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Abstract
In [7] the q tetrahedron algebra�q was introduced as aq analogue of the uni-

versal enveloping algebra of the three point loop algebrasl2 
 C[t , t�1, (t � 1)�1].
In this paper the relation between finite dimensional�q modules and finite dimen-
sional modules forUq(L(sl2)), a q analogue of the loop algebraL(sl2), is studied. A
connection between the�q module structure andL-operators forUq(L(sl2)) is also
discussed.

1. Introduction

In [1] a presentation of the three point loop algebrasl2 
 C[t , t�1, (t � 1)�1] in
terms of generators and relations was obtained. The Lie algebra defined by the gen-
erators and the relations was named the tetrahedron algebraand denoted by�, since
the generators can be identified with the six edges of a tetrahedron. The relation be-
tween irreducible finite dimensional� modules and irreducible finite dimensional mod-
ules for the Onsager algebra were investigated in [2], usingthe notion of a tridiagonal
pair. The tetrahedron algebra and its modules were further investigated in [3] and [4],
and the universal central extension of this Lie algebra was studied in [5] and [6].

In [7] Ito and Terwilliger introduced theq-tetrahedron algebra�q, a q analogue
of the universal enveloping algebra of the tetrahedron algebra. This algebra contains
Uq(L(sl2)) as a subalgebra andUq(L(sl2)) has Aq as a subalgebra. HereAq is an al-

gebra isomorphic to the subalgebra ofUq(bsl2) generated by the Chevalley generatorse0

and e1. Using the theory of a tridiagonal pair, Ito and Terwilligerstudied the relation
betweenAq modules and�q modules in [7] and the relation betweenUq(L(sl2)) mod-
ules andAq modules in [8]. The relation between�q modules and modules for the
modified Aq was further studied in [9]. The combination of the results of[7] and [8]
implies that there is a bijection between the isomorphism class of irreducible finite di-
mensional�q modules of type 1 and the isomorphism class of irreducible finite dimen-
sional Uq(L(sl2)) modulesV of type 1 whose associated Drinfeld polynomialPV (u)
does not vanish atu D 1. (In [8] the condition for the Drinfeld polynomial was not
PV (1) ¤ 0 but PV (q�1(q � q�1)�2) ¤ 0. The condition is modified to conform to the
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convention of the paper.) An extension of this correspondence to the case of reducible
modules is the object of our study in this paper.

Now we explain our results. With a finite dimensionalUq(L(sl2)) module V we
can associate a polynomialpV (z) with constant term 1 so that for a polynomialf (z)
the following hold: f (z)xC(z) D 0 on V if and only if pV (z) divides f (z). Here
xC(z) D ∑

m2Z xCm z�m with the xCm the generators ofUq(L(sl2)) in the Drinfeld real-
ization. We call pV (z) the annihilating polynomial forV . Our main results are (i)
answering the question which finite dimensionalUq(L(sl2)) moduleV is extended to a�q module in terms ofpV (z) and (ii) the determination of the annihilating polynomial
for a tensor product of evaluation modules and a finite dimensional highest weight
module. These results are obtained without the use of the notion of a tridiagonal pair.
More precisely, the first result is (a) theUq(L(sl2)) module structure onV is extended
to a �q module structure if and only ifpV (1) ¤ 0 and (b) in the casepV (1) ¤ 0
the extension is unique andV is irreducible as a�q module if and only if it is ir-
reducible as aUq(L(sl2)) module. This implies that there is a bijection between the
isomorphism class of finite dimensional�q modules and the isomorphism class of fi-
nite dimensionalUq(L(sl2)) modules withpV (1)¤ 0. Part of the second result is that
pV (z) D zdegPV PV (z�1) (up to a nonzero multiplicative constant) for a finite dimen-
sional highest weightUq(L(sl2)) moduleV with associated Drinfeld polynomialPV (u).
Since pV (1)¤ 0 if and only if PV (1)¤ 0, our results reduce to those from [7] and [8]
in the case of finite dimensional irreducible modules. In this paper we also discuss a
tensor product module of finite dimensional�q modules and a connection between the�q module structure andL-operators forUq(L(sl2)).

This paper is organized as follows. In Section 2 the tetrahedron algebra is defined
and the relation between finite dimensionalL(sl2) modules and finite dimensional�
modules is discussed. In Section 3, necessary results from [10] on finite dimensional
highest weightUq(L(sl2)) modules are reviewed. In Section 4, theq-tetrahedron al-
gebra�q and its subalgebra isomorphic toUq(L(sl2)) are introduced. In Section 5,
some basic results on finite dimensional�q modules are derived. In Section 6, an
annihilating polynomialpV (z) is introduced and the problem which finite dimensional
Uq(L(sl2)) moduleV is extended to a�q module is studied. In Section 7, the annihi-
lating polynomial is determined for a tensor product of evaluation modules and a finite
dimensional highest weight module. In Section 8, it is shownthat we can consider a
tensor product module of finite dimensional�q modules. In Section 9, a connection
between the�q module structure andL-operators forUq(L(sl2)) is studied.

2. The tetrahedron algebra�
In this section we study the relation between finite dimensional L(sl2) modules and� modules. This result would be a help to understand aq analogue of it in Section 6.
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2.1. The tetrahedron algebra�. Let � denote the Lie algebra overC defined
by generators

xi j (i ¤ j 2 {0, 1, 2, 3})

and the following relations:

xi j C x j i D 0,(2.1)

[xhi , xi j ] D 2xhi C 2xi j ,(2.2)

[xhi , [xhi , [xhi , x jk ]]] D 4[xhi , x jk ](2.3)

whereh, i , j , k are mutually distinct. Following [1], we call� the tetrahedron algebra.
Let us consider the following twoC-algebras:

A D C[t , t�1, (t � 1)�1], B D C[t , t�1].

As usual, we endow theC-vector spacesl2
A with a structure of Lie algebras over
C by

[u
 a, v 
 b] D [u, v] 
 ab (u, v 2 sl2, a, b 2 A).

The Lie subalgebrasl2 
 B of sl2 
 A is the loop algebra of typesl2 and will be
denoted byL(sl2).

The tetrahedron algebra� is known to be isomorphic tosl2 
 A. (We use a
slightly different convention from [1].)

Theorem 2.1 ([1]). (1) There exists an isomorphism�! sl2 
 A of Lie alge-
bras overC determined by

x12 7! x 
 1, x23 7! y
 1, x31 7! z
 1,

x03 7! y
 t C z
 (t � 1), x01 7! z
 t 0 C x 
 (t 0 � 1),

x02 7! x 
 t 00 C y
 (t 00 � 1)

where t0 D 1� t�1, t 00 D (1� t)�1 and

x D 2e� h, y D �2 f � h, zD h

with e, f , h the standard generators of sl2.
(2) Under the isomorphism in(1), the subalgebra of� generated by x12, x23, x31, x03

and x01 correspond to the subalgebra L(sl2) of sl2
A.

In the following, we shall identifysl2
A with � via the correspondence in the above
theorem.
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2.2. L(sl2) modules and� modules. By Theorem 2.1,L(sl2) is a subalgebra
of �. In this section we study the relation between finite dimensional L(sl2) modules
and finite dimensional� modules. The main purpose of this paper is to investigate a
q analogue of this relation.

For a Lie algebraL and anL module V , set

AnnL V D {x 2 L j xv D 0 (8v 2 V)}.

For annihilators of finite dimensionalL(sl2) and� modules, the following hold.

Proposition 2.1. (1) For a finite dimensional L(sl2) module V there exists a
unique polynomial p(t) with p(0)D 1 such that

AnnL(sl2) V D sl2
 p(t)B.

(2) For a finite dimensional� module V there exists a unique polynomial p(t) with
p(0)D 1 and p(1)¤ 0 such that

Ann� V D sl2
 p(t)A.

This proposition follows from the following two simple lemmas.

Lemma 2.1 ([3, Theorems 5.2 and 5.3]).For ADA,B, J is an ideal of the Lie
algebra sl2 
 A if and only if there exists an ideal I of theC-algebra A such that
J D sl2
 I .

Lemma 2.2. For AD A, B the following hold.
(1) For a nonzero ideal I of theC-algebra A there exists a unique nonzero polynomial
p(t) (up to multiplication by a nonzero scalar) such that ID p(t)A.
(2) The polynomial in(1) satisfies p(0), p(1)¤ 0 in the case AD A and p(0)¤ 0 in
the case AD B.

Proof. The polynomialp(t) which generates the idealI \C[t ] of the polynomial
algebraC[t ] has the property in the lemma.

To state our result, we need the isomorphism'p in the following lemma.

