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Abstract
In [3] Dade generalized the Glauberman character correspondence. In [13] Tasaka

showed that the Dade correspondence induces an isotypy between blocks of finite
groups under some assumptions. In this paper we obtain a generalization of [13],
Theorem 5.5.

1. Introduction

Let p be a prime and (K, O, k) be a p-modular system such thatK is a splitting
filed for all finite groups which we consider in this paper. LetS denoteO or k. For
a finite abelian groupF , we denote by OF the character group ofF and by OFq the

subgroup of OF of order q for q 2 �(F) where�(F) is the set of all primes dividing
the order jF j of F . Let G be a finite group andN a normal subgroup ofG. We
denote by Irr(G) the set of ordinary irreducible characters ofG and IrrG(N) be the set
of G-invariant irreducible characters ofN. For � 2 Irr(N), we denote by Irr(Gj�) the
set of irreducible characters� of G such that� is a constituent of the restriction�N

of � to N.

HYPOTHESIS 1. G is a finite group which is a normal subgroup of a finite group
E such that the factor groupF D E=G is a cyclic group of orderr . � is a generator
of OF . E0 D fx 2 E j Nx is a generator ofFg where Nx D xG. E0 is a subgroup ofE
such thatE0G D E, G0 D G\E0 and E0

0 D E0\E0. Moreover (E0
0)� \E0

0 is the empty
set, for all � 2 E � E0.

Under the above hypothesis, in [3], E.C. Dade constructed a bijection between
IrrE(G) and IrrE

0
(G0) which is a generalization of the cyclic case of the Glauberman

correspondence in [4].
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Theorem 1 ([3], Theorems 6.8 and 6.9).AssumeHypothesis 1and jF j ¤ 1. For
each prime q2 �(F), we choose some non-trivial character�q 2 OFq. There is a bijection

�(E, G, E0, G0) W IrrE(G)! IrrE0
(G0) (� 7! �0 D �(G0))

which satisfies the following conditions. If r is odd, then there are a unique integer�� D �1 and a unique bijection 7!  (E0) of Irr(Ej�) onto Irr(E0j�0) such that

(1.1)

(

∏

q2�(F)

(1� �q) �  
)

E0 D ��
∏

q2�(F)

(1� �q) �  (E0),
for any  2 Irr(Ej�). If r is even, and we choose�� D �1 arbitrarily, then there is
a unique bijection 7!  (E0) of Irr(Ej�) onto Irr(E0j�0) such that(1.1) holds for all 2 Irr(Ej�). In both cases we have

(� )(E0) D � (E0)
for any � 2 OF and and 2 Irr(Ej�). Furthermore, the resulting bijection is independ-
ent of the choice of the non-trivial character�q 2 OFq, for any q2 �(F).

Assume Hypothesis 1. IfjF j D 1, then E D E0. We call �(E, G, E0, G0) the
Dade correspondence, where�(E, G, E0, G0) denote the identity map of IrrE(G) whenjF j D 1. Following [13], for�0 2 IrrE0

(G), we set�0(G) D �(E, G, E0, G0)�1(�0), and for 2 Irr(Ej�) and 0 2 Irr(E0j�0), we set 0
(E) D  if  0 D  (E0). From (1.1) 0 is a

constituent of (� )E0 for some� 2 OF , hence�(G0) is a constituent of�G0 . In particular
if � is the trivial character ofG, then �(G0) is the trivial character ofG0. From the
above theorem we have the following also.

Proposition 1. AssumeHypothesis 1. Let � 2 IrrE(G) and �0 2 IrrE0
(G0). Then�0 D �(G0) if and only if there exist 2 Irr(Ej�),  0 2 Irr(E0j�0) and � D �1 such that

 (x) D � 0(x) (8x 2 E0
0).

THE GENERALIZED GLAUBERMAN CASE Let G and A be finite groups such
that A is cyclic, A acts onG via automorphism and that (jCG(A)j, jAj) D 1. We set
E D G Ì A, G0 D CG(A) and E0 D G0 � A � E. By [3], Lemma 7.5,E, G, E0 and
G0 satisfy Hypothesis 1. Moreover by [3], Proposition 7.8, in the Glauberman case,
that is, if (jAj, jGj) D 1, then the Glauberman correspondence coincides with the Dade
correspondence.

In the generalized Glauberman case, suppose thatp  jAj and p  jG W CG(A)j.
Then in [8], H. Horimoto proved that there is an isotypy between b(G) and b(CG(A))
induced by the Dade correspondence whereb(G) is the principal block ofG. Isotypy
is a notion defined in [1].



DADE CHARACTER CORRESPONDENCE ANDISOTYPIES 819

HYPOTHESIS 2. Assume Hypothesis 1. (p, r ) D 1. b is an E-invariant block of
G covered byr distinct blocks ofE.

Assume Hypothesis 2 and thatr is a prime power. Moreover letb0 be a block of
G0 containing�(G0) for some� 2 Irr(b). In [13], F. Tasaka proved that ifr is odd, or
r D 2 or b D b(G), and if b0 is covered byr blocks of E0, then there is an isotypy
betweenb and b0 induced by the Dade correspondence ([13], Theorem 5.5). In this
paper we prove that the arguments in [13] can be extended to the general case (see
Theorem 6 in §5). Theorem 6 is a generalization of Theorem 5 in[16]. We also show
that the Brauer correspondent ofb and that ofb0 are Puig equivalent (see Theorem 8
in §6).

NOTATIONS. We follow the notations in [13], [12] and [15]. LetG be a finite
group. We denote byG0(KG) the Grothendieck group of the group algebraKG. If L
is a KG-module, then let [L] denote the element inG0(KG) determined by the iso-
morphism class ofL. For � 2 Irr(G), we denote byL�, e� and L� , the dual character of�, the centrally primitive idempotent ofKG corresponding to� and aKG-module af-
fording � respectively. We also denote by!� the linear character of the centerZ(KG)
of KG corresponding to�. Let H be a subgroup ofG. We denote by (SG)H the set
of H -fixed elements ofSG. We denote by PrG

H the S-linear map fromSG to SH
defined by PrGH

(
∑

x2G axx
) D ∑h2H ahh and by TrGH the trace map from (SG)H to

Z(SG). For � 2 O, we denote by�� the canonical image of� in k. For a 2 OG, we
denote bya� the canonical image ofa in kG. For a p-subgroupP of G, we denote
by BrSG

P the Brauer homomorphism from (SG)P onto kCG(P). Also let Gp0 denote
the set ofp-regular elements ofG.

