, we have ai,,(2))H = adK,,(2))v, = 0, whereas ad{,,(z)) acts
on the complex plane

dy

_2C_J§ ﬁé_zao
3° 3 ' 3 3

= {MM(O, 0,c, d)+MA3( c,de(C}

as a skew-adjoint, invertible endomorphism fo$ 0. It follows that the adjoint action
of the connected Lie group C K with Lie algebrab on m leavesH and v, invariant,
whereas it acts om as SU(2) does. Therefore there exigts B so that Ad@) leaves

H and v, invariant, and satisfies Adfv = M,,(0, 0, 3, 0)+ M, (=2, /2, 0). By re-
placingm’ with the Lie triple system Ad{)m’ from the same congruence class, we can
thus arrange that

V= M)nl(ov Oy 3! 0)+ MX3(_2! \/éy 0)

holds. Hence we see that in the cagg= 2, m’ = RH @& Ry, @ Rv is of type
(GoH4, (S, ¢ = arctan(¥3), 2)).

Finally we show that the case, > 3 cannot happen: Let’ € m/, be orthogonal
to bothv, andv. Then, as above, the,,-component and theny,,-component of both
R(H, v,)v" and R(H, v)v" have to vanish, and these conditions yield= 0.

The casego = /4. In this case we have by Equation (16jt = (1/\/5)1“2 +
(1/+/2)25 and therefore

(H) = %2 Ao(H) = %2 Aa(H) =0, Ag(H) = %2
20(H) = % 2(H) = \%

It follows by Equation (17) that we havA’ C {*«, 20} with o := A1]a’ = Az|d/,
200 = hgla’ = (201)|a’ = (2A2)|d/, and by Equations (18), (19) we have

(28) m =RH ®m, @ mj,

with m/, C m;, @ m,, andm),, C my, ® my, ® my,.
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Further information on the structure of elementsngf resp. ofm,, can be ob-
tained: First letv € m/, be given, say = M, (a1, ap, as, as) + My, (b, by, bs, bs) with
ay, b € C. By Proposition 2.4 and the fact that = (1/2)()»% +/\§) holds, we see that
we have||(aq, . .., as)| = |[(b1, - .., bg)||, in particularn, < 8.

Similarly, for anyv € m’,,, sayv = M,,(C1, Cz, C3) + My, (t) + M2, (S) with ¢, € C
andt,s € R, we consider the vectarg := R(H,v)v € m’. The a-component ofug must
be proportional toH, and this condition yieldgt| = |s|, hencet = +s. Moreover,
because ofiz(H) = 0, them;,-component ofvg, which is proportional to

Mj,(ica(s —t), ico(t — ), iTz(s — 1)),

has to vanish, and thus we have eitligr=c, =c; =0 ort = s. If we havet =
—s, and hencec; = ¢, = c3 = 0, we putY := Ky, (+/8) — K»,(+/8), then we have
ad(Y)H = My, (1) — M2;,(1) and ad{)(Ma;, (1) + My, (1)) = 4\/5)\2. These equations
show that a Lie triple systerm’ where the cas¢ = —s occurs is congruent under the
adjoint action of a member of the 1-parameter subgroufK aihduced byY to a Lie
triple system corresponding to the cdse s. By replacingm’ with the latter Lie triple
system, we may suppose without loss of generality that in Gse

m/Zot cmy, @ R(Mzh(l) + MZ}»z(l)) =: ﬁ{Za

holds.

In the caser ¢ A’ it now follows immediately thain’ is of type @, ¢ = 7/4,S¥ "),

So let us now turn our attention to the case A’. m’ corresponds to a Riemann-
ian symmetric space of rank 1; the classification of theseepaives that we have
n,, € {0, 1, 3, 7 (corresponding to the projective spaces over the realsconeplex
numbers, the quaternions, and the octonions, respeqtiatyg thatn,, + 1 dividesn,,.

We continue our investigation of the structure wf: Let v € m/, be given, say
v=M,,(a,...,a)+ M,,(by, ..., bs) with a, by € C. Then them,,-component of
R(H, v)v € m’ equals

i i _ _ _
M;, ( - g(a4b1 + aibs + boag + agbg), —é(a4b2 — agby + &b — aghy),
i _ _
g(blal — auby + bzaz — bzaz))-
Because ofiz(H) = 0, this has to vanish. In this way it follows that

m, C {My, (&1, @, 83, &) + My (2, &, —au, —as) | &, ..., & € C} =: iy,

holds.

Therefore in any casa’ is contained in the Lie triple systef’ := RH @, &1,
of type (P, ¢ = /4, OP?). The totally geodesic submanifold correspondingifois a
Cayley planeOP?, andm’ also is a Lie triple system aofi’. Therefore it follows from
the classification of the Lie triple systems 6fP° (see [15], Section 3), that’ is of
one of the typesK, ¢ = /4, KP?) with K € {R, C, H, O}.
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This completes the proof of the classification of Lie tripstems in Elll.

3.3. Totally geodesic submanifolds irEg/(U(1) - Spin(10)). We now study the
geometry of the totally geodesic submanifolds of Elll asstec to the Lie triple sys-
tems found in Theorem 3.3. Of course, the local isometry tgpehe submanifolds
can easily be obtained by determining the restricted rostesy (with multiplicities)
of the corresponding Lie triple systems as they are givenheofem 3.3. But to ob-
tain the global isometry type, and also to understand théiposof the submanifolds
in Elll better, we describe the totally geodesic submadgadf Elll explicitly. We will
also want information on how the transvection groups of thgpective submanifolds
are embedded iis, the transvection group of Elll.

In this way, we obtain the results of the following table. efar we ascribe the
type of a Lie triple system also to the corresponding totgipdesic submanifold (or to
a corresponding totally geodesic embedding). IFerN andr > 0 we denote bys! the
|-dimensional sphere of radius and for s > 0 we denote byRP,, the |-dimensional
real projective space of sectional curvatuge and by CP, the I-dimensional com-
plex projective space of constant holomorphic curvature Blote that with these no-
tations,RP_ is a real form ofCP_. Moreover, withHP,, resp.OP2 we denote the
I-dimensional quaternionic projective space resp. the &agtojective plane, with their
invariant Riemannian metrics scaled in such a way thatnti@mal sectional curvature
equalss. Also for the irreducible Riemannian symmetric spaces akra, their in-
variant Riemannian metrics are a priori only defined up to sitppe constant; in the
table below we describe the appropriate metrics of theseesphy giving the lengtla
of the shortest restricted root of the space in the ingex. We continue to use also
the additional names of types introduced in Remark 3.5.

type of Lie triple system| isometry type properties
(Geo,p =1) R or St
(P, ¢ =0, K1) KP__, (K, 1) = (C, 1): Helgason sphere
(P, ¢ = /4,8%) Srkzwé
(P, ¢ = /4, KPZ) KP._,/5 K = O: reflective, real form, maxima

pl (K1, 1, Ky) = (C, 5,C): meridian for

(Px P! Ky, 1), Ko) | KaP,_y xKoP, (DIN), maximal
(Q) err:ﬁ polar, meridian for itself, maximal
(Q, 1) see [7], Section 5
(GLC®) G2(C®grr—1 reflective, maximal
(G2C8, 1) see [8], Section 7
(G,H*) (G2(H*/Z2)sr—1 reflective, real form, maximal
(G,H*, 1) see [8], Section 6
(D) SO(10YU(5)sr=1 polar, maximal

5The polars and meridians are also reflective, without this tieeing noted explicitly in the table.
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For the application of the information from [7] and [8] it slid be noted that
these two papers use different conventions regarding thieiomeused on the spaces
under investigation: In the investigation of the complexadyic in [7], the metric is
normalized such that the shortest restricted root®®fhave lengthy/2, whereas in the
investigation ofG,(C") and G,(H") in [8], the metrics on these spaces are normalized
such that those linear forms which are the shortest root&4(K") for n > 5 have
length 1 (notice that they are not actually roots@f(K*), because their multiplicities
then degenerate to zero). Also for the investigation of Hillthe present paper, we
normalize the metric such that the shortest roots of thisespeve length 1.

By looking at the root systems of the totally geodesic sulifolis of type @),
(G,C®) and G,H*) of Elll (see Remark 3.4), it follows that the data given i ttited
papers on the metric properties of totally geodesic subimlasi can be carried over
without any change to the present situation for the totathpdgesic submanifold€®
and G,(C®) of Elll. However, for G,(H*)/Z, it is necessary to scale the data given in
[8], as this manifold is considered with s& +/2 in [8], whereas it has sk 1 here.

For the proof of the data in the table, and to obtain the désinéormation on
the position of the totally geodesic submanifolds of Eltlisi sufficient to consider the
maximal totally geodesic submanifolds. In the case of EVirg maximal totally geo-
desic submanifold is reflective (see [13]), and thereforemnected component of the
fixed point set of an involutive isometry of Elll. We will defloe these submanifolds
in this way in the first instance.

To prove that the fixed point sets of the involutive isometrié Elll we investigate
below are indeed of the isometry type claimed above, we wWiiint construct totally
geodesic, equivariant embeddings of the appropriate widsifonto these fixed point
sets for many of the types of maximal totally geodesic subifolgs of Elll. We will
also describe the subgroups of the transvection griegmf Elll which correspond to
the transvection groups of these totally geodesic submlasif

For these investigations, we need a model of Elll in which e carry out cal-
culations explicitly. For this purpose, we use the explmiésentations of Elll and of
the exceptional Lie groufks given by Yokota in [16] and by Atsuyama in [3].

To describe these presentations, we denot®hbf =R @ Ri, H =C & Cj and
O = H @ He the four normed real division algebras: the field of real narap the
field of complex numbers, the skew-field of quaternions, amal division algebra of
octonions. ForK € {C, H, O} and x € K, we have the conjugate of x. We will also
consider the complexificatiok® := K ®g R of K with respect to another “copy”
R® = R @ RI of the field of complex numbers; we linearly extend the coafiom
map x — X of K to K. Notice that the algebrag8®, H® and Q€ have zero divisors.

Let M(nxm,K) be the linear space ofi k m)-matrices ovek, abbreviateM (n,K) :=
M(n x n, K), and letj(n, K) := {X € M(n, K) | X* = X} be the subspace of Hermitian
matrices; via the multiplication map

3N, K) x 3(M, K) = A, K), (X, Y) > XoY = %(xv+ Y X),
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J(n,K) becomes a real Jordan algebra e {R, C, H} or K = O, n = 3; it becomes
a complex Jordan algebra fii € {R, CC, H} or K = OF, n= 3. J(3,0) resp.J :=
J(3, OF) is the real resp. complex exceptional Jordan algebra.

We now consider the complex projective space dyewhich we denote byJ] =~
CP?5, For X € J\ {0}, we denote by X] := (R)X the projective line througlX; for
a subsetM C J, we put M] := {[X] | X € M\ {0}}. Following Atsuyama ([3]), we
consider the submanifold

Xs £ X1 | €3 | Ebs=Ix1% &1 = |%)? E162 = X3l

él X3 X_2 Slr 521 53 € RC! Xll XZy X3 € ©C1
Elll : X = (_ )

X2 Xi & XoX3 = E1X1, XgX1 = §2X2, XaXo = &3X3
of 3. Then Atsuyama has shown ([3], Lemma 3.1) tHaHl] c [J] is a model of the
exceptional symmetric space Elll. In the sequel, we dengt&llil this model.

We will also use the fact that the exceptional Lie gratg which is the transvec-
tion group of Elll, can be realized as a subgroup of the groug(;A of complex-linear
automorphisms of, o). More specifically, consider the inner prodyet -) and the op-
eration AAB defined onj in [3], 81. Then Atsuyama showed in [3], Lemma 1.5 (2) that

Ee = {f € Aut(q) | ¥X, Y € 3: F(XAY) = (fX)A(FY), (fX, fY) = (X, Y)}

is a model of the exceptional Lie groups. This model acts transitively on the model
of Elll described above.

We now define several involutive isometries on Elll (see §l€} Section 3, where
the involutive automorphisms on the exceptional Lie grdtipare classified):
e The conjugation mapy: Q€ — Q€ induced by the real forn® of O (i.e. the or-
thogonal involutioniy: € — OF€ characterized by Fixg) = Q) induces via the map

. (51 X3 X_2> ()»0(51) Lo(X3) Ko(Xz))
Ell - ENl, | X5 & x| | 20(x3) 2o(&2) ro(Xa)
X2 X1 &3 do(X2) Ao(X1) ro(é3)

an isometric involutiont: Elll — EIllI.
e The orthogonal involutiong: O¢ — Q€ characterized by Fix) = H® induces
via the map

. & X3 X2 &1 (Xs) yo(X2)
Elll — EN, X3 & X1 || M) & y(X)

X2 X1 &3 Yo(X2) yo(x1) &3

another isometric involutiory : Elll — EIlI.
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e The linear map

. &1 X3 X &1 X3 =X
Elll — Ell, X3 & X || X & X1
X2 Xp &3 X2 Xp &3

induces yet another isometric involutien: Elll — Elll. o is the geodesic symmetry
100
of the symmetric space EIlll at the poip := [0 0 0] € Elll.

With help of these involutions we can descrlbeothe reflecsivbrmanifolds of EllI
explicitly.

The type (P, ¢ = n/4, OP?). The fixed point set ok equals [EllIN J(3, Q)] =
OP?, a totally geodesic submanifold of Elll of typd@ (¢ = 7/4, OP?). Notice that
this is a real form of the Hermitian symmetric space ElII.

The types G,C®) and (P x P!, (C, 5),C). The fixed point set of the involutive
isometryy : Elll — Elll has two connected components:

])_/ = [ETﬁ 03(31 HC)]!

and

0 aze  —ae
F) = —aze O ae a e HE, ayjg =avaz =aza; =07.

e —ae 0

It turns out that the totally geodesic submanifold$ and F," of Elll are of type
(GoC® and P x P1, (C, 5),C), respectively. To show that they are isomorphic to
G2(CP) resp. toCP! x CP°, we will now explicitly construct isometries;: G,(C®) —

F/ and f;: CP! x CP® — F} which are compatible with the group actions on the
symmetric spaces involved.

For this purpose, we note thdfs contains a subgroup which is isomorphic to
(Sp(1)x SU(6))/Z», and which is the fixed point group of the Lie group automasphi
E¢ — Es, g+ y-g-y L. This subgroup has been described explicitly by Yokota]([16
Section 3.5) in the following way:

To associate to a giverb(B) € Sp(1)x SU(6) a member oEg C Aut(J), we need
to describe an action ofb( B) on J. For this purpose we note thgtis (R€)-linear
isomorphic toJ(3, H®) @ (H)® by the map

0 X3  Xe
01 IGHY e HC)E -3, (X, X)X+ —xze 0  xe |.
X6 —X1€ 0

Furthermore,M(3, H®) D J(3, H®) is (R®)-linear isomorphic to

M(6,CC); :={X € M(6,C®) | IX = XJ},
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and {HC)? is (R€)-linear isomorphic to
M(2x6,C%);:={XeM@2x6,C% | IX=XJ}

where we putd’ := (8 _01> € M(2,R) and J := diag(d’, J’, J’) € M(6,R). These

isomorphisms are exhibited by the maps

@21 M(3, H®) — M(6,C); resp. ¢: (HE)® - M(2x6,CC);

which transform any given matriX € M(3, H®) resp. any given row vectox € (H®)3
into a matrix p2(X) € M(6, C€) resp.¢,(x) € M(2 x 6, C®) by mapping every entry
a+bj e H® (a,b e C®) of X into a (2x 2)-block component( f‘E g) of @(X)
resp.gy(X). We putJ(6, C€); := ¢2(3(3, H®)) € M(6, CC);. In this way we obtain
an isomorphism betweep and V := J(6, C€); & M(2 x 6, C);:

0:=(p @) oI >V,

which we will use to describe the action of SpiEU(6) onJ.