Lemma 2.3. Let p(t) be a polynomial with p(0), p(1) ¤ 0. Then the inclusion
L(sl2) ! � induces an isomorphism'p W L(sl2)=(sl2 
 p(t)B) ! �=(sl2 
 p(t)A) of
Lie algebras overC. Let g(t) be a polynomial such that(t �1)g(t) � 1 mod p(t)C[t ].
Then the following holds:

'�1
p (x02) D �(x C y)
 g(t) � y
 1.
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Proof. Sincep(1)¤ 0, we have (p(t)A)\B D p(t)B. Hence the inclusion induces
an injective homomorphism'p. The surjectivity of'p and the expression of'�1

p (x02)

follow from the equalityg(t) � (t � 1)�1 mod p(t)A.

The following theorem clarifies the relation between finite dimensionalL(sl2) and� modules.

Theorem 2.2. Let V be a finite dimensional L(sl2) module and� W L(sl2)! gl(V)
the homomorphism associated with V . Let further p(t) be a polynomial with p(0)D 1
such thatAnnL(sl2) V D sl2
 p(t)B.
(1) The L(sl2) module structure on V is extended to a� module structure if and only
if p(1)¤ 0. In the case p(1)¤ 0, the action of� is uniquely given by the following
composite map:

�! �=(sl2
 p(t)A)
'�1

p��! L(sl2)=(sl2
 p(t)B)! gl(V)

where the last map is the one induced by�. In particular, the action of x02 is given
by the action of

�(x C y)
 g(t) � y
 1

where g(t) is a polynomial such that(t � 1)g(t) � 1 mod p(t)C[t ] and x, y and z are
those inTheorem 2.1.
(2) In the case p(1)¤ 0, V is irreducible as a� module if and only if it is irreducible
as an L(sl2) module.

Proof. (1) Thanks to Lemma 2.3, it suffices to show thatp(1)¤ 0 is necessary
for the extension and that the extension is unique in the casep(1)¤ 0.

Suppose that theL(sl2) module structure onV is extended to a� module structure
and let r (t) be a polynomial withr (0) D 1 and r (1) ¤ 0 such that Ann� V D sl2 

r (t)A. Then, since the original action ofL(sl2) on V coincides with the action via the
composite mapL(sl2) ,! �! gl(V) (?), we find that

(2.4) AnnL(sl2) V D (Ann� V) \ L(sl2)

and that (?) induces the following homomorphism:

(2.5) L(sl2)=AnnL(sl2) V
'�!� =Ann� V ! gl(V).

By (2.4), p(t)B D (r (t)A)\ B D r (t)B. This impliesr (t) D p(t). Hence p(1)¤ 0 and' D 'p. Since'p is an isomorphism by Lemma 2.3, we can see that the only possible� module structure onV is the one stated in the theorem in the casep(1)¤ 0.
(2) Follows from the fact that the action ofx02 on V is a linear combination of

the actions of the elements ofL(sl2).
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3. Uq(sl2) and Uq(L(sl2))

Leaving the study of aq analogue of the tetrahedron algebra� to later sections,
we summarize necessary results on the quantum groupsUq(sl2) and Uq(L(sl2)) [11],
[12] and their finite dimensional modules in this section.

3.1. Notation. We fix a nonzero complex numberq which is not a root of unity.
For an integern and a nonnegative integerm, we set

[n] D qn � q�n

q � q�1
, [m]! D [1][2] � � � [m].

We further set

[a, b]r D ab� rba

for a complex numberr and elementsa, b of a C-algebra.

3.2. Uq(sl2). We let Uq(sl2) be theC-algebra defined by generatorse, f , t , t�1

and relations

t t�1 D t�1t D 1,(3.1)

tet�1 D q2e, t f t�1 D q�2 f ,(3.2)

[e, f ] D t � t�1

q � q�1
.(3.3)

We consider a tensor product ofUq(sl2) modules via the following comultiplication1:

1(t) D t 
 t ,(3.4)

1(e) D e
 1C t 
 e,(3.5)

1( f ) D f 
 t�1C 1
 f .(3.6)

3.3. Uq(L(sl2)). We defineUq(L(sl2)) to be theC-algebra generated byei , fi ,
ti , t�1

i (i D 0, 1) subject to the relations

ti t
�1
i D t�1

i ti D 1,(3.7)

t0t1 D t1t0 D 1,(3.8)

ti ej t
�1
i D q4Æi j �2ej , ti f j t

�1
i D q2�4Æi j f j ,(3.9)

[ei , f j ] D Æi j
ti � t�1

i

q � q�1
,(3.10)

e3
i ej � [3]e2

i ej ei C [3]ei ej e
2
i � ej e

3
i D 0 (i ¤ j ),(3.11)

f 3
i f j � [3] f 2

i f j fi C [3] fi f j f 2
i � f j f 3

i D 0 (i ¤ j ).(3.12)
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We consider a tensor product ofUq(sl2) modules via the following comultiplication1:

1(ti ) D ti 
 ti ,(3.13)

1(ei ) D ei 
 1C ti 
 ei ,(3.14)

1( fi ) D fi 
 t�1
i C 1
 fi .(3.15)

It is well known [13], [14] thatUq(L(sl2)) is also defined by generators

xCm , x�m, hr , k, k�1 (m 2 Z, r 2 Z n {0})

and relations

kk�1 D k�1k D 1,(3.16)

[k, hr ] D 0,(3.17)

[hr , hs] D 0,(3.18)

kx�mk�1 D q�2x�m ,(3.19)

[hr , x�m ] D � [2r ]

r
x�rCm,(3.20)

[xCm , x�n ] D 1

q � q�1
(8(C)

mCn �8(�)
mCn),(3.21)

[x�mC1, x�n ]q�2 C [x�nC1, x�m ]q�2 D 0(3.22)

where8(�)
r (r 2 Z) is defined by8(�)�r D 0 (r < 0) and the generating series

8(�)(z) D∑
r�0

8(�)�r z�r D k�1 exp

(

�(q � q�1)
∑

r>0

h�r z�r

)

.

The correspondence of the generators is given by

xC0 $ e1, x�0 $ f1, k$ t1,(3.23)

x�1 $ qt1e0, xC�1$ q�1 f0t�1
1 ,(3.24)

h1$ q�1[e1, e0]q2, h�1$ q[ f0, f1]q�2.(3.25)

Later we shall use the generating seriesx�(z) D∑m2Z x�m z�m in addition to8(�)(z).
We shall identifyUq(sl2) with the subalgebra ofUq(L(sl2)) via the correspondence

e 7! e1 D xC0 , f 7! f1 D x�0 and t 7! t1 D k.

3.4. Finite dimensionalUq(sl2) modules. For a nonnegative integern and " 2
{C,�}, we let Vn," denote thenC1 dimensional vector space with basisv0, v1, : : : , vn

on which the action ofUq(sl2) is defined by

(3.26) evi D "[n� i C 1]vi�1, f vi D [i C 1]viC1, tvi D "qn�2i vi
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wherev�1 D vnC1 D 0. Any nonzero scalar multiple of the vectorv0 is called a highest
weight vector ofVn,".

The following is well known. See, for example, [15].

Proposition 3.1. (1) The Uq(sl2) module Vn," is irreducible.
(2) Any irreducible finite dimensional Uq(sl2) module is isomorphic to one of the Vn,".
(3) Any finite dimensional Uq(sl2) module is isomorphic to a direct sum of the Vn,".
We shall call aUq(sl2) module V of type 1 (resp. type�1) if V is isomorphic to a
direct sum of theVn,C (resp. theVn,�).

Later we need the following simple fact.

Lemma 3.1. Let V be a finite dimensional Uq(sl2) module and X a linear map
on V .
(1) If t X D q2Xt and [X, f ] D 0 on V, then XD 0.
(2) If t X D q�2Xt and [e, X] D 0 on V, then XD 0.

Proof. We shall prove (1), the proof of (2) being similar. By Proposition 3.1V
admits a decomposition into a direct sum of irreducible finite dimensionalUq(sl2) sub-
modules: V D V (1) � V (2) � � � � � V (m) with V (i ) ' Vni ,"i . Let v(i ) denote a highest
weight vector ofV (i ). SinceX commutes withf , it is sufficient to show thatXv(i ) D 0
for any i . Since t X D q2Xt, for any i there exist complex numbersc j such that

Xv(i ) D∑
j

c j f (n j�ni�2)=2v( j )

where the sum is taken overj such thatn j � ni mod 2, n j � ni C 2 and " j D "i .
This implies

0D X f niC1v(i ) D f niC1Xv(i ) D∑
j

c j f n j�(n j�ni )=2v( j ).

Since f n j�(n j�ni )=2v( j ) ¤ 0 for any j , we find thatc j D 0 for any j and hence that
Xv(i ) D 0. This completes the proof.

