ON THE DADE CHARACTER CORRESPONDENCE AND ISOTYPIES BETWEEN BLOCKS OF FINITE GROUPS

Atumi WATANABE

(Received April 20, 2009)

Abstract

In [3] Dade generalized the Glauberman character correspondence. In [13] Tasaka showed that the Dade correspondence induces an isotypy between blocks of finite groups under some assumptions. In this paper we obtain a generalization of [13], Theorem 5.5.

1. Introduction

Let p be a prime and $(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system such that \mathcal{K} is a splitting filed for all finite groups which we consider in this paper. Let \mathcal{S} denote \mathcal{O} or k. For a finite abelian group F, we denote by \hat{F} the character group of F and by \hat{F}_{q} the subgroup of \hat{F} of order q for $q \in \pi(F)$ where $\pi(F)$ is the set of all primes dividing the order $|F|$ of F. Let G be a finite group and N a normal subgroup of G. We denote by $\operatorname{Irr}(G)$ the set of ordinary irreducible characters of G and $\operatorname{Irr}^{G}(N)$ be the set of G-invariant irreducible characters of N. For $\phi \in \operatorname{Irr}(N)$, we denote by $\operatorname{Irr}(G \mid \phi)$ the set of irreducible characters χ of G such that ϕ is a constituent of the restriction χ_{N} of χ to N.

Hypothesis 1. G is a finite group which is a normal subgroup of a finite group E such that the factor group $F=E / G$ is a cyclic group of order $r . \lambda$ is a generator of $\hat{F} . E_{0}=\{x \in E \mid \bar{x}$ is a generator of $F\}$ where $\bar{x}=x G . E^{\prime}$ is a subgroup of E such that $E^{\prime} G=E, G^{\prime}=G \cap E^{\prime}$ and $E_{0}^{\prime}=E^{\prime} \cap E_{0}$. Moreover $\left(E_{0}^{\prime}\right)^{\tau} \cap E_{0}^{\prime}$ is the empty set, for all $\tau \in E-E^{\prime}$.

Under the above hypothesis, in [3], E.C. Dade constructed a bijection between $\operatorname{Irr}^{E}(G)$ and $\operatorname{Irr}^{E^{\prime}}\left(G^{\prime}\right)$ which is a generalization of the cyclic case of the Glauberman correspondence in [4].

Theorem 1 ([3], Theorems 6.8 and 6.9). Assume Hypothesis 1 and $|F| \neq 1$. For each prime $q \in \pi(F)$, we choose some non-trivial character $\lambda_{q} \in \hat{F}_{q}$. There is a bijection

$$
\rho\left(E, G, E^{\prime}, G^{\prime}\right): \operatorname{Irr}^{E}(G) \rightarrow \operatorname{Irr}^{E^{\prime}}\left(G^{\prime}\right) \quad\left(\phi \mapsto \phi^{\prime}=\phi_{\left(G^{\prime}\right)}\right)
$$

which satisfies the following conditions. If r is odd, then there are a unique integer $\epsilon_{\phi}= \pm 1$ and a unique bijection $\psi \mapsto \psi_{\left(E^{\prime}\right)}$ of $\operatorname{Irr}(E \mid \phi)$ onto $\operatorname{Irr}\left(E^{\prime} \mid \phi^{\prime}\right)$ such that

$$
\begin{equation*}
\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \psi\right)_{E^{\prime}}=\epsilon_{\phi} \prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \psi_{\left(E^{\prime}\right)} \tag{1.1}
\end{equation*}
$$

for any $\psi \in \operatorname{Irr}(E \mid \phi)$. If r is even, and we choose $\epsilon_{\phi}= \pm 1$ arbitrarily, then there is a unique bijection $\psi \mapsto \psi_{\left(E^{\prime}\right)}$ of $\operatorname{Irr}(E \mid \phi)$ onto $\operatorname{Irr}\left(E^{\prime} \mid \phi^{\prime}\right)$ such that (1.1) holds for all $\psi \in \operatorname{Irr}(E \mid \phi)$. In both cases we have

$$
(\lambda \psi)_{\left(E^{\prime}\right)}=\lambda \psi_{\left(E^{\prime}\right)}
$$

for any $\lambda \in \hat{F}$ and and $\psi \in \operatorname{Irr}(E \mid \phi)$. Furthermore, the resulting bijection is independent of the choice of the non-trivial character $\lambda_{q} \in \hat{F}_{q}$, for any $q \in \pi(F)$.

Assume Hypothesis 1. If $|F|=1$, then $E=E^{\prime}$. We call $\rho\left(E, G, E^{\prime}, G^{\prime}\right)$ the Dade correspondence, where $\rho\left(E, G, E^{\prime}, G^{\prime}\right)$ denote the identity map of $\operatorname{Irr}^{E}(G)$ when $|F|=1$. Following [13], for $\phi^{\prime} \in \operatorname{Irr}^{E^{\prime}}(G)$, we set $\phi_{(G)}^{\prime}=\rho\left(E, G, E^{\prime}, G^{\prime}\right)^{-1}\left(\phi^{\prime}\right)$, and for $\psi \in \operatorname{Irr}(E \mid \phi)$ and $\psi^{\prime} \in \operatorname{Irr}\left(E^{\prime} \mid \phi^{\prime}\right)$, we set $\psi_{(E)}^{\prime}=\psi$ if $\psi^{\prime}=\psi_{\left(E^{\prime}\right)}$. From (1.1) ψ^{\prime} is a constituent of $(\lambda \psi)_{E^{\prime}}$ for some $\lambda \in \hat{F}$, hence $\phi_{\left(G^{\prime}\right)}$ is a constituent of $\phi_{G^{\prime}}$. In particular if ϕ is the trivial character of G, then $\phi_{\left(G^{\prime}\right)}$ is the trivial character of G^{\prime}. From the above theorem we have the following also.

Proposition 1. Assume Hypothesis 1. Let $\phi \in \operatorname{Irr}^{E}(G)$ and $\phi^{\prime} \in \operatorname{Irr}^{E^{\prime}}\left(G^{\prime}\right)$. Then $\phi^{\prime}=\phi_{\left(G^{\prime}\right)}$ if and only if there exist $\psi \in \operatorname{Irr}(E \mid \phi), \psi^{\prime} \in \operatorname{Irr}\left(E^{\prime} \mid \phi^{\prime}\right)$ and $\epsilon= \pm 1$ such that

$$
\psi(x)=\epsilon \psi^{\prime}(x) \quad\left(\forall x \in E_{0}^{\prime}\right) .
$$

The generalized Glauberman case Let G and A be finite groups such that A is cyclic, A acts on G via automorphism and that $\left(\left|C_{G}(A)\right|,|A|\right)=1$. We set $E=G \rtimes A, G^{\prime}=C_{G}(A)$ and $E^{\prime}=G^{\prime} \times A \leq E$. By [3], Lemma 7.5, E, G, E^{\prime} and G^{\prime} satisfy Hypothesis 1. Moreover by [3], Proposition 7.8, in the Glauberman case, that is, if $(|A|,|G|)=1$, then the Glauberman correspondence coincides with the Dade correspondence.

In the generalized Glauberman case, suppose that $p \nmid|A|$ and $p \nmid\left|G: C_{G}(A)\right|$. Then in [8], H. Horimoto proved that there is an isotypy between $b(G)$ and $b\left(C_{G}(A)\right)$ induced by the Dade correspondence where $b(G)$ is the principal block of G. Isotypy is a notion defined in [1].

Hypothesis 2. Assume Hypothesis 1. $(p, r)=1 . b$ is an E-invariant block of G covered by r distinct blocks of E.

Assume Hypothesis 2 and that r is a prime power. Moreover let b^{\prime} be a block of G^{\prime} containing $\phi_{\left(G^{\prime}\right)}$ for some $\phi \in \operatorname{Irr}(b)$. In [13], F. Tasaka proved that if r is odd, or $r=2$ or $b=b(G)$, and if b^{\prime} is covered by r blocks of E^{\prime}, then there is an isotypy between b and b^{\prime} induced by the Dade correspondence ([13], Theorem 5.5). In this paper we prove that the arguments in [13] can be extended to the general case (see Theorem 6 in §5). Theorem 6 is a generalization of Theorem 5 in [16]. We also show that the Brauer correspondent of b and that of b^{\prime} are Puig equivalent (see Theorem 8 in §6).

Notations. We follow the notations in [13], [12] and [15]. Let G be a finite group. We denote by $G_{0}(\mathcal{K} G)$ the Grothendieck group of the group algebra $\mathcal{K} G$. If L is a $\mathcal{K} G$-module, then let [L] denote the element in $G_{0}(\mathcal{K} G)$ determined by the isomorphism class of L. For $\phi \in \operatorname{Irr}(G)$, we denote by $\check{\phi}, e_{\phi}$ and L_{ϕ}, the dual character of ϕ, the centrally primitive idempotent of $\mathcal{K} G$ corresponding to ϕ and a $\mathcal{K} G$-module affording ϕ respectively. We also denote by ω_{ϕ} the linear character of the center $Z(\mathcal{K} G)$ of $\mathcal{K} G$ corresponding to ϕ. Let H be a subgroup of G. We denote by $(\mathcal{S} G)^{H}$ the set of H-fixed elements of $\mathcal{S} G$. We denote by $\operatorname{Pr}_{H}^{G}$ the \mathcal{S}-linear map from $\mathcal{S} G$ to $\mathcal{S} H$ defined by $\operatorname{Pr}_{H}^{G}\left(\sum_{x \in G} a_{x} x\right)=\sum_{h \in H} a_{h} h$ and by $\operatorname{Tr}_{H}^{G}$ the trace map from $(\mathcal{S} G)^{H}$ to $Z(\mathcal{S} G)$. For $\alpha \in \mathcal{O}$, we denote by α^{*} the canonical image of α in k. For $a \in \mathcal{O} G$, we denote by a^{*} the canonical image of a in $k G$. For a p-subgroup P of G, we denote by $\mathrm{Br}_{P}^{\mathcal{S} G}$ the Brauer homomorphism from $(\mathcal{S} G)^{P}$ onto $k C_{G}(P)$. Also let $G_{p^{\prime}}$ denote the set of p-regular elements of G.

Let b be a block of G. We denote by $\mathcal{R}_{\mathcal{K}}(G, b)$ the additive group of generalized characters belonging to b, by $\operatorname{CF}(G, b ; \mathcal{K})$ the subspace with a basis $\operatorname{Irr}(b)$ of the \mathcal{K}-vector space of the \mathcal{K}-valued central functions of $\mathcal{K} G$, and by $\mathrm{CF}_{p^{\prime}}(G, b ; \mathcal{K})$ the subspace containing the elements of $\operatorname{CF}(G, b ; \mathcal{K})$ which vanish on p-singular elements of G, where $\operatorname{Irr}(b)$ is the set of ordinary irreducible characters belonging to b. Let $\left(u, b_{u}\right)$ be a b-Brauer element. We denote by $d_{G}^{\left(u, b_{u}\right)}$ the decomposition map from $\mathrm{CF}(G, b ; \mathcal{K})$ onto $\mathrm{CF}_{p^{\prime}}\left(C_{G}(u), b_{u} ; \mathcal{K}\right)$. For $\gamma \in \operatorname{CF}(G, b ; \mathcal{K})$ and $c \in C_{G}(u)_{p^{\prime}}$, we have $d_{G}^{\left(u, b_{u}\right)}(\gamma)(c)=\gamma\left(u c b_{u}\right)$. We also denote by ω_{b} the central character of $Z(\mathcal{O} G b)$ and by $\mathrm{Bl}\left(C_{G}(P), b\right)$ the set of blocks of $C_{G}(P)$ associated with b where P is a p-subgroup of G. Let N be a normal subgroup of G. For $\phi \in \operatorname{Irr}(N)$, we denote by $I_{G}(\phi)$ the inertial group of ϕ in G. For a block \mathbf{b} of N, we denote by $I_{G}(\mathbf{b})$ the inertial group of \mathbf{b} in G. For a subgroup H and a block \mathbf{c} of H, if \mathbf{c} is associated with a block B of G, then B is denoted by \mathbf{c}^{G}.

2. Preliminaries

In this section we assume Hypothesis 1. For $x \in E$ (resp. $x \in E^{\prime}$), we denote by $C(x)$ (resp. $\left.C(x)^{\prime}\right)$ the conjugacy class of E (resp. E^{\prime}) containing x. For $X \subseteq E$, we set $\hat{X}=\sum_{x \in X} x \in \mathcal{S} E$.