To do so, we consider fdK € {C, C®)} besides SU(BK) = (A€ M(6,K) | A*A =
id, det(A) = 1} also SU(6,K) := {A e M(6,K) | JA= AJ, det(d) = 1}. Then we
have the isomorphism of Lie groups

®: SU(6,C%) — SU*(6,C%), A sA—EJAJ,
where we pute := (1/2)(1+il) € CC.
We now consider the actioRy: (Sp(1)x SU*(6, C®)) x V — V given by
Fo(b, B)(X + X) = BXB" + (¢3b(¢3) )x B
for all (b, B) € Sp(1)x SU*(6, C®) and X + x € V. Fy induces an actiorF : (Sp(1)x
SU(6))x J — J which is characterized by the fact that the following diagreommutes:
(Sp(1)x SU*(6, C€)) x V — 25 v

(idspay<®)x¢ ®

(SP(1)x SU(6))x J ——— 3.
It has been shown by Yokota ([16], Theorem 3.5.11 and its fprdwt F(b, B) € Eg
holds for all p, B) € Sp(1)x SU(6). In this way we obtain a homomorphism of Lie
groupsF: Sp(1)x SU(6) — Eg with ker(F) = {%(id, id)}.

We now denote folJ € G,(C®) by Py € M(6, C) the orthogonal projection onto
U. Then we haveQy = ¢Py —gJPyJ € J(6, C®);, and therefore the map

f1: Go(C®) = [31, U = [¢p (Qu + Omexs,co))l
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is well-defined. It turns out thaf, is an isometric embedding and equivariant in the
sense that for everg € SU(6), U € G,(C®) we have

F(id, B) f1(U) = f1(BU).

As a consequence of this property and the fact théCe; & Cey) = po € Elll holds,
f1 maps into Elll, and hence it maps into Efl[J(3, H®)] = F;. Because both]
and G,(C®) are compact and connected, and are of the same (real) donehs, it
follows that the isometric embeddinfy in fact mapsG,(C®) onto the totally geodesic
submanifoldF;" of EllI.

To similarly construct a mapf,: CP! x CP° — FJ, we identify C? with H. In
this way, we can regar@P' as the spacglC || € S(H)}. We also identifyC® with
H3. Using these identifications, we can interpret for &ryC? =~ H andv € C® =~ H?3
the expressionsv as a member of HC)3; via this expression we define the map

f: CPx CP° - [J], (IC, [v]) — [(p_1(03(6,¢;C)J + lev™)],

which turns out to be a well-defined isometric embedding,ciwhis equivariant in the
following sense: For alllf, B) € Sp(1)x SU(6), (C, [v]) € CP* x CF°, we have

F(b, B)f,(IC, [v]) = f2(bIC, [Bu]).

Because of this property, and the fact thia{1C, [e1]) = [8 8 e%] e F) C Elll,
0 —ce O

f, maps into Elll, and hence it maps into Efil[¢(0;( cc), ® (HC)?)] = F}'. Because
both F} and CP! x CP® are compact and connected, and they are of the same (real)
dimension 12, it follows that the isometric embeddifigin fact mapsCP* x CP° onto
the totally geodesic submanifold)” of Elll.

The type (G,H*). Notice that the involutive isometries and y commute with
each other, and therefobeo y is another involutive isometry of Elll. The fixed point
set of the latter involution equals

. N Ps + dzel Pz — g€l re €R, pg, ok € H,
FYY .= p:= p3—q3e| ) p1+Q1e| '

P2 + el Pr—qiel rs p € EllI

It turns out that the totally geodesic submanifdfd” of Elll corresponds to the
type G.H?). We will show thatF*” is isometric toG(H%)/Z.

Eg contains a subgroup isomorphic to Sp@), which is the fixed point group of
the Lie group automorphisris — Eg, g — (Ly)g(ry)~L. Also this subgroup has been
described explicitly by Yokota ([16], Section 3.4). We wilse his construction, which
we now describe, to obtain an action of Sp(4) on

We continue to use the spad& and the linear isomorphism: J — V from the
previous construction, pui(4, HC), := {X € J(4, H®) | tr(X) = 0}, and consider the
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isomorphism of linear spaceg: J — J(4,HC), given in the following way: ForA € J,
sayp(A) = X +x € V, we put

(A %tr(x) I X

1
[ x* X — E tl’(X) . id(HC)3

where the right-hand expression is to be read as a block xmaith respect to the
decomposition FI€)* = HC & (HC)3.
Notice that Sp(4) acts o{(4, H®), in the canonical way, i.e. by the action

Fo: Sp(4)x J(4, H®)o — J(4, H)o, (B, X) > BXB".

Via the linear isomorphismy, Fo induces an actiorF: Sp(4)x J — J, characterized
by the fact that the diagram

Sp(4)x 3(4, HS)o — 2 3(4, HC),

ids;n(AWﬁT %j

SPA)x § —————3

commutes. It has been shown by Yokota ([16], the proof of Téwo03.4.2) that for
any B € Sp(4), F(B) € Es holds, andF(B) commutes withiy € Eg. In this way, we
obtain a homomorphism of Lie grouds: Sp(4)— Eg with ker(F) = {£id}.

We now consider the map

f:GyH* — [3], U [v 12Zu)l,

where for anyU e G,(H*) we denote byZ, € J(4, H®), the linear map characterized
by Zy|U = (1/2)idy, Zy|U*+ = —(1/2)idy:. It is easy to see thaf is a well-defined
isometric two-fold covering map onto its image with fibdk$, U*} for U € Go(H?),
and thatf is equivariant, i.e. that for any € G,(H*) and B € Sp(4) we have

F(B)f(U) = f(BU).

Because of the latter property and the fact tligtHe, & Hey,) = po € Elll holds, f
maps into Elll. Moreover, we havgy € F** and for everyB € Sp(4), F(B) € Es
commutes withvy, and thereforef maps into the totally geodesic submanifdfd” of

Elll. Because bothF*” and G,(H?*) are compact and connected, and they are of the
same dimension 16, it follows that the isometric immersibrin fact mapsGy(H?)
onto F*”. Becausef is a two-fold covering map with fibergJ, U+}, we conclude
that F*7 is isometric toG,(H?*)/Z.
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The types @) and (DIll). The connected componengs {po} of the fixed point
set of the geodesic symmetry p§ are the polars of the symmetric space. (Also see
[5], 82, especially Theorem 2.8, where the polars are denbyeM_.) In the case of
Elll, the polars have also been investigated by Atsuyama3jn §3.

It is easily seen that the fixed point set®fconsists of two connected components
besides{py}, namely

0O 0 O
Fl = {|:0 &2 X1:| €[J] | &bz = |X1|2},
0 X1 &

0 X3 X
Fg = X3 O 0 6[3] X2X3=0, XoX; = 0, X3X_3=0 .

Xo O 0

and

It turns out that the totally geodesic submanifoldg and Fy are of type Q) and
(DI, respectively.

The complex-8-dimensional submanifoif of the complex projective spacg][is
defined by a single non-degenerate quadratic equationhwhiadapted to the Fubini—
Study metric of [j]. HenceF} is isometric to the complex quadrig®.

Furthermore, it has been shown by Atsuyama that the refeestibmanifoldFy is
isometric to SO(1QU(5), see [3], the remark after Lemma 3.2 and [2], the Remajk (
after Proposition 5.4.

3.4. Totally geodesic submanifolds in Sp(2). Our next objective is the classi-
fication of the Lie triple systems in the Lie group Sp(2), melgal as a Riemannian
symmetric space. We will use this result also in our clasgifin of Lie triple systems
of SO(10yU(5) in Section 3.5 below.

We will base our classification on the fact that Sp(2) is a mmaXitotally geo-
desic submanifold of5,(H*) (of type (Sp) according to the classification in [8], The-
orem 5.3). Because the Lie triple systems@f(H*) have been classified in [8], we
can therefore obtain a classification of the Lie triple systeby determining which of
the Lie triple systems oG,(H*) are contained in a Lie triple system of type {Bp

To do so, we will work in the setting of [8] in the present senti We consider
the spaceG,(H*) = Sp(4)Y(Sp(2)x Sp(2)). We letg = £ & m be the canonical decom-
position associated with this space, i.e. we hgve sp(4), £ = sp(2) & sp(2) C g, and
m is isomorphic to the tangent space GH(H*). We will use the notations of Sec-
tion 5 of [8] in the sequel, especially we use the types of Liglé systems defined in
Theorem 5.3 of [8] forG,(H?), i.e. forn = 2. We letm; C m be a Lie triple system
of m of type (Sp).
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Theorem 3.8. Exactly the following types of Lie triple systemsnof as defined
in Theorem 5.3of [8], have representatives which are containedni:
(Geo,p =1t) with t € [0, 7 /4],
(S, ¢ = arctan(¥3), 1) with | € {2, 3},
(P, ¢ = /4, 1) with 7 € {(R, 1), (C, 1), §%), (H, 1)},
(]P’ x P, 71, ‘52) with T1, T2 € {(R, 1), ((C, 1), (S3)},
(ST x S5 1) with 2 <1 <3,
(Qa).

The maximal Lie triple systems ofi; are those which are of the typess, ¢ =

arctan(¥3), 3), P, ¢ = 7/4, (H, 1)), P x P, (s°), (s%) and (Qa).

REMARK 3.9. The maximal totally geodesic submanifolds of Sp(2) ybes
(S, ¢ = arctan(13), 3) and Q3) are missing from [5], Table VIII. Their isometry
types are that of a 3-sphere of radius/2)+/10 resp. of a complex quadri@Q®. The
totally geodesic submanifolds of the former type are oncaira@ a “skew” position
in the sense that their geodesic diameter is strictly latban the geodesic diameter
w of Sp(2).

Proof of Theorem 3.8. It is easily seen that the prototypesHe types listed, as
they are given in [8], Theorem 5.3, are contained in Lie ¢&ripystems of type (Sp
Therefore, we only need to show that no other types of Lidergystems ofG,(H?*)
have representatives which are containednin

For this purpose, we let’ be a Lie triple system ofn which is contained inm;.
We are to show that’ is of one of the types listed in Theorem 3.8.

If m" is of rank 2, then form’ to be contained im,, it is necessary that all the
roots of m’ have at most the multiplicity of the corresponding rootni. Because
the Dynkin diagram ofin; is e = e, we see by this argument that cannot be of
one of the types (& 1), (P x P, 71, 7o) where either of thelP-type§ r; and =, has
dimension> 2 or width 4, or §' x S° 1) wherel > 4. This already shows that among
the types of Lie triple systems of rank 2 &,(H*), only those which are listed in
Theorem 3.8 remain.

If m’is of rank 1, we note that ifa’ is of type P,¢ =0, (C, 1)) or of type P,¢ =
arctan(¥2), r) with 7 # (R, 1), it cannot be contained im; because the roots\2 are
not present inm;. Because the type®(¢ =0, (R, 1)) and P, ¢ = arctan(¥2), (R, 1))
are identical to (Gegy =t) with t = 0 resp. witht = arctan(2), this argument again
leaves only the types of rank 1 which have been listed in tleergm.

For the statements on the maximality? & P, (S%), (S%)) and Qs) are Lie triple
systems of rank 2, and therefore can be contained only inr dfigetriple systems of
this rank. Because they have the same dimension 6 and andyched isomorphic,
neither of them can be contained in the other, and also f@woreaf dimension, nei-

6See [8], Definition 5.1.



TOTALLY GEODESIC SUBMANIFOLDS IN SYMMETRIC SPACES 1121

ther can be contained irt x S° 1) with | < 3. Therefore these two types are max-
imal in m;. From a consideration of the root systems it can also be s$&n§, ¢ =
arctan(¥3), 3) and P, ¢ = n/4, (H, 1)) are maximal. On the other hand, (Geos t),
(P, ¢ =m/4, (K, 1)) withK € {R, C}, (P x P, 11, 72) With 11, 72 € {(R, 1), (C, 1), (§%)}
and §* x S5 1) with | < 3 are all contained inK x P, (S%), (S%), whereas §, ¢ =
arctan(13), 2) is contained inf, ¢ = arctan(¥3), 3). Therefore these types cannot be
maximal. [

We can obtain the global isometry types of the totally gemdssbmanifolds cor-
responding to the Lie triple systems of Sp(2) as listed inofém 3.8 from the totally
geodesic embeddings intB,(H") described in [8], Section 6. When applying the in-
formation from that paper, one needs to take into accounteler, that in the Sp(2)
as totally geodesic submanifold &,(H") (with the Riemannian metric considered in
that paper) the shortest restricted root has lengf whereas here we want to view
Sp(2) with the metric so that the shortest restricted ro& leagth 1. Therefore the
curvatures of the projective spaces have to be multiplieth if2, and the radii of
the spheres have to be multiplied witf2, to translate from the situation in [8] to
the present situation. In this way, we obtain the followimjormation on the totally
geodesic submanifolds of Sp{g),, where we again use the notations introduced in
Section 3.3.

type of Lie triple systemh  isometry type properties
(Geoyy =1) R or ST
(S, ¢ = arctan(13),1) S _ | = 3: maximal
P, ¢ = /4, (K, 1)) KP. _1 /4 K = H: polar, maximal
(P, g = 7/4,(5%) Sf-1
(P xP, (K, 1), Kz, 1)) Klpi:l/z XKZP;I4=1/2
(P xP, (K, 1), %) KPL=1/2x§r3:1/\/§ K = R: meridian to Qs)
(P xP,(S%, (%) szl/ﬁxszl/ﬁ meridian to P, ¢ = /4, (H, 1)), maximal
(8'x8%1) (St=1xS1-1)/Z2
(Qa) Q3._, polar, maximal

3.5. Totally geodesic submanifolds in SO(1QUJ(5). We now want to classify
the Lie triple systems of SO(10)Y(5). Note that this symmetric space occurs as a
maximal totally geodesic submanifold of Elll. We will useetltlassification of Lie
triple systems of Elll from Section 3.2 to obtain the classifion for SO(10jU(5) in
an analogous way as we used the classificatioGi(H?*) to obtain the classification
for Sp(2) in the previous section.

Thus we now return to the situation studied in Section 3.2 c@fesider the Riemann-
ian symmetric space Elll, and lgt= ¢ & m be the canonical decomposition gf= ¢g
associated with this space, i.e. we héve R @ 0(10) andm is isomorphic to the tangent
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space of Elll. We will use the names for the types of Lie tripjstems ofn as introduced
in Theorem 3.3 and Remark 3.5.

Further, we letm; be a Lie triple system ofn of type (DIll), i.e. the totally geo-
desic submanifold of Elll corresponding ta; is isometric to SO(1QU(5).

