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Abstract
In [7] the g tetrahedron algebr&y was introduced as g analogue of the uni-
versal enveloping algebra of the three point loop algedya® C[t, t~1, (t — 1)71].
In this paper the relation between finite dimensioB®l modules and finite dimen-
sional modules fotdq(L(sk)), aqg analogue of the loop algebia(sl,), is studied. A
connection between thi&, module structure andl-operators forUq(L(sk)) is also
discussed.

1. Introduction

In [1] a presentation of the three point loop algelsia® C[t, t~%, (t — 1)} in
terms of generators and relations was obtained. The Liebedgdefined by the gen-
erators and the relations was named the tetrahedron algelralenoted by, since
the generators can be identified with the six edges of a &dran. The relation be-
tween irreducible finite dimension& modules and irreducible finite dimensional mod-
ules for the Onsager algebra were investigated in [2], uglilegnotion of a tridiagonal
pair. The tetrahedron algebra and its modules were furtiastigated in [3] and [4],
and the universal central extension of this Lie algebra wadied in [5] and [6].

In [7] Ito and Terwilliger introduced they-tetrahedron algebr&,, a q analogue
of the universal enveloping algebra of the tetrahedrontage This algebra contains
Uq(L(sk)) as a subalgebra arld,(L(sk)) has Ay as a subalgebra. Herg, is an al-
gebra isomorphic to the subalgebraLdz{(Qg) generated by the Chevalley generatefs
and e;. Using the theory of a tridiagonal pair, Ito and Terwilligetudied the relation
betweenA; modules andXy modules in [7] and the relation betweély(L(sl;)) mod-
ules andAq modules in [8]. The relation betweel; modules and modules for the
modified Ay was further studied in [9]. The combination of the resultg@fand [8]
implies that there is a bijection between the isomorphisas<lof irreducible finite di-
mensionalXq modules of type 1 and the isomorphism class of irreducibiéefidimen-
sional Uq(L(sl2)) modulesV of type 1 whose associated Drinfeld polynomid) (u)
does not vanish at = 1. (In [8] the condition for the Drinfeld polynomial was not
Py(1) # 0 but Py(g~%(q — g 1)) # 0. The condition is modified to conform to the
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convention of the paper.) An extension of this corresponddn the case of reducible
modules is the object of our study in this paper.

Now we explain our results. With a finite dimensioriay(L(sl)) moduleV we
can associate a polynomigl, (z) with constant term 1 so that for a polynomiél{z)
the following hold: f(z)x*(z) = 0 on V if and only if py(2) divides f(z). Here
xT(2) = X ez Xhz ™ with the xf the generators oby(L(sk)) in the Drinfeld real-
ization. We call py(2) the annihilating polynomial fo’V. Our main results are (i)
answering the question which finite dimensiokg|(L (sl;)) moduleV is extended to a
Xy module in terms ofpy(z) and (i) the determination of the annihilating polynomial
for a tensor product of evaluation modules and a finite dinoga$ highest weight
module. These results are obtained without the use of themof a tridiagonal pair.
More precisely, the first result is (a) thdy(L(sl)) module structure oV is extended
to a Xy module structure if and only ifoy(1) # 0 and (b) in the casey (1) # 0
the extension is unique and is irreducible as @y module if and only if it is ir-
reducible as aJy(L(sk)) module. This implies that there is a bijection between the
isomorphism class of finite dimension&l; modules and the isomorphism class of fi-
nite dimensionalJy(L(sk)) modules withpy (1) # 0. Part of the second result is that
pv(2) = 2%9% Py (z71) (up to a nonzero multiplicative constant) for a finite dimen
sional highest weight/4(L(sl2)) moduleV with associated Drinfeld polynomid®y, (u).
Since py (1) # 0 if and only if Py (1) # 0, our results reduce to those from [7] and [8]
in the case of finite dimensional irreducible modules. Irs thaper we also discuss a
tensor product module of finite dimensiortl, modules and a connection between the
Xy module structure andl-operators forUq(L(sl)).

This paper is organized as follows. In Section 2 the tetredredlgebra is defined
and the relation between finite dimensiorialsl;) modules and finite dimensionall
modules is discussed. In Section 3, necessary results ft@indn finite dimensional
highest weightUq(L(sl)) modules are reviewed. In Section 4, thetetrahedron al-
gebraXq and its subalgebra isomorphic tdy(L(sl)) are introduced. In Section 5,
some basic results on finite dimensiorid}, modules are derived. In Section 6, an
annihilating polynomialpy(z) is introduced and the problem which finite dimensional
Uq(L(sk)) moduleV is extended to &, module is studied. In Section 7, the annihi-
lating polynomial is determined for a tensor product of aatsibn modules and a finite
dimensional highest weight module. In Section 8, it is shdihat we can consider a
tensor product module of finite dimensiondl; modules. In Section 9, a connection
between theXq module structure and -operators forUg(L(sk)) is studied.

2. The tetrahedron algebraX

In this section we study the relation between finite dimemalid.(sl,) modules and
X modules. This result would be a help to understargl analogue of it in Section 6.
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2.1. The tetrahedron algebral. Let X denote the Lie algebra ové&r defined
by generators

Xij (I 7é J € {Or 1! 2! 3)

and the following relations:

(2.2) Xij + Xji =0,
(2.2) [Xnis Xij] = 2Xni + 2Xij,
(2.3) [Xnis [Xnis [Xnin Xkl = 40%his Xjk]

whereh, i, j, k are mutually distinct. Following [1], we calk the tetrahedron algebra.
Let us consider the following twe&-algebras:

A=C[t, t™L, ¢t —1)Y, B=C[tt™.

As usual, we endow th€-vector spacesl, ® A with a structure of Lie algebras over
C by

[UuRa vebl=[uvl®ab (U, vesh abeA).

The Lie subalgebral, ® B of sl, ® A is the loop algebra of typsl, and will be
denoted byL(sh).

The tetrahedron algebr® is known to be isomorphic teh ® A. (We use a
slightly different convention from [1].)

Theorem 2.1 ([1]). (1) There exists an isomorphisld — sl ® A of Lie alge-
bras overC determined by

Xpp=> X®1, X3 yYy®1, X1+—>2Z®1,
X3 Yy®t+z®(t—1), Xzt +x® (' —1),
Xoo > XQt"+y® (t”"—1)
where t=1—-t1, t"=(1-t)! and
x=2—-h, y=-2f—-h, z=h
with e f, h the standard generators of,sl

(2) Under the isomorphism il), the subalgebra o< generated by %, X23, X31, Xo3
and >y correspond to the subalgebra(sh,) of sh ® A.

In the following, we shall identifysl, ® .4 with X via the correspondence in the above
theorem.
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2.2. L(d2) modules and ® modules. By Theorem 2.1,L(sl,) is a subalgebra
of K. In this section we study the relation between finite dimemai L(sl;) modules
and finite dimensionalkl modules. The main purpose of this paper is to investigate a
g analogue of this relation.

For a Lie algebral and anL moduleV, set

Ann_V ={xelL |xv=0 (Vv e V)}.
For annihilators of finite dimensiondl(sl;) and X modules, the following hold.

Proposition 2.1. (1) For a finite dimensional [sl,) module V there exists a
unique polynomial i) with p(0) = 1 such that

Anng ) V = sk ® p(t)5.

(2) For a finite dimensionalX module V there exists a unique polynomigl)pwith
p(0) =1 and p1) # 0 such that

Anng V = sh ® p(t).A.
This proposition follows from the following two simple lenas.

Lemma 2.1 ([3, Theorems 5.2 and 5.3]).For A= A4, B, J is an ideal of the Lie
algebra s} ® A if and only if there exists an ideal | of th@-algebra A such that
J=shLb®I.

Lemma 2.2. For A= A, B the following hold.
(1) For a nonzero ideal | of the-algebra A there exists a unique nonzero polynomial
p(t) (up to multiplication by a nonzero scalpsuch that 1= p(t)A.
(2) The polynomial in(1) satisfies £0), p(1) # 0 in the case A=A and p0)# 0 in
the case A= 5.