Let b be a block ofG. We denote byRK(G, b) the additive group of general-
ized characters belonging tob, by CF(G, bIK) the subspace with a basis Irr(b) of the
K-vector space of theK-valued central functions ofKG, and by CFp0(G, bIK) the
subspace containing the elements of CF(G, bIK) which vanish onp-singular elem-
ents of G, where Irr(b) is the set of ordinary irreducible characters belonging tob.
Let (u, bu) be a b-Brauer element. We denote byd(u,bu)

G the decomposition map from
CF(G, bIK) onto CFp0(CG(u), buIK). For  2 CF(G, bIK) and c 2 CG(u)p0 , we have

d(u,bu)
G ( )(c)D  (ucbu). We also denote by!b the central character ofZ(OGb) and by

Bl(CG(P), b) the set of blocks ofCG(P) associated withb where P is a p-subgroup
of G. Let N be a normal subgroup ofG. For � 2 Irr(N), we denote byIG(�) the
inertial group of� in G. For a blockb of N, we denote byIG(b) the inertial group
of b in G. For a subgroupH and a blockc of H , if c is associated with a blockB
of G, then B is denoted bycG.
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2. Preliminaries

In this section we assume Hypothesis 1. Forx 2 E (resp.x 2 E0), we denote by
C(x) (resp.C(x)0) the conjugacy class ofE (resp. E0) containingx. For X � E, we
set OX D∑x2X x 2 SE.

Lemma 1. Let s2 E0
0 and let Q, R be subgroups of G0centralized by s. Let a2

G. If Qa D R, then a2 CG(Q)G0. In particular NG(Q) D CG(Q)NG0(Q).

Proof. By the assumption,sa 2 CE(R)\ E0. By [13], Lemmas 3.9 and 2.4, there
exists y 2 CE(R) such thatsay 2 CE0(R). Sincesay, s 2 E0

0, ay 2 E0. SetzD ay. Then
Qz D R, henceaD (zy�1z�1)z2 CE(Q)E0. SinceCE(Q)D CG(Q)hsi and E0 D hsiG0,
a 2 CG(Q)G0hsi and hencea 2 CG(Q)G0.

Proposition 2 (see [13], Proposition 3.7).Let x 2 E0
0, � 2 IrrE(G) and �0 2

IrrE0
(G0). Then we have the following.

(i) PrE
E0(bC(x)e�) D1C(x)0e�(G0) .

(ii) Tr E
E0(1C(x)0e�0) D bC(x)e�0(G)

.

Proof. Let be an extension of� to E. bC(x)e� is a K-linear combination of
the elements inxG. Hence we have

bC(x)e� D jC(x)jjEj
∑

y2xG

r (x) (y�1)y.

From Theorem 1, (1.1), (z) D �� (E0)(z) for any z 2 E0
0. Therefore we have

1C(x)0e�(G0) D jC(x)0jjE0j
∑

z2xG0 r (E0)(x) (E0)(z�1)z

D jC(x)0jjE0j
∑

z2xG0 r (x) (z�1)z.

From [13], 2.4, we have (i) and (ii).

3. The Dade correspondence and blocks

Assume Hypothesis 1 andp r . If an elements2E0
0 centralizes a Sylowp-subgroup

of G, then the principal blockb(G) satisfies Hypothesis 2.

HYPOTHESIS 3. Assume Hypothesis 1. (p, r ) D 1. b0 is an E0-invariant block of
G0 covered byr distinct blocks ofE0.
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Assume Hypotheses 2 and 3 and assume that�(G0) 2 Irr(b0) for some� 2 Irr(b).
In this section we show the Dade correspondence�(E, G, E0, G0) induces a bijection
between Irr(b) and Irr(b0), and the Brauer categoriesBG(b) and BG0(b0) are equivalent.

Theorem 2 (see [13], Proposition 3.5, (1) and (2)). (i)Assume Hypothesis 2.
Then f�(G0) j � 2 Irr(b)g is contained in a block b(G0) of G0.
(ii) AssumeHypothesis 3. Thenf�0(G) j �0 2 Irr(b0)g is contained in a block b0(G) of G.

Proof. (i) Let �1, �2 2 Irr(b) and set�0i D �i (G0) for i D 1, 2. We show�01 and�02 belong to a same block ofG0. We may assume at least one of these characters is

of height 0. Let Ob be a block ofG coveringb and for i D 1, 2, let O�i be a unique ex-
tension of�i to E belonging toOb recalling Hypothesis 2. NoteOb andb are isomorphic
by restriction. Set (O�i )0 D ( O�i )(E0) for i D 1, 2. By [12], Chapter III, Lemma 6.34, we
have the following for a non-trivial linear character� of F ,

(3.1)
∑

x2Ep0
O�1(x) O�2(x�1) ¤ 0,

∑

x2Ep0
O�1(x)�(x�1) O�2(x�1) D 0.

For eachq 2 �(F), let �q be a non-trivial linear character inOFq. Set (E0)p0 D E0\Ep0
and (E0

0)p0 D E0
0 \ Ep0 . We have

∑

x2Ep0
O�1(x)

(

∏

q2�(F)

(1� �q) � O�2

)

(x�1)

D ∑

y2(E0)p0
O�1(y)

(

∏

q2�(F)

(1� �q) � O�2

)

(y�1)

by [13], Lemma 2.4,

D jEjjE0j
∑

z2(E0
0)p0
O�1(z)

(

∏

q2�(F)

(1� �q) � O�2

)

(z�1)

by Theorem 1,

D ��1��2

jEjjE0j
∑

z2(E0
0)p0(
O�1)0(w)

(

∏

q2�(F)

(1� �q) � ( O�2)0
)

(w�1)

D ��1��2

jEjjE0j
∑

u2(E0)p0(
O�1)0(u)

(

∏

q2�(F)

(1� �q) � ( O�2)0
)

(u�1),
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that is,

(3.2)

∑

x2Ep0
O�1(x)

(

∏

q2�(F)

(1� �q) � O�2

)

(x�1)

D ��1��2

jEjjE0j
∑

u2(E0)p0(
O�1)0(u)

(

∏

q2�(F)

(1� �q) � ( O�2)0
)

(u�1).

From (3.1) there exists� 2∏q2�(F)
OFq such that

∑

u2(E0)p0(
O�1)0(u)(�( O�2)0)(u�1) ¤ 0.