Theorem 3.10. Exactly the following types of Lie triple systemskdfl have rep-
resentatives which are contained umy:
(Geo,p =1t) with t € [0, 7/4].
(P, ¢ =0, (K, 4)) with K € {R, C}.
(P, ¢ = /4, (%)) with k € {5, 6}.
(P x P!, (K1, 3),K5) with K;, K, € {R, C}.
(Q. (G1, 6))
e The typeqQ, 1), wheret is one of the types of Lie triple systems in the complex
quadric as defined ifi7], Theorem 4.1for m = 6, i.e.t is one of the following (G1,k)
with k < 5, (G2,kq, ko) with ki + k; < 6, (G3), (P1k) with k < 6, (P2), (A), (11,k)
with k < 3, and (12, k) with k < 3.
o (GiC8 (Gy (C, 3)))
e The typegG,CS8, 1), wherer is one of the following (P, ¢ = arctan(¥2), (K, k))
with (K, k) € {(R, 1), (C, 1), R, 2)}, (G, (R, k)) with k < 3, (&, (C, k)) with k < 2,
and (P x P, (K1, k1), (K>, ko)) with K1, K, € {R, C} and k + k, < 3.
o (GH* (Sp)).
e The types(G,H? ), where r is one of the following (S, ¢ = arctan(¥3), 3),
(P, ¢ = /4, (K, 1)) with K € {R, C, H}, and (S* x S°, 3).
The maximal Lie triple systems af; are those of the typegP, ¢ =0, (C, 4)), P x
P, (C, 3),C), (Q, (G1, 6)), G2C®, (G, (C, 3))) and (G2H", (Sp,))-

REMARK 3.11. Chen and Nagano correctly list the local isometry typall the
maximal totally geodesic submanifolds of SO(A0}5) in their Table VIII of [5]. How-
ever the isometry types of the type®,((G1, 6)) resp.G,H?, (Sp,))) are Q° resp. SO(5)
(where Chen/Nagano clai@,(R®) =~ Q®/Z, and Sp(2)= Spin(5) respectively). More-
over, it should be mentioned that also SO(106) contains “skew” totally geodesic sub-
manifolds, namely the totally geodesic submanifolds oftyipes Q, (A)) and G,H?, (S,
¢ = arctan(¥3), 3)), which are isometric to a 2-sphere resp. a 3-spheradifis /5,
so that their geodesic diametef5r is strictly larger than the geodesic diameterof
SO(10yU(5). They are not maximal in SO(10)(5); their presence can not be inferred
from Table VIII of [5] because of the missing entries for tiEsesG; (R°) and Sp(2).

Proof of Theorem 3.10. For the maximal ones among the tymtsdli the cor-
responding totally geodesic embeddings into SO(WQ)) are described below, so we
know that these types, and therefore also all the other tiigiesi, have representatives
contained inm;. Therefore, we only need to show that no other types of Ligléri
systems of Elll have representatives which are contained,;in



TOTALLY GEODESIC SUBMANIFOLDS IN SYMMETRIC SPACES 1123

For this purpose, we letv be a Lie triple system ofn which is contained inm;.
We are to show thatn’ is of one of the types listed in Theorem 3.10.

If m’" is of rank 2, all the roots ofn’ have at most the multiplicity of the cor-
responding root inm;. Because the Dynkin diagram of; is ¢4 < @*!, we see
by this argument thath’ cannot be one of the type® x P!, (K1, |), K,) with | > 4,
(Q), (G,C® and G,H*). Moreover, we note that the intersection wf with a Lie
triple system of type Q) is of type @, (G1, 6)) (corresponding t®Q® c Q& c Elll),
with a Lie triple system of type@,C?) is of type G.C8, (G,, (C, 3))) (corresponding
to G,(C®) C G,(C® c Elll), and with a Lie triple system of typ&,(H?*) is of type
(G,H%, (Sp,)) (corresponding to SO(5 G,(H?)/Z, C Elll). Therefrom everything
about the rank 2 Lie triple systems follows.

For the spaces of rank 1 a similar consideration of the niidiiigs of the roots
shows thatm’ is of one of the types listed in the theorem. O

Because SO(1QY(5) is a totally geodesic submanifold of Elll, the isometypes
of the totally geodesic submanifolds in SO(20}§5) corresponding to the various types
of Lie triple systems are the same as the isometry types otdta#ly geodesic sub-
manifolds in Elll of those types, which were described in tiec3.3. In particular,
the isometry types of the maximal totally geodesic subnadatsf of SO(10jU(5), and
some of their properties, are as follows:

type isometry type properties
(P, =0,(C,4) CP_, polar
(P xPL, (C,3),C) | CPP_, xCPL_, | meridian for G,C®, (G, (C, 3)))
(Q, (G1, 6)) Qgrr:ﬁ meridian for @, ¢ = 0, (C, 4))
(G2C°, (G2, (C, 3))) G2(C®)sr-1 polar
(G2H?, (Spy) SO(5)m—1 reflective

To elucidate the position of the maximal totally geodesibrsanifolds, we describe
totally geodesic embeddings for these types:

The types @, ¢ =0, (C, 4)) and (G.C®, (G,, (C, 3))). The totally geodesic sub-
manifolds of these types are the polars in SO(U@%), and can therefore be obtained
as U(5)-orbits through points of SO(1Q)(5) which are antipodal to the origin point
Po := U(5) € SO(10YU(5) in this space.

For an explicit construction, we consider both U(5) and SXp(dcting onC?®; in
the latter case the action is onB-linear onC® =~ R*°. We fix a real formV of C°
(i.e. a 5-dimensional real linear subspa¢ec C° so thati -V is orthogonal toV with
respect to the real inner product @¥). Then we can describe U(5) as a subgroup of
SO(10) by

A -B

u) = {g € SO(10)| g = ( 5 A ) A B¢ M(SXS,R)},
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where the matrix expression is to be read as a block matrik véspect to the split-
ting C®> =V @i - V. In the same way, we can describe the involutive automonphis
describing the symmetric structure of SO(10}5):

o : SO(10)— SO(10), ( 2 g) > (_[z: _AB )

Via the linearization ofo, we obtain the spacen in the splitting 0(10) = w(5) ® m
induced by the symmetric structure of SO(A0}5):

o f(2 ) ascos)

We now fix a X-dimensional real linear subspa®é C V (with k € {1, 2}) and a

“partial complex structure with respect W', i.e. a skew-adjoint transformatiod: V —
V with J® = —J and J(V) = W. Then we haveX := (8 _J) € m, and therefore
y: R — SO(10YU(5), t > expt X) - po is a geodesic of SO(1PY(5). Fort € R and
w € W we have

expt X)w = cost)w + sin(t)Jw
and

expt X)iw = cost)iw — sint)i Jw

as well as exgX)w’ = w’ for any w’ € (W @ iW)+. We havey(t) = po if and only
if exp(tX) € U(5); from the above description it follows that this is thase if and
only if sin(t) = 0 holds, i.e. if we have € nZ. Hence the geodesig is periodic with
period r, and thereforep; := y(r/2) is an antipodal point oy in SO(10YU(5). By
general results (see [5], Lemma 2.1), it is known that theap™ := U(5)- p; is a
totally geodesic submanifold of SO(JQ)(5).

To determine the isometry type of the totally geodesic suiifold M, we cal-
culate the isotropy group of the action of U(5) pt: We havep; = S- U(5) with
S:= exp(fr/2)X) € SO(10); from the explicit description oK we obtain the explicit
description

(29) SW = J|W, SiW = -J[iW, S|(W & iW)* = idwaiw)-
of S. Therefore we have fog € U(5):

g-pr=pL<=g-S-UB)=S-UB) < S'gSe U®5)
= gWBIW)=WaiWw,

where the last equivalence follows from Equations (29). réfaze the isotropy group
of the action of U(5) atp; is isomorphic to UV & iW) x U(W & iW)1) = U(2k) x
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U(5 — 2k). It follows that the totally geodesic submanifod of SO(10YU(5) is iso-
metric to U(5)Y(U(2k) x U(5 — 2k)).

In the case&k = 1, M is thus isometric to U(5)U(2)xU(3)) = G,(C®); this totally
geodesic submanifold turns out to be of tyg@,C®, (C, 3)).

In the casek = 2, M is isometric to U(5)(U(4) x U(1)) = CP*; this totally geo-
desic submanifold is of typeP( ¢ = 0, (C, 4)).

The types  x P!, (C, 3),C) and (Q, (G1, 6)). These types are the meridians
corresponding to the polars of typ&4CS®, (C, 3)) and P, ¢ = 0, (C, 4)), respectively.
This means that each of them is a totally geodesic submadnifdlich intersects the
corresponding polar orthogonally and transversally in poit.

However, in the present situation there is an easier way $orie the totally geo-
desic submanifolds of these types. Note that there are @acembeddings SO(4}
SO(6) C SO(10) and SO(8 SO(10) which are compatible with the symmetric struc-
ture of SO(10§U(5). In this way, we get totally geodesic embeddings of @®Q4(2)) x
(SO(6YU(3)) = CP! x CP® and of SO(8JU(4) = Q° into SO(10yU(5); they are of type
(P x P!, (C, 3),C) and @, (G1, 6)), respectively.

The type (G,H?, (Sp,)). Consider the map

B 0
®: SO(5)— SO(10), B> ( - )

For B € SO(5) we haved(B) € U(5) <= B =id, and therefored induces an embed-

ding ®: SO(5)— SO(10YU(5). Its linearization mapsX € o(5) onto (é 70)() € m,

and therefored is totally geodesic. It turns out to be of typ&{H*, (Sp,)).

4. The symmetric spacess/F4, SU(BYSp(3), SU(3) and SU(3)SO(3)

4.1. The geometry ofEg/F4. In this section we will study the Riemannian sym-
metric space EIVV.= Eg/F4, which has the Satake diagram

1 3 4 5 6
O—e® —@0 —@0 —O

°
2

EIV does not have an invariant Hermitian structure.

We consider the Lie algebrg:= ¢g of the transvection groufts of EIV and the
splitting g = ¢ & m induced by the symmetric structure of EIV. Herdin= f, is the
Lie algebra of the isotropy group of EIV, and is isomorphic to the tangent space
of EIV in the origin. TheEg-invariant Riemannian metric on EIV induces an gl
invariant Riemannian metric om. As was explained in Section 2, this metric is only
unique up to a factor; we choose the factor in such a way tretrebtricted roots of
EIV (see below) have the length 1.
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The root space decomposition. Let t be a Cartan subalgebra gfwhich is max-
imally non-compact, i.e. it is such that the flat subspace= t N m of m is of the
maximal dimension 2, and hence a Cartan subalgebra. ofFhen we consider the root
systemA? C t* of g with respect tot, as well as the restricted root systemcC a*
of the symmetric space EIV with respect to EIV has the restricted Dynkin dia-
grame®—e® in other words: its restricted root system is of type Ay, i.e. we have
A = {+A1, £Ap, A3}, Where {1, 1) is a system of simple roots af, these two roots
are at an angle of (3)7 and have the same length, and we haye= 11 + A,. All
roots in A have the multiplicity 8, andA has the following graphical representation:
A A3

L]

L4 O * A

To be able to apply the results from [9] and the correspondiogputer pack-
age for the calculation of the curvature tensor of EIV, weimgeed to describe the
relationship between the restricted roots of the symmetpace EIV and the (non-
restricted) roots of the Lie algebrg. For this purpose, we again denote the positive
roots ofeg by s, ..., ags in the way described in Section 3.1. To find out which re-
stricted root of EIV corresponds to each rootegf we tabulate the orbits of the action
of o on the root system\?, and the restricted root of EIV corresponding to each orbit
(compare Section 4 of [9]):

orbit {a1, —azo} | {a7, —a27} | {on2, —22) | {07, —01g)
corresp. restr. roof] M M M A

orbit {ae, —az1) | {01, —a2g} | {a16, —024} | {20, —0t21}
corresp. restr. roof Ao Ao Ao o

orbit {23, —aze} | {026, —aras} | {orog, —34} | {a32, —033}
corresp. restr. roof A3 A3 A3 A3

Moreover, we haver(ax) = ax for k € {2, 3, 4,5, 8, 9, 10, 13, 14, 15, 19,125
Again using the notation&,(c) and M, (c) introduced in Section 3.1, we now put
for ¢;,...,cs € C andt € R, and whereA denotes one of the lettets and M:
A (C1, €2, C3, Ca) 1= Ag,(C1) + Ags(C2) + Auyp(C3) + Agyr(Ca),
Ay, (C1, G, C3, Cg) 1= Agg(Cr) + Agpi(C2) + Agi(C3) + Ag,p(Ca),
A)»3(Clv C2, Cg, C4) = Aa23(Cl) + Aotzs(CZ) + Aotzg(CS) + Aotsz(c4)-

Then we havemw,, = M,,(C, C, C, C) for k € {1, 2, 3.
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The action of the isotropy group. We now look at the isotropy action of EIV.
Regarding it, we again use the notations introduced at tdeoésection 2, in particular
we have the continuous functigm: m \ {0} — [0, /3] parametrizing the orbits of the
isotropy action. For the elements of the closti# the positive Weyl chambar:= {v €
a| 21(v) > 0, A2(v) = 0} we again explicitly describe the relation to their isotr@mgle:
(A} +25)/+/3,1) is an orthonormal basis afso that withu, := cos¢)((A; +A5)/+/3) +

sint)1 we have
te [0, %] se Rzo},

and because the Weyl chamhes bordered by the two vectoig = (Ai + 15)/+/3 with
@(vo) = 0 andvy/z = (A5 + 15)/+/3 With (v, /3) = 7/3, we have

(30) - {s- "

(32) p(s-v) =t forall te [0, %] seR,.

The isotropy action oK = F, on m corresponds to the irreducible 26-dimensional
representation oF, (see [1], Lemma 14.4 (i), p. 95). It can be described as aomct
F4 on the 26-dimensional spagé3, Q) := {X € M(3x 3, Q) | X* = X, tr(X) = 0} of
trace-free, Hermitian (3 3)-matrices over the division algebra of octoni@nsfor the de-
tails see [1], Chapter 16. Under the identificatiomotvith J(3, O)o induced thereby, the
Cartan subalgebracorresponds to the space of trace-free diagonal matrindshe three
root spacesn;, (k =1, 2, 3) correspond to the subspaggs= {X = (xij) € J(3, O)o |
X11 = Xop = X33 = X1 = Xkm = 0} of J(3, @)y, wherel andm are the two members of
(1,2, 3\ (k.

The subgrougK, of F4 with Lie algebrat® := {X € £ | [X, a] = 0} consists of those
g € F4 which leave all the subspacgg invariant, and is therefore isomorphic to Spin(8)
(see [1], Theorem 16.7 (iii))Kq acts on the three spac@g as the three irreducible 8-
dimensional representations of Spin(8): the vector remiasion, and the two spin repre-
sentations; these representations are “intertwined” eyrthlity automorphism of Spin(8).