3.5. Finite dimensionalUq(L(sl2)) modules.

3.5.1. EvaluationUq(L(sl2)) modules. For a nonzero complex numbera we let
eva W Uq(L(sl2))! Uq(sl2) be the homomorphism determined by

(3.27) e1 7! e, f1 7! f , t1 7! t , e0 7! a f , f0 7! a�1e, t0 7! t�1.
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Via the homomorphism eva we can endow a structure ofUq(L(sl2)) modules on any
Uq(sl2) module V . We shall denote theUq(L(sl2)) module thus obtained byV(a) and
call it an evaluation module.

3.5.2. Highest weightUq(L(sl2)) modules. Here we shall summarize necessary
results on finite dimensional highest weightUq(L(sl2)) modules from [10]. We shall
say that aUq(L(sl2)) module V is a highest weight module ifV is generated by a
nonzero vectorv satisfying

xCmv D 0 (m 2 Z), 8(C)
n v D dCn v, 8(�)�nv D d��nv (n � 0)

with complex numbersdCn and d��n satisfying dC0 d�0 D 1. We call v a highest weight
vector of V and d D (dCn , d��n)n2Z�0 a highest weight ofV .

Let us consider a highest weightd which is related to a polynomialP(u) with
constant term 1 in the following way:

∑

m�0

dCm um D qdegP P(q�2u)

P(u)
,

∑

m�0

d��mu�m D qdegP P(q�2u)

P(u)

where the r.h.s. of the first equality (resp. the second equality) should be understood as
a Laurent expansion around 0 (resp.1). We shall say that a highest weight module
with the above highest weightd is a highest weight module with Drinfeld polynomial
P(u). In particular we denote it byV(P) if it is irreducible.

For " 2 {1, �1}, we shall say that aUq(L(sl2)) module V is of type " if it is of
type " as aUq(sl2) module.

The following were proven in [10].

Theorem 3.1. (1) If a highest weight Uq(L(sl2)) module of type1 is finite dimen-
sional, then it is a highest weight module with some P(u) as an associated Drinfeld
polynomial.
(2) A Uq(L(sl2)) module V of type1 is irreducible and finite dimensional if and only
if it is isomorphic to one of the V(P).

Proposition 3.2. The Drinfeld polynomial P(u) associated with the evaluation
Uq(L(sl2)) module Vn,C(a) is P(u) D∏1�i�n(1� qnC1�2i au).

Proposition 3.3. Let V and W be highest weight Uq(L(sl2)) modules with Drinfeld
polynomials PV (u) and PW(u), respectively. Then the submodule of V
W generated by
the tensor product of the highest weight vectors is a highestweight module with Drinfeld
polynomial PV (u)PW(u).

Theorem 3.2. (1) Vn1,C(a1)
� � �
VnN ,C(aN) is irreducible if and only if ai =a j �
{qniCn j , qniCn j�2, : : : , qjni�n j jC2} for any distinct i, j .
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(2) Any irreducible finite dimensional Uq(L(sl2)) module of type1 is isomorphic to
some Vn1,C(a1)
 � � � 
 VnN ,C(aN).

4. The q-tetrahedron algebra �q

4.1. The q-tetrahedron algebra �q .

4.1.1. In [7] the q-tetrahedron algebra�q, a q analogue of the universal envelop-
ing algebra of�, was introduced. Set

{X, Y}r D r XY � r �1Y X

r � r �1

for a complex numberr different from 0 and�1 and elementsX, Y of a C-algebra.
By definition, theq-tetrahedron algebra is theC-algebra generated byX01, X12, X23,
X30, X13, X31, X02, X20 subject to the following relations:

X13X31D X31X13D 1,(4.1)

X02X20D X20X02D 1,(4.2)

{X01, X12}q D 1, {X12, X23}q D 1, {X23, X30}q D 1, {X30, X01}q D 1,(4.3)

{X01, X13}q D 1, {X13, X30}q D 1, {X23, X31}q D 1, {X31, X12}q D 1,(4.4)

{X02, X23}q D 1, {X12, X20}q D 1, {X20, X01}q D 1, {X30, X02}q D 1,(4.5)

X3
i j Xkl � [3]X2

i j Xkl Xi j C [3]Xi j Xkl X
2
i j � Xkl X

3
i j D 0 ((i , j , k, l ) 2 J)(4.6)

where J D {(0, 1, 2, 3), (2, 3, 0, 1), (1, 2, 3, 0), (3, 0, 1, 2)}.
This q analogue is related to� as follows. In terms ofyi j D 2(1� Xi j )=(q�q�1),

the relations{Xi j , X jk}q D 1 and (4.6) are rewritten as

qyi j y jk � q�1y jk yi j D 2(yi j C y jk)

and

[yi j , [yi j , [yi j , ykl ]]] D 4Xi j [yi j , ykl ]Xi j ,

respectively. Setq D e�. If Xi j D 1��xi j Co(�), then yi j ! xi j in the limit �! 0 and
the above two equalities reduce to (2.2) and (2.3) except for(2.3) with (h, i , j , k) D
(0, 2, 1, 3), (1, 3, 0, 2).

4.1.2. Let us consider the following three subalgebras of�q:

��
q D hX01, X23i, ��

q D hX13, X31, X20, X02i, �C
q D hX12, X30i.
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We define Aq to be theC-algebra generated byX and Y subject to the following
relations:

X3Y � [3]X2Y XC [3]XY X2 � Y X3 D 0,(4.7)

Y3X � [3]Y2XYC [3]Y XY2 � XY3 D 0.(4.8)

In [7], it was noted that�q D ��
q �0

q �C
q and that both��

q and�C
q are homo-

morphic images ofAq. More precisely the following proposition can be proven in a
standard way (see, for example, [15, Chapter 4]). This result is due to J. Nakata and
proves [7, Conjecture 19.6].

Proposition 4.1. (1) The multiplication map��
q 
 �0

q 
 �C
q ! �q is an iso-

morphism of vector spaces.
(2) The subalgebras��

q and�C
q are isomorphic to Aq via the correspondence X01$

X, X23$ Y and the correspondence X12$ X, X30$ Y, respectively.
(3) The defining relations of�0

q are

X13X31D X31X13D 1, X20X02D X02X20D 1.

4.2. The equitable presentation ofUq(L(sl2)). By Theorem 2.1,L(sl2) is a sub-
algebra of�. As a q analogue of this, we can prove that theq-tetrahedron algebra�q

containsUq(L(sl2)) as a subalgebra. For this it is convenient to introduce another presen-
tation ofUq(L(sl2)) called the equitable presentation [16], [17].

Let Bq be theC-algebra generated byX01, X12, X23, X30, X13, X31 subject to rela-
tions (4.1), (4.3), (4.4) and (4.6). This algebra is known tobe isomorphic toUq(L(sl2)).
(We use a slightly different convention from [7].)

Proposition 4.2 ([7]). (1) There exists aC-algebra isomorphism Bq ! Uq(L(sl2))
determined by

X12 7! t1 � (q � q�1)e1, X23 7! t1C q(q � q�1)t1 f1, X31 7! t�1
1 ,

X30 7! t0 � (q � q�1)e0, X01 7! t0C q(q � q�1)t0 f0, X13 7! t�1
0 .

(2) If we identify Bq with Uq(L(sl2)) via the correspondence in(1), then the co-
multiplication 1 of Uq(L(sl2)) maps the elements Xi j 2 Uq(L(sl2)) as follows:

1(X13) D X13
 X13,(4.9)

1(X12) D (X12� X13)
 1C X13
 X12,(4.10)

1(X23) D (X23� X13)
 1C X13
 X23,(4.11)

1(X30) D (X30� X31)
 1C X31
 X30,(4.12)

1(X01) D (X01� X31)
 1C X31
 X01.(4.13)
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As noted in [7], the subalgebra of�q generated byX01, X12, X23, X30, X13 and X31

is a homomorphic image ofBq by the definition ofBq. Using Proposition 4.1, we can
easily prove that this subalgebra is isomorphic toBq.

Proposition 4.3. The homomorphism Bq!�q determined by Xi j 7!Xi j is injective.

By Propositions 4.2 and 4.3, we can and do identify the subalgebra of�q gener-
ated by X01, X12, X23, X30, X13 and X31 with Uq(L(sl2)).

5. �q modules

Now we start the study of finite dimensional�q modules. First note that any�q

module can be regarded both as aUq(L(sl2)) module and as aUq(sl2) module, since
the q-tetrahedron algebra�q containsUq(L(sl2)) as a subalgebra.

5.1. �q modules.