Then (O�1)0 and �( O�2)0 belong to a same block ofE0. Hence�01 and �02 belong to a
same block ofG0. (ii) follows from (3.2) and the above arguments.

Assume Hypothesis 2. We denote byOb0 a block of E covering b. For each� 2
Irr(b), we denote byO� a unique extension of� which belongs toOb0. For anyi 2 Z, we
denote byObi the block of E which contains�i O� where� 2 Irr(b). For the blockb, Obi

is fixed throughout this paper. LetOb0D∑x2E�xx. Then Obi D∑x2E�i (x�1)�xx. More-

over we note that for anyt 2 E,
∑

x2Gt ��x x ¤ 0 becausef(Ob0)�, (Ob1)�, : : : , (Obr�1)�g are
linearly independent. This fact is used implicitly in the proof of Proposition 5 below.

Proposition 3 (see [13], Proposition 3.5, (3)).AssumeHypotheses 2and 3, and
assume b0 D b(G0) using the notation inTheorem 2. Then there exists a block(Ob0)(E0)
of E0 such thatIrr(( Ob0)(E0)) D f( O�)(E0) j � 2 Irr(b)g. If r is odd, then (Ob0)(E0) is uniquely

determined, and if r is even, we have exactly two choices for(Ob0)(E0).
Proof. Let �1, �2 2 Irr(b) and suppose that�1 is of height 0. Assume (O�1)(E0)

belongs to a block (Ob0)(E0) of E0. Here we note that we have two choices for (O�1)(E0)
when r is even by Theorem 1, and hence we have two choices for (Ob0)(E0). By the

proof of Theorem 2 and by our assumption, there is a unique linear character� 2 OF
such that�( O�2)(E0) belongs to (Ob0)(E0) and that� D 1 or � is a product of some elem-
ents of f�q j q 2 �(F)g. Hence if r is odd, then� D 1 because�q can be replaced

by another non-trivial linear character inOFq. If r is even,� D 1 or � D �2, hence

( O�2)(E0) belongs to (Ob0)(E0) by replacing��2 by ���2 if necessary. This combined with
Theorem 1 completes the proof.

With the notation in the above proposition, we denote by (Obi )(E0) the block of E0
containing�i ( O�)(E0) (� 2 Irr(b)) for i 2 Z. Moreover, whenr is even, we fix one of

two (Ob0)(E0), and hence (Obi )(E0) are fixed.
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Lemma 2 (see [13], Lemma 3.3). AssumeHypothesis 2. We have the following
holds.
(i) There exists s2 E0 such that(!Obi

(bC(s)))� ¤ 0 for all i 2 Z.

(ii) For s in (i), bC(s)b 2 Z(OEb)�, that is, bC(s)b is invertible in Z(OEb).

Proof. (i) By the assumption and [12], Chapter III, Theorem 6.24, for anyq 2�(F), there existss(q) 2 E such that (!Obi
(2C(s(q))))� ¤ 0 and thats(q)G is a generator

of the Sylowq-subgroup ofF . Then
(!Obi

(
∏

q2�(F)
2C(s(q))

))� ¤ 0. This implies that

there existss 2 E0 such that (!Obi
(bC(s)))� ¤ 0.

(ii) From (i) bC(s)Obi 2 Z(OE Obi )� for any i becauseZ(OE Obi ) is local. HencebC(s)b 2 Z(OEb)�.

Assume Hypothesis 2. By the above lemma and [13], Lemma 2.4, there exists

an elements 2 E0
0 such thatbC(s)b 2 Z(OEb)�. Hence there exists a defect group

D of b centralized bys, and hence contained inG0 (see [13], Lemma 3.10). Let
P � D. Then by [13], Lemma 3.9,CE(P), CG(P), CE0(P) and CG0(P) satisfy Hy-
pothesis 1. Moreover we noteF � CE(P)=CG(P). Let e 2 Bl(CG(P), b). Then we

see that BrOE
P (bC(s)b)e� 2 (Z(kCE(P)e�))�. This implies thate is covered byr blocks

of CE(P). Similarly assume Hypothesis 3. LetD0 be a defect group ofb0 and e0 2
Bl(CG0(P0), b0) for a subgroupP0 of D0. Then e0 is covered byr blocks of CE0(P0).

Theorem 3 (see [13], Proposition 3.11).Using the same notations as inTheorem 2
we have the following.
(i) AssumeHypothesis 2. Let D be a defect group of b obtained in the above and
let P � D. Let e2 Bl(CG(P), b). Then e(CG0 (P)) 2 Bl(CG0(P), b(G0)). In particular, b(G0)
has a defect group containing D.
(ii) AssumeHypothesis 3. Let D0 be a defect group of b0 and let P0 � D0. Let e0 2
Bl(CG0(P0), b0). Then e0(CG(P0)) 2 Bl(CG(P0), b0(G)). In particular, b0(G) has a defect group
containing D0.

Proof. See the proof of [13], Proposition 3.11.

Assume Hypotheses 2 and 3, and assumeb0 D b(G0) whereb(G0) is the block deter-
mined by Theorem 2. We have

Irr(b0) D f�(G0) j � 2 Irr(b)g
by Theorem 2. LetD be a common defect group ofb and b0, and let P � D. Such a
defect group exists by the above theorem. Let (D, bD) be maximalb-Brauer pair and let
(P, bP) be ab-Brauer pair contained in (D, bD). By the above theorem, (D, (bD)(CE0 (D)))
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is a maximalb0-Brauer pair and (P, (bP)(CE0 (P))) is a b0-Brauer pair. We set

(bP)0 D (bP)(CE0 (P))

and

(b�P)0 D ((bP)0)�.
For anyu 2 CE0(P), we denote byC(u)(P) the conjugacy class ofCE(P) containingu,
and byC(u)0(P) the conjugacy class ofCE0(P) containingu.

Theorem 4 (see [13], Theorem 5.2).AssumeHypotheses 2and 3, and assume
b0 D b(G0) where b(G0) is the block determined byTheorem 2. Then the Brauer categor-
ies BG(b) and BG0(b0) are equivalent.

Proof. Our proof is essentially the same as the proof of [13],Theorem 5.2. Let
D be a common defect group ofb and b0, and let P � D. There is an elementt 2
CE(P) \ E0

0 such that2C(t)(P)b�P 2 (Z(kCE(P))b�P)�. By Lemma 2, such an element
exists. For anya 2 G0 we have the following using Proposition 2 and Theorem 2.

(3.3) 3C(ta)0(Pa)((b
�
P)0)a D PrCE(Pa)

CE0 (Pa)(3C(ta)(Pa)(b
�
P)a) ¤ 0.