Proposition 4.1. We regardR® as the real linear space underlying* and for k e
{1, 2, 3 we consider the linear isometry
(72 RS — My, (Clv Cp, C3, C4) = M)uk(clv Co, Cs, C4)

Then there exists an isomorphism of Lie grodpsSpin(8) — Ko so that the following
diagram commutes

Spin(8)x R8-2X45 Ko x m;,
Ad

8
R — ¢ My,
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where the left vertical arrow represents the canonical @ctof Spin(8)on R&.

If we fix vy € my, \ {0}, then the Lie subgrou@pir := {B € Spin(8)| B(¢~tv;) =
¢ 1v1} of Spin(8)is isomorphic toSpin(7),and the subgroup K:= &(Spir), which is
isomorphic toSpin(7),acts transitively onm;,.

If we now also fixv, € my, \ {0}, then the Lie subgrouspin’ := {B € Spirl |
B(p~tvy) = ¢ tvy} of Spirf is isomorphic to the exceptional Lie group,Gand hence
®(Spir’) is also isomorphic to &

These statements are also true for an arbitrary permutatibthe indicesl, 2, 3of
the root spaces,, .

Proof. Most statements follow from the preceding discussiathe isotropy action.
For the transitivity statements, see [1], Lemma 14.13, f. 10 ]

4.2. Lie triple systems inEg/F4.

Theorem 4.2. The linear subspaces’ C m given in the following are Lie triple

systemsand every Lie triple systerf0} # m’ € m is congruent under the isotropy
action to one of them.

e (Geo,p =t) with t € [0, /3].
m’ = R(cost)((A: + 15)/+/3) + sin(t)r5) (compareEquation (30))

e (S,¢=m/6,1)with2<I|<09.
m’ is an |-dimensional linear subspace Bf\} ® m,.

e (P,o=mn/6, K, I) withK e {R,C, H} and | € {2, 3}, or with (K, |) = (0, 2).
We define the following vectors

Vo := Mh(lr O, Ov O)+ M)»z(li 01 01 0)7 V1 1= M)»l(i’ 0’ 0’ O)+ M)*Z(_i’ 0’ 0’ 0)’

v§ = M,,(0, 0, 0,i) + M,,(0, 0, 0,—i), v$ := M,,(0, 0,0, 1)+ M,,(0, 0, 0, 1),

v := M,,(0, 0,i, 0) + M,,(0, 0,—i, 0), wi':=M,,(0,0, 1, 0+ M,,(0, 0, 1, 0),
vsH = M,,(0, 1, 0, 0+ M,,(0, 1, 0, 0), vt :=M;,(0, —i, 0, 0)+ M,,(0,1i, O, 0),
v = M,,(i, 0, 0, 0)+ M,,(i, 0, 0, 0),

v5 9 1= M,,(0, 0, 0, 1)+ M,,(0, 0, 0,—-1),

v$'© == M,,(0, 0, 1, 0)+ M,,(0, 0,1, 0),

v§HO = M;,(0, —i, 0, 0)+ M,,(0, —i, 0, 0),

H:=15 ws:= M;(0,0,0,1),

wy = M;,(1, 0,0, 0), ws:=M,,(—i,0,0,0),

wy == M,,(0, 1,0, 0), wg:= M,,(0,i, 0, 0),

w3 = M,,(0, 0,i, 0), w7 := M,,(0,0, 1, 0).
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Thenm' is spanned by the following vectolis dependence ofK, I):

For (K,1) = (R, 2): H, v.

For (K,1) = (R, 3): H, v, v1.

For (K, |) = ((C, 2) H, vo, U(C):, wi.

For (K, 1) = (C, 3): H,vo,v5, v1,v$, wr.

For (K,l) = (H, 2): H, v, vg, v(')",ng, w1, W, W3.

For (K,I) = (H, 3): H, v, vg, v(')" , ng, V1, vlc, v{' , fo, w1, W, W3.

For (K,l) = (0,2): H,vo,vg,vgi,ng,v(?,vgo,v(')"O,ngO,wl,wg,wg,w4,w5,w6,w7.
e (AD.

m' =a® M;,(R, 0, 0, 0)® M,,(R, 0, 0, 0)® M,,(0, 0, 0,iR).

o (A2).
W =a@ M,,(C, 0,0, 0)& M,,(C, 0, 0, 0)& M,,(0, 0, 0,C).
. (A

m=a &) M,\l(C, (C, O, 0)@ MAZ(C, C, O, O)@ MAS(O, O,C, (C)
o (SxSL)withl <09

m’ = a®m  with an (I —1)-dimensional linear subspace; C m,.

We call the full namgGeo,¢ =t) etc. given in the above table the type of the Lie
triple systems which are congruent under the adjoint actmrhe space given in that
entry. Then every Lie triple system wfis of exactly one type.

The Lie triple systemsn’ of the various types have the properties given in the
following table. The columfisometry typ& again gives the isometry type of the totally
geodesic submanifolds corresponding to the Lie tripleesyst of the respective type in
abbreviated formfor the details se&ection 4.3.

type ofm’ dim@m’) | rk(m’) m’ maximal isometry type
(Geo,p =1t) 1 1 no R or st
(S, ¢ =n/6,1) I 1 no s'
P, ¢ = /6, K, 1)) | dimg K -1 1 for (K, 1) € {(H, 3), (O, 2)} KP
(AD 5 2 no (SU@BYSOQR)yz3
(A2) 8 2 no SUR)/Z3
(Al 14 2 yes (SUBYSp3)YZs
(Sxst l+1 2 forl =9 (S' x §1)/2Z4

REMARK 4.3. For the symmetric space EIV, Chen and Nagano correstlyhe
local isometry types of the maximal totally geodesic subman#oldowever, the global
isometry types of the totally geodesic submanifolds of typd) resp. S x St, 9) is
(SU(BYSp(3)yZ5 resp. 6 x S%/Z, (and not SU(6)Sp(3) resps? x S°, as Chen and
Nagano claim).

Proof of Theorem 4.2. We first mention that it is easily chelcksing theMaple
implementation that the spaces defined in the theorem, ammftiie also the linear
subspacest’ C m which are congruent to one of them, are Lie triple systemss diso
easily seen that the information in the table concerningdingension and the rank of
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the Lie triple systems is correct. The information on themistry type of the corres-
ponding totally geodesic submanifolds will be discussedsaction 4.3. Note that no
two types of Lie triple systems correspond to the same isgmtgpe of totally geo-
desic submanifold, therefore no Lie triple system can be ofarthan one type.

We next show that the information on the maximality of the Iigple systems
given in the table is correct. For this purpose, we presura¢ tiie list of Lie triple
systems given in the theorem is in fact complete; this willgpeved in the remainder
of the present section.

Proof that the Lie triple systems which are claimed to be maxiin the table in-
deed are: This is clear for the typ®,(¢ = /6, (O, 2)), because it has the maximal
dimension among all the Lie triple systems of EIV. It is aldeat for the type (All)
because it has rank 2 and maximal dimension among all theripie systems of EIV
of that rank. For the typeS(x S, 9): For reason of dimension and rank, a Lie triple
systemm’ of this type could only be contained in a Lie triple system ybet (All);
howeverm’ has a root of multiplicity 8, whereas all the roots of Lie leipsystems
of type (All) have multiplicity 4, so such an inclusion is ilmgsible. For the type
(P, ¢ = 7/6, (H, 3)): For reason of dimension, a Lie triple systam of this type
could again only be contained in a Lie triple system of typdl)(Ahowever this is
impossible becausa’ requires the multiplicity 8 for the “collapsing” roots; and i,.

That no Lie triple systems are maximal besides those mesdicabove follows
from the following table:

Every Lie triple system of type... |is contained in a Lie triple system of type.|..
(Geo,p =1t) (S x 8t 1)
(S, ¢ =m/6,1) (S xSt
(P, ¢ =n/6, (K, 2)) with K € {R, C, H} (P, ¢ =n/6, (0, 2))
(P, ¢ = /6, (K, 3)) withK € {R, C} (P, 9 =m/6, (H, 3))
(Al) (A2)
(A2) (Al
(Sxst ) withl <8 (S x st,9)

We now turn to the proof that the list of Lie triple systems d¥Hjiven in The-
orem 4.2 is indeed complete. For this purpose, we let anrarpit_ie triple system
m’ of m, {0} # m’ € m, be given. Because the symmetric space EIV is of rank 2, the
rank of m’ is either 1 or 2. We will handle these two cases separateljénsequel.

We first suppose that' is a Lie triple system of rank 2. Let us fix a Cartan sub-
algebraa of m’; because of rk{’) = rk(m), a is then also a Cartan subalgebranaf In
relation to this situation, we use the notations introduice&ections 2 and 4.1. In par-
ticular, we consider the positive root systefm := {11, A, A3} of the root system\ :=
A(m, a) of m, and also the root system’ := A(m’, a) of m’. By Proposition 2.1 (b),

A’ is a root subsystem o, and thereforeA’, := A’N A, is a positive system of roots
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for A’. Moreover, in the root space decompositionstofind m’

(32) m=a@@m,\ and m/=a®€ij\

AEA rEAT

the root spacen; of m’ with respect tor € A’, is related to the corresponding root
spacem, of m by m) =m; Nw'.

Because the subset’ of A is invariant under its own Weyl transformation group,
we have (up to Weyl transformation) only the following pdsiies for A’ , which we
will treat individually in the sequel:

A=Ay, A ={n) and A, =0.

CAse A, = A,. In this case, the restricted Dynkin diagram with multijies

of m" is ™ — e™2, and the classification of the Riemannian symmetric spases, (
for example, [14], p. 119, 146) shows thait:=n, =n; =n; € {1, 2, 4, § holds.

If " =1 holds, we may suppose without loss of generality by Praojpos#.1 that
m, is spanned byy := M;,(1,0,0,0) fork € {1, 2. Then we haven’ 5 R(A], v1)vz =
(\/E/S)MM(O, 0,0,i), and thereforem;, is spanned bys := M;,(0, 0,0,i). Thusm’ =
a®@;_, m), is of type (Al).

If " =2 holds, we may suppose without loss of generality = M;,(C, 0, 0, 0)
and vz € m; . We then obtainvz € m)_ as before, also from the equality’ > R(M:,
M,,(i,0,0,0)p, = —(+/2/8)M,,(0,0,0, 1) the facM,,(0,0,0, 1)e m; . and then from the
equalitym’ 3 R()Jil, v1)M;,(0, 0, 0, 1)= —(v/2/8)M,,(i, 0, 0, 0) the factM,, (i, 0, 0, 0)e
m;_. Thus we have besides, = M;,(C, 0, 0, 0) alsom;, = M;,(C, 0, 0, 0) andm;, =
M., (0, 0, 0,C), and thereforan’ = a & Pr_, m;, is of type (Ap).

If n” =4 holds, we may suppose without loss of generatity = M,,(C, C, 0, 0)
andvz € mj,. Then as above we obtaM;,(C, 0,0,0)C m;, and M; (0,0,0,C) C m;_.
Moreover forc € C we have

2 .
m’ 3 R(A;, M, (0, ¢, 0, O)p = %_st(o, 0,ci, 0),

hencem; = M;,(0, 0,C, C), and

2
m' 5 RGE, v1)M,, (0, 0,¢, 0) = %MAZ(O,EL 0, 0),

hencem), = M,,(C, C, 0, 0). This shows that' = a & @j_, m;,_is of type (All).
Finally, if n” = 8 holds, we havemj\k =m,, for k e {1, 2, 3 and thereforan’ =
0 ® @iy mj, =m.
CAase AL = {A1}. In this case we haven’ = a @ m)  with a linear subspace
m) Cm,,, and thereforen’ is of type € x S*, 1) with | :=1+n] <9.



1132 S. KLEIN

CAse A, = @. In this case we haven’ = a, and thereforem’ is of type
(S x s, 1).

We now turn our attention to the case wheuéis a Lie triple system of rank 1.
Via the application of the isotropy action of EIV, we may sopp without loss of
generality thatm’ contains a unit vectoH from the closurec of the positive Weyl
chamberc of m (with respect toa and our choice of positive roots). Then we have by
Equations (30) and (31) withy := ¢(H) € [0, /3]

# #
AL+ Ag
V3
Because of rk@’) = 1, o’ := RH is a Cartan subalgebra af', and we haver’ =

anm’. It follows from Proposition 2.1 (a) that the root systetsand A of m’ resp.m
with respect toa’ resp. toa are related by

(33) H = cosfo) + sino)A;.

(34) A" C [M(H)ao | A € A, A(H) # 0}

with the linear formag: ¢ — R, tH — t; moreover form’ we have the root space
decomposition

(35) m=d® @ m,

'
a€A

where for any rootx € A’, the corresponding root spae€, is given by

(36) m, = @ m;, | Nm'.

LEA
A(H)=a(H)

If A" =@ holds, then we havey' = RH, and thereforen’ is then of type (Geay =
@o). Otherwise it follows from Proposition 2.3 that one of tlwldwing two conditions
holds: EitherH is proportional to a root vector* with A € A, or there exist twak, i €
A (A # u) so thatH is orthogonal tor* — x*. Evaluating all possible values farand
u, we see thaty € {0, 7/6, 7/3} holds.

In the sequel we consider the three possible values§andividually.

CASE ¢o = 0. In this case we havél = (1/v/3)(A} + 15) = (1/V3)(2.] + 43)
by Equation (33) and therefore

1 1
M(H) = E‘@" A2(H) =0, Ag(H)= 5@.
Thus we haveA’ = {£a} with o := A1|a’ = A3|a’ by Equation (34)m' = RH @ m/,
by Equation (35), andn), C m;, & m,, by Equation (36).
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Assume thatm/, # {0} holds. We haver* = (1/2)v/3H = (1/2)x} + (1/2)r5 and
therefore by Proposition 2.4, for anye m,, sayv = M; (&, ..., as) + My, (b1, ..., by)
with a3, ..., a4, b1,...,bs € C, we have|a|| = ||b||. Therefore we can suppose without
loss of generality via Proposition 4.1 thag := M;,(1, 0, 0, 0)+ M,,(1, O, 0, 0)e m,
holds. Then we have

m' 3 R(H, Uo)vo = ZH + ?sz(o, 0, O,I)
However, this is a contradiction to the fact that because0H) = 0, no element of
m’ can have a non-zena,,-component. So we in fact have,, = {0}, hencem’ = RH.
This shows that (for dim’) > 2) the casepy = 0 cannot in fact occur.

CASE ¢o = 71/6. In this case we havel = (v/3/2)-(1/v/3)(A] +15) + (1/2)45 =
A5 by Equation (33) and therefore

MH) =2, JaH) =5, As(H) =1
Thus we haveA’ C {+a, 2o} with « := A1]a’ = 1,|a’ by Equation (34)m' = RH &
m, & m,, by Equation (35), andn/ C m;, & m;, andm,, C m;, by Equation (36).

If « ¢ A’ holds, we thus haven’ = RAS @ mj,, C RA; @ m;,, and thereforem’
then is of type §, ¢ = 7/6,1) with | :=14n;,.

So we now suppose € A’. By the classification of the Riemannian symmetric
spaces of rank 1 we then hawg, < {0, 1, 3, 4, and the totally geodesic submanifold
corresponding tan’ is isometric either taRP*, to CP*, to HP¥ or to the Cayley pro-
jective planeOP=2, depending on whether,, equals 0, 1, 3 or 7, respectively; here
we havek = n.,/(n,, + 1).