Lemma 1. Let $s \in E_{0}^{\prime}$ and let Q, R be subgroups of G^{\prime} centralized by s. Let $a \in$ G. If $Q^{a}=R$, then $a \in C_{G}(Q) G^{\prime}$. In particular $N_{G}(Q)=C_{G}(Q) N_{G^{\prime}}(Q)$.

Proof. By the assumption, $s^{a} \in C_{E}(R) \cap E_{0}$. By [13], Lemmas 3.9 and 2.4, there exists $y \in C_{E}(R)$ such that $s^{a y} \in C_{E^{\prime}}(R)$. Since $s^{a y}, s \in E_{0}^{\prime}$, ay $\in E^{\prime}$. Set $z=a y$. Then $Q^{z}=R$, hence $a=\left(z y^{-1} z^{-1}\right) z \in C_{E}(Q) E^{\prime}$. Since $C_{E}(Q)=C_{G}(Q)\langle s\rangle$ and $E^{\prime}=\langle s\rangle G^{\prime}$, $a \in C_{G}(Q) G^{\prime}\langle s\rangle$ and hence $a \in C_{G}(Q) G^{\prime}$.

Proposition 2 (see [13], Proposition 3.7). Let $x \in E_{0}^{\prime}, \phi \in \operatorname{Irr}^{E}(G)$ and $\phi^{\prime} \in$ $\operatorname{Irr}^{E^{\prime}}\left(G^{\prime}\right)$. Then we have the following.
(i) $\operatorname{Pr}_{E^{\prime}}^{E}\left(\widehat{C(x)} e_{\phi}\right)=\widehat{C(x)^{\prime}} e_{\phi_{\left(G^{\prime}\right)}}$.
(ii) $\operatorname{Tr}_{E^{\prime}}^{E}\left(\widehat{C(x)^{\prime}} e_{\phi^{\prime}}\right)=\widehat{C(x)} e_{\phi_{(G)}}$.

Proof. Let ψ be an extension of ϕ to $E . \widehat{C(x)} e_{\phi}$ is a \mathcal{K}-linear combination of the elements in $x G$. Hence we have

$$
\widehat{C(x)} e_{\phi}=\frac{|C(x)|}{|E|} \sum_{y \in x G} r \psi(x) \psi\left(y^{-1}\right) y .
$$

From Theorem 1, (1.1), $\psi(z)=\epsilon_{\phi} \psi_{\left(E^{\prime}\right)}(z)$ for any $z \in E_{0}^{\prime}$. Therefore we have

$$
\begin{aligned}
\widehat{C(x)^{\prime}} e_{\phi_{\left(G^{\prime}\right)}} & =\frac{\left|C(x)^{\prime}\right|}{\left|E^{\prime}\right|} \sum_{z \in x G^{\prime}} r \psi_{\left(E^{\prime}\right)}(x) \psi_{\left(E^{\prime}\right)}\left(z^{-1}\right) z \\
& =\frac{\left|C(x)^{\prime}\right|}{\left|E^{\prime}\right|} \sum_{z \in x G^{\prime}} r \psi(x) \psi\left(z^{-1}\right) z
\end{aligned}
$$

From [13], 2.4, we have (i) and (ii).

3. The Dade correspondence and blocks

Assume Hypothesis 1 and $p \nmid r$. If an element $s \in E_{0}^{\prime}$ centralizes a Sylow p-subgroup of G, then the principal block $b(G)$ satisfies Hypothesis 2.

Hypothesis 3. Assume Hypothesis 1. $(p, r)=1 . b^{\prime}$ is an E^{\prime}-invariant block of G^{\prime} covered by r distinct blocks of E^{\prime}.

Assume Hypotheses 2 and 3 and assume that $\phi_{\left(G^{\prime}\right)} \in \operatorname{Irr}\left(b^{\prime}\right)$ for some $\phi \in \operatorname{Irr}(b)$. In this section we show the Dade correspondence $\rho\left(E, G, E^{\prime}, G^{\prime}\right)$ induces a bijection between $\operatorname{Irr}(b)$ and $\operatorname{Irr}\left(b^{\prime}\right)$, and the Brauer categories $\mathbf{B}_{G}(b)$ and $\mathbf{B}_{G^{\prime}}\left(b^{\prime}\right)$ are equivalent.

Theorem 2 (see [13], Proposition 3.5, (1) and (2)). (i) Assume Hypothesis 2. Then $\left\{\phi_{\left(G^{\prime}\right)} \mid \phi \in \operatorname{Irr}(b)\right\}$ is contained in a block $b_{\left(G^{\prime}\right)}$ of G^{\prime}.
(ii) Assume Hypothesis 3. Then $\left\{\phi_{(G)}^{\prime} \mid \phi^{\prime} \in \operatorname{Irr}\left(b^{\prime}\right)\right\}$ is contained in a block $b_{(G)}^{\prime}$ of G.

Proof. (i) Let $\phi_{1}, \phi_{2} \in \operatorname{Irr}(b)$ and set $\phi_{i}^{\prime}=\phi_{i\left(G^{\prime}\right)}$ for $i=1$, 2. We show ϕ_{1}^{\prime} and ϕ_{2}^{\prime} belong to a same block of G^{\prime}. We may assume at least one of these characters is of height 0 . Let \hat{b} be a block of G covering b and for $i=1,2$, let $\hat{\phi}_{i}$ be a unique extension of ϕ_{i} to E belonging to \hat{b} recalling Hypothesis 2 . Note \hat{b} and b are isomorphic by restriction. Set $\left(\hat{\phi}_{i}\right)^{\prime}=\left(\hat{\phi}_{i}\right)_{\left(E^{\prime}\right)}$ for $i=1$, 2. By [12], Chapter III, Lemma 6.34, we have the following for a non-trivial linear character λ of F,

$$
\begin{equation*}
\sum_{x \in E_{p^{\prime}}} \hat{\phi}_{1}(x) \hat{\phi}_{2}\left(x^{-1}\right) \neq 0, \quad \sum_{x \in E_{p^{\prime}}} \hat{\phi}_{1}(x) \lambda\left(x^{-1}\right) \hat{\phi}_{2}\left(x^{-1}\right)=0 . \tag{3.1}
\end{equation*}
$$

For each $q \in \pi(F)$, let λ_{q} be a non-trivial linear character in \hat{F}_{q}. Set $\left(E_{0}\right)_{p^{\prime}}=E_{0} \cap E_{p^{\prime}}$ and $\left(E_{0}^{\prime}\right)_{p^{\prime}}=E_{0}^{\prime} \cap E_{p^{\prime}}$. We have

$$
\begin{aligned}
& \sum_{x \in E_{p^{\prime}}} \hat{\phi}_{1}(x)\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \hat{\phi}_{2}\right)\left(x^{-1}\right) \\
& =\sum_{y \in\left(E_{0}\right)_{p^{\prime}}} \hat{\phi}_{1}(y)\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \hat{\phi}_{2}\right)\left(y^{-1}\right)
\end{aligned}
$$

by [13], Lemma 2.4,

$$
=\frac{|E|}{\left|E^{\prime}\right|} \sum_{z \in\left(E_{0}^{\prime}\right)_{p^{\prime}}} \hat{\phi}_{1}(z)\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \hat{\phi}_{2}\right)\left(z^{-1}\right)
$$

by Theorem 1,

$$
\begin{aligned}
& =\epsilon_{\phi_{1}} \epsilon_{\phi_{2}} \frac{|E|}{\left|E^{\prime}\right|} \sum_{z \in\left(E_{0}^{\prime}\right)_{p^{\prime}}}\left(\hat{\phi}_{1}\right)^{\prime}(w)\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot\left(\hat{\phi}_{2}\right)^{\prime}\right)\left(w^{-1}\right) \\
& =\epsilon_{\phi_{1}} \epsilon_{\phi_{2}} \frac{|E|}{\left|E^{\prime}\right|} \sum_{u \in\left(E^{\prime}\right)_{p^{\prime}}}\left(\hat{\phi}_{1^{\prime}}\right)^{\prime}(u)\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot\left(\hat{\phi}_{2}\right)^{\prime}\right)\left(u^{-1}\right),
\end{aligned}
$$

that is,

$$
\begin{align*}
& \sum_{x \in E_{p^{\prime}}} \hat{\phi}_{1}(x)\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \hat{\phi}_{2}\right)\left(x^{-1}\right) \\
& =\epsilon_{\phi_{1}} \epsilon_{\phi_{2}}|E| \tag{3.2}\\
& \left|E^{\prime}\right| \\
& \sum_{u \in\left(E^{\prime}\right)_{p^{\prime}}}\left(\hat{\phi}_{1}\right)^{\prime}(u)\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot\left(\hat{\phi}_{2}\right)^{\prime}\right)\left(u^{-1}\right)
\end{align*}
$$

From (3.1) there exists $\lambda \in \prod_{q \in \pi(F)} \hat{F}_{q}$ such that

$$
\sum_{u \in\left(E^{\prime}\right) p^{\prime}}\left(\hat{\phi}_{1}\right)^{\prime}(u)\left(\lambda\left(\hat{\phi}_{2}\right)^{\prime}\right)\left(u^{-1}\right) \neq 0
$$

Then $\left(\hat{\phi}_{1}\right)^{\prime}$ and $\lambda\left(\hat{\phi}_{2}\right)^{\prime}$ belong to a same block of E^{\prime}. Hence ϕ_{1}^{\prime} and ϕ_{2}^{\prime} belong to a same block of G^{\prime}. (ii) follows from (3.2) and the above arguments.

Assume Hypothesis 2. We denote by \hat{b}_{0} a block of E covering b. For each $\phi \in$ $\operatorname{Irr}(b)$, we denote by $\hat{\phi}$ a unique extension of ϕ which belongs to \hat{b}_{0}. For any $i \in \mathbf{Z}$, we denote by \hat{b}_{i} the block of E which contains $\lambda^{i} \hat{\phi}$ where $\phi \in \operatorname{Irr}(b)$. For the block b, \hat{b}_{i} is fixed throughout this paper. Let $\hat{b}_{0}=\sum_{x \in E} \alpha_{x} x$. Then $\hat{b}_{i}=\sum_{x \in E} \lambda^{i}\left(x^{-1}\right) \alpha_{x} x$. Moreover we note that for any $t \in E, \sum_{x \in G t} \alpha_{x}^{*} x \neq 0$ because $\left\{\left(\hat{b}_{0}\right)^{*},\left(\hat{b}_{1}\right)^{*}, \ldots,\left(\hat{b}_{r-1}\right)^{*}\right\}$ are linearly independent. This fact is used implicitly in the proof of Proposition 5 below.

Proposition 3 (see [13], Proposition 3.5, (3)). Assume Hypotheses 2 and 3, and assume $b^{\prime}=b_{\left(G^{\prime}\right)}$ using the notation in Theorem 2. Then there exists a block $\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}$ of E^{\prime} such that $\operatorname{Irr}\left(\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}\right)=\left\{(\hat{\phi})_{\left(E^{\prime}\right)} \mid \phi \in \operatorname{Irr}(b)\right\}$. If r is odd, then $\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}$ is uniquely determined, and if r is even, we have exactly two choices for $\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}$.

Proof. Let $\phi_{1}, \phi_{2} \in \operatorname{Irr}(b)$ and suppose that ϕ_{1} is of height 0 . Assume $\left(\hat{\phi}_{1}\right)_{\left(E^{\prime}\right)}$ belongs to a block $\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}$ of E^{\prime}. Here we note that we have two choices for $\left(\hat{\phi}_{1}\right)_{\left(E^{\prime}\right)}$ when r is even by Theorem 1, and hence we have two choices for $\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}$. By the proof of Theorem 2 and by our assumption, there is a unique linear character $\nu \in \hat{F}$ such that $v\left(\hat{\phi}_{2}\right)_{\left(E^{\prime}\right)}$ belongs to $\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}$ and that $v=1$ or v is a product of some elements of $\left\{\lambda_{q} \mid q \in \pi(F)\right\}$. Hence if r is odd, then $\nu=1$ because λ_{q} can be replaced by another non-trivial linear character in \hat{F}_{q}. If r is even, $v=1$ or $v=\lambda_{2}$, hence $\left(\hat{\phi}_{2}\right)_{\left(E^{\prime}\right)}$ belongs to $\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}$ by replacing $\epsilon_{\phi_{2}}$ by $-\epsilon_{\phi_{2}}$ if necessary. This combined with Theorem 1 completes the proof.