In fact we have

3C(ta)0(Pa)((b
�
P)0)a D (2C(t)0(P)(b

�
P)0)a

D (PrCE(P)
CE0 (P)(2C(t)(P)b

�
P)
)a D PrCE(Pa)

CE0 (Pa)(3C(ta)(Pa)(b
�
P)a) ¤ 0.

In particular, if (P, bP)a D (P, bP), then (P, (bP)0)a D (P, (bP)0).
Now for P � R� D, we prove (P, (bP)0) � (R, (bR)0). We may assumeP E R.

From (3.3) R fixes (bP)0 becauseR fixes bP. Now let s 2 E0
0 be such thatbC(s)b 2

Z(OEb)�. Then6C(s) \ CE0(P)(bP)0 is fixed by R. Moreover6C(s) \ CE(P)b�P is

invertible in (Z(kCE(P)b�P))R. Hence BrkCE(P)
R=P (6C(s) \ CE(P)b�P)b�R is invertible in

Z(kCE(R))b�R where BrkCE(P)
R=P is the restriction to (kCE(P))R of the Brauer homo-

morphism BrkE
R . In particular it does not vanish. Hence we have from Proposition 2

BrkCE0 (P)
R=P (6C(s) \ CE0(P)(b�P)0)(b�R)0
D BrkCE0 (P)

R=P

(

PrCE(P)
CE0 (P)(6C(s) \ CE(P)b�P)

)

(b�R)0
D PrCE(R)

CE0 (R)

(

BrkCE (P)
R=P (6C(s) \ CE(P)b�P)

)

(b�R)0
D PrCE(R)

CE0 (R)

(

BrkCE (P)
R=P (6C(s) \ CE(P)b�P)b�R) ¤ 0.



DADE CHARACTER CORRESPONDENCE ANDISOTYPIES 825

The last inequality follows from [13], Lemmas 3.9 and 2.4. Therefore

BrkCE0 (P)
R=P ((b�P)0)(b�R)0 ¤ 0.

This implies (P, (bP)0) E (R, (bR)0).
For a subgroupT of D and a 2 G, suppose that (P, bP)a � (T , bT ). We show

that there is an elemente2 CG(P) such thatea2 G0 and (P, (bP)0)ea � (T , (bT )0). By
Lemma 1, we may assumea 2 G0. Since we have (P, bP)a D (Pa, bPa), (bP)a D bPa .
From (3.3), ((bP)0)a D (bPa)0, hence (P, (bP)0)a D (Pa, (bPa)0) � (T , (bT )0). Conversely
for c 2 G0, suppose that (P, (bP)0)c � (T , (bT )0). Then we have ((bP)0)c D (bPc)0. By
(3.3) again,bPc D (bP)c, so (P, bP)c D (Pc, bPc) � (T , bT ). This implies that the cat-
egoriesBG(b) and BG0(b0) are equivalent. This completes the proof.

4. Perfect isometry induced by the Dade correspondence

In Sections 4, 5 and 6, we assume Hypotheses 2 and 3, andb0 D b(G0) using the
notation in Theorem 2. In this section we showb and b0 are perfect isometric in the
sense of Broué [1]. Moreover we use notations in §3. In particular, we recall that
Irr(( Obi )(E0)) D f�i ( O�)(E0) j � 2 Irr(b)g. Now we havebD∑r�1

iD0
Obi , andb0 D∑r�1

iD0(Obi )(E0),
and hence we have

b0bD r�1
∑

iD0

r�1
∑

lD0

(Obl )(E0) OblCi .

We put

(4.1) bi D r�1
∑

lD0

(Obl )(E0) OblCi (8i 2 Z).

Then (bi )2 D bi and bi 2 (OGbb0)E0
for eachi because

bi D∑
y2E0

∑

x2E

r�1
∑

lD0

�l (y�1)�l (x�1)�i (x�1)�y�x yx 2 OG

by the orthogonality relations whereOb0D∑x2E�xx and (Ob0)(E0) D∑y2E0 �yy (�x,�y 2
O). For each primeq 2 �(F), let �q 2 OFq be a non-trivial character as in Theorem 1.
Set l D j�(F)j. Of course we may assumel > 0 for our purpose. Moreover we can
write for t (t � l ) distinct primesq1, q2, : : : , qt 2 �(F)

�q1 � � � �qt D �mfq1,:::,qt g (mfq1,:::,qt g 2 Z)
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recalling � is a generator ofOF . Then we have

(4.2)
∏

q2�(F)

(1� �q) D 1C l
∑

tD1

(�1)t
∑

fq1,:::,qt g��(F)

�mfq1,:::,qt g
where fq1, : : : , qt g runs over the set oft-element subsets of�(F).

Proposition 4 (see [13], Proposition 4.4).With the above notations we have

[b0KG] C l
∑

tD1

(�1)t
∑

fq1,:::,qt g��(F)

[bmfq1,:::,qt gKG]

D ∑

�2Irr(b)

��[L�(G0) 
K L L� ]

in G0(K(G0 � G)).

Proof. Our proof is essentially the same as the proof of [13],Proposition 4.4. Let� 2 Irr(b). In G0(KE0) we have the following from (4.1), (4.2) and (1.1)

[b0KE 
KE L O� ] C l
∑

tD1

(�1)t
∑

fq1,:::,qt g��(F)

[bmfq1,:::,qt gKE 
KE L�mfq1,:::,qt g O� ]

D [b0(L O�)E0 ] C l
∑

tD1

(�1)t
∑

fq1,:::,qt g��(F)

[bmfq1,:::,qt g(L�mfq1,:::,qt g O�)E0 ]
D

(4.1)
[( Ob0)(E0)(L O�)E0 ] C l

∑

tD1

(�1)t
∑

fq1,:::,qt g��(F)

[( Ob0)(E0)(L�mfq1,:::,qt g O�)E0 ]
D

(4.2), (1.1)
��
(

[( Ob0)(E0)L ( O�)(E0 ) ] C
l
∑

tD1

(�1)t
∑

fq1,:::,qt g��(F)

[( Ob0)(E0)L�mfq1,:::,qt g ( O�)(E0 ) ]
)

D
(4.1)

��[L ( O�)(E0) ].
This implies that inG0(KG0)

[b0KG
KG L� ] C l
∑

tD1

(�1)t
∑

fq1,:::,qt g��(F)

[bmfq1,:::,qt gKG
KG L� ] D ��[L�(G0 ) ].
Sincebi bD bi for any i 2 Z, the proof is complete.