It should also be noted that we hawé = (1/2)H = (1/2)Ai+ (1/2)A5, and there-
fore we have for any, ..., C4, di, ..., ds € C by Proposition 2.4

(37) My, (Cor . - ., Ca) + My, (dy, ..., dg) € m, = ||| = ||dII.

In the sequel, we consider the four possible valuesrigr individually. In our
calculations we will use the vectors, vg, ... as they are defined in the entry for the
types @, ¢ = /6, (K, 1)) in Theorem 4.2.

Let us first supposa;, = 0, i.e.A” = {«}. By Proposition 4.1 and because of (37)
we may suppose without loss of generality tbgte m/, holds. Ifn), = 1 holds, we then
havem, = Ryp and thereforen’ = RH @ m, is of type @, ¢ = 7/6, R, 2)). Otherwise
we choosev € m, to be orthogonal tag, sayv = M;,(Cy, . . ., Ca) + My, (dy, . . ., da).
Then we have

1 1
m’ > R(H, vo)v = 3 Re(y)); + 3 Re()1)

+ %MMG (G — da), 1 (=G + o), =1 (G2 + ), 1 (A — ).
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Because the-component of this vector is proportional tb, we have Ref;) = Re(d);
this equation together with our requirement thabe orthogonal tawy shows Reg;) =
Re(;) = 0 and hence, d; € iR. Moreover, because ofe2¢ A’, the m,,-component
of the above vector vanishes, and thus we have

ci=-0d; €iR, c=-0), c3=d3 and cg=dg,
hence
(38) V= M)\l(it, Co, Cs, C4) + MAZ(—it, —Cy, C3, C4)

with t € R. By application of another isotropy transformation, we cenv arrange that
v is proportional tov;. Thus we havevy, v1 € m),, and therefore in the casg = 2,

m’ =RH®m), is of type P, ¢ = 7/6, R, 3)). We now show that the casg > 3 does
not occur. For this purpose, we again let m) be given, but now suppose thatis
orthogonal to bothwg and v1. Thenwv again has the form of Equation (38), however
the requirement that be orthogonal ta; impliest = 0. Moreover, we have

>
m' 5 R(H, v)v; = \1/—;M,\3(c_4i, i, —Gi, 0).

Because of @ ¢ A’, them;,-component of this vector vanishes, and thus we (tave
C3 = C4 = 0, hencev = 0. This shows thah], > 3 is impossible.

Next we suppose,, = 1. Then the Lie triple systerm’ corresponds to a com-
plex projective spac€P, which is a Hermitian symmetric space. Let C m’ be the
tangent space of a real form of this space, théhwill also be a Lie triple system of
m, it will be of rank 1 and correspond to the isotropy angle= 7/6, and it will have
only the rootw, not 2x. As a consequence of the preceding classification of the Lie
triple systems with these propertias; is of type @, ¢ = 7/6, R, 1)) with | € {2, 3}.
Without loss of generality, we may therefore suppose tifais the prototype Lie triple
system of the typel, ¢ = /6, [R,1)) as given in Theorem 4.2. Thus we hawgee m/,
and in the casé = 3 alsov; € m),. Further we may suppose without loss of generality
m,, = Rwy. Then we have

V2 ¢

R(wq, v)H = 1—6vk

for k € {0, 1}, and thereforevx € m/, implies alsovS € m/,. This shows thatn’ =

RH @& m), @ m,, is of type @, ¢ = n/6, (C, I)).

Now we supposer,, = 3. Thenm’ corresponds to a quaternionic projective space
HP, and therefore an analogous argument as in the treatmeriteotdsen,, = 1
shows thatm’ contains as a complex form a Lie triple systeni of type @, ¢ =
/6, (C, 1)) with | € {2, 3}. Without loss of generality, we may suppose thdt is
the prototype Lie triple system of that type as given in Tleeord.2, and therefore
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w1 € my, and vy, vkc € m/, holds, wherek = 0 for | =2 andk = 0,1 for| = 3.
Further we may suppose without loss of generality that alse m/,, holds. We have
for k € {0, 1}

V2 V2
R(wy, v )H = —EUE and R(wo, ka)H = _EUEH'
Thereforevy, v € m, implies alsov{!, v=" € m/, Moreover, we have
2
Rvo, 1§")H = L2

and thereforews € m5,. Thusm’ = RH & m), @ m,, is of type @, ¢ = 7/6, (H, I)).
Finally we supposen,, = 7. Thenn, = 8 is the only possibility by the clas-
sification of the Riemannian symmetric spaces of rank 1, mhaorresponds to the
Cayley projective planeDP?. OP? contains aHP? as totally geodesic submanifold,
and thus by an analogous argument as before, we seenthtaintains a Lie triple sys-
temm” of type @, ¢ = /6, (H, 2)); without loss of generality we may suppose that
m” is the prototype Lie triple system of that type. Thus we hayey§, vf!, v5H e m),
and wy, wo, wz € m,,. Without loss of generality we may further supposg € my,.

We have

V2 V2
R(ws, vo)H = Evoo, R(wa, vg)H = Evgo,
2 vz
R(W4, U(I)_‘)H = Ev(};o and R(W4, U(():H)H = EUSHO,

and thereforen/, is spanned byy, v, v¢!, o5, vd, v§ ©, v!°, v5HO. Moreover, we have

R(vo, ng)H = \/T—ng,, R(vo, v(';'o)H = ?we
and
R(vo, ngO)H = \/Tzun
and thereforem,, is spanned byws, ..., wy. Thereforem’ = RH @& m/, & m}, is of

type @, ¢ = n/6, (O, 2)).

CASE @9 = m/3. By an analogous argument as in the cagse= 0, one shows
that this case cannot occur.

This completes the classification of the Lie triple systemshie Riemannian sym-
metric space EIV. O

4.3. Totally geodesic submanifolds irEg/F4. We are interested in determining
the global isometry types of the totally geodesic subméasf@f EIV corresponding to
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the various types of Lie triple systems as they were clagsifieTheorem 4.2. In the
case of EIV all the maximal totally geodesic submanifolds egflective, so we can
derive this information from the classification of refleetisubmanifolds due to Leung,
see [13].

Using the information from that paper, we obtain the resoftthe following table.
In it, we again use the notations introduced at the beginoin§ection 3.3.

type of Lie triple system| isometry type propertie$
(Geo,p =1t) R or ST
(S, ¢ =m/6,1) s, | = 9: Helgason sphere
(P, ¢ =7/6, K, I)) ]Iglszl/4 (K, 1) = (0, 2): polar, maximal
(K, 1) = (H, 3): reflective, maximal
(Al) ((SUR)SOB)Y Z3)sr—1
(AZ) (SU(S)/ZB)srrzl
(AN ((SU(BYSP(3)YZ3)sr=1 reflective, maximal
| = 9: meridian for
(Sx81) (St xS_ 5)/Za (P, ¢ = 7/6, (O, 2)), maximal

4.4. Totally geodesic submanifolds in SU(@Bp(3). Similarly as we derived
the classification of the Lie triple systems resp. the tptgkodesic submanifolds in
SO(10yU(5) from that classification in Elll in Section 3.5, we nowrige the classifi-
cation for SU(6)Sp(3) from the classification in EIV, using the fact that SJJ&p(3)
is the local isometry type of a maximal totally geodesic sabifold of EIV.

Thus we remain in the situation studied in Section 4.2. Wesiclan the Riemann-
ian symmetric space EIV, and lgt= £t ®m be the canonical decomposition gf= ¢g
associated with this space, i.e. we héve f, andm is isomorphic to the tangent space
of EIV. We will use the names for the types of Lie triple sysgeof m as introduced
in Theorem 4.2.

Further, we letm; be a Lie triple system ofn of type (All), i.e.m; corresponds
to a totally geodesic submanifold which is locally isometid SU(6YSp(3).

Theorem 4.4. Exactly the following types of Lie triple systemsEiV have rep-
resentatives which are contained umy:

e (Geo,p =1t) witht e|[0, 7/3],

e (S,¢=m/6,1)withl <5,

o (P,p=mn/6,(K,2)withK € {R, C, H},
e (P,¢=mn/6, (K, 3))withK € {R, C},

o (A,

e (A2,

e (SxSL1)with| <5,
The maximal Lie triple systems af; are those of the types(P, ¢ = 7/6, (H, 2)),
(P, ¢ = /6, (C, 3)), (A2) and (S x St, 5).

"The polars and meridians are also reflective, without this tieing noted explicitly in the table.
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Proof. Similar to the proofs of Theorems 3.8 and 3.10. []

REMARK 4.5. Chen/Nagano incorrectly state in [5] that the Lie &iglystems of
type (Al) (corresponding to SU(3$O(3)) were maximal in SU(BBp(3), rather these Lie
triple systems are contained in Lie triple systems of typg (Borresponding to SU(3)).

Also for SU(6)Sp(3), the maximal totally geodesic submanifolds are dléctve.
Using the information from [13], we obtain the following orimation on the global
isometry type of the totally geodesic submanifolds of SYEp)3) corresponding to
the various types of Lie triple systems:

type of Lie triple system  isometry type propertie&
(Geo,p =t) R or St
(S, 9 =7/6,1) Sh_, | = 5: Helgason sphere
(P, o =n/6, K, 1)) KP,_1/4 (K, 1) = (H, 2): polar, maximal
(K, 1) = (C, 3): reflective, maximal

(AI) (SU(BY/SO(3) k=1

(A2) SURkr=1 reflective

| = 5: meridian for

(8 x8%1) (Sr—s Sfl:ﬁ)/zz (P, ¢ = /6, (H, 2)), maximal

4.5. Totally geodesic submanifolds in SU(3). Using the same strategy as before,
we next classify the totally geodesic submanifolds of SU(8parded as a Riemannian
symmetric space. We again lgt= ¢t & m be the splitting corresponding to EIV, and let
my now be a Lie triple system afi of type (A2); then the totally geodesic submanifold
of EIV corresponding tan; is locally isometric to SU(3).

Theorem 4.6. Exactly the following types of Lie triple systemskl¥V have rep-
resentatives which are contained 1y
(Geo,p =t) with t € [0, 7/3],
(S, ¢ = 7/6,1) with | <3,
(P, ¢ = /6, (K, 2)) with K € {R, C},
(P, ¢ =7/6, R, 3)),
(A),
(S x st 1) with | < 3.
The maximal Lie triple systems af; are those of the types(P, ¢ = /6, (C, 2)),
(P, ¢ = 7/6, (R, 3)), (Al) and (S x S%, 3).

Proof. Similar to the proofs of Theorems 3.8 and 3.10. O

8The polars and meridians are also reflective, without this fieing noted explicitly in the table.
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REMARK 4.7. Chen/Nagano incorrectly state in [5] that SU(3) corgaiotally
geodesic submanifolds isometric to SURPU(2) and SU(3)(SU(2)x SU(2)). This is
impossible, because SU®RBU(2) has the same rank as SU(3), but whereas the former
group has two orthogonal roots, the latter has not.

Once again, also for the Riemannian symmetric space SU(3heamaximal to-
tally geodesic submanifolds are reflective. Using the diaation of the reflective sub-
manifolds by Leung (in [11], Theorem 3.3 for the group maldi§y see also [12]), we
obtain the following information on the global isometry &/pf the totally geodesic
submanifolds of SU(3) corresponding to the various typesieftriple systems:

type of Lie triple systen] isometry type propertied
(Geo,p =1) R or St
(S, ¢ =m/6,1) St_, | = 3: Helgason sphere
(P, ¢ =7/6, K,1)) KP,_1 4 (K, 1) = (C, 2): polar, maximal
(K, ) = (R, 3): reflective, maxima
(Al) (SU(3)/SO(3) k=1 reflective, maximal
| = 3: meridian for
1 | 1

(S x§7%1) (St-1 Sr=~/§)/Z2 (P, ¢ = /6, (C, 2)), maximal

4.6. Totally geodesic submanifolds in SU(3BO(3). The totally geodesic sub-
manifolds of SU(3)SO(3) have already been classified in [9], Section 6. Becthese
totally geodesic submanifolds of EIV of type (Al) are logaiometric to SU(3)SO(3),
the Lie triple systems of SU(8$O(3) also occur as Lie triple systems of EIV. In the
following table, we list the correspondence between thedypf Lie triple systems of
SU(3)/SO(3) as defined in [9], Proposition 6.1, and types of Lieleérigystems of EIV
as defined in Theorem 4.2 of the present paper. We also givedirestry type of the cor-
responding totally geodesic submanifolds, as it has betrdaned in [9], Section 6; for
the application of this information it should be noted thedre the metric of SU(ZBO(3)
has been normalized in such a way that the roots have levigthwhereas we now want
to normalize the metric in such a way that the roots have keagt

t

(}/g]e Proposition 6.1 type (Theorem 4.2 isometry type properties
(G) (Geo,p =1) R or St
(T (S x S1, 1) (Sto1 xS j5)/Z2
(S) (S, ¢ =m/6,2) S, Helgason sphere
(M) (P, ¢ = /6, R, 2)) RP 4 polar, maximal
(P) (S xSt 2) (S?_1 xS'_ z)/Z> | meridian, maxima

9The polars and meridians are also reflective, without this tieing noted explicitly in the table.
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5. The symmetric spacesG, and G,/SO(4)

5.1. The geometry of the Lie groupG,, regarded as a symmetric space. In
this section we will study the exceptional compact Lie gréup regarded as a Riemann-
ian symmetric space. In particular we need to obtain its ature tensor. The usual
way to do so would be to regar@, as the quotient space&sg x G)/A(G,), where
A(G2) :={(0, 9) | g € Gy} is the diagonal of the produc®, x G,, and then to apply
the method of [9] to that space to compute its curvature fenso

However, we can reduce the effort involved in the calcutatidoy noting that in
that model of the symmetric spac&, the spacan which corresponds to the tangent
space at the origin, is given by = {(X,—X) | X € g,} C g,®g,, and that for elements
(X, =X), (Y, =Y), (Z, —2Z) € m, the curvature tensor is given by

—[[(X, _X)1 (Y! _Y)]v (Z, _Z)] = _([[X! Y], Z]! _[[X1 Y]v Z])

Under the canonical isomorphism — g,, (X, —X) — X, the curvature tensor of these
elements ofm therefore corresponds to[[ X, Y], Z] € g,, hence the Lie triple systems
in m C g, @ g, correspond to the Lie triple systems gg (i.e. to the linear subspaces
of g, which are invariant under the Lie triple bracket-[[ -], -] of g,). Moreover,
the isotropy action ofA(G,) on m corresponds to the adjoint action G on g,. For
this reason, we can carry out the classification of Lie trigystems by calculation in
g, itself (instead of inm C g, @ g,). In doing so, we will only need the description
of the root system and the Lie bracket @f, which we obtain by application of the
results of Sections 2, 3 of [9].

In the sequel, we will consider also an A&l{)-invariant inner product of,. Such
an inner product is unique up to a positive constant, whichchaose so that the short-
est roots ofg, (see below) have the length 1.