Proof. The polynomialp(t) which generates the ide&ln C[t] of the polynomial
algebraCJt] has the property in the lemma. ]

To state our result, we need the isomorphigpin the following lemma.

Lemma 2.3. Let p(t) be a polynomial with (D), p(1) # 0. Then the inclusion
L(sk) — X induces an isomorphism,: L(sk)/(sk ® p(t)B) — K/(sk ® p(t).A) of
Lie algebras ovelC. Let (t) be a polynomial such that — 1)g(t) = 1 mod p(t)C[t].
Then the following holds

9 (%o2) = (X +y)®glt) —y® 1.
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Proof. Sincep(1) # 0, we have p(t).4A)NB = p(t)B. Hence the inclusion induces
an injective homomorphismp,. The surjectivity ofg, and the expression q&;l(x_oz)

follow from the equalityg(t) = (t — 1) mod p(t).A. ]

The following theorem clarifies the relation between finitmensionall (sl,) and
X modules.

Theorem 2.2. Let V be a finite dimensional(kl,) module ando: L(sk) — gl(V)
the homomorphism associated with V. Let furthér) fpe a polynomial with (D) =1
such thatAnn s,y V = sh ® p(t)5.

(1) The L(sl,) module structure on V is extended td&Xamodule structure if and only
if p(1) # 0. In the case fi) # 0O, the action ofX is uniquely given by the following
composite map

K — 8/(sh ® p(t)A) <> L(sk)/(sk ® p(t)B) — gl(V)

where the last map is the one induced by In particular, the action of ¥, is given
by the action of

-xX+y)®9gt)-y®1

where dt) is a polynomial such thaft — 1)g(t) = 1 mod {t)C[t] and x, y and z are
those inTheorem 2.1.

(2) Inthe case fi) # 0, V is irreducible as ax module if and only if it is irreducible
as an L(sl;) module.

Proof. (1) Thanks to Lemma 2.3, it suffices to show tpét) # O is necessary
for the extension and that the extension is unique in the pé$e# 0.

Suppose that thé(sl) module structure oV is extended to & module structure
and letr(t) be a polynomial withr(0) = 1 andr(1) # 0 such that AnpV =sh ®
r(t).A. Then, since the original action a&f(sl,) on V coincides with the action via the
composite mag.(sh) — X — gl(V) (x), we find that

(2.4) Ann ) V = (Anng V) N L(sk)

and that £) induces the following homomorphism:
(2.5) L(sk)/Ann sy, V 5 K /Anng V — gl(V).

By (2.4), p(t)B = (r (t)A) N B =r(t)B. This impliesr(t) = p(t). Hencep(1) # 0 and
¢ = @p. Sinceg, is an isomorphism by Lemma 2.3, we can see that the only gessib
X module structure oV is the one stated in the theorem in the cag#) # O.

(2) Follows from the fact that the action af, on V is a linear combination of
the actions of the elements af(sl,). ]
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3. Uq(sl2) and Ug(L(d2))

Leaving the study of a analogue of the tetrahedron algeliato later sections,
we summarize necessary results on the quantum groiggsh) and Ug(L(sk)) [11],
[12] and their finite dimensional modules in this section.

3.1. Notation. We fix a nonzero complex numbgrwhich is not a root of unity.
For an integem and a nonnegative integen, we set

qn _ qfn
[n] = FETEE [(m]t = [1][2] - - - [m].

We further set
[a, bl =ab-rba
for a complex number and elements, b of a C-algebra.

3.2. Ug(dl2). We letUq(sk) be theC-algebra defined by generatees f, t, t*
and relations

(3.1) ttl =ttt =1,

(3.2) tet? = g%, tft™!=q7?f,
t—tt

3.3 e f] = .

(3.3) [e f] q—q7t

We consider a tensor product bf(sl,) modules via the following comultiplicatior:

(3.4) A =t ®t,
(3.5) Ae)=e®Rl+t®e,
(3.6) A(f)=f @t +1® f.

3.3. Ug(L(8l2)). We defineUq(L(sk)) to be theC-algebra generated by, fi,
ti, t71 (i = 0, 1) subject to the relations

(3.7) ittt =t = 1,
(3.8) toty = tito = 1,
(3.9) et T =q" %, tfitt=0>"1,
i —tt
(3.10) [e, fi]l =6 —=,
(3.11) e’ej — [3lefejq + [Blaeje’ —ee’ =0 (i #J),

(3.12) 3, —[3]f2f fi +[3]fif; f2—f;f3=0 (i #]).
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We consider a tensor product bf;(sl) modules via the following comultiplicatiorn:

(3.13) Alt) =t ®t,
(3.14) Ale)=e®1+t®e,
(3.15) A(f)=fi et +1® f.

It is well known [13], [14] thatUq(L(slk)) is also defined by generators
X+, X0, he, k, k™t (meZ, rez\{0)

and relations

(3.16) kkt=kk =1,
(3.17) [k, h/] =0,
(3.18) [h, hs] =0,
(3.19) kxtk™t = gq*2xE,
(3.20) [he, X35] = [zr—r]xrﬁm,
1
(3.21) bl = =g (@20 — @510,
(3.22) [Xr:r;—l' Xﬁt]qﬂ + [X;t_,’_l, szrtl]qu =0

where & (r € Z) is defined byd) = 0 (r < 0) and the generating series

M) =>" 7T = kL exr(i(q —q D hy szr).

r=0 r>0

The correspondence of the generators is given by

(3.23) XO+ e, X <« fi, kot
(3.24) X, < qteo, X < q oty
(3.25) hy < q7ew, @lg, h1 < alfo, filgz.

Later we shall use the generating sen€¥z) = > .., X2z™™ in addition to ®®)(z).
We shall identifyUq(sl,) with the subalgebra ofly(L(sk)) via the correspondence
e—>e=xJ, f—> fi=x5 andt > t; =k

3.4. Finite dimensionalUy(sl;) modules. For a nonnegative integer and ¢ €
{+, -}, we letV, . denote then + 1 dimensional vector space with basig vi,..., vn
on which the action otJy(sh) is defined by

(3.26) evi =¢e[n—i+1Jvi_y, fu =[i + iy, ty =eq™ %o
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wherev_1 = vy, 1 = 0. Any nonzero scalar multiple of the vectaoy is called a highest
weight vector ofV,, ;.
The following is well known. See, for example, [15].

Proposition 3.1. (1) The U(sk) module V. is irreducible.
(2) Any irreducible finite dimensional {{sl;) module is isomorphic to one of the, M
(3) Any finite dimensional k{sl) module is isomorphic to a direct sum of thg vV

We shall call aUqy(sl;) module V of type 1 (resp. type-1) if V is isomorphic to a
direct sum of theV, ; (resp. theV, ).
Later we need the following simple fact.

Lemma 3.1. Let V be a finite dimensional {¢sl;) module and X a linear map
onV.
(1) If tX = @g?Xt and[X, f]=0on V, then X=0.
(2) If tX =q2Xt and[e, X] =0 on V, then X= 0.

Proof. We shall prove (1), the proof of (2) being similar. Byoposition 3.1V
admits a decomposition into a direct sum of irreducible dirdtmensionaly(sl,) sub-
modules:V = VO g V@ @ ... ¢ VM with VO ~ Vv, ... Let v© denote a highest
weight vector ofV®). Since X commutes withf, it is sufficient to show thaXv® =0
for anyi. SincetX = g2Xt, for anyi there exist complex numberg such that

Xo® = 37 ¢; 002720
J

where the sum is taken ovegr such thatn; = n mod 2,n; > n; + 2 andeg; = g.
This implies

0= Xfhitly® — gni+ly, O = ZCJ Fni=Mi=m)/2,,(30)
j

Since fN=Mi—m)/2y() £ 0 for any j, we find thatc; = 0 for any j and hence that
Xv®) = 0. This completes the proof. O

3.5. Finite dimensional Uq(L(sl2)) modules.

3.5.1. EvaluationUgq(L(sl2)) modules. For a nonzero complex numbarwe let
eva: Ug(L(shk)) — Uq(sk) be the homomorphism determined by

(3.27) er>e fi>f, ty>t, eraf, for>ale to—tL
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Via the homomorphism gvwe can endow a structure &fy(L(sk)) modules on any
Uq(sk) moduleV. We shall denote th&q(L(sl)) module thus obtained by (a) and
call it an evaluation module.