Lemma 5.1. Let V be a finite dimensional Uq(sl2) module. Then any linear map
g on V admits the following unique decomposition:

(5.1) g D ∑

m2Z"DC,�
gm=2," ( finite sum), X13gm=2,"X31D "qmgm=2,".

Proof. By Proposition 3.1V is isomorphic to a direct sum of theVn,". Hence
X13 D t1 is diagonalizable onV with eigenvalues"qm (" 2 {C, �}, m 2 Z). The as-
sertion follows from this since"qm (" 2 {C, �}, m 2 Z) are distinct.

For the actions ofX02 and X20 on a finite dimensional�q module, we can con-
sider (X02)m=2," and (X20)m=2," as in the above lemma. We shall call them components
of X02 and X20. We can prove the following proposition for the components of X02

and X20.

Proposition 5.1. Let V be a finite dimensional�q module. Then the following
hold for the components(X02)n," and (X20)n," (n 2 Z=2, " D �):
(1) (X02)n," D 0 unless" D C, n 2 Z and n� 1.
(2) (X20)n," D 0 unless" D C, n 2 Z and n� �1.

The proof of this proposition will be given in Section 5.2.
Now that we know (X02)n," D (X20)n," D 0 unless" D C and n 2 Z, we shall

simply denote (X02)n,C and (X20)n,C by (X02)n and (X20)n, respectively, and assume
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that the subscriptn runs over integers. Then the following hold on a finite dimensional�q module:

X02D ∑

n2Z�0

(X02)1�n, X13(X02)n X31 D q2n(X02)n,(5.2)

X20D ∑

n2Z�0

(X20)n�1, X13(X20)n X31 D q2n(X20)n.(5.3)

Proposition 5.2. Let V be a finite dimensional�q module. Then V admits a
direct sum decomposition

V D ⊕

n2Z,"D� V(n, "), V(n, ") D {v 2 V j X13v D "qnv}
and both V(C) D⊕n2Z V(n,C) and V(�) D⊕n2Z V(n,�) are submodules of the�q

module V .

Proof. The existence of the decompositionV D ⊕

n2Z,"D� V(n, ") was already
proved in the proof of Lemma 5.1. By (5.2) and (5.3), bothX02 and X20 preserve each
of V(C) and V(�). Since the algebra�q is generated by the subalgebraUq(L(sl2))
and the elementsX02 and X20, �q also preserves each ofV(C) and V(�).

Following [7], we shall say that for" 2 {1, �1} a finite dimensional�q module
V is of type " if X31 is diagonalizable onV with eigenvalues in"qZ . Any finite di-
mensional�q module of type�1 is obtained from a finite dimensional�q module
of type 1 by the use of the automorphism of�q such thatXi j 7! �Xi j . Hence by
the above proposition we can consider only finite dimensional �q modules of type 1
without loss of generality.

5.2. Proof of Proposition 5.1. First we prove the following lemma.

Lemma 5.2. On a finite dimensional�q module, the following hold for n2 Z=2
and " 2 {C, �}:

(1) {(X02)nC1,", X23� X13}q D Æn,0Æ",C � q�"q2n�1

q�q�1 (X02)n,"X13,

(2) {X30� X31, (X02)nC1,"}q D Æn,0Æ",C � q�"q2n�1

q�q�1 X31(X02)n,",
(3) {X12� X13, (X20)n�1,"}q D Æn,0Æ",C � "q2nC1�q�1

q�q�1 (X20)n,"X13,

(4) {(X20)n�1,", X01� X31}q D Æn,0Æ",C � "q2nC1�q�1

q�q�1 X31(X20)n,".
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Proof. By (4.4) and (4.5),{X23, X31}q D 1 and{X02, X23}q D 1. From these and
the definition of the (X02)n,", we find that

q(X23� X13)X31 D q�1X31(X23� X13)

and

{X02, X23� X13}q D 1�∑
n,"

q � "q2n�1

q � q�1
(X02)n,"X13.

The former equality impliesX23� X13D (X23� X13)�1,C. Noting this, we obtain from
the latter that

{(X02)nC1,", X23� X13}q D Æn,0Æ",C � q � "q2n�1

q � q�1
(X02)n,"X13

for any n 2 Z=2 and " D �. This proves (1). The proof of the rest of the assertions
are similar.

Now we can prove Proposition 5.1.

Proof of Proposition 5.1. We shall prove the assertions for the (X02)n,", the proof
of the case (X20)n," being similar. Suppose that for" 2 {C, �} there exists an integer
n such that (X02)n," ¤ 0 and letn" denote the largest one. Then, since (X02)n"C1," D 0,
we find from Lemma 5.2 (1) that

q � "q2n"�1

q � q�1
(X02)n" ,"X13D Æn" ,0Æ",C.

Sinceq is not a root of unity andX13 is invertible, the above equality is inconsistent in
the case" D� andn" must be 0 or 1 in the case" DC. This implies that (X02)n,� D 0
for any integern and that (X02)n,C D 0 if n is an integer greater than or equal to 2.
Similarly we can prove (X02)n," D 0 for any n 2 Z C 1=2 and" D �. This completes
the proof.

6. Uq(L(sl2)) modules and�q modules

Recall that�q hasUq(L(sl2)) as a subalgebra by Propositions 4.2 and 4.3. In this
section, we shall study which finite dimensionalUq(L(sl2)) module is extended to a�q module. For this problem we can prove aq analogue of Theorem 2.2.

6.1. Main result 1. First we introduce an annihilating polynomialpV (z) for a
finite dimensionalUq(L(sl2)) moduleV , which is aq analogue of the polynomialp(t)
in Proposition 2.1 (1). The proof of the following proposition will be given in the next
subsection.
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Proposition 6.1. For an integer m we set9m D 8(C)
m � 8(�)

m and consider the
generating series9(z)D∑m2Z9mz�m. Let V be a finite dimensional Uq(L(sl2)) mod-
ule and set

I "V D { f (z) 2 C[z] j f (z)x"(z) D 0 on V} (" D �),

I 0
V D { f (z) 2 C[z] j f (z)9(z) D 0 on V}.

Then ICV D I �V D I 0
V and this is a nonzero ideal ofC[z] generated by a polynomial

with nonzero constant term.

Let IV signify the ideal I CV D I �V D I 0
V in the proposition. We shall denote the

polynomial with constant term 1 generating the idealIV by pV (z) and call it the an-
nihilating polynomial forV .

For a nilpotent linear mapg on a vector space, we define itsq-exponential expq g
(see, for example, [18, Chapter IV]) by

expq g D 1
∑

lD0

q�l (l�1)=2 gl

[l ]!
.

Using pV (z), we can state the following theorem, whose proof will be given in
Subsection 6.3.

Theorem 6.1. Let V be a finite dimensional Uq(L(sl2)) module and pV (z) the
annihilating polynomial for V .
(1) The Uq(L(sl2)) module structure on V is extended to a�q module structure if and
only if pV (1)¤ 0.
(2) In the case pV (1)¤ 0 the extension is unique. Let g(z) D∑M

jD0 d j z j be a poly-
nomial such that(z � 1)g(z) � 1 mod pV (z)C[z]. Then the action of X02 on V is
given by

X02D (expq x�0 )

(

k�1C (q � q�1)
M
∑

jD0

d j x
C
j

)

(expq x�0 )�1.

(3) In the case pV (1)¤ 0, V is irreducible as a�q module if and only if it is irre-
ducible as a Uq(L(sl2)) module.

6.2. Proof of Proposition 6.1. For a polynomial f (z) D∑N
jD0 c j z j and a gen-

erating seriesX(z) D∑m2Z Xmz�m, the following holds:

(6.1) f (z)X(z) D∑

m2Z

(

N
∑

jD0

c j X jCm

)

z�m.

Noting this, we can prove Proposition 6.1.
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Proof of Proposition 6.1. By Lemma 3.1 and the equality

N
∑

jD0

c j9 jCm D (q � q�1)

[

N
∑

jD0

c j x
C
jCm, x�0

]

D (q � q�1)

[

xC0 ,
N
∑

jD0

c j x
�
jCm

]

,

we can see that the following conditions (i)" (" D �) and (ii) for complex numbers
c0, c1, : : : , cN are equivalent:
(i)" ∑N

jD0 c j x"jCm D 0 on V for any integerm,

(ii)
∑N

jD0 c j9 jCm D 0 on V for any integerm.

This and (6.1) imply thatI CV D I �V D I 0
V . If f (z)xC(z) D 0 on V for some polynomial

f (z), then g(z) f (z)xC(z) D 0 andzm f (z)xC(z) D 0 on V for any polynomialg(z) and
any integerm. Hence I CV is an ideal ofC[z] generated by a polynomial with nonzero
constant term.