We now fix a Cartan subalgebraC g, and a choice of positive roots in the root
systemA of g, with respect toa. The Dynkin diagram ofy, is e << e, and therefore
the simple roots ofy,, which we denote by.; and x,, have an angle of/5/6 to each
other, wherei, is the longer root by a factor of/3. The other positive roots db, are

A= A1+ Ay, Ag:=2h1+ Ay, As:=3h1+Ax and Aig:= 3i1 + 2),.

In this way we obtain the following root diagram f@o:
A6
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In the sequel, we will use the notation, (c) defined as in Equation (7) fdt €
{1,...,6} andc € C to denote an element of the root spaceggfcorresponding to
the rootix. Then the root space correspondingipequalsV;, (C).

We will also use the isotropy angle functian defined at the end of Section 2
for g,; remember that in the present situation, the isotropy actib the symmetric
spaceG; is given simply by the adjoint action d&, on g,. We havegpmax = 7/6 and
thus we obtain an isotropy angle functign g, \ {0} — [0, 7/6]. For the elements of
the closurec of the positive Weyl chambet := {v € a | A1(v) > 0, Ax(v) > 0}, we
once again explicitly describe the relation to their ispyrangle: Ai, (1/J§)A§) is an
orthonormal basis of so that withv, := cos([))»fl + sin(t)(l/\/f%))ft2 we have

(39) E:{s-mte[o,%}, seRZo},

and because the Weyl chamheis bordered by the two vectorg = Ai with ¢(vg) =0
and v, 6 = (1/+/3); with ¢(v,/6) = 7/6, we have

(40) p(s-n) =t forall te [O, %} seR,.
Further we note the following simple fact on the adjoint actof G;:

Proposition 5.1. Let A be a short rootand A’ be a long root of G. Then the
adjoint action of the maximal torus 7= exp() on g, leavesa pointwise fixedand
acts “jointly transitively’ on the unit spheres in the root spaces(®) and \4/(C) in
the sense that for any given,c,, ¢}, ¢, € C with |c1| = |c;| and |c;| = |c;]| there exists
g € T with Ad(g)Vi.(c1) = Vi(c) and Ad(Q)Vi(c}) = Vi (C)).

5.2. Lie triple systems inG,. We continue to use the notations of the preced-
ing section.

Theorem 5.2. The linear subspaces’ C g, given in the following are Lie triple
systemsand every Lie triple systerf®} # m’ C g, is congruent under the adjoint action
to one of them.

e (Geo,p =t)witht €0, 7/6]:

m = Il&(cos@)f1 + sin(t)(l/\/ﬁ)/\g) (seeEquation (40))
e (S,¢=0,l)withl e {2, 3}:

m’ is an |-dimensional linear subspace Bk} ® m,.

o (S, ¢ =arctan(¥3v3),1) with | € {2, 3}:

m’ is an I-dimensional subspace smar{%i + 515, V;, (1) + Vi, ((1/3)V/5), Vs, (i) +

Vi, ((1/3)/50)}.
e (S,¢=m/6,1)withl e {2, 3}:
m' is an |-dimensional linear subspace BR; @ m;,.
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e (P,p=m/6 R,I),G)withl € {2, 3}:
w’ is an I-dimensional subspace sparii’, Vi, (1) + Vi, (v/3), Vi, (i) — Vi, (+/30)).
e (P,¢o=m/6 R, I),A)withl e {2, 3}:
w’ is an |-dimensional subspace sparii;, Vi, (1) + Vi (1), Vs, (i) + Vi (i)}
e (P,¢=m/6, R, 3), max):
m’ = spariag, Vi, (1) + Vig(1), Vi, (i) = Vay(v3i) = Vi, (V31) + Vi (i)}
o (P,¢p=m/6,(C,2),G):
m’ = sparirg, Vi,(1) + Vi, (v3), Vig (v31) + Vig(i), Vi (L))
o (P.9=1/6,(C, 2),A):
m' = sparfAg, Vi, (1) + Vig(1), Vi, (i) = Vis i), Vis(D)}-
e (SxS,I,I")withl, I’ <3:
m' =a®m) &m; , wherem; CV,,(C)andm; C V;,(C) are linear subspaces of
dimension - 1 resp.f — 1.

e (Al):

m = a® Vi,(R) ® Vi (R) @ Vi, (iR).
° (Ag):

W = a® V;,(C) @ Viu(C) B Vi, ().
° (G)Z

m' =a®V,R) & Vi,R) & Vi, (iR) @ Vi, (R) & Vi, (iR) @ Vi (R).
We call the full naméGeo, ¢ = t) etc. given in the above table the type of the Lie triple
systems which are congruent under the adjoint action to gaes given in that entrif
Then no Lie triple system is of more than one type.

The Lie triple systems’ of the various types have the properties given in the follow-
ing table. The columhisometry typ& again gives the isometry type of the totally geodesic
submanifolds corresponding to the Lie triple systems ofdékpective type in abbreviated
form, for the details se&ection 5.3

type ofm’ dim(m’) | rk(m’) |m’ Lie subalgebra m” maximal isometry type
(Geo,p =1) 1 1 yes no R or St
(S,¢=0,1) I 1 forl =3 no S2_,
(S, ¢ = arctan(¥3+/3),1) I 1 forl =3 forl =3 Slr:(z/s)m
(S, ¢ =n/6,1) | 1 forl =3 no S'r:wé
(P, ¢ =7/6, R, 1), G) [ 1 no no RP
(P, o = /6, R, 1), A2) I 1 forl =3 no RP
(P, ¢ =7/6, R, 3), max) 3 1 no yes RP?
(P, ¢ =7/6, (C, 2), G) 4 1 no no CP?
P,o=7/6,(C,2,A) | 4 1 no no CP?
(Sxs, L) I+ 2 forl,1"e (1,3 |forl =1"= (Slzlxslzl/ﬁ)/zz
(Al 5 2 no no SU(3)/SO(3)
(A2) 8 2 yes yes SU(3)
(G) 8 2 no yes G,/S0O(4)

ONotice that in this case, the typeS « S, 1,1’) and § x S, I’,1) with | # 1" are not equivalent,
because the two irreducible components of the Lie tripleesys of this type correspond to spheres
of different radius, see Section 5.3.
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REMARK 5.3. The maximal totally geodesic submanifolds@f of types §, ¢ =
arctan(¥3+/3), 3) and P, ¢ = 7/6, (R, 3), max), which are isometric to a 3-sphere of
radius (23)+/21 and a 3-dimensional real projective space of constatibsat curvature
3/4 respectively, are missing from the classification by Ched ldagano in Table VIl
of [5]. The submanifolds of typeS( ¢ = arctan(¥3+/3), 3) are once again in a “skew”
position in the ambient manifol6, in the sense that their geodesic diametgBj2/21x
is strictly larger than the geodesic diametet3R/3r of G..

It should also be noted that with the three types of totallpdgsic submanifolds
(P, =7n/6, R, 3), G), P,y =n/6, R, 3), A2) and P, ¢ = /6, (R, 3), max), and
likewise with the two typesEK, ¢ = 7/6, (C, 2), G) and P, ¢ = /6, (C, 2), Az), we
have examples of totally geodesic submanifolds which aymétric to one another, but
which are not congruent under the isometry action of the antbépace.

Proof of Theorem 5.2. Once again, it is easily checked thatsftaces defined in
the theorem are Lie triple systems, and thus the spaces vahnélconjugate to one of
them under the adjoint action also are. It is also easily dbahthe information in
the table on the dimension and the rank of the Lie triple sgstand regarding the
question which of them are Lie subalgebrasggfis correct. The information on the
isometry type of the totally geodesic submanifolds coroesiing to the various types
of Lie triple systems will be proved in Section 5.3.

For the fact that no Lie triple system is of more than one tyjdetice that, with
the exception of the type®(¢ = 7/6, (K, 1), x), no two types of Lie triple systems
correspond to the same isometry type of totally geodesienamifold, therefore none
of these Lie triple systems can be of more than one type. Tevghat the various
types of the form P, ¢ = 7/6, (K, |), *) are also separate, we determine for a Lie
triple systemm’ of each of these types the type of the smallest Lie tripleesysh’
of rank 2 which containsn’ (using thesat ake package as usual). We obtain the
following result:

type of m’ type of
P,p=7/6,R,2),G) | (SxS,22)
P, o =7/6, R, 2), A) (Al)
(a1) (P, =7/6, R, 3),G) | (SxS,3,3)
(P1 Y = 7-[/6! (Rv 3)1 AZ) (Az)
(P, o =7/6, R, 3), max)| ' =g,
(P, =m/6,(C, 2), G) (G)
(]P, Y = 7T/6, ((C, 2)! AZ) (Az)

We see that in each series of typ®s ¢ = /6, (K, 1), *) with fixed (K,I), the Lie triple
systemsm’ corresponding to the Lie triple systemg of these types are of different
type. Because we already know that no Lie triple system ok rarcan be of more
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than one type, it follows that also among the typBs{ = /6, (K, 1), *) no Lie triple
system can be of more than one type.

We next show that the information on the maximality of the Liple systems is
correct. For this purpose, we presume that the list of Lipla@risystems given in the
theorem is in fact complete; this will be proved in the rerdainof the present section.

That the Lie triple systems which are claimed to be maximathie table indeed
are: This is clear for the types ghand (G) because there are no Lie triple systems
of greater dimension. For the typ§ & S, 3, 3), we note that if it were not maximal,
it could only be included in a Lie triple system of typej{for (G) for dimension rea-
sons. However, the Lie triple systems of tyfgx(S, 3, 3) have two orthogonal roots of
multiplicity 2, whereas the systems of type,{Ado not have a pair of orthogonal roots,
and in the systems of type (G), all roots have multiplicitySo such an inclusion is
not in fact possible, and hence the Lie triple systems of e S, 3, 3) are max-
imal. For the type §, ¢ = arctan(}¥3+/3), 3): Leti’ C g, be a Lie triple system with
m’ ¢ @', If @' were of rank 1, then it would need to have the same isotropyeang
¢ = arctan(¥3+/3) and a strictly greater dimension thaxi, but no such Lie triple
system exists. San’ is of rank 2. It now follows from the description of the type
(S, ¢ = arctan(¥3+/3), 3) that®’ has two roots at an angle ofr36 to each other and
these two roots both have multiplicity 2. Therefoié = g, holds, and hencen’ is
maximal. For the typeK, ¢ = 7/6, (R, 3), max): Again suppose that C g, is a
Lie triple system withm’ ¢ @', Similarly as befores’ cannot be of rank 1. But we
also know already from Table (41) that there is no rank 2 Lipldrsystemm’ with
m ¢ @' C g, either. Thereforan’ is maximal.

That no Lie triple systems are maximal besides those mesdicabove follows
from the following table:

Every Lie triple system of type..| is contained in a Lie triple system of type.|.
(Geo,p =1t) (Sxs,1,1)
(S,¢=0,1) (SxS,1,1)
(S, ¢ = arctan(¥3+/3), 2)) (G)
(S, ¢ =m/6,1) (Sxs,1,1)
(P, ¢ =7/6, K, 1), G) (G)
(]P’aﬁﬂ =7T/6, (K1|)1A2) (AZ)
(S xS, I, 1"y with (I, ") # (3, 3) (SxS,3,3)
(Al) (A2)

We now turn to the proof that the list of Lie triple systems gf given in The-
orem 5.2 is indeed complete. For this purpose, we let anrarpitie triple systemm’
of g,, {0} # m’ < g,, be given. Because the Lie algehya is of rank 2, the rank of
m’ is either 1 or 2. We will handle these two cases separateljpensequel.

We first suppose thain’ is a Lie triple system of rank 2. Let us fix a Cartan
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subalgebran of m’; because of rki’) = rk(g,), a is then also a Cartan subalgebra of
g». In relation to this situation, we again use the notatiortsoduced in Sections 2
and 5.1. In particular, we consider the positive root system:= {A1, ..., Ag} Of the
root systemA := A(g,, a) of g,, and also the root systed\’ := A(m’, a) of m’. By
Proposition 2.1 (b),A" is a root subsystem of\, and thereforeA’ := A’ N A, is

a positive system of roots foA’. Moreover, in the root space decompositionsgef
and m’

6

(42) p=a8@V,(C) and m' =as P m),
k=1 AeA

the root spacem; of m’ with respect tor € A’_ is related to the corresponding root
spaceV, (C) of g, by m) = V,(C) Nm'.

Because the subset’ of A is invariant under its own Weyl group, we have (up to
Weyl transformation) the following possibilities fak’, , which we will treat individu-
ally in the sequel:

A/ﬁ» = A+! A/+ = {}\'21 )\'5: )"6}! A/+ = {)\'11 )\'31 )\'4}:
AL ={r1, x6}, AL ={ke}, AL ={r} and A =2.

CAse A, = A,. In this case the Dynkin diagram with multiplicities af’ is
ot =™ with ny, N, € {1, 2. From the classification of the irreducible Riemann-
ian symmetric spaces (see for example [14], p. 119, 146), eeethatn; = n, =:
n e {1, 2 holds. If n = 2 holds, we havew’ = g,. If n = 1 holds, we may by
virtue of Proposition 5.1 suppose without loss of geneyalitat m; = V;,(R) and
m;_ = V,(R) holds. Then we can calculate the remaining root spaces’adne by
one: We haveR()ﬁ, Vi, (DWV,,(1) = 3«/§/4-an0) and thereforem; = V,,(iR). We
have R(), Vi, ())Va, (1) = v/3/4-V,,(1) = 1/2-V,,(1) and thereforem;, = V;,(R). We
have R(A%, Vo, (O, (1) = 1/2- V(i) — \/§/4-V15(i) and thereforem; = V,,(iR). Fi-
nally, we haveR(Aﬁ, Vi ())Vs,(1) = 3v/3/4- V,,(1) and thereforen; = V;,(R). Thus
it follows from Equation (42) that

m' =a® Vi,(R) ® Vi,(R) @ Vi, (iR) @ V, (R) @ Vi, (iR) & Vi, (R)

holds, and thereforen’ is of type (G).

CAse A/, = {A2, A5, Ag}. In this case, the Dynkin diagram with multiplicities
of m’ is e" —e" with n € {1, 2}. In the casen = 2 we havem’ = a @ V,,(C) &
V,,(C) & V,,(C) and thereforem’ is of type (A). In the casen = 1 we may sup-
pose without loss of generalityr), = V;,(R) and m;_ = V;,(R); then we havem’ €
R()Lﬁ, V,,())V,(1) = —(3\/§/4)Vks(i) and hencem;_ = V;(iR). Therefore we have
m' =a® V,,([R) & Vi, (R) ® Vi, (iR), thusm’ is of type (Al).
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CASE A, = {1, A3, A4}. Assume thatm’ is a Lie triple system with this root
system. Then there exist d € C* so thatV,,(c), V;,(d) € m’ holds. We have

m’ 3 RAE, Vi, (Q)Vs,(d) = ?VAZ(Edi) + Vi, (cdi)

and therefore in particulax; € A’,, contrary to the hypothesia’, = {i1, A3, A4}. This
calculation shows that there do not exist any Lie triple eystm’ of g, with A’ =
{A1, A3, A4}

CASEs A, C{A1,26}. In this case we havey' = adm] &m; by Equation (42),
thereforem’ is of type § xS, I, I') with | := 1+ dim(m] ) andl’ := 1 + dim(m; ).