3.5.2. Highest weightUq(L(sl2)) modules. Here we shall summarize necessary
results on finite dimensional highest weighg(L(sl)) modules from [10]. We shall
say that aUqy(L(sl)) module V is a highest weight module ¥/ is generated by a
nonzero vectow satisfying

xfv=0meZz), &v=dfv, ®5v=d v (n>0)

with complex numbersl and d—, satisfyingd, d, = 1. We callv a highest weight
vector of V andd = (df, d-)nez., @ highest weight ofv.

Let us consider a highest weight which is related to a polynomiaP(u) with
constant term 1 in the following way:

P(q~2u) _ P(q~2u)
+M _ qdegP m _ gdegP
2 " =T D A =t

m>0 m>0

where the r.h.s. of the first equality (resp. the second é@guahould be understood as
a Laurent expansion around O (resp). We shall say that a highest weight module
with the above highest weightt is a highest weight module with Drinfeld polynomial
P(u). In particular we denote it by/(P) if it is irreducible.

For ¢ € {1, —1}, we shall say that &4(L(sk)) moduleV is of typee if it is of
type ¢ as aUq(sk) module.

The following were proven in [10].

Theorem 3.1. (1) If a highest weight (L (sk)) module of typel is finite dimen-
sional then it is a highest weight module with soméuPas an associated Drinfeld
polynomial.

(2) A Uy(L(sk)) module V of typel is irreducible and finite dimensional if and only
if it is isomorphic to one of the {P).

Proposition 3.2. The Drinfeld polynomial Ru) associated with the evaluation
Uq(L(sk)) module ¥ 4(a) is P(u) = [, (1 — g% au).

Proposition 3.3. LetV and W be highest weight,{L(sl,)) modules with Drinfeld
polynomials R (u) and Ry(u), respectively. Then the submodule o&®WV generated by
the tensor product of the highest weight vectors is a higiesght module with Drinfeld

polynomial R, (u)Pw/(u).

Theorem 3.2. (1) Vi, +(a1)®- - -® Vn,,+(an) is irreducible if and only if /a; ¢
g+, gntm=2, ., g2y for any distinct i j.
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(2) Any irreducible finite dimensional {L(sl)) module of typel is isomorphic to
some ¥, +(a1) ® - - ® Vi, +(an).

4. The g-tetrahedron algebra X

4.1. Theg-tetrahedron algebra ®.

4.1.1. In [7] the g-tetrahedron algebr&,, a q analogue of the universal envelop-
ing algebra ofX, was introduced. Set

rXY —r-1y X

{X! Y}T = r —r_l

for a complex number different from 0 and+1 and element, Y of a C-algebra.
By definition, theqg-tetrahedron algebra is th@-algebra generated b¥p1, X1z, X23,
X30, X13, X31, Xo2, X20 Subject to the following relations:

(4.1) X13X31 = X331 X313 =1,

(4.2) X02X20 = X20Xo02 = 1,

(4.3) {Xo1, X12}qg =1, {Xi2, Xazlg =1, {X23, Xzolqg =1, {X30, Xo1}q = 1,
(4.4) {Xow, Xi3lg =1, {Xi3, Xaolqg =1, {Xoz Xat)g =1, {Xaz1, Xio}qg =1,
(4.5) {Xoz, Xaslqg =1, {Xi2, X20lqg =1, {Xz0, Xo1}qg =1, {X30, Xo2}q = 1,
(4.6)  X{ X —[BIXF X Xij + [B]Xij X X5 — X X3 =0 (G, j, k1) € )
whereJ ={(0, 1, 2, 3), (2, 3,0, 1), (1, 2,3,0), (3,0, 1}2)

This g analogue is related t& as follows. In terms ofy; = 2(1— Xi;)/(q—q~3),
the relations{Xj;, Xjk}q = 1 and (4.6) are rewritten as

av Yik — 9 YikYi = 2% + Yik)
and
[Yiis [Viis [Yijs Yalll = 4Xi;[ij s Yl Xij
respectively. Seqg = €. If X;j = 1—hx;j +0(#), theny;j — x;; in the limit # — 0 and

the above two equalities reduce to (2.2) and (2.3) excep(d@®) with (, i, j, k) =
0,2,1,3),(1,3,0,2).

4.1.2. Let us consider the following three subalgebrasibyf:

Mg = (Xow, X23), Ny = (X3, Xa1, X20, Xoz), My = (X12, X30).
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We define Aq to be theC-algebra generated bX and Y subject to the following
relations:

4.7 X3Y — [B]X2Y X+ [BIXY X —-Y X =0,
(4.8) Y3X —[3]Y2XY 4 [3]Y XY2 — XY3 = 0.

In [7], it was noted thatky = X &8 X4 and that bothX; and X are homo-
morphic images ofA;. More precisely the following proposition can be proven in a
standard way (see, for example, [15, Chapter 4]). This tesutlue to J. Nakata and
proves [7, Conjecture 19.6].

Proposition 4.1. (1) The multiplication mapX; ® &g ® &g — Ny is an iso-
morphism of vector spaces.
(2) The subalgebra&; and &g are isomorphic to 4 via the correspondence oX<>
X, Xz3 <> Y and the correspondence; X« X, Xgo <> Y, respectively.
(38) The defining relations oﬁg are

X13X31 = X1 X1z =1, Xz0Xo2 = Xg2Xz0 = 1.

4.2. The equitable presentation ofUy(L(sl2)). By Theorem 2.1 (sh) is a sub-
algebra ofX. As aq analogue of this, we can prove that thdetrahedron algebr&
containsUq(L(sk)) as a subalgebra. For this it is convenient to introducetargresen-
tation of Uq(L(sl)) called the equitable presentation [16], [17].

Let By be theC-algebra generated bYo1, X12, X23, X30, X13, X31 subject to rela-
tions (4.1), (4.3), (4.4) and (4.6). This algebra is knowrbéisomorphic tdJq(L (sl)).
(We use a slightly different convention from [7].)

Proposition 4.2 ([7]). (1) There exists &-algebraisomorphism 8— Uq(L(sk))
determined by

Xigbti— (@ —qhe, Xez>t+a@—g Htfy, Xat
Xso>to—(@—g ey, Xorrto+0a@—gHofo, Xiz>to™.

(2) It we identify B with Ug(L(sk)) via the correspondence il), then the co-
multiplication A of Ug(L(sk)) maps the elements;Xe Uy(L(sl)) as follows

(4.9) A(X13) = X13® X3,

(4.10) A(X12) = (X12— X13) ® 1 + X13 ® X1z,
(4.11) A(Xz3) = (X23 — X13) ® 1 + X135 ® Xos,
(4.12) A(X30) = (X30 — X31) ® 1 + X31 ® Xao,

(4.13) A(Xo1) = (Xo1 — X31) ® 14+ X31 ® Xou.
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As noted in [7], the subalgebra &, generated byXo1, X12, X23, X30, X13 and Xz;
is a homomorphic image dBq by the definition ofBy. Using Proposition 4.1, we can
easily prove that this subalgebra is isomorphicBip

Proposition 4.3. The homomorphismB- X, determined by X~ X;; is injective.

By Propositions 4.2 and 4.3, we can and do identify the sabyof X, gener-
ated bnyl, X12, X23, X309, X13 and Xa1 with Uq(L(S|2))

5. Ky modules

Now we start the study of finite dimension&l,; modules. First note that aryq
module can be regarded both adJg(L(sk)) module and as &J4(sk) module, since
the g-tetrahedron algebr&, containsUq(L(sly)) as a subalgebra.