6.3. Proof of Theorem 6.1. First we state one lemma and one proposition, the
proof of which will be given in the next subsection.

Lemma 6.1. On a finite dimensional�q module the components(X02)n of X02

satisfy the following equalities:
(1) (X02)�n D Æn,0k�1 � qn[(X02)1�n, x�0 ]q�2n=[nC 1] (n � 0),
(2) [(X02)1, x�mC1 � x�m] D 9m (m 2 Z).

Proposition 6.2. Let V be a finite dimensional Uq(L(sl2)) module and suppose
that y2 End(V) satisfies

kyk�1 D q2y,(6.2)

[y, x�1 � x�0 ] D k � k�1,(6.3)

[xC0 , y]q2 D qy2,(6.4)

[xC�1, y]q�2 D q�1y2.(6.5)

Then the Uq(L(sl2)) module structure on V is extended to a�q module structure by
letting

(6.6) X02D (expq x�0 )(k�1C y)(expq x�0 )�1.

Assuming the above, we prove Theorem 6.1.

Proof of Theorem 6.1. If theUq(L(sl2)) module structure onV is extended to a�q module structure, then (X02)1 satisfies (2) in Lemma 6.1. In terms of generating
series, this is written as follows:

9(z) D (z� 1)[(X02)1, x�(z)].(6.7)
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Suppose thatpV (1)D 0. Then pV (z) factorizes aspV (z) D (z� 1)r (z) (?) with some
polynomial r (z). Multiplying (6.7) by the polynomialr (z), we find that

r (z)9(z) D [(X02)1, pV (z)x�(z)] D 0

on V and hence thatr (z) 2 IV . This is inconsistent with (?). ThereforepV (1)¤ 0 is
necessary for the extension.

Next, assuming that the extension is possible in the casepV (1) ¤ 0, we shall
show the uniqueness. By Lemma 6.1 (1) (X02)n (n � 0) is uniquely determined by
(X02)1 and X20 is the inverse ofX02. Hence it is sufficient to prove the uniqueness
of (X02)1. Suppose that theUq(L(sl2)) module structure onV is extended to a�q

module structure in two ways and denote the difference of thetwo actions ofX02 on
V by ÆX02. Then

(z� 1)[(ÆX02)1, x�(z)] D 0

by (6.7). This implies

pV (1)[(ÆX02)1, x�(z)] D (pV (1)� pV (z))[(ÆX02)1, x�(z)] D 0.

Since pV (1) ¤ 0, the coefficient ofz0 in the above equality gives [(ÆX02)1, x�0 ] D
0. Hence we find that (ÆX02)1 D 0 by Lemma 3.1. This completes the proof of the
uniqueness.

Finally we shall prove that the extension is possible as in (2) in the casepV (1)¤
0. Let g(z) D ∑M

jD0 d j z j be the the polynomial in part (2) of the theorem and set

y D (q � q�1)
∑M

jD0 d j x
C
j . It is sufficient to show thaty satisfies (6.2)–(6.5) in Prop-

osition 6.2. Eq. (6.2) clearly holds. Since

[y, x�(z)] D∑

m2Z

(

M
∑

jD0

d j9 jCm

)

z�m D g(z)9(z),

we find that

(z� 1)[y, x�(z)] D (z� 1)g(z)9(z) D 9(z)

on V . The coefficient ofz0 in the above equality proves (6.3). The relation (3.22) for
the xCm is equivalent to

(z� q2w)xC(z)xC(w)C (w � q2z)xC(w)xC(z) D 0.(6.8)

As

zg(z)xC(z) D g(z)xC(z)C (z� 1)g(z)xC(z) D g(z)xC(z)C xC(z)
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on V , the coefficient ofz0 in zg(z)xC(z) is equal toy=(q�q�1)C xC0 . Noting this, we
find that the coefficient ofz0w0 in g(z)g(w) � (6.8) yields (6.4). The proof of (6.5) is
similar. This completes the proof of (1) and (2).

Part (3) follows from (2) since the actions ofX02 and X20 on V are expressed in
terms of the actions of the elements ofUq(L(sl2)).

6.4. Proof of Lemma 6.1 and Proposition 6.2. To prove Lemma 6.1 and Prop-
osition 6.2, we need the following two lemmas. Recall that weare identifyingUq(L(sl2))
with the subalgebra of�q generated byX01, X12, X23, X30, X13 and X31 by Propos-
itions 4.2 and 4.3.

Lemma 6.2. Let V be a finite dimensional Uq(L(sl2)) module.
(1) The Uq(L(sl2)) module structure on V is extended to a�q module structure if and
only if there exists an invertible linear map X02 on V which admits a decomposition
(5.2), i.e.,

(6.9) X02D ∑

n2Z�0

(X02)1�n ( finite sum), k(X02)nk�1 D q2n(X02)n

and satisfies

{X02, X23}q D 1, {X30, X02}q D 1,(6.10)

{X02, X12}q D (X02)
2, {X01, X02}q D (X02)

2.(6.11)

(2) In terms of the components(X02)n (n � 1), (6.10)and (6.11) are equivalent to the
following equalities with n� 0:

(i) [( X02)1�n, x�0 ]q�2n D Æn,0k�1 � q�n[nC 1](X02)�n,
(ii) [( X02)1�n, x�1 ]q2n D Æn,0k � qn[nC 1](X02)�n,
(iii) [ xC0 , (X02)1�n]q2 D q(X2

02)2�n � qn�1[n� 1]k(X02)2�n,
(iv) [xC�1, (X02)1�n]q�2 D q�1(X2

02)2�n � q�(n�1)[n� 1]k�1(X02)2�n

where (X2
02)2�n D∑ l ,m�0

lCmDn
(X02)1�l (X02)1�m and (X02)2 D 0.

Proof. (1) The assertion follows from (4.2), (4.5) and Proposition 5.1.
(2) By Proposition 4.2, (3.23) and (3.24),

X23D kC q(q � q�1)kx�0 , X30D k�1 � q�1(q � q�1)k�1x�1 ,

X12D k � (q � q�1)xC0 , X01D k�1C (q � q�1)xC�1.

Using these, the assertion is easily proven.

Lemma 6.3. On a finite dimensional�q module, the component(X02)1 satisfies
the following equalities:
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(1) [h1, (X02)1]=[2] D (X02)1C (q � q�1)xC0 ,
(2) [h�1, (X02)1]=[2] D (X02)1 � (q � q�1)xC�1.

Proof. Set y D (X02)1. The difference of (i) and (ii) of Lemma 6.2 (2) with
n D 0 yields

[y, x�1 � x�0 ] D k � k�1(6.12)

Using this, part (1) is derived by the following calculation:

[h1, y]k � [2]yk

D [h1, y]k � q�2[2]yk�1 � q�1[y2, x�1 � x�0 ] (by (6.12))

D q�2[[xC0 , x�1 � x�0 ], y]q2 � q�2[[xC0 , y]q2, x�1 � x�0 ]
(by (3.21) and Lemma 6.2 (2) (iii) withn D 0)

D �q�2[xC0 , [y, x�1 � x�0 ]]q2

D �q�2[xC0 , k � k�1]q2 (by (6.12))

D (q2 � q�2)xC0 k.

The proof of (2) is similar.

Now we can prove Lemma 6.1 and Proposition 6.2.

Proof of Lemma 6.1. Part (1) immediately follows from (i) of Lemma 6.2 (2).
Part (2) withmD 0 is nothing but (6.12). Since [h1,9m] D 0 and [h1, x�n ] D �[2]x�nC1,
the commutator of the casem of (2) andh1 yields

[(X02)1, x�mC2 � x�mC1] D 1

[2]
[[h1, (X02)1], x�mC1 � x�m].

Hence (2) withm > 0 is proven by induction onm, using Lemma 6.3 (1). Part (2)
with m< 0 is similarly proven by the use of Lemma 6.3 (2).

Proof of Proposition 6.2. We defineY�n (n � �1) inductively byY1 D y and

(6.13) Y�n D Æn,0k
�1 � qn

[nC 1]
[Y1�n, x�0 ]q�2n (n � 0)

and setY D∑n�0 Y1�n. Let us denote (i)–(iv) of Lemma 6.2 (2) with (X02)n replaced
by Yn simply by (i)–(iv). By Lemma 6.2, we can see that lettingX02 D Y defines a�q module structure onV if (a) the Yn satisfy kYnk�1 D q2nYn and (i)–(iv) and (b)Y
is invertible.
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First we shall show (a). By (6.2) and (6.13), the equalitieskYnk�1 D q2nYn hold.
Part (i) is nothing but (6.13). Part (ii) is easily proven by induction onn, using (6.13),
(6.3) and [x�1 , x�0 ]q�2 D 0. Using (6.13), we can show

[(Y2)2�n, x�0 ]q�2n D q�1[2]Y1�nk�1 � q�n[nC 1](Y2)1�n (n � 0).