This completes the treatment of the case whetds of rank 2.

We now suppose that' C g, is a Lie triple system of rank 1. We may suppose
without loss of generality thatw' contains a unit vectoH from the closure of the
positive Weyl chambet. By Equations (39) and (40), we then have with:= ¢(H) €
[0, 7 /6]

1
V3
Because of rkt') = 1, o’ := RH is a Cartan subalgebra af, and we have’ = anm’.

It follows from Proposition 2.1 (a) that the root system$and A of m’ resp.g, with
respect toa’ resp. toa are related by

(43) H = cosgo)rl + sin(wo)—=15.

(44) A" C {(MH)ag | A € A, A(H) # 0}

with the linear formag: ' — R, tH + t; moreover form’ we have the root space
decomposition

(45) m=d® @ m,

,
a€A’,

where for any rootx € A’, the corresponding root spae€, is given by

(46) m,=| @ wi©)|nw.

rEA
A(H)=a(H)

If A’ = @ holds, we havan’ = RH, and thereforan’ is then of type (Geop =
@p). Otherwise it follows from Proposition 2.3 that one of tlaldwing two conditions
holds: EitherH is proportional to a root vectok’ with A € A, or there exist two
A, € A (L # u) so thatH is orthogonal tor” — u*. Evaluating all possible values
for A and u, we see thaty € {0, arctan(¥3+/3), 7/6} holds.
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In the sequel we consider the three possible valuesp§andividually.
CASE @9 = 0. In this case we havél = Af‘ by Equation (43) and therefore

MH) = 2, Ja(H) =0, Ja(H) = 5, Ag(H) =1, As(H) = 5, 2s(H) = >

Thus we haveA’ C {+«a, +2u, +3a} with o := A1]a’ = A3|a’ by Equation (44)m’ =
RH & m, @ m,, @ m;, by Equation (45) andw, C V,,(C) @ V,,(C), mj, C V,,(C)
andmy, C Vi, (C) & V,,(C) by Equation (46).

We now show that actuallg, 3o ¢ A, holds.

Indeed, letv € m/, be given. Then there exist d € C so thatv = V;,(c) + V;,(d)
holds. We havec| = |d| because of Proposition 2.4 and the fact that= (1/2)A; +
(1/2)A§ holds. Next we notice that because of(H) = 0, the V,,(C)-component of
every vector inm’ must vanish. However, th#,,(C)-component ofR(H, v)v € w'
equals {/3/2)V,,(cdi), and so we concluded = 0. Because ofc| = |d|, it follows
that we havec = d = 0 and hences = 0. Thus we haven, = {0} and hencex ¢ A’.

A similar calculation also showse3¢ A’, and therefore we hava’ = {+2«} and
hencem’ = RH @ m,, with a linear subspacé} # m,, C V,,(C). It follows that m’
is of type §, ¢ =0,1) with | :=14nj,.

CASE ¢ = arctan(¥3+/3). In this case we havél = (\/2_1/42)(91331 + Aﬁz) by
Equation (43) and therefore

kl(H)=%-l, AZ(H)=%-1, xs(H)=1£41-2,
FONR. R’ DR,

In the present case we havé ¢ o for every » € A, thereforem’ can only have
composite roots (see Definition 2.2) by Proposition 2.3 (&is fact, together with
the above values of(H) and Equation (44), shows that we hawé = {+«} with
o = M|a’ = Aold’. Moreover, we haven’ = RH & m/, by Equation (45) andn/, C
V,,(C) & V,,(C) by Equation (46).

Let v € m), be given, sayw =V, (c1) + Vj,(Cc2) with ¢i, ¢; € C. We have

21

of =a(H)-H =xy(H)-H = 1

_ 1 n_ 9.2, 9.
‘H= 53(9/\4+/\2) =T
and therefore Proposition 2.4 shows that we haeg = ./(5/14)/(9/14)c;| =
(1/3)v5lcal.

By Proposition 5.1 we may therefore suppose without lossewiegality thatvg :
Vi, (1) + V4,((1/3)+/5) € m, holds. Then we have

V7
14

(47) m’ 3 R(vg, v)H = ———V,,(i (3c2 — v/5cy)).
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Because ofiz|a’ = 20 ¢ A’, the vector (47) must vanish, and thus we haeg 3
V/5cy. This shows thatn, is a linear subspace dW;,(c) +V,,((+/5/3)) | c e C}, and
thereforem’ = RH @ m), is of type §, ¢ = arctan(¥3+/3),1) with | := 1+ n,.
CASE ¢o = /6. In this case we havel = (1/\/§))% by Equation (43) and there-
fore
V3 /3

Ai(H) =0, 2p(H) = > A3(H) = -

ra(H) = ? As(H) = ? rs(H) = V3.

Thus we haveA’ C {+o, £2¢} with « := Azla’ = Agla’ = A4la’ = As|a’ by Equa-
tion (44), W' = RH & m;, & m,, by Equation (45) andn,, C V,,(C) @ V,,(C) &
V,..(C) @ V,5(C) andm,, C V,,(C) by Equation (46). For the sake of brevity, we put
V,(Cz, C3, C4, C5) 1= ZE:z V,, (c) for ¢y, ..., cs € C in the sequel.

Let us first consider the case ¢ A’ and thereforeA” = {£2«}. Then we have
m’ =RH @ m),, and thereforan’ then is of type §, ¢ = 7/6,1) with | :=1+nj,.

So we now suppose € A’. Then we fixvg € m/, \ {0}, sayvg = V,(Cz, ..., Cs)
with ¢p,...,c5 € C. Ford € C we have

ad(V;(d))vo = \/7—3Va(0_5d, —Cqd, Cd, —C2d),

whence it follows that the Lie subgroup em@@vxs((:)) acts via its adjoint represen-

tation on the coordinates4, c;) € C? of V,(cy,...,Cs) as the conjugate of the canonical

action of SU(2) onC2. Therefore, by application of a suitable element of this igy-

group, we can pass fromn’ to another Lie triple system of the same type, for which

¢z = 0 holds. Furthermore, by Proposition 5.1 we may supposeowittoss of gener-

ality thatc, = t; andcy = t4 with tp,t, € R> holds. Thus we havey = V,(t2, 0,14, Cs).
We now calculate

V3
m' 3 R(H, vo)vo = (@5 + 3(es)i + (5 + 15 + os/*)23)
3, .
+ Vi, (—§t4c5|).

The a-component of this vector lies iRH = R(3Ai + 2)»5) (because of rikg’) = 1),
therefore we have

(48)

2. (22 4+ 3lcs]?) = 3 (2 +t2 + |cs)
and thus

(49) t2 + 3|cs|? = 3t2.
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From this equation it follows that, # O (otherwise we would have, = ¢s = 0 and
hencevy = 0). By appropriately scalingg, we can therefore arrange = 1 and there-
fore vg = V,(1, 0,14, Cs).

Moreover, theV,,(C)-component of the vector (48) vanishes (becausg 0H) =
0), and thus we haviecs = 0. Therefore we have eithef = 0 and then|cs| = 1 by
Equation (49), by application of Proposition 5.1 we can rgescs = 1; or elsecs = 0
and thent, = /3 by Equation (49). So we see that

either vo = V,(1,0,0,1) or vg = V,(1, 0,3, 0)

holds. We will treat these two possible cases separately.

Let us first look at the case wheng = V,(1, 0,0, 1)e m/, holds. Ifn, =1
(i.e. m}, = Rup) holds, we necessarily havex2t A’ (otherwisen,, 4+ 1 dividesn,)
and thereforan’ = RH & Rug then is of type P, ¢ = 7/6, R, 2), A2). Thus we now
supposen,, > 2 and letv € m), with v L vg be given, sayv = V,(cy, ..., Cs) with
Cy...,C5 € C. We have

m’ 3 R(H, vo)v = ?(3 Re€s)A; + (Re) + Re(s))A))
(50)

V(s 4 @) Vagli(s — ).

Again, the a-component of this vector lies iRH = R(3).} + 2)5), whence we have
2-3ReEs) = 3- (Re(2) + Re(s)), hence Ret,) = Re(cs). Because of our hypothesis
v L vg it follows that Re¢,) = Re(cs) = 0 holds, thus we have, = it, and ¢cs = its
with tp, ts € R. Moreover, theV,, (C)-component of the vector (50) vanishes, and thus
we havecs, = —Cz. Thus we see that any € m), with v L v is of the formv =
Va(itz, C3, —Ca, it5) with L, e R and cz3eC.

We now first consider the case where @ A’, i.e. A’ = {£«}. We shall show that
in this situation, any € m/, with v L vg is a scalar multiple of one of the following
four vectors:

v1, 0= V,(i, 0,0,i), vy = Vu(i, —/3ie?/3 —/3ie® /8 i) for ke{0,1,3.

BecauseRv; , URv; oURwvy 1 URv; » does not contain any linear subspaces of dimen-
sion > 2, it follows thatn), = 2 andm, = Rvg @ Rvyx holds with somek € {x, 0, 1, 3.

If we havek = x here, thenm’ =RH @ Rug® Ry, is of type @, ¢ = 7/6, R, 3), Ap).

If ke {0,1,2 holds, thenm’ = RH ®Rvo P Ruvy« is of type @, ¢ = 7/6, R, 3), max):
For k = 0 this is obvious. Fok € {1, 2} we considerZ := 41} + 21} € a. Then we
have forn e N

ad@Z)"H =0, ad@Z)"vo = V,(0, 0, 0, (3)"),
and

ad@Z)"v1.0 = Vu (0, —v/3i -i", =+/3i(2)", i (3i)"),
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hence fort € R

Ad(exptZ))H = H, Ad(exptZ))vo = Vu(1, 0, 0,€¥"),

and
Ad(expt Z))v1o = Va(i, —V/3ie"t, —/3ie?t, iedt).

It follows that with g := exp((&r/3)Z) € G, the adjoint transformation Adj trans-
forms the prototype Lie triple systeRH ®Rvo@B R o Of type @, ¢ = 7/6, R, 3), max)
given in the theorem into our givem’ = RH @ Rug @ Rv; x, hencem’ is of that type.
For the proof thab is a multiple of one of the; ¢ (k € {x,0,1,3), we use the fact
that v is of the formv = V,(ity, c3, —Cs, it5) as was shown above. Because af 2 A’,
in the present situation also thg, (C)-component of the vector (50) vanishes, whence
it follows thatt, = ts holds. Thus we have = V,(it, ¢, —C, it) with somet € R and
ce C. If c =0 holds, therw is a multiple ofvy,. Thus we now suppose # 0. The
V;, (C)-component ofR(H, v)v € m" equalsV,, (—3tc + +/3iT?); this has to vanish, and
thus we have

(51) ic? = /3tc.

Because oft # 0 this equation implies alsb## 0, and therefore we can ensure= 1
by scalingv appropriately. Writingc = re'? with r > 0 and—n < ¢ < 7, we now
derive from Equation (51) the equality= —+/3ie¥¢, which impliesr = v/3 and¢g =
2(k — 1)7/3 + 7/6 = 2kn/3 — /2 with k € {0, 1, 2, and thusc = —+/3ie®71/3, |t
follows thatv = V,(i, ¢, —C, i) = vy« holds.

Let us now consider the cas®’ = {+«, +2«a}. From the classification of the
Riemannian symmetric spaces of rank 1 we know tiigte {1, 3,7 holds. Because of
n,, < 2, we have in the present situation in facf, = 1. Without loss of generality we
may supposen,, = Rw with w := V;,(1). Therefore we have besidés, w, vo € m’
also R(H, w)vg = V,(—(3/2)i, 0, 0, (32)i) € w’, hencev; := V,(i, 0, 0,—i) € w'.

We now show that in facin,, = Rvo @ Ruv; holds. For this purpose, we lete m/,
with v L vg, v; be given. We need to show = 0. As we saw above, because of
the conditionsv € m/, and v L vg we havev = V,(ity, C3, —Cg, its) with tp, ts € R
andcz € C. A similar calculation based on the fact that aksd. v; holds shows that
t, = ts = 0 and thereforev = V, (0, c3, —Cs, 0) holds. We now have that thé,, (C)-
component ofR(H, v)v, which equals\/kl(\/_30_32i), vanishes, and thus we hagg= 0,
hencev = 0. Therefore we haver, = Rvp@®Rv; and thusm’ = RH ®@Rvg@Rv1 HRw
is of the type P, ¢ = /6, (C, 2), Ap).

This completes the treatment of the case wheye= V,(1, 0, 0, 1)e m/, holds.
We now turn to the other possible case fg; namelyvy = V, (1, 0,+/3, 0) € m/,. If
n, = 1 holds, we again havea2¢ w’, and thereforan’ = RH @& Rug then is of the
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type @, ¢ = /6, R, 2), G). Thus we again supposg > 2 in the sequel. Then we

have for anyv € m/, with v L v, sayv = V,(Cy, C3, C4, C5) With Cp, ..., C5 € C,
3 3
R(H, v)uo = 3 Re€a)r} + (%— Re(,) + > Re(c4)),\;
B 3 3 3V3 33 3
— VXl(ZiC:” + §|C_3 + TiCS) — V}»G(Tic:-” + ZiC5).

Because this vector is again a membemdf its a-component must be proportional to
H, and thus we have
3 3
2-(3Re) = 3- (% Re) + 3 Ree)).
hence Reaf;) = v/3Reg;). Because of the condition L v, this in fact implies
Re(;) = Re(s) = 0. Moreover, theV, (C)-component of the vector (52) vanishes,
and thus we have

3. 3. 3V3.
—-ic —iC3 + ——ics = 0,
1 3+ 3 + 2 5

2
hence
(53) Cs = —i(cs + 2C3).
V3

This shows that any € m/, with v L vg is of the formv = V,(ity, Cs, its, —(1/+/3)(C3 +
2C3)) with tp,t, € R andcs € C.

Once again, we now first consider the case whefe= {+«} and thusm’ = RH &
m,. Then also theV,,(C)-component of the vector (52) vanishes, and hence we have
—V3c3 = c5s = —(1/4/3)(cs + 2C3), thus ¢z = Cz. Thereforev then is of the form
v = V,(ity, ts, its, —/3t3) With t, t3, ts € R. We now calculate

1 3 5
R(H, v)v = E\/é((lo::.;2 + 2205 + (12 4 42 + t2)AL) + Vi, (—Etztg + E~/§t3t4).
Because this is an element of, its a-component is a multiple oH, whence it fol-
lows that
2 (102 + 2t2) = 3- (t2 + 4t2 + t2)
and hence
(54) a2 +t7 = 3t2

holds, and itsV,, (C)-component vanishes, whence it follows that we hav&)3t; =
(5/2)v/3tsts, hence

. 1
either ;=0 or ty= é\/:_’:tz.
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If t3 = 0 holds, then Equation (54) shows that we haye= ++/3t,. Otherwise we
havet, = (1/5)+/3t,, and therefore by Equation (54) = £(3/5)t,.

This consideration shows that we hawe= RH ®m/,, where either of the follow-
ing two equations holds:

(55) m, = Rug & RV, (i, 0, +/3i, 0),

or

(56) m, = RvoeaRVa(i, gg, %Jéi, —sg«/é)
with & € {+1}.