With the notation in the above proposition, we denote by $\left(\hat{b}_{i}\right)_{\left(E^{\prime}\right)}$ the block of E^{\prime} containing $\lambda^{i}(\hat{\phi})_{\left(E^{\prime}\right)}(\phi \in \operatorname{Irr}(b))$ for $i \in \mathbf{Z}$. Moreover, when r is even, we fix one of two $\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}$, and hence $\left(\hat{b}_{i}\right)_{\left(E^{\prime}\right)}$ are fixed.

Lemma 2 (see [13], Lemma 3.3). Assume Hypothesis 2. We have the following holds.
(i) There exists $s \in E_{0}$ such that $\left(\omega_{\hat{b}_{i}}(\widehat{C(s)})\right)^{*} \neq 0$ for all $i \in \mathbf{Z}$.
(ii) For s in (i), $\widehat{C(s)} b \in Z(\mathcal{O} E b)^{\times}$, that is, $\widehat{C(s)} b$ is invertible in $Z(\mathcal{O} E b)$.

Proof. (i) By the assumption and [12], Chapter III, Theorem 6.24, for any $q \in$ $\pi(F)$, there exists $s(q) \in E$ such that $\left(\omega_{\hat{b}_{i}}(\widehat{C(s(q))})\right)^{*} \neq 0$ and that $s(q) G$ is a generator of the Sylow q-subgroup of F. Then $\left(\omega_{\hat{b}_{i}}\left(\prod_{q \in \pi(F)} \widehat{C(s(q))}\right)\right)^{*} \neq 0$. This implies that there exists $s \in E_{0}$ such that $\left(\omega_{\hat{b}_{i}}(\widehat{C(s)})\right)^{*} \neq 0$.
(ii) From (i) $\widehat{C(s}) \hat{b}_{i} \in Z\left(\mathcal{O} E \hat{b}_{i}\right)^{\times}$for any i because $Z\left(\mathcal{O} E \hat{b}_{i}\right)$ is local. Hence $\widehat{C(s)} b \in Z(\mathcal{O} E b)^{\times}$.

Assume Hypothesis 2. By the above lemma and [13], Lemma 2.4, there exists an element $s \in E_{0}^{\prime}$ such that $\widehat{C(s)} b \in Z(\mathcal{O} E b)^{\times}$. Hence there exists a defect group D of b centralized by s, and hence contained in G^{\prime} (see [13], Lemma 3.10). Let $P \leq D$. Then by [13], Lemma 3.9, $C_{E}(P), C_{G}(P), C_{E^{\prime}}(P)$ and $C_{G^{\prime}}(P)$ satisfy Hypothesis 1. Moreover we note $F \cong C_{E}(P) / C_{G}(P)$. Let $e \in \operatorname{Bl}\left(C_{G}(P), b\right)$. Then we see that $\operatorname{Br}_{P}^{\mathcal{O} E}(\widehat{C(s)} b) e^{*} \in\left(Z\left(k C_{E}(P) e^{*}\right)\right)^{\times}$. This implies that e is covered by r blocks of $C_{E}(P)$. Similarly assume Hypothesis 3 . Let D^{\prime} be a defect group of b^{\prime} and $e^{\prime} \in$ $\mathrm{Bl}\left(C_{G^{\prime}}\left(P^{\prime}\right), b^{\prime}\right)$ for a subgroup P^{\prime} of D^{\prime}. Then e^{\prime} is covered by r blocks of $C_{E^{\prime}}\left(P^{\prime}\right)$.

Theorem 3 (see [13], Proposition 3.11). Using the same notations as in Theorem 2 we have the following.
(i) Assume Hypothesis 2. Let D be a defect group of b obtained in the above and let $P \leq D$. Let $e \in \operatorname{Bl}\left(C_{G}(P), b\right)$. Then $e_{\left(C_{G^{\prime}}(P)\right)} \in \operatorname{Bl}\left(C_{G^{\prime}}(P), b_{\left(G^{\prime}\right)}\right)$. In particular, $b_{\left(G^{\prime}\right)}$ has a defect group containing D.
(ii) Assume Hypothesis 3. Let D^{\prime} be a defect group of b^{\prime} and let $P^{\prime} \leq D^{\prime}$. Let $e^{\prime} \in$ $\mathrm{Bl}\left(C_{G^{\prime}}\left(P^{\prime}\right), b^{\prime}\right)$. Then $e_{\left(C_{G}\left(P^{\prime}\right)\right)}^{\prime} \in \operatorname{Bl}\left(C_{G}\left(P^{\prime}\right), b_{(G)}^{\prime}\right)$. In particular, $b_{(G)}^{\prime}$ has a defect group containing D^{\prime}.

Proof. See the proof of [13], Proposition 3.11.

Assume Hypotheses 2 and 3, and assume $b^{\prime}=b_{\left(G^{\prime}\right)}$ where $b_{\left(G^{\prime}\right)}$ is the block determined by Theorem 2. We have

$$
\operatorname{Irr}\left(b^{\prime}\right)=\left\{\phi_{\left(G^{\prime}\right)} \mid \phi \in \operatorname{Irr}(b)\right\}
$$

by Theorem 2. Let D be a common defect group of b and b^{\prime}, and let $P \leq D$. Such a defect group exists by the above theorem. Let (D, b_{D}) be maximal b-Brauer pair and let $\left(P, b_{P}\right)$ be a b-Brauer pair contained in $\left(D, b_{D}\right)$. By the above theorem, $\left(D,\left(b_{D}\right)_{\left(C_{E^{\prime}}(D)\right)}\right)$
is a maximal b^{\prime}-Brauer pair and $\left(P,\left(b_{P}\right)_{\left(C_{E^{\prime}}(P)\right)}\right)$ is a b^{\prime}-Brauer pair. We set

$$
\left(b_{P}\right)^{\prime}=\left(b_{P}\right)_{\left(C_{E^{\prime}}(P)\right)}
$$

and

$$
\left(b_{P}^{*}\right)^{\prime}=\left(\left(b_{P}\right)^{\prime}\right)^{*} .
$$

For any $u \in C_{E^{\prime}}(P)$, we denote by $C(u)_{(P)}$ the conjugacy class of $C_{E}(P)$ containing u, and by $C(u)_{(P)}^{\prime}$ the conjugacy class of $C_{E^{\prime}}(P)$ containing u.

Theorem 4 (see [13], Theorem 5.2). Assume Hypotheses 2 and 3, and assume $b^{\prime}=b_{\left(G^{\prime}\right)}$ where $b_{\left(G^{\prime}\right)}$ is the block determined by Theorem 2. Then the Brauer categories $\mathbf{B}_{G}(b)$ and $\mathbf{B}_{G^{\prime}}\left(b^{\prime}\right)$ are equivalent.

Proof. Our proof is essentially the same as the proof of [13], Theorem 5.2. Let D be a common defect group of b and b^{\prime}, and let $P \leq D$. There is an element $t \in$ $C_{E}(P) \cap E_{0}^{\prime}$ such that $\widehat{C(t)_{(P)}} b_{P}^{*} \in\left(Z\left(k C_{E}(P)\right) b_{P}^{*}\right)^{\times}$. By Lemma 2, such an element exists. For any $a \in G^{\prime}$ we have the following using Proposition 2 and Theorem 2.

$$
\begin{equation*}
\left.\left.\widehat{\left.C\left(t^{a}\right)_{\left(P^{a}\right)}^{\prime}\right)}\left(b_{P}^{*}\right)^{\prime}\right)^{a}=\operatorname{Pr}_{C_{E^{\prime}}\left(P^{a}\right)}^{C_{E}\left(P^{a}\right)} \widehat{C\left(t^{a}\right)_{\left(P^{a}\right)}}\left(b_{P}^{*}\right)^{a}\right) \neq 0 . \tag{3.3}
\end{equation*}
$$

In fact we have

$$
\begin{aligned}
\widehat{C\left(t^{a}\right)_{\left(P^{a}\right)}^{\prime}}\left(\left(b_{P}^{*}\right)^{\prime}\right)^{a} & =\left(\widehat{C(t)_{(P)}^{\prime}}\left(b_{P}^{*}\right)^{\prime}\right)^{a} \\
& =\left(\operatorname{Pr}_{C_{E^{\prime}}(P)}^{C_{E}(P)}\left(\widehat{C(t)_{(P)}} b_{P}^{*}\right)\right)^{a}=\operatorname{Pr}_{C_{E^{\prime}}\left(P^{a}\right)}^{C_{E}\left(P^{a}\right)}\left(\widehat{\left.C\left(t^{a}\right)_{\left(P^{a}\right)}\right)}\left(b_{P}^{*}\right)^{a}\right) \neq 0 .
\end{aligned}
$$

In particular, if $\left(P, b_{P}\right)^{a}=\left(P, b_{P}\right)$, then $\left(P,\left(b_{P}\right)^{\prime}\right)^{a}=\left(P,\left(b_{P}\right)^{\prime}\right)$.
Now for $P \leq R \leq D$, we prove $\left(P,\left(b_{P}\right)^{\prime}\right) \leq\left(R,\left(b_{R}\right)^{\prime}\right)$. We may assume $P \unlhd R$. From (3.3) R fixes $\left(b_{P}\right)^{\prime}$ because R fixes b_{P}. Now let $s \in E_{0}^{\prime}$ be such that $\widehat{C(s)} b \in$ $Z(\mathcal{O} E b)^{\times}$. Then $\widehat{C(s) \cap C_{E^{\prime}}(P)}\left(b_{P}\right)^{\prime}$ is fixed by R. Moreover $\overline{C(s) \cap C_{E}(P)} b_{P}^{*}$ is invertible in $\left(Z\left(k C_{E}(P) b_{P}^{*}\right)\right)^{R}$. Hence $\operatorname{Br}_{R / P}^{k C_{E}(P)}\left(\overline{C(s) \cap C_{E}(P)} b_{P}^{*}\right) b_{R}^{*}$ is invertible in $Z\left(k C_{E}(R)\right) b_{R}^{*}$ where $\operatorname{Br}_{R / P}^{k C_{E}(P)}$ is the restriction to $\left(k C_{E}(P)\right)^{R}$ of the Brauer homomorphism $\mathrm{Br}_{R}^{k E}$. In particular it does not vanish. Hence we have from Proposition 2

$$
\begin{aligned}
& \operatorname{Br}_{R / P}^{k C_{E^{\prime}}(P)}\left(\overline{C(s) \cap C_{E^{\prime}}(P)}\left(b_{P}^{*}\right)^{\prime}\right)\left(b_{R}^{*}\right)^{\prime} \\
& \left.=\operatorname{Br}_{R / P}^{k C_{E^{\prime}}(P)}\left(\operatorname{Pr}_{C_{E^{\prime}}(P)}^{C_{E}(P)}\left(\overline{C(s) \cap C_{E}(P)}\right) b_{P}^{*}\right)\right)\left(b_{R}^{*}\right)^{\prime} \\
& =\operatorname{Pr}_{C_{E^{\prime}}(R)}^{C_{k}(R)}\left(\operatorname{Br}_{R / P}^{k C_{E}(P)}\left(\overline{C(s) \cap C_{E}(P)} b_{P}^{*}\right)\right)\left(b_{R}^{*}\right)^{\prime} \\
& =\operatorname{Pr}_{C_{E^{\prime}}(R)}^{E_{E}(R)}\left(\operatorname{Br}_{R / P}^{k C_{E}(P)}\left(\overline{C(s) \cap C_{E}(P)} b_{P}^{*}\right) b_{R}^{*}\right) \neq 0 .
\end{aligned}
$$

The last inequality follows from [13], Lemmas 3.9 and 2.4. Therefore

$$
\operatorname{Br}_{R / P}^{k C_{E^{\prime}}(P)}\left(\left(b_{P}^{*}\right)^{\prime}\right)\left(b_{R}^{*}\right)^{\prime} \neq 0
$$

This implies $\left(P,\left(b_{P}\right)^{\prime}\right) \unlhd\left(R,\left(b_{R}\right)^{\prime}\right)$.
For a subgroup T of D and $a \in G$, suppose that $\left(P, b_{P}\right)^{a} \leq\left(T, b_{T}\right)$. We show that there is an element $e \in C_{G}(P)$ such that $e a \in G^{\prime}$ and $\left(P,\left(b_{P}\right)^{\prime}\right)^{e a} \leq\left(T,\left(b_{T}\right)^{\prime}\right)$. By Lemma 1, we may assume $a \in G^{\prime}$. Since we have $\left(P, b_{P}\right)^{a}=\left(P^{a}, b_{P a}\right),\left(b_{P}\right)^{a}=b_{P^{a}}$. From (3.3), $\left(\left(b_{P}\right)^{\prime}\right)^{a}=\left(b_{P^{a}}\right)^{\prime}$, hence $\left(P,\left(b_{P}\right)^{\prime}\right)^{a}=\left(P^{a},\left(b_{P^{a}}\right)^{\prime}\right) \leq\left(T,\left(b_{T}\right)^{\prime}\right)$. Conversely for $c \in G^{\prime}$, suppose that $\left(P,\left(b_{P}\right)^{\prime}\right)^{c} \leq\left(T,\left(b_{T}\right)^{\prime}\right)$. Then we have $\left(\left(b_{P}\right)^{\prime}\right)^{c}=\left(b_{P^{c}}\right)^{\prime}$. By (3.3) again, $b_{P^{c}}=\left(b_{P}\right)^{c}$, so $\left(P, b_{P}\right)^{c}=\left(P^{c}, b_{P^{c}}\right) \leq\left(T, b_{T}\right)$. This implies that the categories $\mathbf{B}_{G}(b)$ and $\mathbf{B}_{G^{\prime}}\left(b^{\prime}\right)$ are equivalent. This completes the proof.