Theorem 5 (see [13], Theorem 4.5).AssumeHypotheses 2and 3, and that b0 D
b(G0). Set� D∑�2Irr(b) ���(G0)�. Then� induces a perfect isometry R� W RK(G, b)!
RK(G0, b0) which satisfies R�(�) D ���(G0).
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Proof. We note thatb jOG is projective as a rightOG-module and as a left
OG0-module if b j ¤ 0. Hence by [1], Proposition 1.2,� is perfect. This and the above
proposition imply the theorem.

5. Isotypy induced by the Dade correspondence

In this section we show thatb and b0 are isotypic. Here we set

Ob0i D (Obi )(E0) (i 2 Z).

Then D is a defect group ofOb0i since p  r . Let P � D and let (ObP)i be a block

of of CE(P) such that it coversbP and it is associated withObi . By our assumption
and Lemma 2, (ObP)i is uniquely determined. Similarly there exists a unique block of
CE0(P) such that it covers (bP)0 and it is associated withOb0i . By applying Propos-

ition 2 for CE(P), CG(P) and bP, let ((ObP)i )(CE0 (P)) be a block ofCE0(P) such that

Irr((( ObP)i )(CE0 (P))) D f�i ( O�P)(CE0 (P)) j �P 2 Irr(bP)g, where O�P 2 Irr(( ObP)0) is an exten-

sion of �P. Recall that we have two choices for ((ObP)0)(CE0 (P)) when r is even (Prop-
osition 3). Here we set

(ObP)0i D ((ObP)i )(CE0 (P))

and

(Ob�P)0i D ((ObP)0i )� (i 2 Z).

Proposition 5 (see [13], Lemma 5.4). With the above notations, for a subgroup
P of D, (ObP)0i is associated withOb0i for i 2 Z, if we choose appropriately(ObP)00 when
r is even.

Proof. Our proof is essentially the same as the proof of [13],Lemma 5.4. Let
s 2 E0

0. We have

bC(s)Obi D 1jCE0(s)j
∑

�2Irr(b)

(

∑

x2E0

(�i O�)(s)(�i O�)(x�1)x C ∑

y2E�E0

(�i O�)(s)(�i O�)(y�1)y

)

sinceCE(s) D CE0(s). Similarly we have

1C(s)0 Ob0i D 1jCE0(s)j
∑

�2Irr(b)

(

∑

x2E0
0

(�i ( O�)(E0))(s)(�i ( O�)(E0))(x�1)x

C ∑

y2E0�E0
0

(�i ( O�)(E0))(s)(�i O�)(E0))(y�1)y

)

.



828 A. WATANABE

Recall that O�(x) D ��( O�)(E0)(x) for x 2 E0
0. The above equalities, the factE0

0 D E0\ E0

and [13], Lemma 2.4 imply the following.

(5.1) PrEE0(bC(s)Obi ) �1C(s)0 Ob0i 2 O[E0 � E0
0]E0

whereS[E0 � E0
0]E0

is the S-submodule ofZ(SE0) which is spanned byfbC(t)0 j t 2
E0 � E0

0g.
In order to prove the proposition, it suffices to show that (ObP)00 is associated withOb00, if we choose (ObP)00 appropriately whenr is even. Suppose that (ObP)0j is associated

with Ob00 for some j (0� j � r � 1). We have

PrECE0 (P)(bC(s)Ob0)�(b�P)0
D PrE

0
CE0 (P)[PrE

E0(bC(s)Ob0)]�(b�P)0
from (5.1),

D BrOE0
P (1C(s)0 Ob00C c)(b�P)0

D BrOE0
P (1C(s)0b0 Ob00C c)(b�P)0

D [BrOE0
P (1C(s)0b0) BrOE0

P (Ob00)C BrOE0
P (c)](b�P)0

D BrOE0
P (1C(s)0b0)(Ob�P)0j C BrOE0

P (c)(b�P)0
wherec is some element ofO[E0 � E0

0]E0
. On the other hand, we can see

PrECE0 (P)(bC(s)Ob0)�(b�P)0
D PrCE(P)

CE0 (P)[PrE
CE(P)(bC(s)Ob0)]�(b�P)0

D PrCE(P)
CE0 (P)[PrE

CE(P)(bC(s))� BrOE
P (Ob0)](b�P)0

from the argument in the above of Theorem 3 and (5.1) forCE(P)

D PrCE(P)
CE0 (P)[PrE

CE(P)(bC(s))�]( Ob�P)00C d(b�P)0
and by Theorem 3

D BrOE0
P [PrE

E0(bC(s))] BrOE0
P (b0)(Ob�P)00C d(b�P)0

D BrOE0
P (1C(s)0b0)(Ob�P)00C d(b�P)0
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whered is some element ofk[CE0(P) � CE0
0
(P)]CE0 (P).

Now we choose an elements 2 CE0
0
(P) such that

BrOE0
P (1C(s)0b0) 2 (kCE0 (P) BrOE0

P (b0))�.

Note that BrOE0
P (1C(s)0b0) is a k-linear combination of elements insCG0(P) because1C(s)0b0 is anO-linear combination of elements insG0. By the above equations

BrOE0
P (1C(s)0b0)((Ob�P)0j � (Ob�P)00) 2 k[CE0(P) � CE0

0
(P)]CE0 (P).

Set� D (Ob�P)0j �(Ob�P)00. The coefficient of any element ofs�2CG0(P) in � is zero. Hence� j (s2) D �2 j (s) D 1. Therefore ifr is odd, thenj D 0. If r is even, j D 0 or j D r =2.
Therefore by replacing��P by ���P for all �P 2 Irr(bP) if j D r =2, we have (ObP)00 is

associated withOb00. This completes the proof.

Let P � D. We note again that for any integeri , (ObP)i coversbP and it is asso-
ciated with Obi . Moreover (ObP)i contains�i O�P ( O�P 2 Irr(( ObP)0)). Let RP be the perfect
isometry betweenRK(CG(P), bP) andRK(CG0(P), (bP)0) obtained by

�(CE(P), CG(P), CE0(P), CG0(P))

(see Theorem 5). Also letRP
p0 be the restriction ofRP to CFp0(CG(P), bPIK), where

RP is regarded as a linear isometry from CF(CG(P), bPIK) onto CF(CG0(P), (bP)0IK).
We set

(bP)i D r�1
∑

lD0

(ObP)0l (ObP)lCi 2 (OCG(P)bP(bP)0)CE0 (P).