In either casen’ is of type ,¢ = /6, (R, 3),G): If m/, is given by Equation (55),
this is obvious. On the other hand, if], is given by Equation (56) (without loss of
generality withe = 1), we note thatn’ is contained in the linear spad&’ spanned by
the vectors

IS+ 25, AL+ gxﬁz + V., (V3),
Vo (1, 0,v/3,0), Vi, 0,3, 0),
(. 3 V3 3¢§) ( 3. V3 3«/3)
Voll, =, —I1,—— ), Vol 1, —=i, —, —1 ).
5 5 5 5" 5 5
One checks thafi’ is a Lie triple system of rank 2 and dimension 6, and therefore
(by the preceding classification of the Lie triple systemgobf rank 2) of type § x
S, 3, 3). Hence' is congruent under the adjoint action to the standard Ligetrsys-
tem of type § x S, 3, 3) given in the theoremm’ corresponds to the diagonal in the
local sphere product corresponding#d, and is therefore congruent under the adjoint
action to the diagonal in the standard Lie triple system @it x S, 3, 3), which is
the standard Lie triple system of typ®,(¢ = /6, (R, 3), G). Therefore alsa’ itself
is of type @, ¢ = /6, R, 3), G).

Let us finally turn our attention to the case whexé= {t+«, £2«} holds. From
the classification of Riemannian symmetric spaces of rankelagain must have,, =
1, and we again suppose without loss of generatity = V;,(R). We then have be-
sidesvp € m, alsom), > R(H, V;,(1))vo = Vu(0, (9/2)i, O, (3V/3/2)i) and therefore
v1 1= V,(0, V/3i, 0,i) € m,,. Thus we haveRvy @ Rv; C m/,. Below, we will show
that in factm, = Rvp @ Rvy holds. Therefore we havev = RH @ m, & m,, =
RH & Rug & Rv; & RV, (1), and hencen’ is of type @, ¢ = n/6, (C, 2), G).

For the proof ofm/, = Rvy @ Rv, we letv e m/, be given, and suppose thatis
orthogonal tovy and v1. Then we are to show = 0. Because ob L vp andv € m,
we saw before that = V,(ity, Cs, its, —(1/+/3)(cs + 2€3)) holds witht,, t, € R and
cz € C, and by a similar argument based on the evaluatiorR@, v)v; andv L vy,
we see that

Im(cz) =0 and t, = —V3t,
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holds, thus we have = V,(+/3its, t3, its, —v/3t3) with ts, t, € R. We now calculate
R(H, v)v = V3((8 + A7 + (215 + 2t)25) + V3V, (tata).

The V,,(C)-component of this vector vanishes, and therefore we hélerd; = 0 or
t4 = 0. Also thea-component of that vector is a scalar multiple l8f which together
with the fact that either of; andt4 is zero shows that in fadg = t, = 0 and hence
v = 0 holds.

This completes the classification of the Lie triple systemg. O

5.3. Totally geodesic submanifolds irG,. Once again, we describe totally geo-
desic isometric embeddings for the maximal Lie triple systeof G, to determine the
global isometry type of the totally geodesic submanifoldsGy. We obtain the re-
sults of the following table, using the same notations fa& igometry types as in Sec-
tion 3.3:

- corresponding :
type of Lie triple system global isometry type properties
(Geo,p =1t) R or ST
(Sr(p:o!l) S:’=1
(S. ¢ = arctan(¥3v/3),1) Sl‘T(Z/s’ 5 | = 3: maximal
(S, ¢ =m/6,1) S _1,v3 | = 3: Helgason sphere
(P, ¢ =m/6, K, 1), *) KF”M:3 4 (P, ¢ = /6, R, 3), max): maximal
(SxS, 1,1 (Sh_; x S::l/ﬁ)/{iid} | =1’ = 3: meridian, maximal
(Al) SU(3)/SO3)_ 3
(A2) SURB),— 3 maximal
(G) G2/SO(4)n—1 polar, maximal

Type (G). The totally geodesic embedding corresponding to this tgghe Cartan
embeddingf : G,/SO(4)— G, of the Riemannian symmetric spaG/SO(4).

We describe the Cartan embedding for the general situafi@amRiemannian sym-
metric spaceM = G/K. Leto: G — G be the involutive automorphism which describes
the symmetric structure dfl. Then the map

f:G/K—>G, g-Kr—o(g)-g?

is called theCartan mapof M. Because of Fix{)s C K C Fix(o), f is a well-defined
covering map onto its image; moreovérturns out to be totally geodesic. M is a
“bottom space”, i.e. there exists no non-trivial symmetiawering map with total space
M, we haveK = Fix(c) and thereforef is a totally geodesic embedding in this case.
Then f is called theCartan embeddingf M.

Type (S xS, 1,1") and the types of rank 1 contained in that type. For the con-
struction of these types we consider the skew-field of qunaies H and the division
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algebra of octonion®. O can be realized a® = H & H, where the octonion multi-
plication is for anyx, y € O, sayx = (X1, Xo) andy = (yi1, ¥2) with x;, y; € H, given
by the equation

Xy = (Xpy1 — Y2Xo, XoY1 + Y2X1).

In this setting, the symplectic group Sp(1) is realized assibace of unit quaternions with
the quaternion multiplication as group action (hence SigiJometric to a 3-sphere), and
the Lie groupG; is realized as the automorphism group®fi.e.

G2 ={g€GL(0) | VX, y € O: g(x-Yy) = g(X) - 9(¥)}-

In this setting a group homomaorphisf: Sp(1)x Sp(1)— G, has been described by
Yokota in [16], Section 1.3: For angi, g2 € Sp(1), ®(g1, g2) is given by

VX = (X1, X2) € 01 ®(g1, Go)X = (GrXa0; L, GoXay Y).

@ is in particular a totally geodesic map; one easily seeskbd) = {+(1, 1)} holds,
and therefored is a two-fold covering map onto its image. The image is theeef
a 6-dimensional totally geodesic submanifold @ of rank 2 which is isometric to
(Sp(1)x Sp(Ly{£(1, 1)} = (S?_; x szl/ﬁ)/{:t(l, 1)}, and which turns out to be of
type € x S, 3, 3).

The totally geodesic submanifolds of tyg&xS, |,1’) correspond to the submanifolds

(S}_q x S:':l/ﬁ)/{i(l, 1)} in this product, the totally geodesic submanifolds of type

(S,¢ = 0,1) resp. §, ¢ = 7/6,1") correspond to the factols} _, resp.S'r':lNé in that
product, and the totally geodesic submanifolds of typei = 7 /6, (R,l), G) correspond
to the diagonal(x, (1/+/3)x) | x € S!_;}/{£(1, 1)} in that product.

Types (A2) and (Al). We again realiz&s, as the automorphism group @f. We
fix an imaginary unit octonion of @, and consider the subgrotp:= {g e G, | g(i) =i}
of G,. H is isomorphic to SU(3); as totally geodesic submanifol@ef this subgroup is
of type (A2). Consider the splitting® = V & W of O with V := span{1,i} = C and
W := V+; V andW are complex subspaces of dimension 1 resp. 3 with respebeto t
complex structure induced by the elemént ©. ThenH =~ SU(3) acts trivially onV
and in the canonical way ow = C3,

Fixing a real formWg of W, we obtain the subgroup’ := {g € H | g(Wg) = Wk},
which is isomorphic to SO(3)H/H’ is a Riemannian symmetric space isomorphic to
SU(3)/SO(3), and the image of the Cartan embeddihgH’ — H C G, is a totally
geodesic submanifold d&, of type (Al).

Type (S, ¢ = arctan(1/3+/3), 3). Let m’ be a Lie triple system of typeS( ¢ =
arctan(¥3+/3), 3). It is apparent from the part of the proof of Theorem tich han-
dled the classification for the case Wk} = 1, ¢ = arctan(¥3+/3) that (with respect
to a suitable choice of the Cartan subalgebraf g, and of the positive root system
A, corresponding to the root system of g, with respect toa) the unit vectorH :=
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(1/v/21)(9] + 5)%) lies in m’, with respect to its Cartan subalgel®ad the Lie triple
systemm’ has only one positive roat, which is characterized by(H) = +/21/14,
hence we havéda?®||?2 = 3/28 = 1/r2 with r := (2/3)+/21.

It follows that the connected, complete totally geodesiensanifold M” C G, cor-
responding tom’ is a symmetric space of constant curvatug@?]l and therefore iso-
metric either to the spherg?, or to the real projective spadePi:Mz. To distinguish
between these two cases, we calculate the length of a clasmtkgic inM’.

To do so, we use the well-known fact (see [6], Theorem VI|.8.822) that the unit
lattice ae := {v € a | exp) = €} is generated by the vectorsK2, where we putX, :=
(27 /| A*|P)A® € a, and A runs through all the roots dB,. In this specific situationge
is generated by the vectorsX, = (4r/3)A; and 2X;, = (47 /3)x.

The length of the geodesije tangent toH equals the smallest> 0 so thattH € ae
holds, i.e. so that there exikt| € Z with tH = k- (4m/3)A; + | - (47/3)A%. Because we
have H = (1/+/21)(2} + 34%), that equation leads to the conditions

3 3
— —t.
Ar - /21 4 - /21

Therefore, the smallest> 0 such thatk, | € Z holds, ist = 47 - +/21/3 = 2xr, and
hence the geodesig is closed and has the lengtlr2 It follows that the totally geo-
desic submanifoldVl’ is isometric to the spherg?.

Type (P, ¢ = n/6, (R, 3), max). By the analogous arguments as for the type
(S, ¢ = arctan(¥3+/3), 3), we see that the totally geodesic submanifiltiof G, cor-
responding to a Lie triple system of typ®,(p = 7/6, (R, 3), max) is a 3-dimensional
space of constant curvature/r? with r := 2/4/3, and that any geodesic B,
running in M’ is closed with lengthzr. Hence M’ is isometric to the real project-
ive spaceRP?

k=2 t and | =3-

=1/r2=3/4"

5.4. Totally geodesic submanifolds inG,/SO(4). Finally we derive from the
classification of the Lie triple systems resp. totally gesidesubmanifolds inG, the
same classification in the totally geodesic submanif@ld SO(4) of G,.

For this purpose, we consider the Lie groGp as a Riemannian symmetric space
in the same way as in the Sections 5.1 and 5.2, and use the rMfamts types of
Lie triple systems ofg, as introduced in Theorem 5.2.

Further, we letm; be a Lie triple system of, of type (G), i.e.m; corresponds to
a totally geodesic submanifold which is isometric@/SO(4).

Theorem 5.4. Exactly the following types of Lie triple systems of ave rep-
resentatives which are contained iy
e (Geo,p =1t) with t € [0, /6],
e (S,¢=0,2),
e (S, ¢ = arctan(¥3v3), 2),
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o (S, ¢=m/6,2),

o (P,¢=1/6 (K, 2),G)withK € (R, C},
e (A,

o (SxS, 1,1 withI,1" <2.

Among these the Lie triple systems which are maximal im; are: (S,¢ =
arctan(¥3+/3), 2), ®, ¢ = /6, (C, 2), G), (Al) and (S x S, 2, 2)

Proof. Again similar to the proofs of Theorems 3.8 and 3.10. []

REMARK 5.5. The maximal totally geodesic submanifolds @§/SO(4) of type
(S, ¢ = arctan(¥3+/3), 2), which are isometric to a 2-sphere of radiug3)2/21, are
missing from the classification by Chen and Nagano in Tablé &fI[5]. They are in a
similar “skew” position inG,/SO(4) as the 3-spheres of typ®, ¢ = arctan(¥3+/3), 3)
are in G,, compare Remark 5.3.

We can infer the isometry type of the totally geodesic sulifolts correspond-
ing to the Lie triple systems o6,/SO(4) from the corresponding information on the
totally geodesic submanifolds @, given in Section 5.3:

type of Lie triple system corresponding roperties
P pie sy global isometry type prop
(Geo,p =) R or St
(Sv Y = 01 2) SI'2:l
(S, ¢ = arctan(¥3v3), 2) S7_(2aa maximal
(S, ¢ =7/6,2) S Helgason sphere
(P, 9 =7/6, (K, 2), G) KP_5 4 K = C: maximal
(Al SUB)YSOB)— 3 maximal
| =I"=2:
14 | 1’ .
(S>8.1.19 (S x Sf:l/ﬁ)/{ild} polar, meridian, maxima

6. Summary

In the following table, we list the global isometry types dfet maximal totally
geodesic submanifolds of all the irreducible, simply carted Riemannian symmetric
spacesM of rank 2, thereby combining information from the papers [B] and [9]
(Section 6), as well as the present paper.

We once again use the notations from Section 3.3 for desgrithie scaling factor
of the invariant Riemannian metric on the symmetric spacesived. For the three
infinite families of Grassmann manifolds; (R"), G,(C") and G,(H"), we also use
the notationg—1. to denote the invariant Riemannian metric scaled in such yathat
the shortest root occurrinfpr large n has length 1, disregarding the fact that this root
might vanish for certain small values of
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M maximal totally geodesic submanifolds
S'_ 1 G (R™ V14, (SI_y x SV_1)/Zs with | +1" =n
for n > 4 even CPEZUZ
for n=2: CP% _1/2 X ]RP}{:U2
for n =3: §? s
(Cpn =11 GZ(RM—z)srr_l*y GZ(Cn+1)srr:l*
(CIj _ XCP__ withl +1"=n
Go(C™ g1 for n even ]HIP”,l/2
for n = 2: G (R%),_ /3 (Sf:wi X Srlzl/ﬁ)/Zz
for n = 4: CPizl/5
HP _,, Go(H"")sr—1., G2(C"?)grr—1
IHIIj 1><]HIF’ lW|th I +I’=n
Go(H"?)gr_ 1. for n = 2: ( PP Sl 1/f)/Zz, Sp(2)_ vz
3
for n = 4: Sr 25
for n = 5: ]I-]IPE{ZI/5
SU(3)/SO(3)rr=1 RP% —1/ar (S2_; x Srlzﬁ)/Zz
SU(6)/Sp(3LH=1 HPZ =1/4 CP3 =1/4" SU(SErr—ly ( 5 =1 X Sl )/ZZ
CP:_,, CP_ xCPL_,, G (R®)¢,_ 5 GZ(C sr=1,
50(5er_
@Pi:l/z’ CP%_; xCP,_;, G R)g_ 3
GZ(CG)srr:L (GZ(H4)/ZZ)srr:11 SO(lO)’U(S)Srr:l
OF _y/0 HP _y 4, (SU(BYSP(3)YZ3)srr=1,
(SP_; x Srlzﬁ)/Z4

Gz_ (Rn+2)srr=l*

SO(10YU(S)srr=1

Ee/(U(1) - Spin(10)}rr=1

(EG/ F4)srr=1

Sr2 (2/3)ﬂ’ CP2 _g/4 SUEBYSOB)— 3,
G2/SO(4)rr-1 (52, x5 ) ”
SUBkrr=1 CP 14 ]R{F’3 1/4, SU(YSO@her, (7, xS.__,)/Z2
Sp(2krr=1 Sr3 e HPL —1/2 r l[xsr3 5 G} (R® )Srr_
3
(G2)si= S e RPicyae (ST x ST, 5)/2Z2

SUQB)— 3 G2/SO(4)—1
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