Utilizing (6.4), (6.13) and the above equality, we can show (iii) by induction onn. The
proof of (iv) is similar.

Next we shall prove (b). By the definition of theYn,

Y0 D k�1C [x�0 , Y1], Y�n D q�n

[nC 1]
[x�0 , Y1�n]q2n (n � 1).

Hence we find thatY D∑n�0 Z�n C∑n��1 W�n with Z0 D k�1, W1 D Y1 and

Z�n D q�n(nC1)=2
[nC 1]!

[x�0 , � � � [x�0 , [x�0 , k�1]q2]q4, � � � ]q2n (n � 1),

W�n D q�n(nC1)=2
[nC 1]!

[x�0 , � � � [x�0 , [x�0 , Y1]q0]q2, � � � ]q2n (n � 0).

Since Z�n with n � 1 is rewritten as

Z�n D q�n(n�1)=2
[n]!

[x�0 , � � � [x�0 , [x�0 , k�1]q0]q2, � � � ]q2(n�1),

we find by Lemma 6.4 below that

Y D (expq x�0 )(k�1C Y1)(expq x�0 )�1.

This expression proves (6.6) and the assertion (b).

Lemma 6.4. Let V be a vector space. For a nilpotent linear map g and a linear
map X on V, the following hold:
(1) (expq g)�1 D∑1

lD0(�1)l ql (l�1)=2gl =[l ]!,
(2) (expq g)X(expq g)�1 D X C∑l�1 q�l (l�1)=2[g, : : : , [g, [g, X]q0]q2, : : : ]q2(l�1)=[l ]! .

Proof. Part (1) is [18, Proposition IV.2.6]. Part (2) would be well known and is
easily proven.

7. Annihilating polynomial

By Theorem 6.1 the problem of telling whether a finite dimensional Uq(L(sl2))
moduleV is extended to a�q module is reduced to determining the annihilating poly-
nomial pV (z). In this section, we shall determinepV (z) for a tensor product of evalu-
ation Uq(L(sl2)) modules and a finite dimensional highest weightUq(L(sl2)) module.
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In this section we shall consider only finite dimensionalUq(sl2) and Uq(L(sl2))
modules of type 1 and denote an C 1 dimensional irreducibleUq(sl2) module Vn,C
simply by Vn.

7.1. Main result 2. For a nonzero polynomialP(u), we set

OP(z) D zdegP P(z�1)

(zdegP P(z�1))jzD0
.

For annihilating polynomials the following two theorems hold, whose proof will be
given in the next subsection.

Theorem 7.1. For an evaluation Uq(L(sl2)) module Vn(a) and a tensor product
of them, the following hold:
(1) pVn(a)(z) D∏1�i�n(1� qnC1�2i a�1z).
(2) pV (z) D∏1� j�N pVn j (a j )(z) for V D Vn1(a1)
 � � � 
 VnN (aN).

Theorem 7.2. Let V be a finite dimensional highest weight Uq(L(sl2)) module of

type 1 and P(u) the associated Drinfeld polynomial. Then pV (z) D OP(z).

7.2. Proof of Theorems 7.1 and 7.2. In this subsection we shall prove The-
orems 7.1 and 7.2, assuming the following proposition. The proof of the proposition
will be given in the next subsection.

Proposition 7.1. Let V be a finite dimensional highest weight Uq(L(sl2)) module

of type1 and P(u) the associated Drinfeld polynomial. Then pV (z) divides OP(z).

First we prove Theorem 7.2, assuming Theorem 7.1.

Proof of Theorem 7.2. By Theorem 3.2 (2)V(P) is isomorphic to someVn1(a1)
� � � 
 VnN (aN). By Propositions 3.2 and 3.3 and Theorem 7.1 (1), then j and thea j sat-

isfy OP(z) D ∏

1� j�N pVn j (a j )(z). Hence pV (P)(z) D OP(z) by Theorem 7.1 (2). LetW

be a maximal submodule ofV . Then V=W is isomorphic toV(P). Therefore OP(z)
(D pV(P)(z)) divides pV (z). Since pV (z) divides OP(z) by Proposition 7.1, we obtain the
assertion.

In the rest of this subsection, we shall prove Theorem 7.1. First we prove three
lemmas needed later. For an algebraA and a generating seriesX(z) D∑

m2Z Xmz�m

(Xm 2 A) we shall say thatX(z) � 0 on a A module V if the action of Xm on V is
zero for m> 0. We shall use the generating seriesy�(z) D∑m�1 x�mz�m.
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Lemma 7.1. Let V be a finite dimensional Uq(L(sl2)) module. For a polynomial
f (z) the following conditions are equivalent:
(1) f (z) is in IV .
(2) f (z)y�(z) � 0 on V .
(3) f (z)8(C)(z) � 0 on V .

Proof. Let f (z)D∑0� j�N c j z j . Then the coefficient ofz�m in f (z)y�(z) is equal
to
∑

0� j�N c j x�jCm for a positive integerm. Hence (1)) (2) follows from the defini-
tion of IV and (1)( (2) follows from (3.20). The equivalence of (2) and (3) follows
from Lemma 3.1.

The following is a slight refinement of [10, Proposition 4.4]. Note that we are
using the opposite of the comultiplication in [10].

Lemma 7.2. For an integer l set

Ul D {u 2 Uq(L(sl2)) j kuk�1 D q2l u}.

Then the following hold:

1(y�(z)) D 1
 y�(z)
 1C y�(z)
8(C)(z) mod
∑

r�1

(U�(rC1)
Ur )[[z�1]].

Lemma 7.3. On Vn(a) the following hold:
(1) x�(z)vi D [i C 1]Æ(z=aqn�2i�1)viC1,

(2) 8(C)(z)vi D qn�2i (1�qnC1az�1)(1�q�(nC1)az�1)
(1�qn�2iC1az�1)(1�qn�2i�1az�1)vi .

Here Æ(z) D ∑

m2Z zm and the rational function of z on the right hand side of(2)
should be understood as a Laurent expansion around1.

Proof. Part (1) is [10, Proposition 4.2]. (We are using a different correspondence
of the generators (3.24), (3.25) and a different eva.) Part (2) easily follows from this,
xC0 D e and (3.26).

Now we can prove Theorem 7.1.

Proof of Theorem 7.1. (1) By Lemma 7.3 (1), a polynomialf (z) is in IVn(a) if
and only if f (z)Æ(z=aqn�2i�1) D f (aqn�2i�1)Æ(z=aqn�2i�1) D 0 for 0� i � n� 1. This
proves the assertion.

(2) We setVj D Vn j (a j ), p j (z) D pVj (z), WN D V1 
 � � � 
 VN and fN(z) D
p1(z) � � � pN(z). We shall provepWN (z) D fN(z) for any N.
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First we shall show by induction onN that fN(z) divides pWN (z). In the case
N D 1 there is nothing to prove. We assume the caseN � 1. By Lemma 7.2 we have

pWN (z)1(y�(z)) D 1
 pWN (z)y�(z)C pWN (z)(y�(z)
8(C)(z))

mod
∑

r�1

(U�(rC1)
Ur )((z�1)).

By the definition of pWN (z) and Lemma 7.1,pWN (z)y�(z) � 0 on WN D WN�1
 VN .
Hence the above equality implies the following:
(i) pWN (z)y�(z) � 0 on VN ,
(ii) pWN (z)(y�(z)
8(C)(z)) � 0 on WN�1
 VN .
By (i) and Lemma 7.1,pWN (z) 2 IVN and hencepN(z) divides pWN (z). By this we can
write pWN (z) D g(z)pN(z) with some polynomialg(z). Then (ii) is rewritten as

(7.1) g(z)y�(z)
 pN(z)8(C)(z) � 0 on WN�1
 VN .

By Lemma 7.3 (2) we find that

(7.2) pN(z)8(C)(z)vi D �i (z)vi (0� i � nN)

on VN , where�i (z) D �nN ,aN ,i (z) with

�n,a,i (z) D pVn(a)(z) � qn�2i (1� qnC1az�1)(1� q�(nC1)az�1)

(1� qn�2iC1az�1)(1� qn�2i�1az�1)

D q�(n�2i )
∏

0� j�nC1
j¤i ,iC1

(1� q�(n�2 jC1)a�1z).

Eqs. (7.1) and (7.2) imply that�i (z)g(z)y�(z) � 0 on WN�1 for any i and hence that
pWN�1(z) divides �i (z)g(z) for any i . Since the g.c.d. of the�i (z) is 1, it follows that
pWN�1(z) divides g(z). This, pWN (z) D g(z)pN(z) and the induction assumption prove
that fN(z) divides pWN (z).