4. Perfect isometry induced by the Dade correspondence

In Sections 4, 5 and 6, we assume Hypotheses 2 and 3, and $b^{\prime}=b_{\left(G^{\prime}\right)}$ using the notation in Theorem 2. In this section we show b and b^{\prime} are perfect isometric in the sense of Broué [1]. Moreover we use notations in §3. In particular, we recall that $\left.\operatorname{Irr}\left(\hat{b}_{i}\right)_{\left(E^{\prime}\right)}\right)=\left\{\lambda^{i}(\hat{\phi})_{\left(E^{\prime}\right)} \mid \phi \in \operatorname{Irr}(b)\right\}$. Now we have $b=\sum_{i=0}^{r-1} \hat{b}_{i}$, and $b^{\prime}=\sum_{i=0}^{r-1}\left(\hat{b}_{i}\right)_{\left(E^{\prime}\right)}$, and hence we have

$$
b^{\prime} b=\sum_{i=0}^{r-1} \sum_{l=0}^{r-1}\left(\hat{b}_{l}\right)_{\left(E^{\prime}\right)} \hat{b}_{l+i}
$$

We put

$$
\begin{equation*}
b_{i}=\sum_{l=0}^{r-1}\left(\hat{b}_{l}\right)_{\left(E^{\prime}\right)} \hat{b}_{l+i} \quad(\forall i \in \mathbf{Z}) \tag{4.1}
\end{equation*}
$$

Then $\left(b_{i}\right)^{2}=b_{i}$ and $b_{i} \in\left(\mathcal{O} G b b^{\prime}\right)^{E^{\prime}}$ for each i because

$$
b_{i}=\sum_{y \in E^{\prime}} \sum_{x \in E} \sum_{l=0}^{r-1} \lambda^{l}\left(y^{-1}\right) \lambda^{l}\left(x^{-1}\right) \lambda^{i}\left(x^{-1}\right) \beta_{y} \alpha_{x} y x \in \mathcal{O} G
$$

by the orthogonality relations where $\hat{b}_{0}=\sum_{x \in E} \alpha_{x} x$ and $\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}=\sum_{y \in E^{\prime}} \beta_{y} y\left(\alpha_{x}, \beta_{y} \in\right.$ $\mathcal{O})$. For each prime $q \in \pi(F)$, let $\lambda_{q} \in \hat{F}_{q}$ be a non-trivial character as in Theorem 1 . Set $l=|\pi(F)|$. Of course we may assume $l>0$ for our purpose. Moreover we can write for $t(t \leq l)$ distinct primes $q_{1}, q_{2}, \ldots, q_{t} \in \pi(F)$

$$
\lambda_{q_{1}} \cdots \lambda_{q_{t}}=\lambda^{m_{\left\{q_{1}, \ldots q_{t}\right\}}} \quad\left(m_{\left\{q_{1}, \ldots, q_{t}\right\}} \in \mathbf{Z}\right)
$$

recalling λ is a generator of \hat{F}. Then we have

$$
\begin{equation*}
\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right)=1+\sum_{t=1}^{l}(-1)^{t} \sum_{\left\{q_{1}, \ldots, q_{t}\right\} \subseteq \pi(F)} \lambda^{m_{\left\{q_{1}, \ldots, q_{t}\right\}}} \tag{4.2}
\end{equation*}
$$

where $\left\{q_{1}, \ldots, q_{t}\right\}$ runs over the set of t-element subsets of $\pi(F)$.
Proposition 4 (see [13], Proposition 4.4). With the above notations we have

$$
\begin{aligned}
& {\left[b_{0} \mathcal{K} G\right]+\sum_{t=1}^{l}(-1)^{t} \sum_{\left\{q_{1}, \ldots, q_{t}\right\} \subseteq \pi(F)}\left[b_{m_{\left\{q_{1}, \ldots, q_{t}\right\}}} \mathcal{K} G\right]} \\
& =\sum_{\phi \in \operatorname{Irr}(b)} \epsilon_{\phi}\left[L_{\phi_{\left(G^{\prime}\right)}} \otimes \mathcal{K} L_{\check{\phi}}\right]
\end{aligned}
$$

in $G_{0}\left(\mathcal{K}\left(G^{\prime} \times G\right)\right)$.
Proof. Our proof is essentially the same as the proof of [13], Proposition 4.4. Let $\phi \in \operatorname{Irr}(b)$. In $G_{0}\left(\mathcal{K} E^{\prime}\right)$ we have the following from (4.1), (4.2) and (1.1)

$$
\begin{aligned}
& {\left[b_{0} \mathcal{K} E \otimes \mathcal{K}_{E} L_{\hat{\phi}}\right]+\sum_{t=1}^{l}(-1)^{t} \sum_{\left\{q_{1}, \ldots, q_{t}\right\} \subseteq \pi(F)}\left[b_{m_{\left\{q_{1}, \ldots q_{t}\right\}}} \mathcal{K} E \otimes \mathcal{K} L_{\lambda^{m}{ }_{\left(q q_{1} \ldots q_{t}\right.} \hat{\phi}}\right]} \\
& =\left[b_{0}\left(L_{\hat{\phi}}\right)_{E^{\prime}}\right]+\sum_{t=1}^{l}(-1)^{t} \sum_{\left\{q_{1}, \ldots, q_{t}\right\} \subseteq \pi(F)}\left[b_{m_{\left\{q_{1}, \ldots, q_{t}\right\}}}\left(L_{\lambda^{m}{ }^{\left[q_{1}, \ldots, q_{t} \mid\right.} \mid}\right)_{E^{\prime}}\right] \\
& \underset{(4.1)}{(=1)}\left[\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}\left(L_{\hat{\phi}}\right)_{E^{\prime}}\right]+\sum_{t=1}^{l}(-1)^{t} \sum_{\left\{q_{1}, \ldots, q_{t}\right\} \subseteq \pi(F)}\left[\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)}\left(L_{\lambda^{m}\left[q_{1}, \ldots, q_{t} \mid \hat{\phi}\right.}\right)_{E^{\prime}}\right] \\
& \underset{(4.2),(1.1)}{=} \epsilon_{\phi}\left(\left[\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)} L_{\left(\hat{\phi}_{\left(E^{\prime}\right)}\right]}\right]+\sum_{t=1}^{l}(-1)^{t} \sum_{\left\{q_{1}, \ldots, q_{t}\right\} \subseteq \pi(F)}\left[\left(\hat{b}_{0}\right)_{\left(E^{\prime}\right)} L_{\lambda^{m}\left\{q_{1} \ldots, q_{t}\right\}}(\hat{\phi})_{\left(E^{\prime}\right)}\right]\right) \\
& \underset{(4.1)}{=} \epsilon_{\phi}\left[L_{\left.(\hat{\phi})_{\left(E^{\prime}\right)}\right]}\right] .
\end{aligned}
$$

This implies that in $G_{0}\left(\mathcal{K} G^{\prime}\right)$

$$
\left[b_{0} \mathcal{K} G \otimes_{\mathcal{K} G} L_{\phi}\right]+\sum_{t=1}^{l}(-1)^{t} \sum_{\left\{q_{1}, \ldots, q_{t}\right\} \leq \pi(F)}\left[b_{m_{\left\{q_{1}, \ldots, q_{t}\right\}}} \mathcal{K} G \otimes_{\mathcal{K} G} L_{\phi}\right]=\epsilon_{\phi}\left[L_{\phi_{\left(G^{\prime}\right)}}\right] .
$$

Since $b_{i} b=b_{i}$ for any $i \in \mathbf{Z}$, the proof is complete.
Theorem 5 (see [13], Theorem 4.5). Assume Hypotheses 2 and 3, and that $b^{\prime}=$ $b_{\left(G^{\prime}\right)}$. Set $\mu=\sum_{\phi \in \operatorname{Irr}(b)} \epsilon_{\phi} \phi_{\left(G^{\prime}\right)} \phi$. Then μ induces a perfect isometry $R_{\mu}: \mathcal{R}_{\mathcal{K}}(G, b) \rightarrow$ $\mathcal{R}_{\mathcal{K}}\left(G^{\prime}, b^{\prime}\right)$ which satisfies $R_{\mu}(\phi)=\epsilon_{\phi} \phi_{\left(G^{\prime}\right)}$.

Proof. We note that $b_{j} \mathcal{O} G$ is projective as a right $\mathcal{O} G$-module and as a left $\mathcal{O} G^{\prime}$-module if $b_{j} \neq 0$. Hence by [1], Proposition 1.2, μ is perfect. This and the above proposition imply the theorem.

5. Isotypy induced by the Dade correspondence

In this section we show that b and b^{\prime} are isotypic. Here we set

$$
\hat{b}_{i}^{\prime}=\left(\hat{b}_{i}\right)_{\left(E^{\prime}\right)} \quad(i \in \mathbf{Z})
$$

Then D is a defect group of \hat{b}_{i}^{\prime} since $p \nmid r$. Let $P \leq D$ and let $\left(\hat{b}_{P}\right)_{i}$ be a block of of $C_{E}(P)$ such that it covers b_{P} and it is associated with \hat{b}_{i}. By our assumption and Lemma $2,\left(\hat{b}_{P}\right)_{i}$ is uniquely determined. Similarly there exists a unique block of $C_{E^{\prime}}(P)$ such that it covers $\left(b_{P}\right)^{\prime}$ and it is associated with \hat{b}_{i}^{\prime}. By applying Proposition 2 for $C_{E}(P), C_{G}(P)$ and b_{P}, let $\left(\left(\hat{b}_{P}\right)_{i}\right)_{\left(C_{E^{\prime}}(P)\right)}$ be a block of $C_{E^{\prime}}(P)$ such that $\left.\operatorname{Irr}\left(\left(\hat{b}_{P}\right)_{i}\right)_{\left(C_{E^{\prime}}(P)\right)}\right)=\left\{\lambda^{i}\left(\hat{\phi}_{P}\right)_{\left(C_{E^{\prime}}(P)\right)} \mid \phi_{P} \in \operatorname{Irr}\left(b_{P}\right)\right\}$, where $\hat{\phi}_{P} \in \operatorname{Irr}\left(\left(\hat{b}_{P}\right)_{0}\right)$ is an extension of ϕ_{P}. Recall that we have two choices for $\left(\left(\hat{b}_{P}\right)_{0}\right)_{\left(C_{E^{\prime}}(P)\right)}$ when r is even (Proposition 3). Here we set

$$
\left(\hat{b}_{P}\right)_{i}^{\prime}=\left(\left(\hat{b}_{P}\right)_{i}\right)_{\left(C_{E^{\prime}}(P)\right)}
$$

and

$$
\left(\hat{b}_{P}^{*}\right)_{i}^{\prime}=\left(\left(\hat{b}_{P}\right)_{i}^{\prime}\right)^{*} \quad(i \in \mathbf{Z})
$$

Proposition 5 (see [13], Lemma 5.4). With the above notations, for a subgroup P of $D,\left(\hat{b}_{P}\right)_{i}^{\prime}$ is associated with \hat{b}_{i}^{\prime} for $i \in \mathbf{Z}$, if we choose appropriately $\left(\hat{b}_{P}\right)_{0}^{\prime}$ when r is even.