5.1. Xy modules.

Lemma 5.1. Let V be a finite dimensional ¢sl;) module. Then any linear map
g on V admits the following unique decomposition

(5.1) g= Z Omy2,e (finite sum,  XiaGmy2,c X31 = €9 Gmy2,¢-

meZ
e=+,—

Proof. By Proposition 3.1V is isomorphic to a direct sum of the,.. Hence
X13 = t; is diagonalizable orV with eigenvaluessq™ (¢ € {+, —}, m € Z). The as-
sertion follows from this sinceq™ (¢ € {+, —}, m € Z) are distinct. ]

For the actions 0fXg, and Xzo on a finite dimensionalkl; module, we can con-
sider Xo2)m/2, and X20)m/2,. as in the above lemma. We shall call them components
of Xg2 and Xy9. We can prove the following proposition for the componenitsXg,
and Xoo.

Proposition 5.1. Let V be a finite dimensionak; module. Then the following
hold for the componentéXg2)n,. and (Xzo)ne (N € Z/2, & = £):
(1) Xo2ne =0unlesse =+, neZ and n< 1.
(2) (X20)ne =0 unlesse =+, neZ and n> —1.

The proof of this proposition will be given in Section 5.2.
Now that we know Ko2)n. = (X20)ne = 0 unlesse = 4+ andn € Z, we shall
simply denote Xo2)n + and Xoo)n+ by (Xo2)n and (Xzo)n, respectively, and assume
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that the subscriph runs over integers. Then the following hold on a finite dimenal
Xg module:

(5.2) Xoz2 = Z (X02)1-n,  X13(X02)nX31 = 92" (Xo2)n,
neZ-o

(5.3) Xa0= D (Xao)n-1,  X1a(Xz0)nXa1 = G”"(Xao)n-
neZ-o

Proposition 5.2. Let V be a finite dimensionaky module. Then V admits a
direct sum decomposition

V= Ve, V(e ={eV|Xsa =eq")

neZ,e=+

and both (+) =@, V(n, +) and V(-) = P, V(n, —) are submodules of thil,
module V.

Proof. The existence of the decompositith= P, ., ._ V(n, &) was already
proved in the proof of Lemma 5.1. By (5.2) and (5.3), botkp and X, preserve each
of V(4+) and V(-). Since the algebr&y is generated by the subalgebg(L(sl))
and the elementXo, and X0, X also preserves each &f(+) and V(-). ]

Following [7], we shall say that foe € {1, —1} a finite dimensional¥l; module
V is of typee if Xa; is diagonalizable oV with eigenvalues ireg?. Any finite di-
mensionalX, module of type—1 is obtained from a finite dimension&, module
of type 1 by the use of the automorphism Bf, such thatX;; — —X;;. Hence by
the above proposition we can consider only finite dimendi®g modules of type 1
without loss of generality.

5.2. Proof of Proposition 5.1. First we prove the following lemma.

Lemma 5.2. On a finite dimensionalkg module the following hold for ne Z/2
ande € {+, —}:

_eq2n-1
(1) {(Xo2n+1,e, X23— X13lq = n,08¢,4 — qqf?rl (Xo2)n,e X13,

—& 2n—-1
(2) {Xz0— Xa1, (Xo2dnt1.elg = 0n,00e+ — L9 X31(Xon.e
a4

(3) {X12— X13, (X20)n-1,6}q = 6n,00s,+ — sq:i;jﬁil(xzo)n,gxlsy

(4) {(X20)n-1,6 Xo1 — Xa1}q = 6n,00¢,+ — w:ﬁ%le(xzo)n,s-
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Proof. By (4.4) and (4.5){Xz3, X31}q = 1 and{Xp2, X23}q = 1. From these and
the definition of the Xo2)n ., we find that

0(X23 — X13)Xa1 = g~ X31(Xo3 — X13)

and

q- 8q2n—1
{Xoz: Xo3 = Xaalq = 1— > ﬁ(XOZ)n,e X13.

ne

The former equality implies<yz — X153 = (X23— X13)-1.+. Noting this, we obtain from
the latter that

q-— 8q2n71
{(Xo2)n+1,6: X23— Xazlq = 6n,00e,+ — w(xoz)n,sxls

for anyn € Z/2 ande = £. This proves (1). The proof of the rest of the assertions
are similar. O

Now we can prove Proposition 5.1.

Proof of Proposition 5.1. We shall prove the assertions tier Ko2)n ., the proof
of the case Xzo)n,. being similar. Suppose that fere {4, —} there exists an integer
n such that Ko2)n . # 0 and letn, denote the largest one. Then, siné&An, +1.. =0,
we find from Lemma 5.2 (1) that

q-— 8q2ng—1

a—q+t (Xo2)n,,e X13 = dn,,00¢, +-

Sinceq is not a root of unity andXi3 is invertible, the above equality is inconsistent in
the casee = — andn, must be 0 or 1 in the case= +. This implies that Xo2)n,- =0
for any integern and that Koz)n + = O if n is an integer greater than or equal to 2.
Similarly we can prove Xo2)n. = 0 for anyn e Z + 1/2 ande = +. This completes
the proof. O

6. Ug(L(sl2)) modules and ®y modules

Recall thatXl, hasU4(L(sk)) as a subalgebra by Propositions 4.2 and 4.3. In this
section, we shall study which finite dimensioria},(L(sl;)) module is extended to a
Xy module. For this problem we can provegaanalogue of Theorem 2.2.

6.1. Main result 1. First we introduce an annihilating polynomigl, (z) for a
finite dimensionalJy(L(slz)) moduleV, which is aq analogue of the polynomiah(t)
in Proposition 2.1 (1). The proof of the following propositi will be given in the next
subsection.
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Proposition 6.1. For an integer m we seW, = ®() — &) and consider the
generating seriest(z) = > ., Ymz ™. Let V be a finite dimensional {{L (s,)) mod-
ule and set

Iy ={f(2eC[7] | f(x°(z) =00n V} (s¢=%),
10 ={f(@eC[]| f(2¥(2) =0 on V).

Then | =1, = I\(} and this is a nonzero ideal df[z] generated by a polynomial
with nonzero constant term.

Let Iy signify the ideally = I, = I\(} in the proposition. We shall denote the
polynomial with constant term 1 generating the idéalby py(z) and call it the an-
nihilating polynomial forV.

For a nilpotent linear mag on a vector space, we define gsexponential expg
(see, for example, [18, Chapter IV]) by

|
~i0-12 9

exg 9= > q -
= [

Using py(2), we can state the following theorem, whose proof will beegivin
Subsection 6.3.

Theorem 6.1. Let V be a finite dimensional J{L(sl;)) module and p(z) the
annihilating polynomial for V.
(1) The W(L(sk)) module structure on V is extended tdXg module structure if and
only if py(1) # 0.
(2) In the case p(1) # 0 the extension is unique. Let(#@) = Z}"'ZO d;z be a poly-
nomial such that(z — 1)g(z) = 1 mod py(2)C[z]. Then the action of g on V is
given by

M
Xoz = (exp, Xo_)(k_1 +@-9™) Z d; XjJr)(eXFh xg)
=0

(3) In the case p(1) # 0, V is irreducible as aXy module if and only if it is irre-
ducible as a {(L(sk)) module.

6.2. Proof of Proposition 6.1. For a polynomialf(z) = Z}\‘ZO Cj zl and a gen-
erating seriesX(z) = > .z Xmz ™, the following holds:

N
(6.1) f(2)X(2) = Z(z ¢ X J-+m)zm.

meZ \ j=0

Noting this, we can prove Proposition 6.1.
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Proof of Proposition 6.1. By Lemma 3.1 and the equality

N N N
> cVim=@-qY [Z CiXiF s xo} =@-q7 {xo*, > me},
j=0 j=0

j=0

we can see that the following conditions,(ife = +) and (ii) for complex numbers
Co, C1, ..., Cy are equivalent:

()e >joCiX¢,m =0 0nV for any integerm,

(i) Z;\':O Ci¥j+m =0 onV for any integerm.