Next, to complete the proof, we shall show thatpWN (z) divides fN(z). By Lemma 7.1,
this is equivalent to (?) fN(z)y�(z) � 0 onWN . Suppose thatWN is irreducible. Then, by
Propositions 3.2 and 3.3 and part (1) of this theorem,WN is isomorphic toV(P) such thatOP(z) D fN(z). Hence we find thatpWN (z) divides fN(z) if WN is irreducible by Propos-
ition 7.1. This result proves that (?) holds for anyWN , sinceWN is irreducible for generic
parametersai by Theorem 3.2 (1) and since the matrix elements of the actionof x�m on
WN (relative to a certain basis) are Laurent polynomials in thea j .

7.3. Proof of Proposition 7.1. In the rest of this section, we shall prove Prop-
osition 7.1, to complete the proof of Theorems 7.1 and 7.2. First we shall show that
the proof is reduced to showing Lemma 7.4 below.
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Following [10], definePr 2 Uq(L(sl2)) (r � 0) inductively byP0 D 1 and

Pr D
∑r

jD1 k�18(C)
j Pr� j

q�2r � 1
(r � 1)

and setP(u) D∑r�0 Pr ur , so that

kP(q�2u)

P(u)
D∑

r�0

8(C)
r ur .(7.3)

Let V be a finite dimensional highest weightUq(L(sl2)) module of type 1 andP(u) D
∑l

rD0 �r ur (�0 D 1, �l ¤ 0) the associated Drinfeld polynomial. We denote a highest
weight vector ofV by v. Then

xCmv D 0 (m 2 Z), kv D qlv, Pr v D �r v, (x�1 )mv D 0 (m> l )(7.4)

and V is spanned by the vectorsx�r1
x�r2
� � � x�rn

v (0 � n � l , r1, r2, : : : , rn 2 Z). By
Proposition 6.1,x�m with m� 0 is expressed as a linear combination of thex�m (m� 1)
on V . Hence we can see that

V D ∑

0�n�l

∑

r1,r2,:::,rn�1

Cx�r1
x�r2
� � � x�rn

v.

By the above and Lemma 7.1, we can see that, to prove Proposition 7.1, it suffices to
show the following lemma.

Lemma 7.4. Let v, l and the�r be as above. Then the following hold for s> l :
(

l
∑

rD0

�r x�s�r

)

x�r1
x�r2
� � � x�rn

v D 0 (r1, r2, : : : , rn � 1, 0� n � l ).

In the following, we shall show the above lemma. Let

X(u) D 1
∑

mD1

x�mum, �(u) D l
∑

rD0

�r u
r , Y(u) D �(u)X(u).

Then

Y(u) D 1
∑

mD1

y�mum, y�m D
min{l ,m�1}
∑

rD0

�r x�m�r .

For a generating seriesA(u) in u, we denote the coefficient ofus in A(u) by (A(u))s.
As usual, we set (x�m )(n) D (x�m )n=[n]! and (X(u))(n) D (X(u))n=[n]! for a nonnegative
integern.

The following lemma plays an important role in the proof of Lemma 7.4. Part (1)
is [19, Lemma 4.4] and part (2) follows from part (1) and (7.4).
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Lemma 7.5. (1) For s� r � 1,

(xC0 )(r )(x�1 )(s) D (�1)r q�rs(X(u)(s�r )P(u))sk
r mod

∑

l2Z

Uq(L(sl2))xCl .

(2) Let v and l be as above. Then the following hold for s> l and 0� r � s� 2:

(Y(u)X(u)r )sv D 0.

To prove Lemma 7.4, we further need the following two lemmas.

Lemma 7.6. (1) [x�m, x�n ]q2 D (1� q2)
∑m

lDn x�nCm�l x
�
l for m� n.

(2) [y�m, x�1 ]q2 D (1� q2)(Y(u)X(u))mC1 for m� 1.
(3) [y�mC1, x�n ]q�2 C [x�nC1, y�m]q�2 D 0 for m> l.
(4) For r1, r2, : : : , rn � 1, x�r1

x�r2
� � � x�rn

is expressed as a linear combination of the
following elements:

x�s1
x�s2
� � � x�sn

(s1 � s2 � � � � � sn � 1,
∑

j sj D∑ j r j ).

Proof. Part (1) follows from (3.22). Part (2) is a consequence of (1) and the def-
inition of y�m. Part (3) follows from (3.22) and the definition ofy�m. Part (4) is easily
shown, using (1).

Lemma 7.7. For m, n � 1,

y�m(x�1 )n � q2n(x�1 )ny�m D
n�1
∑

rD0

an,r (x�1 )r (Y(u)X(u)n�r )mCn�r

where the an,r are some complex numbers.

Assuming Lemma 7.7 for a while, we shall prove Lemma 7.4.

Proof of Lemma 7.4. We shall prove the assertion by inductionon n. The case
n D 0 follows from Lemma 7.5 (2) withr D 0. If l D 0, then we are done. Suppose
that l � 1 and let 1� p � l . Assuming the casen D p� 1, we show the casen D p
by induction onN WD∑p

jD1(r j � 1). By Lemma 7.5 (2) and Lemma 7.7,

y�m(x�1 )pv D 0 (m> l ).

The caseN D 0 follows from this. If N > 0, then x�r1
x�r2
� � � x�r p

v is rewritten as a
linear combination of the vectorsx�s1

x�s2
� � � x�sp

v with s1 > 1, sj � 1 (2� j � p) and
∑

j sj D∑ j r j by Lemma 7.6 (4). By the induction assumptions,

y�mx�s2
x�s3
� � � x�sp

v D 0, y�mx�s1�1x�s2
� � � x�sp

v D 0

for m> l . Hence we find

y�mx�s1
x�s2
� � � x�sp

v D 0 (m> l )

by Lemma 7.6 (3). This completes the proof.
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Next, to complete the proof, we shall show Lemma 7.7. For thiswe need the
following.

Lemma 7.8. For n � 1 and m2 Z,

(Y(u)X(u)n�1)mx�1 � q2nx�1 (Y(u)X(u)n�1)m D (1� q2n)(Y(u)X(u)n)mC1.

Proof. The casen D 1 follows from Lemma 7.6 (2). Assuming the assertion for
n, we find that

(Y(u)X(u)n)mx�1 � (1� q2n)(Y(u)X(u)nC1)mC1

D∑
r�1

x�r ((Y(u)X(u)n�1)m�r x�1 � (1� q2n)(Y(u)X(u)n)mC1�r )

D q2n
∑

r�1

x�r x�1 (Y(u)X(u)n�1)m�r .

(?)

By Lemma 7.6 (1),x�r x�1 D q2x�1 x�r C (1� q2)
∑r

sD1 x�rC1�sx
�
s for r � 1. This implies

∑

r�1

x�r x�1 (Y(u)X(u)n�1)m�r D q2x�1 (Y(u)X(u)n)mC (1� q2)(Y(u)X(u)nC1)mC1.

By substituting this into (?), we obtain the assertion fornC 1.

Now we can prove Lemma 7.7.

Proof of Lemma 7.7. The casen D 1 follows from Lemma 7.6 (2). By the
same claim,

y�m(x�1 )nC1 � q2(nC1)(x�1 )nC1y�mD (y�m(x�1 )n � q2n(x�1 )ny�m)x�1 C (1� q2)q2n(x�1 )n(Y(u)X(u))mC1.

Substituting the assertion forn into the above and using Lemma 7.8, we obtain the
assertion fornC 1.

8. Tensor product of�q modules

In this section, we show that we can consider a tensor productmodule of finite
dimensional�q modules.

Theorem 8.1. Let V, W and U be finite dimensional�q modules.
(1) The Uq(L(sl2)) module structure on V
 W via the comultiplication(4.9)–(4.13)
can be uniquely extended to a�q module structure by the following actions of X20

and X02:

X02(v 
 w) D 1
∑

nD0

(X02)1�nv 
 (X02)
nw, X20(v 
 w) D 1

∑

nD0

(X20)n�1v 
 (X20)
nw
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where (X02)n and (X20)n denote the components of X02 and X20 defined in(5.2) and
(5.3), respectively.
(2) If we consider tensor product modules of�q as in (1), then the associativity holds:

V 
 (W
U ) ' (V 
W)
U .

Proof. (1) The extension is unique if possible by Theorem 6.1. Therefore it is
sufficient to check the relations (4.2) and (4.5). Here we shall verify X02X20 D 1 and
{X02, X23}q D 1 as examples, the proof of the remaining relations being similar.