For u 2 D we set

bu D bhui, (bu)0 D (bhui)0, (Obu)00 D (Obhui)00, (bu)i D (bhui)i .

Theorem 6 (see [13], Theorem 5.5).AssumeHypotheses 2and 3, and assume
b0 D b(G0). With the above notations, b and b0 are isotypic with the local system
(RP)fP(cyclic)�Dg.

Proof. Our proof is essentially the same as the proof of [13],Theorem 5.5. Let 2 CF(G,bIK), u 2 D and letc0 2 CG0(u)p0 . Let S(u) be thep-section ofG containing

u. We remark that ifv 2 S(u), then bC(v)b is anO-linear combination of elements of
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S(u) by [12], Chapter V, Theorem 4.5. We can see from Proposition4

[(d(u,(bu)0)
G0 ÆRh1i)( )](c0)

D 1jGj
∑

g2G

[

∑

�2Irr(b)

(

�(uc0(bu)0b0)C l
∑

tD1

(�1)t
∑

fq1,:::,qt g��(F)

�(uc0(bu)0bmfq1,:::,qt g)
)

�(g�1)

]

 (g)

D 1jGj
∑

g2G

[

∑

�2Irr(b)

( O�(uc0(bu)0b0)C l
∑

tD1

(�1)t
∑

fq1,:::,qt g��(F)

O�(uc0(bu)0bmfq1,:::,qt g)
) O�(g�1)

]

 (g)

from (4.1) and the factO�2Irr( Ob0)

D 1jGj
∑

g2G





∑

O�2Irr( Ob0)

( O�(uc0(bu)0 Ob00)C l
∑

tD1

(�1)t
∑

fq1,:::,qt g��(F)

O�(uc0(bu)0 Ob0�mfq1,:::,qt g)
) O�(g�1)



 (g)

D 1jGj
∑

g2G





∑

O�2Irr( Ob0)

( O�
(

1C l
∑

tD1

(�1)t
∑

fq1,:::,qt g��(F)

�mfq1,:::,qt g))(uc0(bu)0 Ob00) O�(g�1)



 (g)

from (4.2)

D 1jGj
∑

g2G





∑

O�2Irr( Ob0)

(

∏

q2�(F)

(1��q) � O�
)

(uc0(bu)0 Ob00) O�(g�1)



 (g)

by applying [12], Chapter V, Theorem 4.5 forE and Ob0

D 1jGj
∑

x2S(u)





∑

O�2Irr( Ob0)

(

∏

q2�(F)

(1��q) � O�
)

(uc0(bu)0 Ob00) O�(x�1)



 (x)

D 1jCG(u)j
∑

y2CG(u)p0




∑

O�2Irr( Ob0)

(

∏

q2�(F)

(1��q) � O�
)

(uc0(bu)0 Ob00) O�(y�1u�1)



 (uy)

by using (1.1) twice, and by Brauer’s second main theorem on blocks ([12], Chapter V,
Theorem 4.1) and Proposition 5

D 1jCG(u)j
∑

y2CG(u)p0




∑

O�2Irr( Ob0)

(

∏

q2�(F)

(1��q) � ( O�)(E0)
)

(uc0(bu)0) O�(y�1u�1)



 (uy)

D 1jCG(u)j
∑

y2CG(u)p0




∑

O�2Irr( Ob0)

(

∏

q2�(F)

(1��q) � ( O�)(E0)
)

(uc0(Obu)00) O�(y�1u�1)



 (uy)
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D 1jCG(u)j
∑

y2CG(u)p0




∑

O�2Irr( Ob0)

(

∏

q2�(F)

(1��q) � O�
)

(uc0(Obu)00) O�(y�1u�1)



 (uy)

from [12], Chapter V, Theorem 4.11

D 1jCG(u)j
∑

y2CG(u)p0




∑

e2Bl(CE(u), Ob0)

∑

�2Irr(e)

(

∏

q2�(F)

(1��q) ��
)

(c0(Obu)00)�(y�1)



 (uy)

from (1.1) for CE(u)

D 1jCG(u)j
∑

y2CG(u)p0




∑

e2Bl(CE(u), Ob0)

∑

�2Irr(e)

(

∏

q2�(F)

(1��q) ��(CE0 (u))

)

(c0(Obu)00)�(y�1)



 (uy)

recalling (Obu)00 D ((Obhui)0)(CE0 (u))

D 1jCG(u)j
∑

y2CG(u)p0




∑

O�2Irr(( Obu)0)

(

∏

q2�(F)

(1��q) � O�
)

(c0(Obu)00) O� (y�1)



 (uy)

from (4.2)

D 1jCG(u)j
∑

y





∑

O�2Irr(( Obu)0)

( O� (c0(Obu)00)C l
∑

tD1

(�1)t
∑

fq1,:::,qt g O� (c0(Obu)0�mfq1,:::,qt g)
) O� (y�1)



 (uy)

from (4.1)

D 1jCG(u)j
∑

y

[

∑

�2Irr(bu)

(

� (c0(bu)0)C l
∑

tD1

(�1)t
∑

fq1,:::,qt g � (c0(bu)mfq1,:::,qt g )
)

� (y�1)

]

 (uy)

and from [12], Chapter V, Theorem 4.7

D 1jCG(u)j
∑

y

[

∑

�2Irr(bu)

(

� (c0(bu)0)C l
∑

tD1

(�1)t
∑

fq1,:::,qt g � (c0(bu)mfq1,:::,qt g )
)

� (y�1)

]

� (d(u,bu)
G ( ))(y)

D [(Rhui
p0 Æd(u,bu)

G )( )](c0)
recalling the definition of the perfect isometryRhui, where y runs overCG(u)p0 andfq1, : : : , qt g runs over the set oft-element subsets of�(F). This and Theorem 4 com-
plete the proof.
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Corollary 1 ([8]). Let G and A be finite groups such that A is cyclic, A acts
on G via automorphism and that(jCG(A)j, jAj) D 1. If p  jAj and p jG W CG(A)j,
then the Dade correspondence induces an isotypy between b(G) and b(CG(A)).

Proof. Let s be a generator ofA. Let E D G Ì A, G0 D CG(A) and E0 D G0A.
Then E, G, E0 and G0 satisfy Hypothesis 1 by [3], Lemma 7.5. By the assumptionbC(s)b(E) is invertible in Z(OEb(E)). Also sb(E0) is invertible in Z(OE0b(E0)). Hence
the corollary follows from Theorem 6.