This and (6.1) imply that,f = I, = 19. If f(2)x*(2) =0 onV for some polynomial
f(2), theng(2) f (2)xT(2) = 0 andz™ f (2)x*(2) = 0 on V for any polynomialg(z) and
any integerm. Hencel, is an ideal ofC[Z] generated by a polynomial with nonzero
constant term. O

6.3. Proof of Theorem 6.1. First we state one lemma and one proposition, the
proof of which will be given in the next subsection.

Lemma 6.1. On a finite dimensionak; module the component{Xo2)n of Xoz
satisfy the following equalities
(1) (Xo2)-n = 8n,0k* — q"[(X02)1-n, Xglq-2/[N+ 1] (n = 0),
(2) [(Xo2)1, Xpy1 = Xm] = Ym (M € Z).

Proposition 6.2. Let V be a finite dimensional (L (sl;)) module and suppose
that y € End(V) satisfies

(6.2) kyk™ = q?y,
(6.3) [y, xi —xg] =k—k™,
(6.4) [x5. Ylgz = ay?,
(6.5) [X*1, Ylg2 = q 'y2

Then the Y(L(sl)) module structure on V is extended tok& module structure by
letting

(6.6) Xoz = (xR %)k " + V)(exXp, %) .
Assuming the above, we prove Theorem 6.1.

Proof of Theorem 6.1. If thdJq(L(sl)) module structure oV is extended to a
Xy module structure, thenXpy); satisfies (2) in Lemma 6.1. In terms of generating
series, this is written as follows:

(6.7) Y(2) = (z— )[(Xo2)1, X~ (2)]-
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Suppose thapy (1) = 0. Then py(2) factorizes aspy(z) = (z— 1) (2) (x) with some
polynomial r (z). Multiplying (6.7) by the polynomial (z), we find that

r(2v¥(2) = [(Xo2)1, bv(@x (21 =0

on V and hence that(z) € Iy. This is inconsistent with«). Thereforepy (1) # 0 is
necessary for the extension.

Next, assuming that the extension is possible in the gagd) # 0, we shall
show the uniqueness. By Lemma 6.1 (Dof)n (n < 0) is uniquely determined by
(Xo2)1 and Xy is the inverse ofXp,. Hence it is sufficient to prove the uniqueness
of (Xo2)1. Suppose that thé&lq(L(sl)) module structure orV is extended to &Xy
module structure in two ways and denote the difference ofttee actions of Xy, on
V by §Xg2. Then

(z—D[(6X02)1, X" (2] =0
by (6.7). This implies
Pv (D[(6X02)1, X" (2)] = (pv(1) — pv(D)[( X02)1, X (2)] = 0.

Since pyv(1) # 0, the coefficient of® in the above equality gives dKo2)1, Xg] =
0. Hence we find thaté(Xg2): = 0 by Lemma 3.1. This completes the proof of the
unigueness.
Finally we shall prove that the extension is possible as jnirf{zhe casepy (1) #
0. Letg(®) = Z?":O d,-zj be the the polynomial in part (2) of the theorem and set

y=(q—-9g™ Z}\":O d,—xj*. It is sufficient to show thay satisfies (6.2)—(6.5) in Prop-
osition 6.2. Eq. (6.2) clearly holds. Since

M
[y, x"(2)] = Z(Z d, wj+m)z—m = g(@¥(2),
meZ \ j=0
we find that
z-Dly, x (2] = (- Dg@¥(2) = ¥(2)

on V. The coefficient ofz° in the above equality proves (6.3). The relation (3.22) for
the x} is equivalent to

(6.8) (z—- Pw)x T (@)xF(w) + (w — g%2)xT (w)x T (2) = 0.
As

zg(2)x"(2) = 9(x " (2) + (z— DI@x " (2) = 9(2x" (2) + X" (2)
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on V, the coefficient ofz® in zg(z)x(2) is equal toy/(q—q) +xg . Noting this, we
find that the coefficient o#°w? in g(z)g(w) x (6.8) yields (6.4). The proof of (6.5) is
similar. This completes the proof of (1) and (2).

Part (3) follows from (2) since the actions ofy, and Xy0 on V are expressed in
terms of the actions of the elements WB§(L (sl)). ]

6.4. Proof of Lemma 6.1 and Proposition 6.2. To prove Lemma 6.1 and Prop-
osition 6.2, we need the following two lemmas. Recall thatareidentifyingUq(L(sl2))
with the subalgebra oy generated byXp1, X12, X23, X30, X13 and Xz1 by Propos-
itions 4.2 and 4.3.

Lemma 6.2. Let V be a finite dimensional J{L(sl)) module.
(1) The W(L(sk)) module structure on V is extended td® module structure if and
only if there exists an invertible linear mapgXon V which admits a decomposition
(5.2),i.e,

(6.9) Xoz = D (Xo2)1n (finite sun, k(Xo2ak ™ = 4% (Xo2)n

neZ-o
and satisfies

(6.10) {Xo2, Xa3lg = 1, {Xz0, Xo2lq = 1,
(6.11) {Xoz2, X12lqg = (Xo2)%,  {Xow, Xozlq = (Xo2)*.

(2) In terms of the componen{Xo2)n (N < 1), (6.10)and (6.11) are equivalent to the
following equalities with r> 0:

(i) [(Xo2)1-n: Xglg-2n = 8n,0k™* = g~ "[Nn + 11(X02)—n,

(i)) [(Xo2)1-n, Xy Igzn = 8n,0k — q"[N + 1](Xo2)-n,

(i) [X5, (Xo2)1-nlqz = Ad(X32)2-n — 4" [N — 1]k(Xo2)2—n,

(iv) [x*}, (Xo2)1-nlq2 = 4 1 (XZ)2-n — 4" V[n — 1]k 1(Xo02)2-n
where (X3,)2-n = leJ,rnr:]EOn(XOZ)l—I(XOZ)l—m and (Xo2)2 = 0.

Proof. (1) The assertion follows from (4.2), (4.5) and Piapon 5.1.
(2) By Proposition 4.2, (3.23) and (3.24),

Xos =k +0a(@—qHYkxg, Xso=k?t—qg(q-qHkixg,
Xig=k—=(@—a x5,  Xoa=k*+(q—gHxi.

Using these, the assertion is easily proven. O

Lemma 6.3. On a finite dimensionalkl; module the componen{Xy); satisfies
the following equalities
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(1) [h1, (X02)1/12] = (Xo2)1 + (@ — a7 )xg,
(2) [h_1, (Xo2)1l/[2] = (Xo2)1 — (@ — g H)x7;.

Proof. Sety = (Xp2)1. The difference of (i) and (ii) of Lemma 6.2 (2) with
n = 0 yields

(6.12) [y, xg —xg] =k—k™*
Using this, part (1) is derived by the following calculation

[h, yIk — [2]yk
= [h, Yk —q2[2lyk " — g7y X — %] (by (6.12))
= q72llxg X7 = %51 Ylgz — a7%[[xg s Y]z, X1 — %51

(by (3.21) and Lemma 6.2 (2) (iii) witlm = 0)
= —q77x, [y, Xg — %1l
= —q °[x5, k—k g (by (6.12))
= (@* - g79)xg k.

The proof of (2) is similar. ]
Now we can prove Lemma 6.1 and Proposition 6.2.

Proof of Lemma 6.1. Part (1) immediately follows from (i) ofeima 6.2 (2).
Part (2) withm = 0 is nothing but (6.12). Sincen{, ¥y] =0 and hy, x7] = —[2]X, 1,
the commutator of the case of (2) andh; yields

1
[(X02)1, Xpi2 = Xmya] = E[[hlr (Xo2)1l, X1 — Xml-
Hence (2) withm > 0 is proven by induction om, using Lemma 6.3 (1). Part (2)
with m < 0 is similarly proven by the use of Lemma 6.3 (2). O

Proof of Proposition 6.2. We definé_, (n > —1) inductively byY; =y and

n
(6.13) Yo = 8nok™ — [anl][Ylfna Xolg= (N=0)

and setY = > _,Yi_n. Let us denote (i)—(iv) of Lemma 6.2 (2) withX¢), replaced
by Y, simply by (i)—(iv). By Lemma 6.2, we can see that lettiXg, = Y defines a
X, module structure oV if (a) the Y, satisfykY,k=! = Y, and ())—(iv) and (b)Y

is invertible.
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First we shall show (a). By (6.2) and (6.13), the equaliiésk—! = g?"Y, hold.
Part (i) is nothing but (6.13). Part (ii) is easily proven Imdiiction onn, using (6.13),
(6.3) and k7, X5lq2 = 0. Using (6.13), we can show

(Y220 %o Tg = = 2] Ya okt —q [N+ 1(Y?)1n (02 0).