Formally we write

1(X02) D 1
∑

nD0

(X02)1�n 
 (X02)
n, 1(X20) D 1

∑

nD0

(X20)n�1
 (X20)
n.(8.1)

Then

1(X02)1(X20) D 1
∑

m,nD0

(X02)1�m(X20)n�1
 (X02)
m�n.(8.2)

By (5.2) and (5.3)

X02X20D ∑

m,n�0

(X02)1�m(X20)n�1 D 1.

From this we find
∑

m,n�0
n�mDr

(X02)1�m(X20)n�1 D Ær ,0

for any integerr . Substituting this into (8.2), we obtain1(X02)1(X20) D 1.
Next we consider{1(X02), 1(X23)}q D 1. By (8.1) and (4.11)

{1(X02), 1(X23)}q D 1
∑

nD0

(In C IIn)(8.3)

with

In D {(X02)1�n, X23� X13}q 
 (X02)
n, IIn D {(X02)1�n 
 (X02)

n, X13
 X23}q.

By Lemma 5.2 (1), In is rewritten as follows:

In D Æn,0� q�n[nC 1](X02)�nX13
 (X02)
n.

On the other hand, we find by (5.2) and{X02, X23}q D 1 that

IIn D q1�n[n](X02)1�nX13
 {(X02)
n, X23}qn

D q1�n[n](X02)1�nX13
 (X02)
n�1.
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Substituting the above into (8.3), we find that{1(X02),1(X23)}q D 1, since (X02)n D 0
for n� 0.

(2) By Theorem 6.1, the extended�q module structure on theUq(L(sl2)) mod-
ule V 
 W 
 U is unique. This proves the assertion. It is also easy to provethe
associativity directly, using the action in (1).

9. L-operators

At the end of the paper, we discuss an interesting connectionbetweenL-operators
for Uq(L(sl2)) and�q module structures. TheL-operators originated from the theory
of exactly solvable models [20]. In this section we shall denote a nC 1 dimensional
irreducibleUq(sl2) module Vn,C simply by Vn as before.

9.1. L-operators and �q modules. Let V be a finite dimensionalUq(L(sl2))
module. We shall call a linear mapL W V 
 V1(1)! V 
 V1(1) satisfying

L1(x) D 1op(x)L (x 2 Uq(L(sl2)))(9.1)

an L-operator forV . From an L-operatorL for V , we define linear mapsL i j (1 �
i , j � 2) on V by

L D ∑

i , jD1,2

L i j 
 Ei j

where theEi j are the matrix units.

Proposition 9.1. Let V be a finite dimensional Uq(L(sl2)) module. Suppose that
an L-operator L exists for V and that both L11 and L22 are invertible. Then the
Uq(L(sl2)) module structure on V is extended to a�q module structure by the follow-
ing action of X02 and X20:

(9.2) X02 D (L22C L21)(L11C L12)
�1, X20D (L11C L12)(L22C L21)

�1.

Proof. It suffices to check (4.5). Here we prove{X30, X02}q D 1 as an example.
Among the relations that follow from (9.1), we need the following:

t0L i i D L i i t0, t0L12D q2L12t0, t0L21D q�2L21t0,

e0L22D q�1(L22e0 � L12), e0L21D q�1(L21e0 � L11C L22t0),

L11e0 D q�1e0L11� q�2t0L12, L12e0 D q�1e0L12.

Using the above andX30 D t0 � (q � q�1)e0 from Proposition 4.2, it is easy to show
that bothL11C L12 and L22C L21 are invertible and that the following hold:

q X30(L22C L21) D (L22C L21)Z C (q � q�1)(L11C L12),

(L11C L12)Z D q�1X30(L11C L12)
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where Z D q�1t0� (q�q�1)e0. Eliminating Z from the above two equations, we obtain
{X30, X02}q D 1.

REMARK 9.1. In terms of a linear mapL D ∑

i , jD1,2 Ei j 
 Li j W V1(1)
 V !
V1(1)
 V satisfying

L1(x) D 1op(x)L (x 2 Uq(L(sl2))),

we can show that

X02D (L22� L12)
�1(L11� L21), X20D (L11� L21)

�1(L22� L12).

defines a�q module structure on aUq(L(sl2)) moduleV if L11 andL22 are invertible.

9.2. L-operators for a tensor product of evaluation modules. Recall that on
a finite dimensionalUq(sl2) module V of type 1 the elementt is diagonalizable with
eigenvaluesqn (n 2 Z). Let us denote the eigenspace oft corresponding toqn by V [n].
Fixing a square rootq1=2 of q, we define a linear mapt1=2 on V so that t1=2jV [n] D
qn=2idV [n] for any n. Then this satisfies (t1=2)2D t , t1=2eD qet1=2 and t1=2 f D q�1 f t1=2.

The following well known two propositions give anL-operator for a tensor product
of evaluationUq(L(sl2)) modules of type 1. TheL-operators in the first proposition
first appeared in [21, Appendix]. See also [22, Proposition 2].

Proposition 9.2. Let V be a finite dimensional Uq(sl2) module V of type1 and con-
sider the evaluation Uq(L(sl2)) module V(a). The linear map L(a) D∑

i , jD1,2 L i j (a) 

Ei j with

L11(a) D aq1=2t1=2 � q�1=2t�1=2, L12(a) D (q � q�1)q�1=2a f t1=2,

L21(a) D (q � q�1)q1=2t�1=2e, L22(a) D aq1=2t�1=2 � q�1=2t1=2
is an L-operator for V(a).

Proposition 9.3. Let V and W be finite dimensional Uq(L(sl2)) modules. Let L
and L0 be L-operators for V and W, respectively. Then

∑

i , jD1,2

(

∑

lD1,2

L i l 
 L 0
l j

)


 Ei j

is an L-operator for V
W.

9.3. �q module structure on a tensor product of evaluation modules. Let us
denote theL-operator associated with the evaluation moduleVn(a) as in Proposition 9.2
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by L(n, a) D∑i , jD1,2 L(n, a)i j 
 Ei j . SetnD (n1, n2, : : : , nN) andaD (a1, a2, : : : , aN).
Then, by Proposition 9.3,L(n, a) D∑i , jD1,2 L(n, a)i j 
 Ei j with

L(n, a)i j D ∑

l1,l2,:::,l N�1D1,2

L(n1, a1)i ,l1 
 L(n2, a2)l1,l2 
 � � � 
 L(nN , aN)l N�1, j

is an L-operator for the tensor productVn(a) WD Vn1(a1) 
 Vn2(a2) 
 � � � 
 VnN (aN).
Define End(Vn1 
 � � � 
 VnN ) valued rational functionsX02(n, a) and X20(n, a) of a
from the L(n, a)i j as in (9.2).

Theorem 9.1. Set I0 D ; and In D {qn�1, qn�3, : : : , q1�n} for a positive integer n.
(1) The Uq(L(sl2)) module structure on Vn(a) can be extended to a�q module struc-
ture if and only if ai � Ini for any i .
(2) If ai � Ini for any i, then the assignment X02 7! X02(n, a), X20 7! X20(n, a) extends
the Uq(L(sl2)) module structure on Vn(a) to a �q module structure.

Proof. (1) By Theorem 7.1,ai � Ini for any i if and only if pVn(a)(1)¤ 0. Hence
the assertion follows from Theorem 6.1.

(2) Let Jn D In [ {q�(nC1)}. We can easily show that

detL j j (n, a) D q(nC1)=2 ∏
b2Jn

(a� b), detL j j (n, a) D ∏

1�i�n

(detL j j (ni , ai ))
mi

with mi D ∏

l¤i (nl C 1) for j D 1, 2. Hence, by Proposition 9.1, we can see that the
assignment in the assertion defines a�q module structure onVn(a) if ai � Jni for any i .

We shall prove that the assignment works also in the caseai � Ini for any i . For
this it is sufficient to show that the (matrix valued) rational functions X02(n, a) and
X20(n, a) are not singular onI 0n WD ∏

1�i�N(C� n Ini ). This is done by induction on
N. The caseN D 1 is proven by checking thatX02(n, a) and X20(n, a) do not have
a pole ata D q�(nC1). Set n0 D (n1, n2, : : : , nN�1), a0 D (a1, a2, : : : , aN�1) and V 0 D
Vn1(a1)
 Vn2(a2)
 � � � 
 VnN�1(aN�1). Then if ai � Jni for any i , we have

X02(n, a)(v 
 w) D∑
l�0

(X02(n0, a0))1�lv 
 (X02(nN , aN))lw (v 2 V 0, w 2 VnN (aN))

by Theorems 8.1 and 6.1 (2). Assume the caseN � 1. Then the r.h.s. of the above
equality is not singular onI 0n. This proves the caseN for X02(n, a). The proof of the
caseX20(n, a) is similar.
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