Proof. Our proof is essentially the same as the proof of [13], Lemma 5.4. Let $s \in E_{0}^{\prime}$. We have

$$
\widehat{C(s)} \hat{b}_{i}=\frac{1}{\left|C_{E^{\prime}}(s)\right|} \sum_{\phi \in \operatorname{Irr}(b)}\left(\sum_{x \in E_{0}}\left(\lambda^{i} \hat{\phi}\right)(s)\left(\lambda^{i} \hat{\phi}\right)\left(x^{-1}\right) x+\sum_{y \in E-E_{0}}\left(\lambda^{i} \hat{\phi}\right)(s)\left(\lambda^{i} \hat{\phi}\right)\left(y^{-1}\right) y\right)
$$

since $C_{E}(s)=C_{E^{\prime}}(s)$. Similarly we have

$$
\begin{aligned}
\widehat{C(s)^{\prime}} \hat{b}_{i}^{\prime}=\frac{1}{\left|C_{E^{\prime}}(s)\right|} \sum_{\phi \in \operatorname{Irr}(b)}(& \sum_{x \in E_{0}^{\prime}}\left(\lambda^{i}(\hat{\phi})_{\left(E^{\prime}\right)}\right)(s)\left(\lambda^{i}(\hat{\phi})_{\left(E^{\prime}\right)}\right)\left(x^{-1}\right) x \\
& \left.\left.+\sum_{y \in E^{\prime}-E_{0}^{\prime}}\left(\lambda^{i}(\hat{\phi})_{\left(E^{\prime}\right)}\right)(s)\left(\lambda^{i} \hat{\phi}\right)_{\left(E^{\prime}\right)}\right)\left(y^{-1}\right) y\right)
\end{aligned}
$$

Recall that $\hat{\phi}(x)=\epsilon_{\phi}(\hat{\phi})_{\left(E^{\prime}\right)}(x)$ for $x \in E_{0}^{\prime}$. The above equalities, the fact $E_{0}^{\prime}=E^{\prime} \cap E_{0}$ and [13], Lemma 2.4 imply the following.

$$
\begin{equation*}
\operatorname{Pr}_{E^{\prime}}^{E}\left(\widehat{C(s)} \hat{b}_{i}\right)-\widehat{C(s)^{\prime} \hat{b}_{i}^{\prime}} \in \mathcal{O}\left[E^{\prime}-E_{0}^{\prime}\right]^{E^{\prime}} \tag{5.1}
\end{equation*}
$$

where $\mathcal{S}\left[E^{\prime}-E_{0}^{\prime} E^{\prime}\right.$ is the \mathcal{S}-submodule of $Z\left(\mathcal{S} E^{\prime}\right)$ which is spanned by $\left\{\widehat{C(t)^{\prime}} \mid t \in\right.$ $\left.E^{\prime}-E_{0}^{\prime}\right\}$.

In order to prove the proposition, it suffices to show that $\left(\hat{b}_{P}\right)_{0}^{\prime}$ is associated with \hat{b}_{0}^{\prime}, if we choose $\left(\hat{b}_{P}\right)_{0}^{\prime}$ appropriately when r is even. Suppose that $\left(\hat{b}_{P}\right)_{j}^{\prime}$ is associated with \hat{b}_{0}^{\prime} for some $j(0 \leq j \leq r-1)$. We have

$$
\begin{aligned}
& \operatorname{Pr}_{C_{E^{\prime}}(P)}^{E}\left(\widehat{C(s)} \hat{b}_{0}\right)^{*}\left(b_{P}^{*}\right)^{\prime} \\
& =\operatorname{Pr}_{C_{E^{\prime}}(P)}^{E^{\prime}}\left[\operatorname{Pr}_{E^{\prime}}^{E}\left(\widehat{C(s)} \hat{b}_{0}\right)\right]^{*}\left(b_{P}^{*}\right)^{\prime}
\end{aligned}
$$

from (5.1),

$$
\begin{aligned}
& =\operatorname{Br}_{P}^{\mathcal{O} E^{\prime}}\left(\widehat{C(s)^{\prime}} \hat{b}_{0}^{\prime}+c\right)\left(b_{P}^{*}\right)^{\prime} \\
& =\operatorname{Br}_{P}^{\mathcal{O} E^{\prime}}\left(\widehat{C(s)^{\prime}} b^{\prime} b_{0}^{\prime}+c\right)\left(b_{P}^{*}\right)^{\prime} \\
& =\left[\operatorname{Br}_{P}^{\mathcal{O} E^{\prime}}\left(\widehat{C(s)^{\prime} b^{\prime}}\right) \operatorname{Br}_{P}^{\mathcal{O} E^{\prime}}\left(\hat{b}_{0}^{\prime}\right)+\operatorname{Br}_{P}^{\mathcal{O} E^{\prime}}(c)\right]\left(b_{P}^{*}\right)^{\prime} \\
& =\operatorname{Br}_{P}^{\mathcal{O} E^{\prime}}\left(\widehat{C(s)^{\prime}} b^{\prime}\right)\left(\hat{b}_{P}^{*}\right)_{j}^{\prime}+\operatorname{Br}_{P}^{\mathcal{O} E^{\prime}}(c)\left(b_{P}^{*}\right)^{\prime}
\end{aligned}
$$

where c is some element of $\mathcal{O}\left[E^{\prime}-E_{0}^{\prime}\right]^{E^{\prime}}$. On the other hand, we can see

$$
\begin{aligned}
& \operatorname{Pr}_{C_{E^{\prime}}(P)}^{E}\left(\widehat{C(s)} \hat{b}_{0}\right)^{*}\left(b_{P}^{*}\right)^{\prime} \\
& =\operatorname{Pr}_{C_{E^{\prime}}(P)}^{C_{E}(P)}\left[\operatorname{Pr}_{C_{E}(P)}^{E}\left(\widehat{C(s)} \hat{b}_{0}\right)\right]^{*}\left(b_{P}^{*}\right)^{\prime} \\
& =\operatorname{Pr}_{C_{E^{\prime}}(P)}^{C_{E}(P)}\left[\operatorname{Pr}_{C_{E}(P)}^{E}(\widehat{C(s)})^{*} \operatorname{Br}_{P}^{\mathcal{O}}\left(\hat{b}_{0}\right)\right]\left(b_{P}^{*}\right)^{\prime}
\end{aligned}
$$

from the argument in the above of Theorem 3 and (5.1) for $C_{E}(P)$

$$
=\operatorname{Pr}_{C_{E^{\prime}}(P)}^{C_{E}(P)}\left[\operatorname{Pr}_{C_{E}(P)}^{E}(\widehat{C(s)})^{*}\right]\left(\hat{b}_{P}^{*}\right)_{0}^{\prime}+d\left(b_{P}^{*}\right)^{\prime}
$$

and by Theorem 3

$$
\begin{aligned}
& =\operatorname{Br}_{P}^{\mathcal{O} E^{\prime}}\left[\operatorname{Pr}_{E^{\prime}}^{E}(\widehat{C(s)})\right] \operatorname{Br}_{P}^{\mathcal{O} E^{\prime}}\left(b^{\prime}\right)\left(\hat{b}_{P}^{*}\right)_{0}^{\prime}+d\left(b_{P}^{*}\right)^{\prime} \\
& =\operatorname{Br}_{P}^{\mathcal{O} E^{\prime}}\left(\widehat{C(s)^{\prime}} b^{\prime}\right)\left(\hat{b}_{P}^{*}\right)_{0}^{\prime}+d\left(b_{P}^{*}\right)^{\prime}
\end{aligned}
$$

where d is some element of $k\left[C_{E^{\prime}}(P)-C_{E_{0}^{\prime}}(P)\right]^{C_{E^{\prime}}(P)}$.
Now we choose an element $s \in C_{E_{0}^{\prime}}(P)$ such that

$$
\operatorname{Br}_{P}^{\mathcal{O} E^{\prime}}\left(\widehat{C(s)^{\prime}} b^{\prime}\right) \in\left(k C_{E^{\prime}}(P) \operatorname{Br}_{P}^{\mathcal{O} E^{\prime}}\left(b^{\prime}\right)\right)^{\times}
$$

Note that $\operatorname{Br}_{P}^{\mathcal{O} E^{\prime}}\left(\widehat{C(s)^{\prime} b^{\prime}}\right)$ is a k-linear combination of elements in $s C_{G^{\prime}}(P)$ because $\widehat{C(s)^{\prime}} b^{\prime}$ is an \mathcal{O}-linear combination of elements in $s G^{\prime}$. By the above equations

$$
\operatorname{Br}_{P}^{\mathcal{O} E^{\prime}}\left(\widehat{C(s)^{\prime}} b^{\prime}\right)\left(\left(\hat{b}_{P}^{*}\right)_{j}^{\prime}-\left(\hat{b}_{P}^{*}\right)_{0}^{\prime}\right) \in k\left[C_{E^{\prime}}(P)-C_{E_{0}^{\prime}}(P)\right]^{C_{E^{\prime}}(P)} .
$$

Set $v=\left(\hat{b}_{P}^{*}\right)_{j}^{\prime}-\left(\hat{b}_{P}^{*}\right)_{0}^{\prime}$. The coefficient of any element of $s^{-2} C_{G^{\prime}}(P)$ in v is zero. Hence $\lambda^{j}\left(s^{2}\right)=\lambda^{2 j}(s)=1$. Therefore if r is odd, then $j=0$. If r is even, $j=0$ or $j=r / 2$. Therefore by replacing $\epsilon_{\phi_{P}}$ by $-\epsilon_{\phi_{P}}$ for all $\phi_{P} \in \operatorname{Irr}\left(b_{P}\right)$ if $j=r / 2$, we have $\left(\hat{b}_{P}\right)_{0}^{\prime}$ is associated with \hat{b}_{0}^{\prime}. This completes the proof.

Let $P \leq D$. We note again that for any integer $i,\left(\hat{b}_{P}\right)_{i}$ covers b_{P} and it is associated with \hat{b}_{i}. Moreover $\left(\hat{b}_{P}\right)_{i}$ contains $\lambda^{i} \hat{\phi}_{P}\left(\hat{\phi}_{P} \in \operatorname{Irr}\left(\left(\hat{b}_{P}\right)_{0}\right)\right)$. Let R^{P} be the perfect isometry between $\mathcal{R}_{\mathcal{K}}\left(C_{G}(P), b_{P}\right)$ and $\mathcal{R}_{\mathcal{K}}\left(C_{G^{\prime}}(P),\left(b_{P}\right)^{\prime}\right)$ obtained by

$$
\rho\left(C_{E}(P), C_{G}(P), C_{E^{\prime}}(P), C_{G^{\prime}}(P)\right)
$$

(see Theorem 5). Also let $R_{p^{\prime}}^{P}$ be the restriction of R^{P} to $\mathrm{CF}_{p^{\prime}}\left(C_{G}(P), b_{P} ; \mathcal{K}\right)$, where R^{P} is regarded as a linear isometry from $\operatorname{CF}\left(C_{G}(P), b_{P} ; \mathcal{K}\right)$ onto $\operatorname{CF}\left(C_{G^{\prime}}(P),\left(b_{P}\right)^{\prime} ; \mathcal{K}\right)$. We set

$$
\left(b_{P}\right)_{i}=\sum_{l=0}^{r-1}\left(\hat{b}_{P}\right)_{l}^{\prime}\left(\hat{b}_{P}\right)_{l+i} \in\left(\mathcal{O} C_{G}(P) b_{P}\left(b_{P}\right)^{\prime}\right)^{C_{E^{\prime}}(P)} .
$$

For $u \in D$ we set

$$
b_{u}=b_{\langle u\rangle}, \quad\left(b_{u}\right)^{\prime}=\left(b_{\langle u\rangle}\right)^{\prime}, \quad\left(\hat{b}_{u}\right)_{0}^{\prime}=\left(\hat{b}_{\langle u\rangle}\right)_{0}^{\prime}, \quad\left(b_{u}\right)_{i}=\left(b_{\langle u\rangle}\right)_{i} .
$$

Theorem 6 (see [13], Theorem 5.5). Assume Hypotheses 2 and 3, and assume $b^{\prime}=b_{\left(G^{\prime}\right)}$. With the above notations, b and b^{\prime} are isotypic with the local system $\left(R^{P}\right)_{\{P(\text { cyclic }) \leq D\}}$.