EXAMPLE . Supposep D 5, and letG D Sz(22nC1), the Suzuki group,A D h� i
where � is the Frobenius automorphism ofG with respect to GF(22nC1)=GF(2). Set
G0 D Sz(2) D CG(A), E D G Ì A, E0 D G0 � A. Suppose that 5 2n C 1. Then
(2nC1, jG0j) D (2nC1, 20)D 1. Moreover a Sylow 5-subgroup ofG has order 5. By
the above corollary, the Dade correspondence gives an isotypy betweenb(G) andb(G0).

6. Normal defect group case

In the Glauberman correspondence case if the defect groupD is normal in G,
there is a Puig equivalence (splendidly Morita equivalence)betweenb and b0 which
affords the Glauberman correspondence on the character level ([6], [14]). In the Dade
correspondence case we show thatb and b0 are Puig equivalent ifD is normal in G.
By our assumption, there exist a defect groupD of b and b0, and an elements 2 E0

0

such thats 2 CE(D) andbC(s)b 2 Z(OEb)�. Let � 2 Irr(b) be of height 0. From [13],
Lemma 2.4 and (1.1) in Theorem 1, we have

0¤ (! O�(bC(s)))� D (�� jEj�(G0)(1)jE0j�(1)
!( O�)(E0) (1C(s)0))�.

Sinceb and b0 have the same defect,

(!( O�)(E0) (1C(s)0))� ¤ 0.

Hence1C(s)0b0 2 Z(OEb0)�. The elements is used in the next lemma.

Lemma 3. Let E1 be a subgroup of NE(D) containing CE(D) and set G1 D G\
E1, E0

1 D E0 \ E1, and G01 D G0 \ E1. Then E1, G1, E0
1 and G01 satisfyHypothesis 1.

Moreover (bD)G1 satisfiesHypothesis 2, ((bD)0)G0
1 satisfiesHypothesis 3and

(6.1) ((bD)G1)(G0
1) D ((bD)0)G0

1.

Proof. By our assumptionE D Ghsi, hence we haveE1 D G1hsi D E0
1G1, G0

1 D
G1 \ E0

1. Also E1=G1 � E0
1=G0

1 � F . Hence the former is clear. On the other hand,
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since BrOE
D (bC(s)b)b�D 2 Z(kE1(bD)�)� D Z(kE1((bD)G1)�)� and BrOE0

D (1C(s)0b0)(b0D)� 2
Z(kE0

1((bD)0)�)� D Z(kE0
1(((bD)0)G0

1)�)�, (bD)G1 satisfies Hypothesis 2, and ((bD)0)G0
1 sat-

isfies Hypothesis 3. By applying Theorem 3, (i) forE1, G1 and (bD)G1, we have (6.1).

In the above lemma, we setE1 D NE(D). Then (bD)G1 D (bD)NG(D) is a Brauer
correspondent ofb, and ((bD)0)NG0 (D) is a Brauer correspondent ofb0. From now we
assumeD is normal in G. Then D is normal in E.

Lemma 4. With the notations inLemma 3, suppose that E1 is normal in E.
Let � 2 Irr((bD)G1) and x0 2 E0. We have(� x0)(G0

1) D (�(G0
1))x0 and (((bD)G1)x0)(G0

1) D
(((bD)0)G0

1)x0 . In particular IE(� )\ E0 D IE0(�(G0
1)) and IE((bD)G1)\ E0 D IE0(((bD)0)G0

1).

Proof. Note that (bD)G1 and ((bD)G1)x0 respectively satisfy Hypothesis 2. LetO� 2
Irr(E1j� ) and � 0 D �(G0

1). By Theorem 1 and (1.1),

(

∏

q2�(F)

(1� �q) � O�
)

E0
1

D �� ∏

q2�(F)

(1� �q) � ( O� )(E0
1)

where�� D �1. Hence we have,

(

∏

q2�(F)

(1� �q) � ( O� )x0)
E0

1

D �� ∏

q2�(F)

(1� �q) � (( O� )(E0
1))

x0 .
Therefore by Theorem 1 we have (� x0)(G0

1)D� 0x0 because ((O� )x0)G1D� x0 and (((O� )(E0
1))x0)G0

1
D� 0x0 . This implies the lemma because the Dade correspondence�(E1, G1, E0

1, G0
1) induces

the bijection between Irr((bD)G1) and Irr(((bD)0)G0
1) by Lemma 3.

By Lemma 4 we haveIE(bD) \ E0 D IE0((bD)0). By Lemma 3 IE(bD), IG(bD),
IE0((bD)0) and IG0((bD)0) satisfy Hypothesis 1. Moreover (bD)IG(bD ) satisfies Hypoth-
esis 2, and ((bD)0)IG0 ((bD)0) satisfies Hypothesis 3. Also we have

(6.2) ((bD)IG(bD))(IG0 ((bD )0)) D ((bD)0)IG0 ((bD )0).
By Lemma 3, DCE(D), DCG(D), DCE0(D) and DCG0(D) also satisfy Hypothesis 1.
Set K D DCG(D) and K 0 D DCG0 (D). Then (bD)K satisfies Hypothesis 2, and ((bD)0)K 0
satisfies Hypothesis 3. Moreover we have

((bD)K )(K 0) D ((bD)0)K 0
.

Now suppose thatbD is G-invariant for a while. Then (bD)K is G-invariant. Note
that as elements ofOG, bD bD D (bD)K . By Lemma 4, ((bD)0)K 0

is G0-invariant. Since
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b is covered byr blocks of E and since (bD)K is covered byr blocks of DCE(D),

any block ofDCE(D) covering (bD)K is E-invariant. Let1(bD)K be a block ofDCE(D)
covering (bD)K . In fact the block idempotent of a block ofE covering b belongs to
ODCE(D). If � 2 IrrG((bD)K ) and O� is an extension of� to DCE(D) belonging to1(bD)K , thenG fixes O� and henceE fixes O� because (bD)K and1(bD)K are isomorphic by
restriction. Similarly if� 0 2 IrrG0

(((bD)0)K 0
) and O� 0 is an extension of� 0 to DCE0(D), O� 0

is E0-invariant. We note that if� 2 IrrG((bD)K ) then�(K 0) 2 IrrG0
(((bD)0)K 0

) by Lemma 4.
The following is proved by the analogous way to that of the proof of [10], Lemma 3.2.