Utilizing (6.4), (6.13) and the above equality, we can shdiy ify induction onn. The
proof of (iv) is similar.
Next we shall prove (b). By the definition of thég,,

—n

- - q -
YO = k 1 + [XO y Y]_], an = m[xo y Yl,n]an (n > 1)

Hence we find thatf = > .o Z_n + > . ; W_n with Zg =k™!, W, =Y; and

qfn(n+1)/2 1

T m[x& X X0 K g2l el (N2 1),
q—n(n+1)/2 B 3 3

T W[Xo v [Xos X0, Yalgelgzs - -l (N2 0).

Since Z_,, with n > 1 is rewritten as
qfn(nfl)/z

= T

X, - [Xg, [Xo» kfl]qo]qzy co s Jopoen,
we find by Lemma 6.4 below that
Y = (exp, o )(K ™ + Y1)(exp, X5)
This expression proves (6.6) and the assertion (b). L]

Lemma 6.4. Let V be a vector space. For a nilpotent linear map g and a linea
map X on V the following hold
(1) (exg 9) ' = X 2(—1 ' V2g /1y,
() (exmy 9X(expy 97" = X+ X2y a7 Vg, .., [0, [9, Xleolgz - - - Jqze-/[1]'-

Proof. Part (1) is [18, Proposition IV.2.6]. Part (2) would vell known and is
easily proven. O

7. Annihilating polynomial

By Theorem 6.1 the problem of telling whether a finite dimenai Ug(L(sk))
moduleV is extended to &y module is reduced to determining the annihilating poly-
nomial py(2). In this section, we shall determing, (z) for a tensor product of evalu-
ation Uy(L(sk)) modules and a finite dimensional highest weigh{(L (sk)) module.
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In this section we shall consider only finite dimensiot(sk) and Uq(L(sk))
modules of type 1 and denotera+ 1 dimensional irreducibldJy(sl,) module V,
simply by V.

7.1. Main result 2. For a nonzero polynomiaP(u), we set

Zdeg P P(Zfl)
(9P P(z7)) =0

P(2) =

For annihilating polynomials the following two theoremsldowhose proof will be
given in the next subsection.

Theorem 7.1. For an evaluation {(L(sk)) module ¥Y(a) and a tensor product
of them the following hold
1) pv@®@ = Ili<<n(1— gqti-2alz).
@) pv(@ =TIli<j<n Py @)(2) for V = Vy,(a1) ® - - - ® Vi, (an).

Theorem 7.2. Let V be a finite dimensional highest weighg(U(sl2)) module of
type 1 and P(u) the associated Drinfeld polynomial. Ther (g) = P(2).

7.2. Proof of Theorems 7.1 and 7.2.In this subsection we shall prove The-
orems 7.1 and 7.2, assuming the following proposition. Ttaofoof the proposition
will be given in the next subsection.

Proposition 7.1. Let V be a finite dimensional highest weight(U(sl>)) module
of typel and P(u) the associated Drinfeld polynomial. Ther (g) divides P(2).

First we prove Theorem 7.2, assuming Theorem 7.1.

Proof of Theorem 7.2. By Theorem 3.2 (£)P) is isomorphic to som#&/,, (a;) ®
-+ ® Vp, (an). By Propositions 3.2 and 3.3 and Theorem 7.1 (1),rth@nd thea; sat-
isfy P(2) = [1y<j=n Py, @)(2)- Hence py(p)(2) = P(2) by Theorem 7.1 (2). LeW
be a maximal submodule of. ThenV /W is isomorphic toV(P). Therefore I5(z)
(= pv(r)(2)) divides py(2). Since py(z) divides P(2) by Proposition 7.1, we obtain the
assertion. O

In the rest of this subsection, we shall prove Theorem 7.1st ke prove three
lemmas needed later. For an algel#sand a generating series(z) = > .z Xmz ™
(Xm € A) we shall say thatX(z) ~ 0 on a A moduleV if the action of X, on V is
zero form > 0. We shall use the generating sergyz) = > ., X2 ™
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Lemma 7.1. Let V be a finite dimensional (L (sk)) module. For a polynomial
f(2) the following conditions are equivalent
Q) f(@isin ly.
) f(@y (27 ~0o0n V.
3) f(20*)(2)~0o0n V.

Proof. Letf(2) = ZOEjENCj Zi. Then the coefficient oz ™ in f(2)y (2) is equal
to > o<j<n CjXj,m for a positive integem. Hence (1)= (2) follows from the defini-
tion of Iy and (1) « (2) follows from (3.20). The equivalence of (2) and (3) fol®
from Lemma 3.1. O

The following is a slight refinement of [10, Proposition 4.4\ote that we are
using the opposite of the comultiplication in [10].

Lemma 7.2. For an integer | set
U = {u € Ug(L(sk)) | kuk'* = g?u}.
Then the following hold

Ay @) =10y @®1+y (@ e oM@ mod > (U-¢in® Uz ]

r=1

Lemma 7.3. On V,(a) the following hold
1) x (v = [i +118(z/aq"? v,

o (1—gMlazl)(1—g-(Daz1
) (D(+)(Z)Ui =q" 2 (f_qg—zi+?afr)1()(1£lqn—2i—algr)l) Vi -

Here §(z2) = > - 2" and the rational function of z on the right hand side (&)
should be understood as a Laurent expansion arotind

Proof. Part (1) is [10, Proposition 4.2]. (We are using aedéht correspondence
of the generators (3.24), (3.25) and a different.p\Part (2) easily follows from this,
X; = e and (3.26). O

Now we can prove Theorem 7.1.

Proof of Theorem 7.1. (1) By Lemma 7.3 (1), a polynomidk) is in Iy, if
and only if f(2)8(z/aq™2-1) = f(ag"?1)s(z/aq"?1) =0 for 0<i <n—1. This
proves the assertion.

(2) We setVj = Vy (), pj(2 = pv;(2d, Wn = V1 ® - ® Vy and fn(2) =
p1(2) - - - pn(2). We shall provepw, (z) = fn(2) for any N.
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First we shall show by induction oM that fy(z) divides pw,(z). In the case
N = 1 there is nothing to prove. We assume the chse 1. By Lemma 7.2 we have

Pun (DAY () = 18 pun (DY (@) + Pw, (DY (2) ® 27 (2))
mod D (U_¢41) ® U )(Z ).

r=1

By the definition of pw,(z) and Lemma 7.1pw,(2)y~(2) ~ 0 on Wy = Wn_1 ® Vj.
Hence the above equality implies the following:

() pwy(2y™(2) ~0 on Vy,

(i) Pwy, @y~ (2) ® 2 (2) ~ 0 on W1 ® V.

By (i) and Lemma 7.1pw,(2) € |y, and hencepy(z) divides pw, (2). By this we can
write pw, (2) = 9(2) pn(2) with some polynomialg(z). Then (i) is rewritten as

(7.1) 92y (2 ® pn@P T (Z) ~0 on Wy_1® V.
By Lemma 7.3 (2) we find that
(7.2) NP (v = ¢i(Qu (0 <i <ny)

on Vn, where¢i(z) = ¢ny.ay.i (2) with

o (1 _ qn+lafl)(1 _ qf(n+1)af1)
(1 _ qnfzi +larl)(1 _ qnfziflarl)
— q—(r‘I—Zi) H (1 _ q_(n_2j+1)a_12).