Proof. Our proof is essentially the same as the proof of [13], Theorem 5.5. Let $\gamma \in \mathrm{CF}(G, b ; \mathcal{K}), u \in D$ and let $c^{\prime} \in C_{G^{\prime}}(u)_{p^{\prime}}$. Let $S(u)$ be the p-section of G containing u. We remark that if $v \in S(u)$, then $\widehat{C(v)} b$ is an \mathcal{O}-linear combination of elements of
$S(u)$ by [12], Chapter V, Theorem 4.5. We can see from Proposition 4

$$
\begin{aligned}
& \left.\left[\left(d_{G^{\prime}}^{\left(u,\left(b_{u}\right)^{\prime}\right)}\right) \circ R^{\langle 1\rangle}\right)(\gamma)\right]\left(c^{\prime}\right) \\
& =\frac{1}{|G|} \sum_{g \in G}\left[\sum_{\phi \in \operatorname{Irr}(b)}\left(\phi\left(u c^{\prime}\left(b_{u}\right)^{\prime} b_{0}\right)+\sum_{t=1}^{l}(-1)^{t} \sum_{\left\{q_{1}, \ldots, q_{\}}\right\} \subseteq \pi(F)} \phi\left(u c^{\prime}\left(b_{u}\right)^{\prime} b_{\left.m_{\left\{q q_{1}, \ldots, q_{t}\right\}}\right)}\right)\right) \phi\left(g^{-1}\right)\right] \gamma(g) \\
& =\frac{1}{|G|} \sum_{g \in G}\left[\sum_{\phi \in \operatorname{Irr}(b)}\left(\hat{\phi}\left(u c^{\prime}\left(b_{u}\right)^{\prime} b_{0}\right)+\sum_{t=1}^{l}(-1)^{t} \sum_{\left\{q_{1}, \ldots, q_{t}\right\} \subseteq \pi(F)} \hat{\phi}\left(u c^{\prime}\left(b_{u}\right)^{\prime} b_{\left.m_{\left\{q_{1}, \ldots, q_{t}\right\}}\right)}\right) \hat{\phi}\left(g^{-1}\right)\right] \gamma(g)\right.
\end{aligned}
$$

from (4.1) and the fact $\hat{\phi} \in \operatorname{Irr}\left(\hat{b}_{0}\right)$

$$
\begin{aligned}
& =\frac{1}{|G|} \sum_{g \in G}\left[\sum_{\hat{\phi} \in \operatorname{Irr}\left(\hat{b}_{0}\right)}\left(\hat{\phi}\left(u c^{\prime}\left(b_{u}\right)^{\prime} \hat{b}_{0}^{\prime}\right)+\sum_{t=1}^{l}(-1)^{t} \sum_{\left\{q_{1}, \ldots, q_{t}\right\} \subseteq \pi(F)} \hat{\phi}\left(u c^{\prime}\left(b_{u}\right)^{\prime} \hat{b}_{\left.-m_{\left\{q_{1}, \ldots, q_{t}\right\}}^{\prime}\right)}\right) \hat{\phi}\left(g^{-1}\right)\right] \gamma(g)\right. \\
& =\frac{1}{|G|} \sum_{g \in G}\left[\sum_{\hat{\phi} \in \operatorname{Irr}\left(\hat{b}_{0}\right)}\left(\hat{\phi}\left(1+\sum_{t=1}^{l}(-1)^{t} \sum_{\left\{q_{1}, \ldots, q_{t}\right\} \subseteq \pi(F)} \lambda^{m_{\left\{q_{1}, \ldots q_{t}\right\}}}\right)\right)\left(u c^{\prime}\left(b_{u}\right)^{\prime} \hat{b}_{0}^{\prime}\right) \hat{\phi}\left(g^{-1}\right)\right] \gamma(g)
\end{aligned}
$$

from (4.2)
$=\frac{1}{|G|} \sum_{g \in G}\left[\sum_{\hat{\phi} \in \operatorname{Irr}\left(\hat{b}_{0}\right)}\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \hat{\phi}\right)\left(u c^{\prime}\left(b_{u}\right)^{\prime} \hat{b}_{0}^{\prime}\right) \hat{\phi}\left(g^{-1}\right)\right] \gamma(g)$
by applying [12], Chapter V, Theorem 4.5 for E and \hat{b}_{0}
$=\frac{1}{|G|} \sum_{x \in S(u)}\left[\sum_{\hat{\phi} \in \operatorname{Irr}\left(\hat{b}_{0}\right)}\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \hat{\phi}\right)\left(u c^{\prime}\left(b_{u}\right)^{\prime} \hat{b}_{0}^{\prime}\right) \hat{\phi}\left(x^{-1}\right)\right] \gamma(x)$
$=\frac{1}{\left|C_{G}(u)\right|} \sum_{y \in C_{G}(u)_{p^{\prime}}}\left[\sum_{\hat{\phi} \in \operatorname{Irr}\left(\hat{b}_{0}\right)}\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \hat{\phi}\right)\left(u c^{\prime}\left(b_{u}\right)^{\prime} \hat{b}_{0}^{\prime}\right) \hat{\phi}\left(y^{-1} u^{-1}\right)\right] \gamma(u y)$
by using (1.1) twice, and by Brauer's second main theorem on blocks ([12], Chapter V, Theorem 4.1) and Proposition 5

$$
\begin{aligned}
& =\frac{1}{\left|C_{G}(u)\right|} \sum_{y \in C_{G}(u)_{p^{\prime}}}\left[\sum_{\hat{\phi} \in \operatorname{Irr}\left(\hat{b}_{0}\right)}\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot(\hat{\phi})_{\left(E^{\prime}\right)}\right)\left(u c^{\prime}\left(b_{u}\right)^{\prime}\right) \hat{\phi}\left(y^{-1} u^{-1}\right)\right] \gamma(u y) \\
& =\frac{1}{\left|C_{G}(u)\right|} \sum_{y \in C_{G}(u)_{p^{\prime}}}\left[\sum_{\hat{\phi} \in \operatorname{Irr}\left(\hat{b}_{0}\right)}\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot(\hat{\phi})_{\left(E^{\prime}\right)}\right)\left(u c^{\prime}\left(\hat{b}_{u}\right)_{0}^{\prime}\right) \hat{\phi}\left(y^{-1} u^{-1}\right)\right] \gamma(u y)
\end{aligned}
$$

$$
=\frac{1}{\left|C_{G}(u)\right|} \sum_{y \in C_{G}(u)_{p^{\prime}}}\left[\sum_{\hat{\phi} \in \operatorname{Irr}\left(\hat{b}_{0}\right)}\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \hat{\phi}\right)\left(u c^{\prime}\left(\hat{b}_{u}\right)_{0}^{\prime}\right) \hat{\phi}\left(y^{-1} u^{-1}\right)\right] \gamma(u y)
$$

from [12], Chapter V, Theorem 4.11

$$
=\frac{1}{\left|C_{G}(u)\right|} \sum_{y \in C_{G}(u)_{p^{\prime}}}\left[\sum_{e \in \operatorname{Bl}\left(C_{E}(u), \hat{b}_{0}\right)} \sum_{\rho \in \operatorname{Irr}(e)}\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \rho\right)\left(c^{\prime}\left(\hat{b}_{u}\right)_{0}^{\prime}\right) \rho\left(y^{-1}\right)\right] \gamma(u y)
$$

from (1.1) for $C_{E}(u)$

$$
=\frac{1}{\left|C_{G}(u)\right|} \sum_{y \in C_{G}(u)_{p^{\prime}}}\left[\sum_{e \in \operatorname{Bl}\left(C_{E}(u), \hat{b}_{0}\right)} \sum_{\rho \in \operatorname{Irr}(e)}\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \rho_{\left(C_{E^{\prime}}(u)\right)}\right)\left(c^{\prime}\left(\hat{b}_{u}\right)_{0}^{\prime}\right) \rho\left(y^{-1}\right)\right] \gamma(u y)
$$

recalling $\left(\hat{b}_{u}\right)_{0}^{\prime}=\left(\left(\hat{b}_{\langle u\rangle}\right)_{0}\right)_{\left(C_{E^{\prime}}(u)\right)}$

$$
=\frac{1}{\left|C_{G}(u)\right|} \sum_{y \in C_{G}\left(u u_{p^{\prime}}\right.}\left[\sum_{\left.\hat{\xi} \in \operatorname{Irr}\left(\hat{b}_{u}\right)_{0}\right)}\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \hat{\xi}\right)\left(c^{\prime}\left(\hat{b}_{u}\right)_{0}^{\prime}\right) \hat{\xi}\left(y^{-1}\right)\right] \gamma(u y)
$$

from (4.2)

$$
=\frac{1}{\left|C_{G}(u)\right|} \sum_{y}\left[\sum_{\hat{\xi} \in \operatorname{Irr}\left(\left(\hat{b}_{u}\right)_{0}\right)}\left(\hat{\xi}\left(c^{\prime}\left(\hat{b}_{u}\right)_{0}^{\prime}\right)+\sum_{t=1}^{l}(-1)^{t} \sum_{\left\{q_{1}, \ldots, q_{t}\right\}} \hat{\xi}\left(c^{\prime}\left(\hat{b}_{u}\right)_{-m_{\left\{q_{1} \ldots, q_{t}\right\}}^{\prime}}\right)\right) \hat{\xi}\left(y^{-1}\right)\right] \gamma(u y)
$$

from (4.1)

$$
=\frac{1}{\left|C_{G}(u)\right|} \sum_{y}\left[\sum_{\xi \in \operatorname{Irr}\left(b_{u}\right)}\left(\xi\left(c^{\prime}\left(b_{u}\right)_{0}\right)+\sum_{t=1}^{l}(-1)^{t} \sum_{\left\{q_{1}, \ldots q_{t}\right\}} \xi\left(c^{\prime}\left(b_{u}\right)_{\left.m_{\left(q_{1}, \cdots q_{t}\right)}\right)}\right) \xi\left(y^{-1}\right)\right] \gamma(u y)\right.
$$

and from [12], Chapter V, Theorem 4.7

$$
\begin{aligned}
=\frac{1}{\left|C_{G}(u)\right|} \sum_{y} & {\left[\sum_{\xi \in \operatorname{Ir}\left(b_{u}\right)}\left(\xi\left(c^{\prime}\left(b_{u}\right)_{0}\right)+\sum_{t=1}^{l}(-1)^{t} \sum_{\left\{q_{1}, \ldots, q_{t}\right\}} \xi\left(c^{\prime}\left(b_{u}\right)_{m_{\left\{q_{1}, \ldots q_{t}\right.}}\right)\right) \xi\left(y^{-1}\right)\right] } \\
& \times\left(d_{G}^{\left(u, b_{u}\right)}(\gamma)\right)(y) \\
= & {\left[\left(R_{p^{\prime}}^{\langle u\rangle} \circ d_{G}^{\left(u, b_{u}\right)}\right)(\gamma)\right]\left(c^{\prime}\right) }
\end{aligned}
$$

recalling the definition of the perfect isometry $R^{\langle u\rangle}$, where y runs over $C_{G}(u)_{p^{\prime}}$ and $\left\{q_{1}, \ldots, q_{t}\right\}$ runs over the set of t-element subsets of $\pi(F)$. This and Theorem 4 complete the proof.

Corollary 1 ([8]). Let G and A be finite groups such that A is cyclic, A acts on G via automorphism and that $\left(\left|C_{G}(A)\right|,|A|\right)=1$. If $p \nmid|A|$ and $p \nmid\left|G: C_{G}(A)\right|$, then the Dade correspondence induces an isotypy between $b(G)$ and $b\left(C_{G}(A)\right)$.

Proof. Let s be a generator of A. Let $E=G \rtimes A, G^{\prime}=C_{G}(A)$ and $E^{\prime}=G^{\prime} A$. Then E, G, E^{\prime} and G^{\prime} satisfy Hypothesis 1 by [3], Lemma 7.5. By the assumption $\widehat{C(s)} b(E)$ is invertible in $Z\left(\mathcal{O} E b(E)\right.$). Also $s b\left(E^{\prime}\right)$ is invertible in $Z\left(\mathcal{O} E^{\prime} b\left(E^{\prime}\right)\right)$. Hence the corollary follows from Theorem 6.

Example. Suppose $p=5$, and let $G=S z\left(2^{2 n+1}\right)$, the Suzuki group, $A=\langle\sigma\rangle$ where σ is the Frobenius automorphism of G with respect to $\operatorname{GF}\left(2^{2 n+1}\right) / \operatorname{GF}(2)$. Set $G^{\prime}=S z(2)=C_{G}(A), E=G \rtimes A, E^{\prime}=G^{\prime} \times A$. Suppose that $5 \nmid 2 n+1$. Then $\left(2 n+1,\left|G^{\prime}\right|\right)=(2 n+1,20)=1$. Moreover a Sylow 5 -subgroup of G has order 5. By the above corollary, the Dade correspondence gives an isotypy between $b(G)$ and $b\left(G^{\prime}\right)$.