Lemma 5. Suppose that bD is G-invariant. Let� 2 IrrG((bD)K ). Then the fac-
tor set � of G=K defined by� and the factor set�0 of G0=K 0 defined by�(K 0) are
cohomologous when G=K and G0=K 0 are identified.

Proof. At first we note again thatG D K G0 by Lemma 1,E D DCE(D)E0, E D
DCE(D)G and E0 D DCE0(D)G0. Moreover we have

G=K � E=DCE(D) � E0=DCE0 (D) � G0=K 0.
We may assumeG ¤ K . Let t be a prime dividingjG W K j and let Et be a subgroup
of E containingDCE(D) such thatEt=DCE(D) is a Sylowt-subgroup ofE=DCE(D).
Set Gt D G \ Et , E0

t D E0 \ Et and G0
t D G0 \ Et . By Lemma 3,Et , Gt , E0

t and G0
t

satisfy Hypothesis 1. Moreover (bD)Gt satisfies Hypothesis 2, ((bD)0)G0
t satisfies Hy-

pothesis 3 and that ((bD)Gt )(G0
t ) D ((bD)0)G0

t . Now by a theorem of Gaschütz (see [5],
Theorem 15.8.5), we may assumeE D Et .

Let O� 2 Irr(DCE(D)j� ). From Theorem 1 and (1.1),

((

∏

q2�(F)

(1� �q) � O�
)

DCE0 (D)

, (O� )(DCE0 (D))

)

D �1,

where the left hand side is the inner product. Hence there exists an extensionQ� of � to
DCE(D) such that (Q�DCE0 (D), (O� )(DCE0 (D))) is relatively prime tot . As we stated in the aboveQ� is E-invariant, and (O� )(DCE0 (D)) is E0-invariant because�(K 0) is G0-invariant. By [2], The-

orem 4.4, the factor set ofE=DCE(D) defined byQ� and the factor set ofE0=DCE0 (D)
defined by (O� )(DCE0 (D)) are cohomologous whenE=DCE(D) and E0=DCE0 (D) are identi-

fied. Similarly by [2], Theorem 4.4, sinceQ� is an extension of� , � and the factor set of
E=DCE(D) defined byQ� are cohomologous whenG=K and E=DCE(D) are identified.
Further�0 and the factor set ofE0=DCE0 (D) defined by (O� )(DCE0 (D)) are cohomologous

whenG0=K 0 and E0=DCE0 (D) are identified, because (O� )(DCE0 (D)) is an extension of�(K 0).
Hence� and�0 are cohomologous.

In the above lemma we can take as� the canonical character ofb belonging to
(bD)K . Then�(K 0) is the canonical character of (b0) because�(K 0) is a constituent of�K 0 ,
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and henceD is contained in the kernel of�(K 0). Moreover�, �0 2 Z2(G=K , O�) since� and �(K 0) are respectively characters of aG-invariant OK -lattice and aG0-invariant
OK 0-lattice. By Lemma 5, we see� and �0 are cohomologous.

Generally letG be a finite group,b be a block ofG with a normal defect groupD,
and letb be aG-invariant block ofCG(D) covered byb. SetK D DCG(D) and leti be
a primitive idempotent ofOCG(D)b. Then we see thati is primitive in (OG)D because
D is normal inG and i � is primitive in kCG(D), and henceiOGi is a source algebra
of b. Set B D i (OG)i . Let H be a complement ofDCG(D)=CG(D) in G=CG(D). Then
H is isomorphic to a subgroup of AutD. For eachh 2 H , we choosexh 2 G such that
h D CG(D)xh. We setdh D dxh for any d 2 D. Moreover let� be a factor set ofH
defined by the canonical character� of b, whereH and G=K are identified.

Theorem 7. With the above notations, B is isomorphic to a twisted group alge-
bra O��1

(D Ì H ) of the semi direct product DÌ H over O with the factor set��1

(considered as a factor set of DÌ H ), as interior OD-algebras.

Proof. For anyh 2 H we can chooseuh 2 (OCG(D)b)� such thati xh
�1 D i uh . Putvh D uhxhi . For anyd 2 D, we have

(6.3) vh
�1(id)vh D idh

wherevh
�1 is the inverse ofvh in B. Then we have

B D⊕
h2H

iOK xhi D⊕
h2H

iOKi vh D⊕
h2H

(iODi )vh.

Thus B is a crossed product ofH over iODi . As is well known iODi � OD. Since
H is a p0-group, from (6.3) and the proof of Lemma M in [11],B is a twisted group
algebra ofD Ì H over O with a factor set 2 Z2(D Ì H , O�) which is the inflation
of a factor set ofH . In fact  satisfies that

vhvh0 D  (h, h0)vhh0 (8h, h0 2 H )

by replacingvh by vhÆh for someÆh 2 i C i J (Z(OD))i if necessary. HereJ(Z(OD))
is the radical of the center ofOD.

For any a 2 OG, we denote byNa the image ofa by the natural homomorphism
from OG onto O(G=D). We set NG D G=D and NK D K=D � NG. We have

NiO NGNi D⊕
h2H

(O NK xh \ (NiO NGNi )) D⊕
h2H

Ovh.

Also we have

vh vh0 D  (h, h0)vhh0 .
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Since Ni is a primitive idempotent ofO NG corresponding to� , NiO NGNi is a twisted group
algebra of NG overO with factor set��1. This implies that and��1 are cohomologous.
This completes the proof.

Theorem 8. AssumeHypotheses 2and 3, and b0 D b(G0). Further assume the
defect group D of b and b0 is normal in G. Then b and b0 are Puig equivalent.

Proof. As is well knownb and (bD)IG(bD) are Puig equivalent. Hence by Lemma 4
and (6.2), we may assume thatbD is G-invariant. Then from Lemma 5 and Theorem 7,
b and b0 are Puig equivalent. This completes the proof.

By the above theorem, the Brauer correspondent ofb and that ofb0 are Puig equiva-
lent assuming Hypotheses 2 and 3, andb0 D b(G0).

Corollary 2. In the above theorem, let bD b(G). Then a2OG0b(G0) 7! ab(G) 2
OGb(G) is an algebra isomorphism.

Proof. SinceOGb(G) is a source algebra ofb(G), OG0b(G0) are OGb(G) are
isomorphic. Therefore dimKGb(G)D dim KG0b(G0), and hence the Dade correspond-
ence from Irr(b(G)) onto Irr(b(G0)) coincides with restriction, that is,b(G) and b(G0)
are isomorphic. Hence by [9], Theorem 1 or [7], Theorem 4.1 completes the proof.
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