0<j<n+1
j#ii+1

#nai(2 = pv,@(2 xq

Egs. (7.1) and (7.2) imply thap; (2)9(2)y—(2) ~ 0 on Wy_; for any i and hence that
Pw,_,(2) divides ¢;(2)g(z) for anyi. Since the g.c.d. of the;(z) is 1, it follows that
Pw,_,(2) divides g(2). This, pw,(2) = 9(2)pn(2) and the induction assumption prove
that fn(2) divides pw, (2).

Next, to complete the proof, we shall show tipgi, (z) divides fy(z). By Lemma 7.1,
this is equivalent tox) fn(2)y~(2) ~ 0 onWy. Suppose thaiVy is irreducible. Then, by
Propositions 3.2 and 3.3 and part (1) of this theor®¥y,is isomorphic toV (P) such that
P(2) = fn(2). Hence we find thapw, (z) divides fy(2) if Wy is irreducible by Propos-
ition 7.1. This result proves that) holds for anyWy, sinceWy is irreducible for generic
parameters; by Theorem 3.2 (1) and since the matrix elements of the acifor}, on
W (relative to a certain basis) are Laurent polynomials inahe ]

7.3. Proof of Proposition 7.1. In the rest of this section, we shall prove Prop-
osition 7.1, to complete the proof of Theorems 7.1 and 7.2stRire shall show that
the proof is reduced to showing Lemma 7.4 below.
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Following [10], defineP; € Uq(L(sl)) (r = 0) inductively byPy = 1 and

“1g(+
erzlk 1(1)(] )Pr—i

Pr = q_2r 1 (I’ z 1)
and setP(u) = > ., P U, so that
kP(q~*u)
7.3 ST
(7.3) T Z(; u',

Let V be a finite dimensional highest weigh (L (sl>)) module of type 1 andP(u) =
er=o AmU (Ao = 1, A; # 0) the associated Drinfeld polynomial. We denote a highest
weight vector ofV by v. Then

(74) xtv=0meZ2), kv=dv, Pv=xv, X)"v=0m>I)

and V is spanned by the vectorg X ---x v (0 <n =<1, ry,rz...,rp € Z). By
Proposition 6.1, with m < 0 is expressed as a linear combination of ®ye(m > 1)
on V. Hence we can see that

V = Z Z CX X+ X v.

0<n<l rq,rp,...,ry>1

By the above and Lemma 7.1, we can see that, to prove Prapo4§itl, it suffices to
show the following lemma.

Lemma 7.4. Letwv, | and the), be as above. Then the following hold for-d:

(Zkr Sr) XX v=0 (1,12...,Mh =1, 0=<n<l).

In the following, we shall show the above lemma. Let
') |
X(u) =D xqu™,  A(u) =D AU, Y(u) = A(U)X(u).
m=1 r=0

Then

min{l,m—1}

Y(u) = Z yr;umv Ym = Z At Xm_p -
m=1

For a generating serie&(u) in u, we denote the coefficient af° in A(u) by (A(U))s.
As usual, we setxt)™ = (x¥)"/[n]! and (X(u))™ = (X(u))"/[n]! for a nonnegative
integern.

The following lemma plays an important role in the proof ofnima 7.4. Part (1)
is [19, Lemma 4.4] and part (2) follows from part (1) and (7.4)
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Lemma 7.5. (1) Fors>r > 1,
()O0D® = (=1 g (XS PU)sk”  mod D Ug(L(sk))x’
lez
(2) Letv and | be as above. Then the following hold ford and 0 <r <s—2:
(Y(u)X(u)')sv = 0.

To prove Lemma 7.4, we further need the following two lemmas.

Lemma 7.6. (1) [X5, X3lez = (1—0%) >0, Xrpma X~ for m>n.
@) [ X712 = (= GA)(Y(U)X(U)nr2 for m=> 1.
(3) ms1 Xnla2 + X1 Ymlg2z = 0 for m> 1.
(4) For ry,ra, ..., rn = 1, X, X ---%_ is expressed as a linear combination of the
following elements

XgXg Xy (S1Z2% =25 =1 3,5 =2r))

Proof. Part (1) follows from (3.22). Part (2) is a conseqwent (1) and the def-

inition of y,. Part (3) follows from (3.22) and the definition gf,. Part (4) is easily
shown, using (1). O

Lemma 7.7. Form,n>1,
n-1

YO = 02 (X)) Y = D 8ne (X)) (YW XW)™ I

r=0

where the g, are some complex numbers.

Assuming Lemma 7.7 for a while, we shall prove Lemma 7.4.

Proof of Lemma 7.4. We shall prove the assertion by inductam. The case
n = 0 follows from Lemma 7.5 (2) withr = 0. If | = 0, then we are done. Suppose
thatl > 1 and let 1< p <I. Assuming the casa = p — 1, we show the casa = p
by induction onN := Z]P:l(rj —1). By Lemma 7.5 (2) and Lemma 7.7,

Ya(x)Pv=0 (m>I).

The caseN = 0 follows from this. If N > 0, then X Xyt X v is rewritten as a
linear combination of the vectorg; X, - " X, U with s > 1,8 >1(2=<j =< p) and
Zj S| = Zj r; by Lemma 7.6 (4). By the induction assumptions,

YmXe,Xs, = X, =0, YyXg_1Xg, - X v =0
for m > |. Hence we find
yn_"IXS:XS_zn.XS_pU:O m=>1)

by Lemma 7.6 (3). This completes the proof. 0
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Next, to complete the proof, we shall show Lemma 7.7. For thés need the
following.

Lemma 7.8. Forn>1 and me Z,
(Y U)X Hmxp — 2" (Y ()XW Hm = (L= g®")(Y U)X (U)me1-

Proof. The casen = 1 follows from Lemma 7.6 (2). Assuming the assertion for
n, we find that

(Y X W)Mm¥ — (1= ") (Y W)X Dmea
=D % (YWXW" Hmerxg — (2= XU 1)

(*) r>1
=0" > x7xg (Y(U)XU)"
r>1

By Lemma 7.6 (1)X X = % X~ + (1 =02 > ¢_y X, 1_¢Xs for r > 1. This implies

XX (Y (U)X Dm-r = 2% (Y (U)X U)m + (2= a)(Y XU 1.

r>1

By substituting this into £), we obtain the assertion for + 1. ]
Now we can prove Lemma 7.7.

Proof of Lemma 7.7. The case = 1 follows from Lemma 7.6 (2). By the
same claim,

Yo (X)) = PO (x )y
= (YmOXD)" = 9P (XD)"Ym)XT + (1= a?)g?"(X0) (Y (U) X (U))me1.

Substituting the assertion far into the above and using Lemma 7.8, we obtain the
assertion fom + 1. ]

8. Tensor product of ®y; modules

In this section, we show that we can consider a tensor proahwctule of finite
dimensionalX, modules.

Theorem 8.1. Let V, W and U be finite dimension&l; modules.
(1) The W(L(sk)) module structure on W& W via the comultiplication(4.9)H4.13)
can be uniquely extended to [y module structure by the following actions ofX
and X!

Xoa(v ® w) = D~ (Xo2)1-nv ® (Xo2)"w,  Xzo(v ® w) = D" (Xao)n-1v ® (X20)"w
n—0 n=0
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where (Xo2)n and (Xz0)n, denote the components ofyxXand X0 defined in(5.2) and
(5.3), respectively.
(2) If we consider tensor product modulesi®j, as in (1), then the associativity holds

VeWeU)~(VeW) e uU.