6. Normal defect group case

In the Glauberman correspondence case if the defect group D is normal in G, there is a Puig equivalence (splendidly Morita equivalence) between b and b^{\prime} which affords the Glauberman correspondence on the character level ([6], [14]). In the Dade correspondence case we show that b and b^{\prime} are Puig equivalent if D is normal in G. By our assumption, there exist a defect group D of b and b^{\prime}, and an element $s \in E_{0}^{\prime}$ such that $s \in C_{E}(D)$ and $\widehat{C(s)} b \in Z(\mathcal{O} E b)^{\times}$. Let $\phi \in \operatorname{Irr}(b)$ be of height 0 . From [13], Lemma 2.4 and (1.1) in Theorem 1, we have

$$
0 \neq\left(\omega_{\hat{\phi}}(\widehat{C(s)})\right)^{*}=\left(\epsilon_{\phi} \frac{|E| \phi_{\left(G^{\prime}\right)}(1)}{\left|E^{\prime}\right| \phi(1)} \omega_{(\hat{\phi})_{\left(E^{\prime}\right)}}\left(\widehat{\left.C(s)^{\prime}\right)}\right)^{*}\right.
$$

Since b and b^{\prime} have the same defect,

$$
\left(\omega_{(\hat{\phi})_{\left(E^{\prime}\right)}}\left(\widehat{\left.C(s)^{\prime}\right)}\right)^{*} \neq 0\right.
$$

Hence $\widehat{C(s)^{\prime} b^{\prime}} \in Z\left(\mathcal{O} E b^{\prime}\right)^{\times}$. The element s is used in the next lemma.
Lemma 3. Let E_{1} be a subgroup of $N_{E}(D)$ containing $C_{E}(D)$ and set $G_{1}=G \cap$ $E_{1}, E_{1}^{\prime}=E^{\prime} \cap E_{1}$, and $G_{1}^{\prime}=G^{\prime} \cap E_{1}$. Then $E_{1}, G_{1}, E_{1}^{\prime}$ and G_{1}^{\prime} satisfy Hypothesis 1 . Moreover $\left(b_{D}\right)^{G_{1}}$ satisfies Hypothesis 2, $\left(\left(b_{D}\right)^{\prime}\right)^{G_{1}^{\prime}}$ satisfies Hypothesis 3 and

$$
\begin{equation*}
\left(\left(b_{D}\right)^{G_{1}}\right)_{\left(G_{1}^{\prime}\right)}=\left(\left(b_{D}\right)^{\prime}\right)^{G_{1}^{\prime}} . \tag{6.1}
\end{equation*}
$$

Proof. By our assumption $E=G\langle s\rangle$, hence we have $E_{1}=G_{1}\langle s\rangle=E_{1}^{\prime} G_{1}, G_{1}^{\prime}=$ $G_{1} \cap E_{1}^{\prime}$. Also $E_{1} / G_{1} \cong E_{1}^{\prime} / G_{1}^{\prime} \cong F$. Hence the former is clear. On the other hand,
since $\operatorname{Br}_{D}^{\mathcal{O} E}(\widehat{C(s)} b) b_{D}^{*} \in Z\left(k E_{1}\left(b_{D}\right)^{*}\right)^{\times}=Z\left(k E_{1}\left(\left(b_{D}\right)^{G_{1}}\right)^{*}\right)^{\times}$and $\operatorname{Br}_{D}^{\mathcal{O} E^{\prime}}\left(\widehat{C(s)^{\prime} b^{\prime}}\right)\left(b_{D}^{\prime}\right)^{*} \in$ $Z\left(k E_{1}^{\prime}\left(\left(b_{D}\right)^{\prime}\right)^{*}\right)^{\times}=Z\left(k E_{1}^{\prime}\left(\left(\left(b_{D}\right)^{\prime}\right)^{G_{1}^{\prime}}\right)^{*}\right)^{\times},\left(b_{D}\right)^{G_{1}}$ satisfies Hypothesis 2, and $\left(\left(b_{D}\right)^{\prime}\right)^{G_{1}^{\prime}}$ satisfies Hypothesis 3. By applying Theorem 3, (i) for E_{1}, G_{1} and $\left(b_{D}\right)^{G_{1}}$, we have (6.1).

In the above lemma, we set $E_{1}=N_{E}(D)$. Then $\left(b_{D}\right)^{G_{1}}=\left(b_{D}\right)^{N_{G}(D)}$ is a Brauer correspondent of b, and $\left(\left(b_{D}\right)^{\prime}\right)^{N_{G^{\prime}}(D)}$ is a Brauer correspondent of b^{\prime}. From now we assume D is normal in G. Then D is normal in E.

Lemma 4. With the notations in Lemma 3, suppose that E_{1} is normal in E. Let $\xi \in \operatorname{Irr}\left(\left(b_{D}\right)^{G_{1}}\right)$ and $x^{\prime} \in E^{\prime}$. We have $\left(\xi^{x^{\prime}}\right)_{\left(G_{1}^{\prime}\right)}=\left(\xi_{\left(G_{1}^{\prime}\right)}\right)^{x^{\prime}}$ and $\left(\left(\left(b_{D}\right)^{G_{1}}\right)^{x^{\prime}}\right)_{\left(G_{1}^{\prime}\right)}=$ $\left(\left(\left(b_{D}\right)^{\prime}\right)^{G_{1}^{\prime}}\right)^{x^{\prime}}$. In particular $I_{E}(\xi) \cap E^{\prime}=I_{E^{\prime}}\left(\xi_{\left(G_{1}^{\prime}\right)}\right)$ and $I_{E}\left(\left(b_{D}\right)^{G_{1}}\right) \cap E^{\prime}=I_{E^{\prime}}\left(\left(\left(b_{D}\right)^{\prime}\right)^{G_{1}^{\prime}}\right)$.

Proof. Note that $\left(b_{D}\right)^{G_{1}}$ and $\left(\left(b_{D}\right)^{G_{1}}\right)^{x^{\prime}}$ respectively satisfy Hypothesis 2. Let $\hat{\xi} \in$ $\operatorname{Irr}\left(E_{1} \mid \xi\right)$ and $\xi^{\prime}=\xi_{\left(G_{1}^{\prime}\right)}$. By Theorem 1 and (1.1),

$$
\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \hat{\xi}\right)_{E_{1}^{\prime}}=\epsilon_{\xi} \prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot(\hat{\xi})_{\left(E_{1}^{\prime}\right)}
$$

where $\epsilon_{\xi}= \pm 1$. Hence we have,

$$
\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot(\hat{\xi})^{x^{\prime}}\right)_{E_{1}^{\prime}}=\epsilon_{\xi} \prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot\left((\hat{\xi})_{\left(E_{1}^{\prime}\right)}\right)^{x^{\prime}}
$$

Therefore by Theorem 1 we have $\left(\xi^{x^{\prime}}\right)_{\left(G_{1}^{\prime}\right)}=\xi^{\prime x^{\prime}}$ because $\left((\hat{\xi})^{x^{\prime}}\right)_{G_{1}}=\xi^{x^{\prime}}$ and $\left(\left((\hat{\xi})_{\left(E_{1}^{\prime}\right)}\right)^{x^{\prime}}\right)_{G_{1}^{\prime}}=$ $\xi^{\prime x^{\prime}}$. This implies the lemma because the Dade correspondence $\rho\left(E_{1}, G_{1}, E_{1}^{\prime}, G_{1}^{\prime}\right)$ induces the bijection between $\operatorname{Irr}\left(\left(b_{D}\right)^{G_{1}}\right)$ and $\operatorname{Irr}\left(\left(\left(b_{D}\right)^{\prime}\right)^{G_{1}^{\prime}}\right)$ by Lemma 3 .

By Lemma 4 we have $I_{E}\left(b_{D}\right) \cap E^{\prime}=I_{E^{\prime}}\left(\left(b_{D}\right)^{\prime}\right)$. By Lemma $3 I_{E}\left(b_{D}\right), I_{G}\left(b_{D}\right)$, $I_{E^{\prime}}\left(\left(b_{D}\right)^{\prime}\right)$ and $I_{G^{\prime}}\left(\left(b_{D}\right)^{\prime}\right)$ satisfy Hypothesis 1. Moreover $\left(b_{D}\right)^{I_{G}\left(b_{D}\right)}$ satisfies Hypothesis 2, and $\left(\left(b_{D}\right)^{\prime}\right)^{I_{G^{\prime}}\left(\left(b_{D}\right)^{\prime}\right)}$ satisfies Hypothesis 3. Also we have

$$
\begin{equation*}
\left(\left(b_{D}\right)^{I_{G}\left(b_{D}\right)}\right)_{\left(I_{G^{\prime}}\left(\left(b_{D}\right)^{\prime}\right)\right)}=\left(\left(b_{D}\right)^{\prime}\right)^{I_{G^{\prime}}\left(\left(b_{D}\right)^{\prime}\right)} . \tag{6.2}
\end{equation*}
$$

By Lemma 3, $D C_{E}(D), D C_{G}(D), D C_{E^{\prime}}(D)$ and $D C_{G^{\prime}}(D)$ also satisfy Hypothesis 1. Set $K=D C_{G}(D)$ and $K^{\prime}=D C_{G^{\prime}}(D)$. Then $\left(b_{D}\right)^{K}$ satisfies Hypothesis 2, and $\left(\left(b_{D}\right)^{\prime}\right)^{K^{\prime}}$ satisfies Hypothesis 3. Moreover we have

$$
\left(\left(b_{D}\right)^{K}\right)_{\left(K^{\prime}\right)}=\left(\left(b_{D}\right)^{\prime}\right)^{K^{\prime}} .
$$

Now suppose that b_{D} is G-invariant for a while. Then $\left(b_{D}\right)^{K}$ is G-invariant. Note that as elements of $\mathcal{O} G, b=b_{D}=\left(b_{D}\right)^{K}$. By Lemma 4, $\left(\left(b_{D}\right)^{\prime}\right)^{K^{\prime}}$ is G^{\prime}-invariant. Since
b is covered by r blocks of E and since $\left(b_{D}\right)^{K}$ is covered by r blocks of $D C_{E}(D)$, any block of $D C_{E}(D)$ covering $\left(b_{D}\right)^{K}$ is E-invariant. Let $\widehat{\left(b_{D}\right)^{K}}$ be a block of $D C_{E}(D)$ covering $\left(b_{D}\right)^{K}$. In fact the block idempotent of a block of E covering b belongs to $\mathcal{O} D C_{E}(D)$. If $\xi \in \operatorname{Irr}^{G}\left(\left(b_{D}\right)^{K}\right)$ and $\hat{\xi}$ is an extension of ξ to $D C_{E}(D)$ belonging to $\widehat{\left(b_{D}\right)^{K}}$, then G fixes $\hat{\xi}$ and hence E fixes $\hat{\xi}$ because $\left(b_{D}\right)^{K}$ and $\widehat{\left(b_{D}\right)^{K}}$ are isomorphic by restriction. Similarly if $\xi^{\prime} \in \operatorname{Irr}^{G^{\prime}}\left(\left(\left(b_{D}\right)^{\prime}\right)^{K^{\prime}}\right)$ and $\hat{\xi}^{\prime}$ is an extension of ξ^{\prime} to $D C_{E^{\prime}}(D), \hat{\xi}^{\prime}$ is E^{\prime}-invariant. We note that if $\xi \in \operatorname{Irr}^{G}\left(\left(b_{D}\right)^{K}\right)$ then $\xi_{\left(K^{\prime}\right)} \in \operatorname{Irr}^{G^{\prime}}\left(\left(\left(b_{D}\right)^{\prime}\right)^{K^{\prime}}\right)$ by Lemma 4 . The following is proved by the analogous way to that of the proof of [10], Lemma 3.2.

Lemma 5. Suppose that b_{D} is G-invariant. Let $\xi \in \operatorname{Irr}^{G}\left(\left(b_{D}\right)^{K}\right)$. Then the factor set α of G / K defined by ξ and the factor set α^{\prime} of G^{\prime} / K^{\prime} defined by $\xi_{\left(K^{\prime}\right)}$ are cohomologous when G / K and G^{\prime} / K^{\prime} are identified.

Proof. At first we note again that $G=K G^{\prime}$ by Lemma 1, $E=D C_{E}(D) E^{\prime}, E=$ $D C_{E}(D) G$ and $E^{\prime}=D C_{E^{\prime}}(D) G^{\prime}$. Moreover we have

$$
G / K \cong E / D C_{E}(D) \cong E^{\prime} / D C_{E^{\prime}}(D) \cong G^{\prime} / K^{\prime}
$$

We may assume $G \neq K$. Let t be a prime dividing $|G: K|$ and let E_{t} be a subgroup of E containing $D C_{E}(D)$ such that $E_{t} / D C_{E}(D)$ is a Sylow t-subgroup of $E / D C_{E}(D)$. Set $G_{t}=G \cap E_{t}, E_{t}^{\prime}=E^{\prime} \cap E_{t}$ and $G_{t}^{\prime}=G^{\prime} \cap E_{t}$. By Lemma 3, $E_{t}, G_{t}, E_{t}^{\prime}$ and G_{t}^{\prime} satisfy Hypothesis 1. Moreover $\left(b_{D}\right)^{G_{t}}$ satisfies Hypothesis 2, $\left(\left(b_{D}\right)^{\prime}\right)^{G_{t}^{\prime}}$ satisfies Hypothesis 3 and that $\left(\left(b_{D}\right)^{G_{t}}\right)_{\left(G_{t}^{\prime}\right)}=\left(\left(b_{D}\right)^{\prime}\right)^{G_{t}^{\prime}}$. Now by a theorem of Gaschütz (see [5], Theorem 15.8.5), we may assume $E=E_{t}$.

Let $\hat{\xi} \in \operatorname{Irr}\left(D C_{E}(D) \mid \xi\right)$. From Theorem 1 and (1.1),

$$
\left(\left(\prod_{q \in \pi(F)}\left(1-\lambda_{q}\right) \cdot \hat{\xi}\right)_{D C_{E^{\prime}}(D)},(\hat{\xi})_{\left(D C_{E^{\prime}}(D)\right)}\right)= \pm 1
$$

where the left hand side is the inner product. Hence there exists an extension $\tilde{\xi}$ of ξ to $D C_{E}(D)$ such that $\left(\tilde{\xi}_{D C_{E^{\prime}}(D)},(\hat{\xi})_{\left(D C_{E^{\prime}}(D)\right)}\right)$ is relatively prime to t. As we stated in the above $\tilde{\xi}$ is E-invariant, and $(\hat{\xi})_{\left(D C_{E^{\prime}}(D)\right)}$ is E^{\prime}-invariant because $\xi_{\left(K^{\prime}\right)}$ is G^{\prime}-invariant. By [2], Theorem 4.4, the factor set of $E / D C_{E}(D)$ defined by $\tilde{\xi}$ and the factor set of $E^{\prime} / D C_{E^{\prime}}(D)$ defined by $(\hat{\xi})_{\left(D C_{E^{\prime}}(D)\right)}$ are cohomologous when $E / D C_{E}(D)$ and $E^{\prime} / D C_{E^{\prime}}(D)$ are identified. Similarly by [2], Theorem 4.4, since $\tilde{\xi}$ is an extension of ξ, α and the factor set of $E / D C_{E}(D)$ defined by $\tilde{\xi}$ are cohomologous when G / K and $E / D C_{E}(D)$ are identified. Further α^{\prime} and the factor set of $E^{\prime} / D C_{E^{\prime}}(D)$ defined by $(\hat{\xi})_{\left(D C_{E^{\prime}}(D)\right)}$ are cohomologous when G^{\prime} / K^{\prime} and $E^{\prime} / D C_{E^{\prime}}(D)$ are identified, because $(\hat{\xi})_{\left(D C_{E^{\prime}}(D)\right)}$ is an extension of $\xi_{\left(K^{\prime}\right)}$. Hence α and α^{\prime} are cohomologous.

In the above lemma we can take as ξ the canonical character of b belonging to $\left(b_{D}\right)^{K}$. Then $\xi_{\left(K^{\prime}\right)}$ is the canonical character of $\left(b^{\prime}\right)$ because $\xi_{\left(K^{\prime}\right)}$ is a constituent of $\xi_{K^{\prime}}$,
and hence D is contained in the kernel of $\xi_{\left(K^{\prime}\right)}$. Moreover $\alpha, \alpha^{\prime} \in Z^{2}\left(G / K, \mathcal{O}^{\times}\right)$since ξ and $\xi_{\left(K^{\prime}\right)}$ are respectively characters of a G-invariant $\mathcal{O} K$-lattice and a G^{\prime}-invariant $\mathcal{O} K^{\prime}$-lattice. By Lemma 5, we see α and α^{\prime} are cohomologous.

Generally let G be a finite group, b be a block of G with a normal defect group D, and let \mathbf{b} be a G-invariant block of $C_{G}(D)$ covered by b. Set $K=D C_{G}(D)$ and let i be a primitive idempotent of $\mathcal{O} C_{G}(D) \mathbf{b}$. Then we see that i is primitive in $(\mathcal{O} G)^{D}$ because D is normal in G and i^{*} is primitive in $k C_{G}(D)$, and hence $i \mathcal{O} G i$ is a source algebra of b. Set $B=i(\mathcal{O} G) i$. Let H be a complement of $D C_{G}(D) / C_{G}(D)$ in $G / C_{G}(D)$. Then H is isomorphic to a subgroup of Aut D. For each $h \in H$, we choose $x_{h} \in G$ such that $h=C_{G}(D) x_{h}$. We set $d^{h}=d^{x_{h}}$ for any $d \in D$. Moreover let α be a factor set of H defined by the canonical character χ of b, where H and G / K are identified.

Theorem 7. With the above notations, B is isomorphic to a twisted group algebra $\mathcal{O}^{\alpha^{-1}}(D \rtimes H)$ of the semi direct product $D \rtimes H$ over \mathcal{O} with the factor set α^{-1} (considered as a factor set of $D \rtimes H$), as interior $\mathcal{O} D$-algebras.

Proof. For any $h \in H$ we can choose $u_{h} \in\left(\mathcal{O} C_{G}(D) \mathbf{b}\right)^{\times}$such that $i^{x_{h}{ }^{-1}}=i^{u_{h}}$. Put $v_{h}=u_{h} x_{h} i$. For any $d \in D$, we have

$$
\begin{equation*}
v_{h}^{-1}(i d) v_{h}=i d^{h} \tag{6.3}
\end{equation*}
$$

where $v_{h}{ }^{-1}$ is the inverse of v_{h} in B. Then we have

$$
B=\bigoplus_{h \in H} i \mathcal{O} K x_{h} i=\bigoplus_{h \in H} i \mathcal{O} K i v_{h}=\bigoplus_{h \in H}(i \mathcal{O} D i) v_{h}
$$

Thus B is a crossed product of H over $i \mathcal{O} D i$. As is well known $i \mathcal{O} D i \cong \mathcal{O} D$. Since H is a p^{\prime}-group, from (6.3) and the proof of Lemma M in [11], B is a twisted group algebra of $D \rtimes H$ over \mathcal{O} with a factor set $\gamma \in Z^{2}\left(D \rtimes H, \mathcal{O}^{\times}\right)$which is the inflation of a factor set of H. In fact γ satisfies that

$$
v_{h} v_{h^{\prime}}=\gamma\left(h, h^{\prime}\right) v_{h h^{\prime}} \quad\left(\forall h, h^{\prime} \in H\right)
$$

by replacing v_{h} by $v_{h} \delta_{h}$ for some $\delta_{h} \in i+i J(Z(\mathcal{O} D)) i$ if necessary. Here $J(Z(\mathcal{O} D))$ is the radical of the center of $\mathcal{O} D$.

For any $a \in \mathcal{O} G$, we denote by \bar{a} the image of a by the natural homomorphism from $\mathcal{O} G$ onto $\mathcal{O}(G / D)$. We set $\bar{G}=G / D$ and $\bar{K}=K / D \leq \bar{G}$. We have

$$
\bar{i} \mathcal{O} \bar{G} \bar{i}=\bigoplus_{h \in H}\left(\mathcal{O} \bar{K} \overline{x_{h}} \cap(\bar{i} \mathcal{O} \bar{G} \bar{i})\right)=\bigoplus_{h \in H} \mathcal{O} \overline{v_{h}} .
$$

Also we have

$$
\overline{v_{h}} \overline{v_{h^{\prime}}}=\gamma\left(h, h^{\prime}\right) \overline{v_{h h^{\prime}}} .
$$

Since \bar{i} is a primitive idempotent of $\mathcal{O} \bar{G}$ corresponding to $\chi, \bar{i} \mathcal{O} \bar{G} \bar{i}$ is a twisted group algebra of \bar{G} over \mathcal{O} with factor set α^{-1}. This implies that γ and α^{-1} are cohomologous. This completes the proof.

Theorem 8. Assume Hypotheses 2 and 3, and $b^{\prime}=b_{\left(G^{\prime}\right)}$. Further assume the defect group D of b and b^{\prime} is normal in G. Then b and b^{\prime} are Puig equivalent.

Proof. As is well known b and $\left(b_{D}\right)^{I_{G}\left(b_{D}\right)}$ are Puig equivalent. Hence by Lemma 4 and (6.2), we may assume that b_{D} is G-invariant. Then from Lemma 5 and Theorem 7, b and b^{\prime} are Puig equivalent. This completes the proof.

By the above theorem, the Brauer correspondent of b and that of b^{\prime} are Puig equivalent assuming Hypotheses 2 and 3, and $b^{\prime}=b_{\left(G^{\prime}\right)}$.

Corollary 2. In the above theorem, let $b=b(G)$. Then $a \in \mathcal{O} G^{\prime} b\left(G^{\prime}\right) \mapsto a b(G) \in$ $\mathcal{O} G b(G)$ is an algebra isomorphism.

Proof. Since $\mathcal{O} G b(G)$ is a source algebra of $b(G), \mathcal{O} G^{\prime} b\left(G^{\prime}\right)$ are $\mathcal{O} G b(G)$ are isomorphic. Therefore $\operatorname{dim} \mathcal{K} G b(G)=\operatorname{dim} \mathcal{K} G^{\prime} b\left(G^{\prime}\right)$, and hence the Dade correspondence from $\operatorname{Irr}(b(G))$ onto $\operatorname{Irr}\left(b\left(G^{\prime}\right)\right)$ coincides with restriction, that is, $b(G)$ and $b\left(G^{\prime}\right)$ are isomorphic. Hence by [9], Theorem 1 or [7], Theorem 4.1 completes the proof.

References

[1] M. Broué: Isométries parfaites, types de blocs, catégories dérivées, Astérisque 181-182 (1990), 61-92.
[2] E.C. Dade: Isomorphisms of Clifford extensions, Ann. of Math. (2) 92 (1970), 375-433.
[3] E.C. Dade: A new approach to Glauberman's correspondence, J. Algebra 270 (2003), 583-628.
[4] G. Glauberman: Correspondences of characters for relatively prime operator groups, Canad. J. Math. 20 (1968), 1465-1488.
[5] M. Hall Jr.: The Theory of Groups, Macmillan, New York, 1959.
[6] M.E. Harris: Glauberman-Watanabe corresponding p-blocks of finite groups with normal defect groups are Morita equivalent, Trans. Amer. Math. Soc. 357 (2005), 309-335.
[7] A. Hida and S. Koshitani: Morita equivalent blocks in non-normal subgroups and p-radical blocks in finite groups, J. London Math. Soc. (2) 59 (1999), 541-556.
[8] H. Horimoto: The Glauberman-Dade correspondence and perfect isometries for principal blocks, preprint.
[9] K. Iizuka, F. Ohmori and A. Watanabe: A Remark on the Representations of Finite Groups VI, Memoirs of Fac. of General Education, Kumamoto Univ., Ser. of Natural Sci., 18, 1983, (Japanese).
[10] S. Koshitani and G.O. Michler: Glauberman correspondence of p-blocks of finite groups, J. Algebra 243 (2001), 504-517.
[11] B. Külshammer: Crossed products and blocks with normal defect groups, Comm. Algebra 13 (1985), 147-168.
[12] H. Nagao and Y. Tsushima: Representations of Finite Groups, Academic Press, Boston, MA, 1989.
[13] F. Tasaka: On the isotypy induced by the Glauberman-Dade correspondence between blocks of finite groups, J. Algebra 319 (2008), 2451-2470.
[14] F. Tasaka: A note on the Glauberman-Watanabe corresponding blocks of finite groups with normal defect groups, Osaka J. Math. 46 (2009), 327-352.
[15] J. Thévenaz: G-Algebras and Modular Representation Theory, Oxford Univ. Press, New York, 1995.
[16] A. Watanabe: The Glauberman character correspondence and perfect isometries for blocks of finite groups, J. Algebra 216 (1999), 548-565.

Department of Mathematics Faculty of Science
Kumamoto University
Kumamoto, 860-8555
Japan