Proof. (1) The extension is unique if possible by Theorem @Hherefore it is
sufficient to check the relations (4.2) and (4.5). Here wdlshaify Xg2X20 = 1 and
{Xo2, Xa23lq = 1 as examples, the proof of the remaining relations beinglesim

Formally we write

B1)  A(Xo) = D (X1 ® (X02)",  A(Xz0) = D (Xao)n-1 ® (X20)™.
n=0 n=0
Then

(8.2) AX0)A(Xz20) = D (Xo2)1 m(Xao)n 1 ® (Xo2)™ "

m,n=0

By (5.2) and (5.3)
Xo2Xa0 =D (Xo2)1-m(Xa0)n-1 = 1.

m,n>0
From this we find

> (X021 m(Xao)n 1 =610

m,n>0
n—m=r

for any integerr. Substituting this into (8.2), we obtain (Xg2)A(X20) = 1.
Next we considefA(Xo2), A(X23)}q = 1. By (8.1) and (4.11)

(8.3) {A(X02), A(Xz3)lg = D _(In +11n)
n=0
with
In = {(Xo2)1-n, X23 — X13}q ® (X02)", Iln = {(X02)1-n ® (X02)", X13 ® X23}q-
By Lemma 5.2 (1), J is rewritten as follows:
In = 8n,0 = "[N + 1](X02)-nX13 ® (X02)".
On the other hand, we find by (5.2) afilo, X23}q = 1 that

lln = g*"[N](X02)1-nX13 ® {(X02)", X2a}gn
= q*"[N](Xo02)1-n X13 ® (Xo2)" .
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Substituting the above into (8.3), we find that(Xo2), A(X23)}q = 1, since Ko2)n =0
for n « 0.

(2) By Theorem 6.1, the extendédy module structure on th&lg(L(sk)) mod-
ule V® W ® U is unique. This proves the assertion. It is also easy to ptbee
associativity directly, using the action in (1). ]

9. L-operators

At the end of the paper, we discuss an interesting connebiétweenL -operators
for Ug(L(sk)) and Xq module structures. Thé&-operators originated from the theory
of exactly solvable models [20]. In this section we shall aenan + 1 dimensional
irreducible Uq(sl2) module V, ;. simply by V,, as before.

9.1. L-operators and By modules. Let V be a finite dimensionalq(L(sl>))
module. We shall call a linear malp: V ® V1(1) - V ® V;(1) satisfying
(9.2) LAX) = AP(X)L  (x € Uq(L(sk)))

an L-operator forV. From anlL-operatorL for V, we define linear mapg;; (1 <
i,j<2)onV hy

L= Z Lij ® Eij
i,j=1,2

where theE;; are the matrix units.

Proposition 9.1. Let V be a finite dimensional {{L(sl)) module. Suppose that
an L-operator L exists for V and that both;{ and Ly, are invertible. Then the
Uq(L(sk)) module structure on V is extended taX® module structure by the follow-
ing action of X, and X!

9.2) Xo2 = (L22 + Laa)(L11 + L12) ™ Xao = (L1a+ L12)(Laz + Lag) ™%

Proof. It suffices to check (4.5). Here we proi¥so, Xo2}q = 1 as an example.
Among the relations that follow from (9.1), we need the foliiog:
toLii = Liito, tol1z=0’Liato, toloy = q *Laato,
eol2o =q "(L22&o— L12), elar =g *(L21& — L1 + Lasto),
L1 = q ‘el — g *tol1z, L1y =g ‘eplie.

Using the above anisp =ty — (Q — g 1) from Proposition 4.2, it is easy to show
that bothLi; + L1» and Ly, + Loy are invertible and that the following hold:

qXao(Loz + La1) = (Loz + Lo1)Z + (@ — g H)(L11 + L12),
(L1 + L12)Z = g Xzo(L11 + L12)
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whereZ = q~*to— (—gq~Y)ey. Eliminating Z from the above two equations, we obtain
{X30, Xo2}q = 1. [

REMARK 9.1. In terms of a linear mag = > ;_; , Eij ® Lij: Vi(1) ® V —
Vi(1) ® V satisfying

LA(X) = AP(X)L  (x € Ug(L(sk))),
we can show that
Xoz = (L22 — L12) M(L11— L21),  Xao = (L11— L21) (L2 — L12).
defines aXlg module structure on by(L(slx)) moduleV if £11 and Ly, are invertible.

9.2. L-operators for a tensor product of evaluation modules. Recall that on
a finite dimensionaly(sl) moduleV of type 1 the element is diagonalizable with
eigenvaluesy" (n € Z). Let us denote the eigenspacetaforresponding t@" by V[n].
Fixing a square root”/? of g, we define a linear map¥2 on V so thatt'/?|y(y =
q"/?idyn for anyn. Then this satisfiegt/?)? =t, tY/2e = qet/? andt¥/2f = q 1 ft¥2

The following well known two propositions give an-operator for a tensor product
of evaluationUq(L(slz)) modules of type 1. The.-operators in the first proposition
first appeared in [21, Appendix]. See also [22, Propositipn 2

Proposition 9.2. Let V be a finite dimensionald(sl,) module V of typd and con-
sider the evaluation K(L(sl)) module a). The linear map (a) = Zi,j:l,z Lij(@) ®
Ejj with
Li(a) = ag”/2t? —q 272, Lip(a) = (q — g g Y2aft'?,
Lza(@) = (4 —q g™’ %, Laf(a) = ag”?t™4% — q7/2tY?2

is an L-operator for \(a).

Proposition 9.3. Let V and W be finite dimensionaly(L(sl>)) modules. Let L
and L' be L-operators for V and \Wrespectively. Then

Z (z Li ®L|’j)® Ej
i,j=1,2\I=1,2

is an L-operator for V@ W.

9.3. Ky module structure on a tensor product of evaluation modules. Let us
denote thel-operator associated with the evaluation modéléa) as in Proposition 9.2
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by L(n,a) = Zi,j=l,2|—(n' a)ij ® Eij. Setn = (ny, ny,...,nN) anda= (az, a, ..., an).
Then, by Proposition 9.3,.(n, @) = > j_; , L(n, @) ® Ejj with

L(n, a)ij = Z L(ng, &)i1, ® LN, @)1, ® -+ - @ L(NN, an)iyy,j

I1.l2,...,In21=1,2

is an L-operator for the tensor produdt,(a) := Vh,(a1) ® Vn,(82) ® - -+ ® Vi, (an).
Define End¥,, ® --- ® V,,) valued rational functionsXpz(n, @ and Xzo(n, @) of a
from the L(n, a);; as in (9.2).

Theorem 9.1. Set b=0 and I, = {q" 1, q"3,...,q "} for a positive integer n.
(1) The W(L(sl)) module structure on Ma) can be extended to &y module struc-
ture if and only if a ¢ I, for any i.
(2) If & ¢ I, for any i, then the assignmenteX— Xo2(Nn, @), X20+> X20(N, @) extends
the Wy(L(sl)) module structure on \a) to a Xy module structure.

Proof. (1) By Theorem 7.1 ¢ I, for anyi if and only if py,@ (1) # 0. Hence
the assertion follows from Theorem 6.1.
(2) LetJ, = I,U{g~™*Y}. We can easily show that

detljj(n,a) = g2 [J(a—b), detlj(n, a)= ] (detlj(m,a)™

beJ, 1<i<n

with m; = [],;(n + 1) for j = 1, 2. Hence, by Proposition 9.1, we can see that the
assignment in the assertion define®l@module structure oW, (a) if & ¢ J,, for anyi.

We shall prove that the assignment works also in the easel, for anyi. For
this it is sufficient to show that the (matrix valued) ratibfianctions Xg»(n, @) and
Xz0(n, @) are not singular on| := [[,;y(C* \ Iy). This is done by induction on
N. The caseN = 1 is proven by checking thaXg(n, a) and Xy(n, a) do not have
a pole ata = q ™. Setn' = (ng, Ny, ..., Nn_1), & = (a1, @, ..., ay_1) and V' =
Vi, (81) ® Vi,(82) ® - - ® Vo, (@n-1). Then ifa ¢ J, for anyi, we have

Xoao(n, @)(v @ w) = D (Xoao(N', @))1-1v ® (Xoz(, an))w (v € V', w € Vp, (an))
1>0

by Theorems 8.1 and 6.1 (2). Assume the cdse- 1. Then the r.h.s. of the above
equality is not singular on/. This proves the cashl for Xg,(n, a). The proof of the
caseXoo(n, a) is similar. O
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